blob: 7e10b498367efdd1f76fea4e04d06b3a6f10f43f [file] [log] [blame]
Mark de Weverfa36ec72021-02-09 17:52:41 +01001//===----------------------------------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9// Copyright (c) Microsoft Corporation.
10// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
11
12// Copyright 2018 Ulf Adams
13// Copyright (c) Microsoft Corporation. All rights reserved.
14
15// Boost Software License - Version 1.0 - August 17th, 2003
16
17// Permission is hereby granted, free of charge, to any person or organization
18// obtaining a copy of the software and accompanying documentation covered by
19// this license (the "Software") to use, reproduce, display, distribute,
20// execute, and transmit the Software, and to prepare derivative works of the
21// Software, and to permit third-parties to whom the Software is furnished to
22// do so, all subject to the following:
23
24// The copyright notices in the Software and this entire statement, including
25// the above license grant, this restriction and the following disclaimer,
26// must be included in all copies of the Software, in whole or in part, and
27// all derivative works of the Software, unless such copies or derivative
28// works are solely in the form of machine-executable object code generated by
29// a source language processor.
30
31// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
32// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
33// FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT
34// SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE
35// FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE,
36// ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
37// DEALINGS IN THE SOFTWARE.
38
39// Avoid formatting to keep the changes with the original code minimal.
40// clang-format off
41
42#include "__config"
43#include "charconv"
44
45#include "include/ryu/common.h"
46#include "include/ryu/d2fixed.h"
47#include "include/ryu/d2s_intrinsics.h"
48#include "include/ryu/digit_table.h"
49#include "include/ryu/f2s.h"
50#include "include/ryu/ryu.h"
51
52_LIBCPP_BEGIN_NAMESPACE_STD
53
54inline constexpr int __FLOAT_MANTISSA_BITS = 23;
55inline constexpr int __FLOAT_EXPONENT_BITS = 8;
56inline constexpr int __FLOAT_BIAS = 127;
57
58inline constexpr int __FLOAT_POW5_INV_BITCOUNT = 59;
59inline constexpr uint64_t __FLOAT_POW5_INV_SPLIT[31] = {
60 576460752303423489u, 461168601842738791u, 368934881474191033u, 295147905179352826u,
61 472236648286964522u, 377789318629571618u, 302231454903657294u, 483570327845851670u,
62 386856262276681336u, 309485009821345069u, 495176015714152110u, 396140812571321688u,
63 316912650057057351u, 507060240091291761u, 405648192073033409u, 324518553658426727u,
64 519229685853482763u, 415383748682786211u, 332306998946228969u, 531691198313966350u,
65 425352958651173080u, 340282366920938464u, 544451787073501542u, 435561429658801234u,
66 348449143727040987u, 557518629963265579u, 446014903970612463u, 356811923176489971u,
67 570899077082383953u, 456719261665907162u, 365375409332725730u
68};
69inline constexpr int __FLOAT_POW5_BITCOUNT = 61;
70inline constexpr uint64_t __FLOAT_POW5_SPLIT[47] = {
71 1152921504606846976u, 1441151880758558720u, 1801439850948198400u, 2251799813685248000u,
72 1407374883553280000u, 1759218604441600000u, 2199023255552000000u, 1374389534720000000u,
73 1717986918400000000u, 2147483648000000000u, 1342177280000000000u, 1677721600000000000u,
74 2097152000000000000u, 1310720000000000000u, 1638400000000000000u, 2048000000000000000u,
75 1280000000000000000u, 1600000000000000000u, 2000000000000000000u, 1250000000000000000u,
76 1562500000000000000u, 1953125000000000000u, 1220703125000000000u, 1525878906250000000u,
77 1907348632812500000u, 1192092895507812500u, 1490116119384765625u, 1862645149230957031u,
78 1164153218269348144u, 1455191522836685180u, 1818989403545856475u, 2273736754432320594u,
79 1421085471520200371u, 1776356839400250464u, 2220446049250313080u, 1387778780781445675u,
80 1734723475976807094u, 2168404344971008868u, 1355252715606880542u, 1694065894508600678u,
81 2117582368135750847u, 1323488980084844279u, 1654361225106055349u, 2067951531382569187u,
82 1292469707114105741u, 1615587133892632177u, 2019483917365790221u
83};
84
85[[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline uint32_t __pow5Factor(uint32_t __value) {
86 uint32_t __count = 0;
87 for (;;) {
88 _LIBCPP_ASSERT(__value != 0, "");
89 const uint32_t __q = __value / 5;
90 const uint32_t __r = __value % 5;
91 if (__r != 0) {
92 break;
93 }
94 __value = __q;
95 ++__count;
96 }
97 return __count;
98}
99
100// Returns true if __value is divisible by 5^__p.
101[[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline bool __multipleOfPowerOf5(const uint32_t __value, const uint32_t __p) {
102 return __pow5Factor(__value) >= __p;
103}
104
105// Returns true if __value is divisible by 2^__p.
106[[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline bool __multipleOfPowerOf2(const uint32_t __value, const uint32_t __p) {
107 _LIBCPP_ASSERT(__value != 0, "");
108 _LIBCPP_ASSERT(__p < 32, "");
109 // __builtin_ctz doesn't appear to be faster here.
110 return (__value & ((1u << __p) - 1)) == 0;
111}
112
113[[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline uint32_t __mulShift(const uint32_t __m, const uint64_t __factor, const int32_t __shift) {
114 _LIBCPP_ASSERT(__shift > 32, "");
115
116 // The casts here help MSVC to avoid calls to the __allmul library
117 // function.
118 const uint32_t __factorLo = static_cast<uint32_t>(__factor);
119 const uint32_t __factorHi = static_cast<uint32_t>(__factor >> 32);
120 const uint64_t __bits0 = static_cast<uint64_t>(__m) * __factorLo;
121 const uint64_t __bits1 = static_cast<uint64_t>(__m) * __factorHi;
122
123#ifndef _LIBCPP_64_BIT
124 // On 32-bit platforms we can avoid a 64-bit shift-right since we only
125 // need the upper 32 bits of the result and the shift value is > 32.
126 const uint32_t __bits0Hi = static_cast<uint32_t>(__bits0 >> 32);
127 uint32_t __bits1Lo = static_cast<uint32_t>(__bits1);
128 uint32_t __bits1Hi = static_cast<uint32_t>(__bits1 >> 32);
129 __bits1Lo += __bits0Hi;
130 __bits1Hi += (__bits1Lo < __bits0Hi);
131 const int32_t __s = __shift - 32;
132 return (__bits1Hi << (32 - __s)) | (__bits1Lo >> __s);
133#else // ^^^ 32-bit ^^^ / vvv 64-bit vvv
134 const uint64_t __sum = (__bits0 >> 32) + __bits1;
135 const uint64_t __shiftedSum = __sum >> (__shift - 32);
136 _LIBCPP_ASSERT(__shiftedSum <= UINT32_MAX, "");
137 return static_cast<uint32_t>(__shiftedSum);
138#endif // ^^^ 64-bit ^^^
139}
140
141[[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline uint32_t __mulPow5InvDivPow2(const uint32_t __m, const uint32_t __q, const int32_t __j) {
142 return __mulShift(__m, __FLOAT_POW5_INV_SPLIT[__q], __j);
143}
144
145[[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline uint32_t __mulPow5divPow2(const uint32_t __m, const uint32_t __i, const int32_t __j) {
146 return __mulShift(__m, __FLOAT_POW5_SPLIT[__i], __j);
147}
148
149// A floating decimal representing m * 10^e.
150struct __floating_decimal_32 {
151 uint32_t __mantissa;
152 int32_t __exponent;
153};
154
155[[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline __floating_decimal_32 __f2d(const uint32_t __ieeeMantissa, const uint32_t __ieeeExponent) {
156 int32_t __e2;
157 uint32_t __m2;
158 if (__ieeeExponent == 0) {
159 // We subtract 2 so that the bounds computation has 2 additional bits.
160 __e2 = 1 - __FLOAT_BIAS - __FLOAT_MANTISSA_BITS - 2;
161 __m2 = __ieeeMantissa;
162 } else {
163 __e2 = static_cast<int32_t>(__ieeeExponent) - __FLOAT_BIAS - __FLOAT_MANTISSA_BITS - 2;
164 __m2 = (1u << __FLOAT_MANTISSA_BITS) | __ieeeMantissa;
165 }
166 const bool __even = (__m2 & 1) == 0;
167 const bool __acceptBounds = __even;
168
169 // Step 2: Determine the interval of valid decimal representations.
170 const uint32_t __mv = 4 * __m2;
171 const uint32_t __mp = 4 * __m2 + 2;
172 // Implicit bool -> int conversion. True is 1, false is 0.
173 const uint32_t __mmShift = __ieeeMantissa != 0 || __ieeeExponent <= 1;
174 const uint32_t __mm = 4 * __m2 - 1 - __mmShift;
175
176 // Step 3: Convert to a decimal power base using 64-bit arithmetic.
177 uint32_t __vr, __vp, __vm;
178 int32_t __e10;
179 bool __vmIsTrailingZeros = false;
180 bool __vrIsTrailingZeros = false;
181 uint8_t __lastRemovedDigit = 0;
182 if (__e2 >= 0) {
183 const uint32_t __q = __log10Pow2(__e2);
184 __e10 = static_cast<int32_t>(__q);
185 const int32_t __k = __FLOAT_POW5_INV_BITCOUNT + __pow5bits(static_cast<int32_t>(__q)) - 1;
186 const int32_t __i = -__e2 + static_cast<int32_t>(__q) + __k;
187 __vr = __mulPow5InvDivPow2(__mv, __q, __i);
188 __vp = __mulPow5InvDivPow2(__mp, __q, __i);
189 __vm = __mulPow5InvDivPow2(__mm, __q, __i);
190 if (__q != 0 && (__vp - 1) / 10 <= __vm / 10) {
191 // We need to know one removed digit even if we are not going to loop below. We could use
192 // __q = X - 1 above, except that would require 33 bits for the result, and we've found that
193 // 32-bit arithmetic is faster even on 64-bit machines.
194 const int32_t __l = __FLOAT_POW5_INV_BITCOUNT + __pow5bits(static_cast<int32_t>(__q - 1)) - 1;
195 __lastRemovedDigit = static_cast<uint8_t>(__mulPow5InvDivPow2(__mv, __q - 1,
196 -__e2 + static_cast<int32_t>(__q) - 1 + __l) % 10);
197 }
198 if (__q <= 9) {
199 // The largest power of 5 that fits in 24 bits is 5^10, but __q <= 9 seems to be safe as well.
200 // Only one of __mp, __mv, and __mm can be a multiple of 5, if any.
201 if (__mv % 5 == 0) {
202 __vrIsTrailingZeros = __multipleOfPowerOf5(__mv, __q);
203 } else if (__acceptBounds) {
204 __vmIsTrailingZeros = __multipleOfPowerOf5(__mm, __q);
205 } else {
206 __vp -= __multipleOfPowerOf5(__mp, __q);
207 }
208 }
209 } else {
210 const uint32_t __q = __log10Pow5(-__e2);
211 __e10 = static_cast<int32_t>(__q) + __e2;
212 const int32_t __i = -__e2 - static_cast<int32_t>(__q);
213 const int32_t __k = __pow5bits(__i) - __FLOAT_POW5_BITCOUNT;
214 int32_t __j = static_cast<int32_t>(__q) - __k;
215 __vr = __mulPow5divPow2(__mv, static_cast<uint32_t>(__i), __j);
216 __vp = __mulPow5divPow2(__mp, static_cast<uint32_t>(__i), __j);
217 __vm = __mulPow5divPow2(__mm, static_cast<uint32_t>(__i), __j);
218 if (__q != 0 && (__vp - 1) / 10 <= __vm / 10) {
219 __j = static_cast<int32_t>(__q) - 1 - (__pow5bits(__i + 1) - __FLOAT_POW5_BITCOUNT);
220 __lastRemovedDigit = static_cast<uint8_t>(__mulPow5divPow2(__mv, static_cast<uint32_t>(__i + 1), __j) % 10);
221 }
222 if (__q <= 1) {
223 // {__vr,__vp,__vm} is trailing zeros if {__mv,__mp,__mm} has at least __q trailing 0 bits.
224 // __mv = 4 * __m2, so it always has at least two trailing 0 bits.
225 __vrIsTrailingZeros = true;
226 if (__acceptBounds) {
227 // __mm = __mv - 1 - __mmShift, so it has 1 trailing 0 bit iff __mmShift == 1.
228 __vmIsTrailingZeros = __mmShift == 1;
229 } else {
230 // __mp = __mv + 2, so it always has at least one trailing 0 bit.
231 --__vp;
232 }
233 } else if (__q < 31) { // TRANSITION(ulfjack): Use a tighter bound here.
234 __vrIsTrailingZeros = __multipleOfPowerOf2(__mv, __q - 1);
235 }
236 }
237
238 // Step 4: Find the shortest decimal representation in the interval of valid representations.
239 int32_t __removed = 0;
240 uint32_t _Output;
241 if (__vmIsTrailingZeros || __vrIsTrailingZeros) {
242 // General case, which happens rarely (~4.0%).
243 while (__vp / 10 > __vm / 10) {
244#ifdef __clang__ // TRANSITION, LLVM-23106
245 __vmIsTrailingZeros &= __vm - (__vm / 10) * 10 == 0;
246#else
247 __vmIsTrailingZeros &= __vm % 10 == 0;
248#endif
249 __vrIsTrailingZeros &= __lastRemovedDigit == 0;
250 __lastRemovedDigit = static_cast<uint8_t>(__vr % 10);
251 __vr /= 10;
252 __vp /= 10;
253 __vm /= 10;
254 ++__removed;
255 }
256 if (__vmIsTrailingZeros) {
257 while (__vm % 10 == 0) {
258 __vrIsTrailingZeros &= __lastRemovedDigit == 0;
259 __lastRemovedDigit = static_cast<uint8_t>(__vr % 10);
260 __vr /= 10;
261 __vp /= 10;
262 __vm /= 10;
263 ++__removed;
264 }
265 }
266 if (__vrIsTrailingZeros && __lastRemovedDigit == 5 && __vr % 2 == 0) {
267 // Round even if the exact number is .....50..0.
268 __lastRemovedDigit = 4;
269 }
270 // We need to take __vr + 1 if __vr is outside bounds or we need to round up.
271 _Output = __vr + ((__vr == __vm && (!__acceptBounds || !__vmIsTrailingZeros)) || __lastRemovedDigit >= 5);
272 } else {
273 // Specialized for the common case (~96.0%). Percentages below are relative to this.
274 // Loop iterations below (approximately):
275 // 0: 13.6%, 1: 70.7%, 2: 14.1%, 3: 1.39%, 4: 0.14%, 5+: 0.01%
276 while (__vp / 10 > __vm / 10) {
277 __lastRemovedDigit = static_cast<uint8_t>(__vr % 10);
278 __vr /= 10;
279 __vp /= 10;
280 __vm /= 10;
281 ++__removed;
282 }
283 // We need to take __vr + 1 if __vr is outside bounds or we need to round up.
284 _Output = __vr + (__vr == __vm || __lastRemovedDigit >= 5);
285 }
286 const int32_t __exp = __e10 + __removed;
287
288 __floating_decimal_32 __fd;
289 __fd.__exponent = __exp;
290 __fd.__mantissa = _Output;
291 return __fd;
292}
293
294[[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline to_chars_result _Large_integer_to_chars(char* const _First, char* const _Last,
295 const uint32_t _Mantissa2, const int32_t _Exponent2) {
296
297 // Print the integer _Mantissa2 * 2^_Exponent2 exactly.
298
299 // For nonzero integers, _Exponent2 >= -23. (The minimum value occurs when _Mantissa2 * 2^_Exponent2 is 1.
300 // In that case, _Mantissa2 is the implicit 1 bit followed by 23 zeros, so _Exponent2 is -23 to shift away
301 // the zeros.) The dense range of exactly representable integers has negative or zero exponents
302 // (as positive exponents make the range non-dense). For that dense range, Ryu will always be used:
303 // every digit is necessary to uniquely identify the value, so Ryu must print them all.
304
305 // Positive exponents are the non-dense range of exactly representable integers.
306 // This contains all of the values for which Ryu can't be used (and a few Ryu-friendly values).
307
308 // Performance note: Long division appears to be faster than losslessly widening float to double and calling
309 // __d2fixed_buffered_n(). If __f2fixed_buffered_n() is implemented, it might be faster than long division.
310
311 _LIBCPP_ASSERT(_Exponent2 > 0, "");
312 _LIBCPP_ASSERT(_Exponent2 <= 104, ""); // because __ieeeExponent <= 254
313
314 // Manually represent _Mantissa2 * 2^_Exponent2 as a large integer. _Mantissa2 is always 24 bits
315 // (due to the implicit bit), while _Exponent2 indicates a shift of at most 104 bits.
316 // 24 + 104 equals 128 equals 4 * 32, so we need exactly 4 32-bit elements.
317 // We use a little-endian representation, visualized like this:
318
319 // << left shift <<
320 // most significant
321 // _Data[3] _Data[2] _Data[1] _Data[0]
322 // least significant
323 // >> right shift >>
324
325 constexpr uint32_t _Data_size = 4;
326 uint32_t _Data[_Data_size]{};
327
328 // _Maxidx is the index of the most significant nonzero element.
329 uint32_t _Maxidx = ((24 + static_cast<uint32_t>(_Exponent2) + 31) / 32) - 1;
330 _LIBCPP_ASSERT(_Maxidx < _Data_size, "");
331
332 const uint32_t _Bit_shift = static_cast<uint32_t>(_Exponent2) % 32;
333 if (_Bit_shift <= 8) { // _Mantissa2's 24 bits don't cross an element boundary
334 _Data[_Maxidx] = _Mantissa2 << _Bit_shift;
335 } else { // _Mantissa2's 24 bits cross an element boundary
336 _Data[_Maxidx - 1] = _Mantissa2 << _Bit_shift;
337 _Data[_Maxidx] = _Mantissa2 >> (32 - _Bit_shift);
338 }
339
340 // If Ryu hasn't determined the total output length, we need to buffer the digits generated from right to left
341 // by long division. The largest possible float is: 340'282346638'528859811'704183484'516925440
342 uint32_t _Blocks[4];
343 int32_t _Filled_blocks = 0;
344 // From left to right, we're going to print:
345 // _Data[0] will be [1, 10] digits.
346 // Then if _Filled_blocks > 0:
347 // _Blocks[_Filled_blocks - 1], ..., _Blocks[0] will be 0-filled 9-digit blocks.
348
349 if (_Maxidx != 0) { // If the integer is actually large, perform long division.
350 // Otherwise, skip to printing _Data[0].
351 for (;;) {
352 // Loop invariant: _Maxidx != 0 (i.e. the integer is actually large)
353
354 const uint32_t _Most_significant_elem = _Data[_Maxidx];
355 const uint32_t _Initial_remainder = _Most_significant_elem % 1000000000;
356 const uint32_t _Initial_quotient = _Most_significant_elem / 1000000000;
357 _Data[_Maxidx] = _Initial_quotient;
358 uint64_t _Remainder = _Initial_remainder;
359
360 // Process less significant elements.
361 uint32_t _Idx = _Maxidx;
362 do {
363 --_Idx; // Initially, _Remainder is at most 10^9 - 1.
364
365 // Now, _Remainder is at most (10^9 - 1) * 2^32 + 2^32 - 1, simplified to 10^9 * 2^32 - 1.
366 _Remainder = (_Remainder << 32) | _Data[_Idx];
367
368 // floor((10^9 * 2^32 - 1) / 10^9) == 2^32 - 1, so uint32_t _Quotient is lossless.
369 const uint32_t _Quotient = static_cast<uint32_t>(__div1e9(_Remainder));
370
371 // _Remainder is at most 10^9 - 1 again.
372 // For uint32_t truncation, see the __mod1e9() comment in d2s_intrinsics.h.
373 _Remainder = static_cast<uint32_t>(_Remainder) - 1000000000u * _Quotient;
374
375 _Data[_Idx] = _Quotient;
376 } while (_Idx != 0);
377
378 // Store a 0-filled 9-digit block.
379 _Blocks[_Filled_blocks++] = static_cast<uint32_t>(_Remainder);
380
381 if (_Initial_quotient == 0) { // Is the large integer shrinking?
382 --_Maxidx; // log2(10^9) is 29.9, so we can't shrink by more than one element.
383 if (_Maxidx == 0) {
384 break; // We've finished long division. Now we need to print _Data[0].
385 }
386 }
387 }
388 }
389
390 _LIBCPP_ASSERT(_Data[0] != 0, "");
391 for (uint32_t _Idx = 1; _Idx < _Data_size; ++_Idx) {
392 _LIBCPP_ASSERT(_Data[_Idx] == 0, "");
393 }
394
395 const uint32_t _Data_olength = _Data[0] >= 1000000000 ? 10 : __decimalLength9(_Data[0]);
396 const uint32_t _Total_fixed_length = _Data_olength + 9 * _Filled_blocks;
397
398 if (_Last - _First < static_cast<ptrdiff_t>(_Total_fixed_length)) {
399 return { _Last, errc::value_too_large };
400 }
401
402 char* _Result = _First;
403
404 // Print _Data[0]. While it's up to 10 digits,
405 // which is more than Ryu generates, the code below can handle this.
406 __append_n_digits(_Data_olength, _Data[0], _Result);
407 _Result += _Data_olength;
408
409 // Print 0-filled 9-digit blocks.
410 for (int32_t _Idx = _Filled_blocks - 1; _Idx >= 0; --_Idx) {
411 __append_nine_digits(_Blocks[_Idx], _Result);
412 _Result += 9;
413 }
414
415 return { _Result, errc{} };
416}
417
418[[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline to_chars_result __to_chars(char* const _First, char* const _Last, const __floating_decimal_32 __v,
419 chars_format _Fmt, const uint32_t __ieeeMantissa, const uint32_t __ieeeExponent) {
420 // Step 5: Print the decimal representation.
421 uint32_t _Output = __v.__mantissa;
422 int32_t _Ryu_exponent = __v.__exponent;
423 const uint32_t __olength = __decimalLength9(_Output);
424 int32_t _Scientific_exponent = _Ryu_exponent + static_cast<int32_t>(__olength) - 1;
425
426 if (_Fmt == chars_format{}) {
427 int32_t _Lower;
428 int32_t _Upper;
429
430 if (__olength == 1) {
431 // Value | Fixed | Scientific
432 // 1e-3 | "0.001" | "1e-03"
433 // 1e4 | "10000" | "1e+04"
434 _Lower = -3;
435 _Upper = 4;
436 } else {
437 // Value | Fixed | Scientific
438 // 1234e-7 | "0.0001234" | "1.234e-04"
439 // 1234e5 | "123400000" | "1.234e+08"
440 _Lower = -static_cast<int32_t>(__olength + 3);
441 _Upper = 5;
442 }
443
444 if (_Lower <= _Ryu_exponent && _Ryu_exponent <= _Upper) {
445 _Fmt = chars_format::fixed;
446 } else {
447 _Fmt = chars_format::scientific;
448 }
449 } else if (_Fmt == chars_format::general) {
450 // C11 7.21.6.1 "The fprintf function"/8:
451 // "Let P equal [...] 6 if the precision is omitted [...].
452 // Then, if a conversion with style E would have an exponent of X:
453 // - if P > X >= -4, the conversion is with style f [...].
454 // - otherwise, the conversion is with style e [...]."
455 if (-4 <= _Scientific_exponent && _Scientific_exponent < 6) {
456 _Fmt = chars_format::fixed;
457 } else {
458 _Fmt = chars_format::scientific;
459 }
460 }
461
462 if (_Fmt == chars_format::fixed) {
463 // Example: _Output == 1729, __olength == 4
464
465 // _Ryu_exponent | Printed | _Whole_digits | _Total_fixed_length | Notes
466 // --------------|----------|---------------|----------------------|---------------------------------------
467 // 2 | 172900 | 6 | _Whole_digits | Ryu can't be used for printing
468 // 1 | 17290 | 5 | (sometimes adjusted) | when the trimmed digits are nonzero.
469 // --------------|----------|---------------|----------------------|---------------------------------------
470 // 0 | 1729 | 4 | _Whole_digits | Unified length cases.
471 // --------------|----------|---------------|----------------------|---------------------------------------
472 // -1 | 172.9 | 3 | __olength + 1 | This case can't happen for
473 // -2 | 17.29 | 2 | | __olength == 1, but no additional
474 // -3 | 1.729 | 1 | | code is needed to avoid it.
475 // --------------|----------|---------------|----------------------|---------------------------------------
476 // -4 | 0.1729 | 0 | 2 - _Ryu_exponent | C11 7.21.6.1 "The fprintf function"/8:
477 // -5 | 0.01729 | -1 | | "If a decimal-point character appears,
478 // -6 | 0.001729 | -2 | | at least one digit appears before it."
479
480 const int32_t _Whole_digits = static_cast<int32_t>(__olength) + _Ryu_exponent;
481
482 uint32_t _Total_fixed_length;
483 if (_Ryu_exponent >= 0) { // cases "172900" and "1729"
484 _Total_fixed_length = static_cast<uint32_t>(_Whole_digits);
485 if (_Output == 1) {
486 // Rounding can affect the number of digits.
487 // For example, 1e11f is exactly "99999997952" which is 11 digits instead of 12.
488 // We can use a lookup table to detect this and adjust the total length.
489 static constexpr uint8_t _Adjustment[39] = {
490 0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,1,0,1,1,1,0,0,1,1,0,1,0,1,1,0,0,1,0,1,1,0,1,1,1 };
491 _Total_fixed_length -= _Adjustment[_Ryu_exponent];
492 // _Whole_digits doesn't need to be adjusted because these cases won't refer to it later.
493 }
494 } else if (_Whole_digits > 0) { // case "17.29"
495 _Total_fixed_length = __olength + 1;
496 } else { // case "0.001729"
497 _Total_fixed_length = static_cast<uint32_t>(2 - _Ryu_exponent);
498 }
499
500 if (_Last - _First < static_cast<ptrdiff_t>(_Total_fixed_length)) {
501 return { _Last, errc::value_too_large };
502 }
503
504 char* _Mid;
505 if (_Ryu_exponent > 0) { // case "172900"
506 bool _Can_use_ryu;
507
508 if (_Ryu_exponent > 10) { // 10^10 is the largest power of 10 that's exactly representable as a float.
509 _Can_use_ryu = false;
510 } else {
511 // Ryu generated X: __v.__mantissa * 10^_Ryu_exponent
512 // __v.__mantissa == 2^_Trailing_zero_bits * (__v.__mantissa >> _Trailing_zero_bits)
513 // 10^_Ryu_exponent == 2^_Ryu_exponent * 5^_Ryu_exponent
514
515 // _Trailing_zero_bits is [0, 29] (aside: because 2^29 is the largest power of 2
516 // with 9 decimal digits, which is float's round-trip limit.)
517 // _Ryu_exponent is [1, 10].
518 // Normalization adds [2, 23] (aside: at least 2 because the pre-normalized mantissa is at least 5).
519 // This adds up to [3, 62], which is well below float's maximum binary exponent 127.
520
521 // Therefore, we just need to consider (__v.__mantissa >> _Trailing_zero_bits) * 5^_Ryu_exponent.
522
523 // If that product would exceed 24 bits, then X can't be exactly represented as a float.
524 // (That's not a problem for round-tripping, because X is close enough to the original float,
525 // but X isn't mathematically equal to the original float.) This requires a high-precision fallback.
526
527 // If the product is 24 bits or smaller, then X can be exactly represented as a float (and we don't
528 // need to re-synthesize it; the original float must have been X, because Ryu wouldn't produce the
529 // same output for two different floats X and Y). This allows Ryu's output to be used (zero-filled).
530
531 // (2^24 - 1) / 5^0 (for indexing), (2^24 - 1) / 5^1, ..., (2^24 - 1) / 5^10
532 static constexpr uint32_t _Max_shifted_mantissa[11] = {
533 16777215, 3355443, 671088, 134217, 26843, 5368, 1073, 214, 42, 8, 1 };
534
535 unsigned long _Trailing_zero_bits;
536 (void) _BitScanForward(&_Trailing_zero_bits, __v.__mantissa); // __v.__mantissa is guaranteed nonzero
537 const uint32_t _Shifted_mantissa = __v.__mantissa >> _Trailing_zero_bits;
538 _Can_use_ryu = _Shifted_mantissa <= _Max_shifted_mantissa[_Ryu_exponent];
539 }
540
541 if (!_Can_use_ryu) {
542 const uint32_t _Mantissa2 = __ieeeMantissa | (1u << __FLOAT_MANTISSA_BITS); // restore implicit bit
543 const int32_t _Exponent2 = static_cast<int32_t>(__ieeeExponent)
544 - __FLOAT_BIAS - __FLOAT_MANTISSA_BITS; // bias and normalization
545
546 // Performance note: We've already called Ryu, so this will redundantly perform buffering and bounds checking.
547 return _Large_integer_to_chars(_First, _Last, _Mantissa2, _Exponent2);
548 }
549
550 // _Can_use_ryu
551 // Print the decimal digits, left-aligned within [_First, _First + _Total_fixed_length).
552 _Mid = _First + __olength;
553 } else { // cases "1729", "17.29", and "0.001729"
554 // Print the decimal digits, right-aligned within [_First, _First + _Total_fixed_length).
555 _Mid = _First + _Total_fixed_length;
556 }
557
558 while (_Output >= 10000) {
559#ifdef __clang__ // TRANSITION, LLVM-38217
560 const uint32_t __c = _Output - 10000 * (_Output / 10000);
561#else
562 const uint32_t __c = _Output % 10000;
563#endif
564 _Output /= 10000;
565 const uint32_t __c0 = (__c % 100) << 1;
566 const uint32_t __c1 = (__c / 100) << 1;
567 _VSTD::memcpy(_Mid -= 2, __DIGIT_TABLE + __c0, 2);
568 _VSTD::memcpy(_Mid -= 2, __DIGIT_TABLE + __c1, 2);
569 }
570 if (_Output >= 100) {
571 const uint32_t __c = (_Output % 100) << 1;
572 _Output /= 100;
573 _VSTD::memcpy(_Mid -= 2, __DIGIT_TABLE + __c, 2);
574 }
575 if (_Output >= 10) {
576 const uint32_t __c = _Output << 1;
577 _VSTD::memcpy(_Mid -= 2, __DIGIT_TABLE + __c, 2);
578 } else {
579 *--_Mid = static_cast<char>('0' + _Output);
580 }
581
582 if (_Ryu_exponent > 0) { // case "172900" with _Can_use_ryu
583 // Performance note: it might be more efficient to do this immediately after setting _Mid.
584 _VSTD::memset(_First + __olength, '0', static_cast<size_t>(_Ryu_exponent));
585 } else if (_Ryu_exponent == 0) { // case "1729"
586 // Done!
587 } else if (_Whole_digits > 0) { // case "17.29"
588 // Performance note: moving digits might not be optimal.
589 _VSTD::memmove(_First, _First + 1, static_cast<size_t>(_Whole_digits));
590 _First[_Whole_digits] = '.';
591 } else { // case "0.001729"
592 // Performance note: a larger memset() followed by overwriting '.' might be more efficient.
593 _First[0] = '0';
594 _First[1] = '.';
595 _VSTD::memset(_First + 2, '0', static_cast<size_t>(-_Whole_digits));
596 }
597
598 return { _First + _Total_fixed_length, errc{} };
599 }
600
601 const uint32_t _Total_scientific_length =
602 __olength + (__olength > 1) + 4; // digits + possible decimal point + scientific exponent
603 if (_Last - _First < static_cast<ptrdiff_t>(_Total_scientific_length)) {
604 return { _Last, errc::value_too_large };
605 }
606 char* const __result = _First;
607
608 // Print the decimal digits.
609 uint32_t __i = 0;
610 while (_Output >= 10000) {
611#ifdef __clang__ // TRANSITION, LLVM-38217
612 const uint32_t __c = _Output - 10000 * (_Output / 10000);
613#else
614 const uint32_t __c = _Output % 10000;
615#endif
616 _Output /= 10000;
617 const uint32_t __c0 = (__c % 100) << 1;
618 const uint32_t __c1 = (__c / 100) << 1;
619 _VSTD::memcpy(__result + __olength - __i - 1, __DIGIT_TABLE + __c0, 2);
620 _VSTD::memcpy(__result + __olength - __i - 3, __DIGIT_TABLE + __c1, 2);
621 __i += 4;
622 }
623 if (_Output >= 100) {
624 const uint32_t __c = (_Output % 100) << 1;
625 _Output /= 100;
626 _VSTD::memcpy(__result + __olength - __i - 1, __DIGIT_TABLE + __c, 2);
627 __i += 2;
628 }
629 if (_Output >= 10) {
630 const uint32_t __c = _Output << 1;
631 // We can't use memcpy here: the decimal dot goes between these two digits.
632 __result[2] = __DIGIT_TABLE[__c + 1];
633 __result[0] = __DIGIT_TABLE[__c];
634 } else {
635 __result[0] = static_cast<char>('0' + _Output);
636 }
637
638 // Print decimal point if needed.
639 uint32_t __index;
640 if (__olength > 1) {
641 __result[1] = '.';
642 __index = __olength + 1;
643 } else {
644 __index = 1;
645 }
646
647 // Print the exponent.
648 __result[__index++] = 'e';
649 if (_Scientific_exponent < 0) {
650 __result[__index++] = '-';
651 _Scientific_exponent = -_Scientific_exponent;
652 } else {
653 __result[__index++] = '+';
654 }
655
656 _VSTD::memcpy(__result + __index, __DIGIT_TABLE + 2 * _Scientific_exponent, 2);
657 __index += 2;
658
659 return { _First + _Total_scientific_length, errc{} };
660}
661
662[[nodiscard]] to_chars_result __f2s_buffered_n(char* const _First, char* const _Last, const float __f,
663 const chars_format _Fmt) {
664
665 // Step 1: Decode the floating-point number, and unify normalized and subnormal cases.
666 const uint32_t __bits = __float_to_bits(__f);
667
668 // Case distinction; exit early for the easy cases.
669 if (__bits == 0) {
670 if (_Fmt == chars_format::scientific) {
671 if (_Last - _First < 5) {
672 return { _Last, errc::value_too_large };
673 }
674
675 _VSTD::memcpy(_First, "0e+00", 5);
676
677 return { _First + 5, errc{} };
678 }
679
680 // Print "0" for chars_format::fixed, chars_format::general, and chars_format{}.
681 if (_First == _Last) {
682 return { _Last, errc::value_too_large };
683 }
684
685 *_First = '0';
686
687 return { _First + 1, errc{} };
688 }
689
690 // Decode __bits into mantissa and exponent.
691 const uint32_t __ieeeMantissa = __bits & ((1u << __FLOAT_MANTISSA_BITS) - 1);
692 const uint32_t __ieeeExponent = __bits >> __FLOAT_MANTISSA_BITS;
693
694 // When _Fmt == chars_format::fixed and the floating-point number is a large integer,
695 // it's faster to skip Ryu and immediately print the integer exactly.
696 if (_Fmt == chars_format::fixed) {
697 const uint32_t _Mantissa2 = __ieeeMantissa | (1u << __FLOAT_MANTISSA_BITS); // restore implicit bit
698 const int32_t _Exponent2 = static_cast<int32_t>(__ieeeExponent)
699 - __FLOAT_BIAS - __FLOAT_MANTISSA_BITS; // bias and normalization
700
701 // Normal values are equal to _Mantissa2 * 2^_Exponent2.
702 // (Subnormals are different, but they'll be rejected by the _Exponent2 test here, so they can be ignored.)
703
704 if (_Exponent2 > 0) {
705 return _Large_integer_to_chars(_First, _Last, _Mantissa2, _Exponent2);
706 }
707 }
708
709 const __floating_decimal_32 __v = __f2d(__ieeeMantissa, __ieeeExponent);
710 return __to_chars(_First, _Last, __v, _Fmt, __ieeeMantissa, __ieeeExponent);
711}
712
713_LIBCPP_END_NAMESPACE_STD
714
715// clang-format on