blob: e22bfa4a12e65427aa0d45dddb5fcabf3efae8a2 [file] [log] [blame]
Mark de Weverfa36ec72021-02-09 17:52:41 +01001//===----------------------------------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9// Copyright (c) Microsoft Corporation.
10// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
11
12// Copyright 2018 Ulf Adams
13// Copyright (c) Microsoft Corporation. All rights reserved.
14
15// Boost Software License - Version 1.0 - August 17th, 2003
16
17// Permission is hereby granted, free of charge, to any person or organization
18// obtaining a copy of the software and accompanying documentation covered by
19// this license (the "Software") to use, reproduce, display, distribute,
20// execute, and transmit the Software, and to prepare derivative works of the
21// Software, and to permit third-parties to whom the Software is furnished to
22// do so, all subject to the following:
23
24// The copyright notices in the Software and this entire statement, including
25// the above license grant, this restriction and the following disclaimer,
26// must be included in all copies of the Software, in whole or in part, and
27// all derivative works of the Software, unless such copies or derivative
28// works are solely in the form of machine-executable object code generated by
29// a source language processor.
30
31// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
32// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
33// FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT
34// SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE
35// FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE,
36// ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
37// DEALINGS IN THE SOFTWARE.
38
39// Avoid formatting to keep the changes with the original code minimal.
40// clang-format off
41
Arthur O'Dwyercf9bf392022-02-11 13:00:39 -050042#include <__config>
43#include <charconv>
Mark de Weverfa36ec72021-02-09 17:52:41 +010044
45#include "include/ryu/common.h"
46#include "include/ryu/d2fixed.h"
47#include "include/ryu/d2s.h"
48#include "include/ryu/d2s_full_table.h"
49#include "include/ryu/d2s_intrinsics.h"
50#include "include/ryu/digit_table.h"
51#include "include/ryu/ryu.h"
52
53_LIBCPP_BEGIN_NAMESPACE_STD
54
55// We need a 64x128-bit multiplication and a subsequent 128-bit shift.
56// Multiplication:
57// The 64-bit factor is variable and passed in, the 128-bit factor comes
58// from a lookup table. We know that the 64-bit factor only has 55
59// significant bits (i.e., the 9 topmost bits are zeros). The 128-bit
60// factor only has 124 significant bits (i.e., the 4 topmost bits are
61// zeros).
62// Shift:
63// In principle, the multiplication result requires 55 + 124 = 179 bits to
64// represent. However, we then shift this value to the right by __j, which is
65// at least __j >= 115, so the result is guaranteed to fit into 179 - 115 = 64
66// bits. This means that we only need the topmost 64 significant bits of
67// the 64x128-bit multiplication.
68//
69// There are several ways to do this:
70// 1. Best case: the compiler exposes a 128-bit type.
71// We perform two 64x64-bit multiplications, add the higher 64 bits of the
72// lower result to the higher result, and shift by __j - 64 bits.
73//
74// We explicitly cast from 64-bit to 128-bit, so the compiler can tell
75// that these are only 64-bit inputs, and can map these to the best
76// possible sequence of assembly instructions.
77// x64 machines happen to have matching assembly instructions for
78// 64x64-bit multiplications and 128-bit shifts.
79//
80// 2. Second best case: the compiler exposes intrinsics for the x64 assembly
81// instructions mentioned in 1.
82//
83// 3. We only have 64x64 bit instructions that return the lower 64 bits of
84// the result, i.e., we have to use plain C.
85// Our inputs are less than the full width, so we have three options:
86// a. Ignore this fact and just implement the intrinsics manually.
87// b. Split both into 31-bit pieces, which guarantees no internal overflow,
88// but requires extra work upfront (unless we change the lookup table).
89// c. Split only the first factor into 31-bit pieces, which also guarantees
90// no internal overflow, but requires extra work since the intermediate
91// results are not perfectly aligned.
92#ifdef _LIBCPP_INTRINSIC128
93
94[[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline uint64_t __mulShift(const uint64_t __m, const uint64_t* const __mul, const int32_t __j) {
95 // __m is maximum 55 bits
96 uint64_t __high1; // 128
97 const uint64_t __low1 = __ryu_umul128(__m, __mul[1], &__high1); // 64
98 uint64_t __high0; // 64
99 (void) __ryu_umul128(__m, __mul[0], &__high0); // 0
100 const uint64_t __sum = __high0 + __low1;
101 if (__sum < __high0) {
102 ++__high1; // overflow into __high1
103 }
104 return __ryu_shiftright128(__sum, __high1, static_cast<uint32_t>(__j - 64));
105}
106
107[[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline uint64_t __mulShiftAll(const uint64_t __m, const uint64_t* const __mul, const int32_t __j,
108 uint64_t* const __vp, uint64_t* const __vm, const uint32_t __mmShift) {
109 *__vp = __mulShift(4 * __m + 2, __mul, __j);
110 *__vm = __mulShift(4 * __m - 1 - __mmShift, __mul, __j);
111 return __mulShift(4 * __m, __mul, __j);
112}
113
114#else // ^^^ intrinsics available ^^^ / vvv intrinsics unavailable vvv
115
116[[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline _LIBCPP_ALWAYS_INLINE uint64_t __mulShiftAll(uint64_t __m, const uint64_t* const __mul, const int32_t __j,
117 uint64_t* const __vp, uint64_t* const __vm, const uint32_t __mmShift) { // TRANSITION, VSO-634761
118 __m <<= 1;
119 // __m is maximum 55 bits
120 uint64_t __tmp;
121 const uint64_t __lo = __ryu_umul128(__m, __mul[0], &__tmp);
122 uint64_t __hi;
123 const uint64_t __mid = __tmp + __ryu_umul128(__m, __mul[1], &__hi);
124 __hi += __mid < __tmp; // overflow into __hi
125
126 const uint64_t __lo2 = __lo + __mul[0];
127 const uint64_t __mid2 = __mid + __mul[1] + (__lo2 < __lo);
128 const uint64_t __hi2 = __hi + (__mid2 < __mid);
129 *__vp = __ryu_shiftright128(__mid2, __hi2, static_cast<uint32_t>(__j - 64 - 1));
130
131 if (__mmShift == 1) {
132 const uint64_t __lo3 = __lo - __mul[0];
133 const uint64_t __mid3 = __mid - __mul[1] - (__lo3 > __lo);
134 const uint64_t __hi3 = __hi - (__mid3 > __mid);
135 *__vm = __ryu_shiftright128(__mid3, __hi3, static_cast<uint32_t>(__j - 64 - 1));
136 } else {
137 const uint64_t __lo3 = __lo + __lo;
138 const uint64_t __mid3 = __mid + __mid + (__lo3 < __lo);
139 const uint64_t __hi3 = __hi + __hi + (__mid3 < __mid);
140 const uint64_t __lo4 = __lo3 - __mul[0];
141 const uint64_t __mid4 = __mid3 - __mul[1] - (__lo4 > __lo3);
142 const uint64_t __hi4 = __hi3 - (__mid4 > __mid3);
143 *__vm = __ryu_shiftright128(__mid4, __hi4, static_cast<uint32_t>(__j - 64));
144 }
145
146 return __ryu_shiftright128(__mid, __hi, static_cast<uint32_t>(__j - 64 - 1));
147}
148
149#endif // ^^^ intrinsics unavailable ^^^
150
151[[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline uint32_t __decimalLength17(const uint64_t __v) {
152 // This is slightly faster than a loop.
153 // The average output length is 16.38 digits, so we check high-to-low.
154 // Function precondition: __v is not an 18, 19, or 20-digit number.
155 // (17 digits are sufficient for round-tripping.)
156 _LIBCPP_ASSERT(__v < 100000000000000000u, "");
157 if (__v >= 10000000000000000u) { return 17; }
158 if (__v >= 1000000000000000u) { return 16; }
159 if (__v >= 100000000000000u) { return 15; }
160 if (__v >= 10000000000000u) { return 14; }
161 if (__v >= 1000000000000u) { return 13; }
162 if (__v >= 100000000000u) { return 12; }
163 if (__v >= 10000000000u) { return 11; }
164 if (__v >= 1000000000u) { return 10; }
165 if (__v >= 100000000u) { return 9; }
166 if (__v >= 10000000u) { return 8; }
167 if (__v >= 1000000u) { return 7; }
168 if (__v >= 100000u) { return 6; }
169 if (__v >= 10000u) { return 5; }
170 if (__v >= 1000u) { return 4; }
171 if (__v >= 100u) { return 3; }
172 if (__v >= 10u) { return 2; }
173 return 1;
174}
175
176// A floating decimal representing m * 10^e.
177struct __floating_decimal_64 {
178 uint64_t __mantissa;
179 int32_t __exponent;
180};
181
182[[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline __floating_decimal_64 __d2d(const uint64_t __ieeeMantissa, const uint32_t __ieeeExponent) {
183 int32_t __e2;
184 uint64_t __m2;
185 if (__ieeeExponent == 0) {
186 // We subtract 2 so that the bounds computation has 2 additional bits.
187 __e2 = 1 - __DOUBLE_BIAS - __DOUBLE_MANTISSA_BITS - 2;
188 __m2 = __ieeeMantissa;
189 } else {
190 __e2 = static_cast<int32_t>(__ieeeExponent) - __DOUBLE_BIAS - __DOUBLE_MANTISSA_BITS - 2;
191 __m2 = (1ull << __DOUBLE_MANTISSA_BITS) | __ieeeMantissa;
192 }
193 const bool __even = (__m2 & 1) == 0;
194 const bool __acceptBounds = __even;
195
196 // Step 2: Determine the interval of valid decimal representations.
197 const uint64_t __mv = 4 * __m2;
198 // Implicit bool -> int conversion. True is 1, false is 0.
199 const uint32_t __mmShift = __ieeeMantissa != 0 || __ieeeExponent <= 1;
200 // We would compute __mp and __mm like this:
201 // uint64_t __mp = 4 * __m2 + 2;
202 // uint64_t __mm = __mv - 1 - __mmShift;
203
204 // Step 3: Convert to a decimal power base using 128-bit arithmetic.
205 uint64_t __vr, __vp, __vm;
206 int32_t __e10;
207 bool __vmIsTrailingZeros = false;
208 bool __vrIsTrailingZeros = false;
209 if (__e2 >= 0) {
210 // I tried special-casing __q == 0, but there was no effect on performance.
211 // This expression is slightly faster than max(0, __log10Pow2(__e2) - 1).
212 const uint32_t __q = __log10Pow2(__e2) - (__e2 > 3);
213 __e10 = static_cast<int32_t>(__q);
214 const int32_t __k = __DOUBLE_POW5_INV_BITCOUNT + __pow5bits(static_cast<int32_t>(__q)) - 1;
215 const int32_t __i = -__e2 + static_cast<int32_t>(__q) + __k;
216 __vr = __mulShiftAll(__m2, __DOUBLE_POW5_INV_SPLIT[__q], __i, &__vp, &__vm, __mmShift);
217 if (__q <= 21) {
218 // This should use __q <= 22, but I think 21 is also safe. Smaller values
219 // may still be safe, but it's more difficult to reason about them.
220 // Only one of __mp, __mv, and __mm can be a multiple of 5, if any.
221 const uint32_t __mvMod5 = static_cast<uint32_t>(__mv) - 5 * static_cast<uint32_t>(__div5(__mv));
222 if (__mvMod5 == 0) {
223 __vrIsTrailingZeros = __multipleOfPowerOf5(__mv, __q);
224 } else if (__acceptBounds) {
225 // Same as min(__e2 + (~__mm & 1), __pow5Factor(__mm)) >= __q
226 // <=> __e2 + (~__mm & 1) >= __q && __pow5Factor(__mm) >= __q
227 // <=> true && __pow5Factor(__mm) >= __q, since __e2 >= __q.
228 __vmIsTrailingZeros = __multipleOfPowerOf5(__mv - 1 - __mmShift, __q);
229 } else {
230 // Same as min(__e2 + 1, __pow5Factor(__mp)) >= __q.
231 __vp -= __multipleOfPowerOf5(__mv + 2, __q);
232 }
233 }
234 } else {
235 // This expression is slightly faster than max(0, __log10Pow5(-__e2) - 1).
236 const uint32_t __q = __log10Pow5(-__e2) - (-__e2 > 1);
237 __e10 = static_cast<int32_t>(__q) + __e2;
238 const int32_t __i = -__e2 - static_cast<int32_t>(__q);
239 const int32_t __k = __pow5bits(__i) - __DOUBLE_POW5_BITCOUNT;
240 const int32_t __j = static_cast<int32_t>(__q) - __k;
241 __vr = __mulShiftAll(__m2, __DOUBLE_POW5_SPLIT[__i], __j, &__vp, &__vm, __mmShift);
242 if (__q <= 1) {
243 // {__vr,__vp,__vm} is trailing zeros if {__mv,__mp,__mm} has at least __q trailing 0 bits.
244 // __mv = 4 * __m2, so it always has at least two trailing 0 bits.
245 __vrIsTrailingZeros = true;
246 if (__acceptBounds) {
247 // __mm = __mv - 1 - __mmShift, so it has 1 trailing 0 bit iff __mmShift == 1.
248 __vmIsTrailingZeros = __mmShift == 1;
249 } else {
250 // __mp = __mv + 2, so it always has at least one trailing 0 bit.
251 --__vp;
252 }
253 } else if (__q < 63) { // TRANSITION(ulfjack): Use a tighter bound here.
254 // We need to compute min(ntz(__mv), __pow5Factor(__mv) - __e2) >= __q - 1
255 // <=> ntz(__mv) >= __q - 1 && __pow5Factor(__mv) - __e2 >= __q - 1
256 // <=> ntz(__mv) >= __q - 1 (__e2 is negative and -__e2 >= __q)
257 // <=> (__mv & ((1 << (__q - 1)) - 1)) == 0
258 // We also need to make sure that the left shift does not overflow.
259 __vrIsTrailingZeros = __multipleOfPowerOf2(__mv, __q - 1);
260 }
261 }
262
263 // Step 4: Find the shortest decimal representation in the interval of valid representations.
264 int32_t __removed = 0;
265 uint8_t __lastRemovedDigit = 0;
266 uint64_t _Output;
267 // On average, we remove ~2 digits.
268 if (__vmIsTrailingZeros || __vrIsTrailingZeros) {
269 // General case, which happens rarely (~0.7%).
270 for (;;) {
271 const uint64_t __vpDiv10 = __div10(__vp);
272 const uint64_t __vmDiv10 = __div10(__vm);
273 if (__vpDiv10 <= __vmDiv10) {
274 break;
275 }
276 const uint32_t __vmMod10 = static_cast<uint32_t>(__vm) - 10 * static_cast<uint32_t>(__vmDiv10);
277 const uint64_t __vrDiv10 = __div10(__vr);
278 const uint32_t __vrMod10 = static_cast<uint32_t>(__vr) - 10 * static_cast<uint32_t>(__vrDiv10);
279 __vmIsTrailingZeros &= __vmMod10 == 0;
280 __vrIsTrailingZeros &= __lastRemovedDigit == 0;
281 __lastRemovedDigit = static_cast<uint8_t>(__vrMod10);
282 __vr = __vrDiv10;
283 __vp = __vpDiv10;
284 __vm = __vmDiv10;
285 ++__removed;
286 }
287 if (__vmIsTrailingZeros) {
288 for (;;) {
289 const uint64_t __vmDiv10 = __div10(__vm);
290 const uint32_t __vmMod10 = static_cast<uint32_t>(__vm) - 10 * static_cast<uint32_t>(__vmDiv10);
291 if (__vmMod10 != 0) {
292 break;
293 }
294 const uint64_t __vpDiv10 = __div10(__vp);
295 const uint64_t __vrDiv10 = __div10(__vr);
296 const uint32_t __vrMod10 = static_cast<uint32_t>(__vr) - 10 * static_cast<uint32_t>(__vrDiv10);
297 __vrIsTrailingZeros &= __lastRemovedDigit == 0;
298 __lastRemovedDigit = static_cast<uint8_t>(__vrMod10);
299 __vr = __vrDiv10;
300 __vp = __vpDiv10;
301 __vm = __vmDiv10;
302 ++__removed;
303 }
304 }
305 if (__vrIsTrailingZeros && __lastRemovedDigit == 5 && __vr % 2 == 0) {
306 // Round even if the exact number is .....50..0.
307 __lastRemovedDigit = 4;
308 }
309 // We need to take __vr + 1 if __vr is outside bounds or we need to round up.
310 _Output = __vr + ((__vr == __vm && (!__acceptBounds || !__vmIsTrailingZeros)) || __lastRemovedDigit >= 5);
311 } else {
312 // Specialized for the common case (~99.3%). Percentages below are relative to this.
313 bool __roundUp = false;
314 const uint64_t __vpDiv100 = __div100(__vp);
315 const uint64_t __vmDiv100 = __div100(__vm);
316 if (__vpDiv100 > __vmDiv100) { // Optimization: remove two digits at a time (~86.2%).
317 const uint64_t __vrDiv100 = __div100(__vr);
318 const uint32_t __vrMod100 = static_cast<uint32_t>(__vr) - 100 * static_cast<uint32_t>(__vrDiv100);
319 __roundUp = __vrMod100 >= 50;
320 __vr = __vrDiv100;
321 __vp = __vpDiv100;
322 __vm = __vmDiv100;
323 __removed += 2;
324 }
325 // Loop iterations below (approximately), without optimization above:
326 // 0: 0.03%, 1: 13.8%, 2: 70.6%, 3: 14.0%, 4: 1.40%, 5: 0.14%, 6+: 0.02%
327 // Loop iterations below (approximately), with optimization above:
328 // 0: 70.6%, 1: 27.8%, 2: 1.40%, 3: 0.14%, 4+: 0.02%
329 for (;;) {
330 const uint64_t __vpDiv10 = __div10(__vp);
331 const uint64_t __vmDiv10 = __div10(__vm);
332 if (__vpDiv10 <= __vmDiv10) {
333 break;
334 }
335 const uint64_t __vrDiv10 = __div10(__vr);
336 const uint32_t __vrMod10 = static_cast<uint32_t>(__vr) - 10 * static_cast<uint32_t>(__vrDiv10);
337 __roundUp = __vrMod10 >= 5;
338 __vr = __vrDiv10;
339 __vp = __vpDiv10;
340 __vm = __vmDiv10;
341 ++__removed;
342 }
343 // We need to take __vr + 1 if __vr is outside bounds or we need to round up.
344 _Output = __vr + (__vr == __vm || __roundUp);
345 }
346 const int32_t __exp = __e10 + __removed;
347
348 __floating_decimal_64 __fd;
349 __fd.__exponent = __exp;
350 __fd.__mantissa = _Output;
351 return __fd;
352}
353
354[[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline to_chars_result __to_chars(char* const _First, char* const _Last, const __floating_decimal_64 __v,
355 chars_format _Fmt, const double __f) {
356 // Step 5: Print the decimal representation.
357 uint64_t _Output = __v.__mantissa;
358 int32_t _Ryu_exponent = __v.__exponent;
359 const uint32_t __olength = __decimalLength17(_Output);
360 int32_t _Scientific_exponent = _Ryu_exponent + static_cast<int32_t>(__olength) - 1;
361
362 if (_Fmt == chars_format{}) {
363 int32_t _Lower;
364 int32_t _Upper;
365
366 if (__olength == 1) {
367 // Value | Fixed | Scientific
368 // 1e-3 | "0.001" | "1e-03"
369 // 1e4 | "10000" | "1e+04"
370 _Lower = -3;
371 _Upper = 4;
372 } else {
373 // Value | Fixed | Scientific
374 // 1234e-7 | "0.0001234" | "1.234e-04"
375 // 1234e5 | "123400000" | "1.234e+08"
376 _Lower = -static_cast<int32_t>(__olength + 3);
377 _Upper = 5;
378 }
379
380 if (_Lower <= _Ryu_exponent && _Ryu_exponent <= _Upper) {
381 _Fmt = chars_format::fixed;
382 } else {
383 _Fmt = chars_format::scientific;
384 }
385 } else if (_Fmt == chars_format::general) {
386 // C11 7.21.6.1 "The fprintf function"/8:
387 // "Let P equal [...] 6 if the precision is omitted [...].
388 // Then, if a conversion with style E would have an exponent of X:
389 // - if P > X >= -4, the conversion is with style f [...].
390 // - otherwise, the conversion is with style e [...]."
391 if (-4 <= _Scientific_exponent && _Scientific_exponent < 6) {
392 _Fmt = chars_format::fixed;
393 } else {
394 _Fmt = chars_format::scientific;
395 }
396 }
397
398 if (_Fmt == chars_format::fixed) {
399 // Example: _Output == 1729, __olength == 4
400
401 // _Ryu_exponent | Printed | _Whole_digits | _Total_fixed_length | Notes
402 // --------------|----------|---------------|----------------------|---------------------------------------
403 // 2 | 172900 | 6 | _Whole_digits | Ryu can't be used for printing
404 // 1 | 17290 | 5 | (sometimes adjusted) | when the trimmed digits are nonzero.
405 // --------------|----------|---------------|----------------------|---------------------------------------
406 // 0 | 1729 | 4 | _Whole_digits | Unified length cases.
407 // --------------|----------|---------------|----------------------|---------------------------------------
408 // -1 | 172.9 | 3 | __olength + 1 | This case can't happen for
409 // -2 | 17.29 | 2 | | __olength == 1, but no additional
410 // -3 | 1.729 | 1 | | code is needed to avoid it.
411 // --------------|----------|---------------|----------------------|---------------------------------------
412 // -4 | 0.1729 | 0 | 2 - _Ryu_exponent | C11 7.21.6.1 "The fprintf function"/8:
413 // -5 | 0.01729 | -1 | | "If a decimal-point character appears,
414 // -6 | 0.001729 | -2 | | at least one digit appears before it."
415
416 const int32_t _Whole_digits = static_cast<int32_t>(__olength) + _Ryu_exponent;
417
418 uint32_t _Total_fixed_length;
419 if (_Ryu_exponent >= 0) { // cases "172900" and "1729"
420 _Total_fixed_length = static_cast<uint32_t>(_Whole_digits);
421 if (_Output == 1) {
422 // Rounding can affect the number of digits.
423 // For example, 1e23 is exactly "99999999999999991611392" which is 23 digits instead of 24.
424 // We can use a lookup table to detect this and adjust the total length.
425 static constexpr uint8_t _Adjustment[309] = {
426 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,1,1,0,1,0,1,1,1,0,1,1,1,0,0,0,0,0,
427 1,1,0,0,1,0,1,1,1,0,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,1,0,1,0,1,1,0,0,0,0,1,1,1,
428 1,0,0,0,0,0,0,0,1,1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0,0,0,0,1,1,1,0,0,1,1,1,1,1,0,1,0,1,1,0,1,
429 1,0,0,0,0,0,0,0,0,0,1,1,1,0,0,1,0,0,1,0,0,1,1,1,1,0,0,1,1,0,1,1,0,1,1,0,1,0,0,0,1,0,0,0,1,
430 0,1,0,1,0,1,1,1,0,0,0,0,0,0,1,1,1,1,0,0,1,0,1,1,1,0,0,0,1,0,1,1,1,1,1,1,0,1,0,1,1,0,0,0,1,
431 1,1,0,1,1,0,0,0,1,0,0,0,1,0,1,0,0,0,0,0,0,0,1,0,1,1,0,0,1,1,1,0,0,0,1,0,1,0,0,0,0,0,1,1,0,
432 0,1,0,1,1,1,0,0,1,0,0,0,0,1,0,1,0,0,0,0,0,1,0,1,0,1,1,0,1,0,0,0,0,0,1,1,0,1,0 };
433 _Total_fixed_length -= _Adjustment[_Ryu_exponent];
434 // _Whole_digits doesn't need to be adjusted because these cases won't refer to it later.
435 }
436 } else if (_Whole_digits > 0) { // case "17.29"
437 _Total_fixed_length = __olength + 1;
438 } else { // case "0.001729"
439 _Total_fixed_length = static_cast<uint32_t>(2 - _Ryu_exponent);
440 }
441
442 if (_Last - _First < static_cast<ptrdiff_t>(_Total_fixed_length)) {
443 return { _Last, errc::value_too_large };
444 }
445
446 char* _Mid;
447 if (_Ryu_exponent > 0) { // case "172900"
448 bool _Can_use_ryu;
449
450 if (_Ryu_exponent > 22) { // 10^22 is the largest power of 10 that's exactly representable as a double.
451 _Can_use_ryu = false;
452 } else {
453 // Ryu generated X: __v.__mantissa * 10^_Ryu_exponent
454 // __v.__mantissa == 2^_Trailing_zero_bits * (__v.__mantissa >> _Trailing_zero_bits)
455 // 10^_Ryu_exponent == 2^_Ryu_exponent * 5^_Ryu_exponent
456
457 // _Trailing_zero_bits is [0, 56] (aside: because 2^56 is the largest power of 2
458 // with 17 decimal digits, which is double's round-trip limit.)
459 // _Ryu_exponent is [1, 22].
460 // Normalization adds [2, 52] (aside: at least 2 because the pre-normalized mantissa is at least 5).
461 // This adds up to [3, 130], which is well below double's maximum binary exponent 1023.
462
463 // Therefore, we just need to consider (__v.__mantissa >> _Trailing_zero_bits) * 5^_Ryu_exponent.
464
465 // If that product would exceed 53 bits, then X can't be exactly represented as a double.
466 // (That's not a problem for round-tripping, because X is close enough to the original double,
467 // but X isn't mathematically equal to the original double.) This requires a high-precision fallback.
468
469 // If the product is 53 bits or smaller, then X can be exactly represented as a double (and we don't
470 // need to re-synthesize it; the original double must have been X, because Ryu wouldn't produce the
471 // same output for two different doubles X and Y). This allows Ryu's output to be used (zero-filled).
472
473 // (2^53 - 1) / 5^0 (for indexing), (2^53 - 1) / 5^1, ..., (2^53 - 1) / 5^22
474 static constexpr uint64_t _Max_shifted_mantissa[23] = {
475 9007199254740991u, 1801439850948198u, 360287970189639u, 72057594037927u, 14411518807585u,
476 2882303761517u, 576460752303u, 115292150460u, 23058430092u, 4611686018u, 922337203u, 184467440u,
477 36893488u, 7378697u, 1475739u, 295147u, 59029u, 11805u, 2361u, 472u, 94u, 18u, 3u };
478
479 unsigned long _Trailing_zero_bits;
480#ifdef _LIBCPP_HAS_BITSCAN64
481 (void) _BitScanForward64(&_Trailing_zero_bits, __v.__mantissa); // __v.__mantissa is guaranteed nonzero
482#else // ^^^ 64-bit ^^^ / vvv 32-bit vvv
483 const uint32_t _Low_mantissa = static_cast<uint32_t>(__v.__mantissa);
484 if (_Low_mantissa != 0) {
485 (void) _BitScanForward(&_Trailing_zero_bits, _Low_mantissa);
486 } else {
487 const uint32_t _High_mantissa = static_cast<uint32_t>(__v.__mantissa >> 32); // nonzero here
488 (void) _BitScanForward(&_Trailing_zero_bits, _High_mantissa);
489 _Trailing_zero_bits += 32;
490 }
491#endif // ^^^ 32-bit ^^^
492 const uint64_t _Shifted_mantissa = __v.__mantissa >> _Trailing_zero_bits;
493 _Can_use_ryu = _Shifted_mantissa <= _Max_shifted_mantissa[_Ryu_exponent];
494 }
495
496 if (!_Can_use_ryu) {
497 // Print the integer exactly.
498 // Performance note: This will redundantly perform bounds checking.
499 // Performance note: This will redundantly decompose the IEEE representation.
500 return __d2fixed_buffered_n(_First, _Last, __f, 0);
501 }
502
503 // _Can_use_ryu
504 // Print the decimal digits, left-aligned within [_First, _First + _Total_fixed_length).
505 _Mid = _First + __olength;
506 } else { // cases "1729", "17.29", and "0.001729"
507 // Print the decimal digits, right-aligned within [_First, _First + _Total_fixed_length).
508 _Mid = _First + _Total_fixed_length;
509 }
510
511 // We prefer 32-bit operations, even on 64-bit platforms.
512 // We have at most 17 digits, and uint32_t can store 9 digits.
513 // If _Output doesn't fit into uint32_t, we cut off 8 digits,
514 // so the rest will fit into uint32_t.
515 if ((_Output >> 32) != 0) {
516 // Expensive 64-bit division.
517 const uint64_t __q = __div1e8(_Output);
518 uint32_t __output2 = static_cast<uint32_t>(_Output - 100000000 * __q);
519 _Output = __q;
520
521 const uint32_t __c = __output2 % 10000;
522 __output2 /= 10000;
523 const uint32_t __d = __output2 % 10000;
524 const uint32_t __c0 = (__c % 100) << 1;
525 const uint32_t __c1 = (__c / 100) << 1;
526 const uint32_t __d0 = (__d % 100) << 1;
527 const uint32_t __d1 = (__d / 100) << 1;
528
529 _VSTD::memcpy(_Mid -= 2, __DIGIT_TABLE + __c0, 2);
530 _VSTD::memcpy(_Mid -= 2, __DIGIT_TABLE + __c1, 2);
531 _VSTD::memcpy(_Mid -= 2, __DIGIT_TABLE + __d0, 2);
532 _VSTD::memcpy(_Mid -= 2, __DIGIT_TABLE + __d1, 2);
533 }
534 uint32_t __output2 = static_cast<uint32_t>(_Output);
535 while (__output2 >= 10000) {
536#ifdef __clang__ // TRANSITION, LLVM-38217
537 const uint32_t __c = __output2 - 10000 * (__output2 / 10000);
538#else
539 const uint32_t __c = __output2 % 10000;
540#endif
541 __output2 /= 10000;
542 const uint32_t __c0 = (__c % 100) << 1;
543 const uint32_t __c1 = (__c / 100) << 1;
544 _VSTD::memcpy(_Mid -= 2, __DIGIT_TABLE + __c0, 2);
545 _VSTD::memcpy(_Mid -= 2, __DIGIT_TABLE + __c1, 2);
546 }
547 if (__output2 >= 100) {
548 const uint32_t __c = (__output2 % 100) << 1;
549 __output2 /= 100;
550 _VSTD::memcpy(_Mid -= 2, __DIGIT_TABLE + __c, 2);
551 }
552 if (__output2 >= 10) {
553 const uint32_t __c = __output2 << 1;
554 _VSTD::memcpy(_Mid -= 2, __DIGIT_TABLE + __c, 2);
555 } else {
556 *--_Mid = static_cast<char>('0' + __output2);
557 }
558
559 if (_Ryu_exponent > 0) { // case "172900" with _Can_use_ryu
560 // Performance note: it might be more efficient to do this immediately after setting _Mid.
561 _VSTD::memset(_First + __olength, '0', static_cast<size_t>(_Ryu_exponent));
562 } else if (_Ryu_exponent == 0) { // case "1729"
563 // Done!
564 } else if (_Whole_digits > 0) { // case "17.29"
565 // Performance note: moving digits might not be optimal.
566 _VSTD::memmove(_First, _First + 1, static_cast<size_t>(_Whole_digits));
567 _First[_Whole_digits] = '.';
568 } else { // case "0.001729"
569 // Performance note: a larger memset() followed by overwriting '.' might be more efficient.
570 _First[0] = '0';
571 _First[1] = '.';
572 _VSTD::memset(_First + 2, '0', static_cast<size_t>(-_Whole_digits));
573 }
574
575 return { _First + _Total_fixed_length, errc{} };
576 }
577
578 const uint32_t _Total_scientific_length = __olength + (__olength > 1) // digits + possible decimal point
579 + (-100 < _Scientific_exponent && _Scientific_exponent < 100 ? 4 : 5); // + scientific exponent
580 if (_Last - _First < static_cast<ptrdiff_t>(_Total_scientific_length)) {
581 return { _Last, errc::value_too_large };
582 }
583 char* const __result = _First;
584
585 // Print the decimal digits.
586 uint32_t __i = 0;
587 // We prefer 32-bit operations, even on 64-bit platforms.
588 // We have at most 17 digits, and uint32_t can store 9 digits.
589 // If _Output doesn't fit into uint32_t, we cut off 8 digits,
590 // so the rest will fit into uint32_t.
591 if ((_Output >> 32) != 0) {
592 // Expensive 64-bit division.
593 const uint64_t __q = __div1e8(_Output);
594 uint32_t __output2 = static_cast<uint32_t>(_Output) - 100000000 * static_cast<uint32_t>(__q);
595 _Output = __q;
596
597 const uint32_t __c = __output2 % 10000;
598 __output2 /= 10000;
599 const uint32_t __d = __output2 % 10000;
600 const uint32_t __c0 = (__c % 100) << 1;
601 const uint32_t __c1 = (__c / 100) << 1;
602 const uint32_t __d0 = (__d % 100) << 1;
603 const uint32_t __d1 = (__d / 100) << 1;
604 _VSTD::memcpy(__result + __olength - __i - 1, __DIGIT_TABLE + __c0, 2);
605 _VSTD::memcpy(__result + __olength - __i - 3, __DIGIT_TABLE + __c1, 2);
606 _VSTD::memcpy(__result + __olength - __i - 5, __DIGIT_TABLE + __d0, 2);
607 _VSTD::memcpy(__result + __olength - __i - 7, __DIGIT_TABLE + __d1, 2);
608 __i += 8;
609 }
610 uint32_t __output2 = static_cast<uint32_t>(_Output);
611 while (__output2 >= 10000) {
612#ifdef __clang__ // TRANSITION, LLVM-38217
613 const uint32_t __c = __output2 - 10000 * (__output2 / 10000);
614#else
615 const uint32_t __c = __output2 % 10000;
616#endif
617 __output2 /= 10000;
618 const uint32_t __c0 = (__c % 100) << 1;
619 const uint32_t __c1 = (__c / 100) << 1;
620 _VSTD::memcpy(__result + __olength - __i - 1, __DIGIT_TABLE + __c0, 2);
621 _VSTD::memcpy(__result + __olength - __i - 3, __DIGIT_TABLE + __c1, 2);
622 __i += 4;
623 }
624 if (__output2 >= 100) {
625 const uint32_t __c = (__output2 % 100) << 1;
626 __output2 /= 100;
627 _VSTD::memcpy(__result + __olength - __i - 1, __DIGIT_TABLE + __c, 2);
628 __i += 2;
629 }
630 if (__output2 >= 10) {
631 const uint32_t __c = __output2 << 1;
632 // We can't use memcpy here: the decimal dot goes between these two digits.
633 __result[2] = __DIGIT_TABLE[__c + 1];
634 __result[0] = __DIGIT_TABLE[__c];
635 } else {
636 __result[0] = static_cast<char>('0' + __output2);
637 }
638
639 // Print decimal point if needed.
640 uint32_t __index;
641 if (__olength > 1) {
642 __result[1] = '.';
643 __index = __olength + 1;
644 } else {
645 __index = 1;
646 }
647
648 // Print the exponent.
649 __result[__index++] = 'e';
650 if (_Scientific_exponent < 0) {
651 __result[__index++] = '-';
652 _Scientific_exponent = -_Scientific_exponent;
653 } else {
654 __result[__index++] = '+';
655 }
656
657 if (_Scientific_exponent >= 100) {
658 const int32_t __c = _Scientific_exponent % 10;
659 _VSTD::memcpy(__result + __index, __DIGIT_TABLE + 2 * (_Scientific_exponent / 10), 2);
660 __result[__index + 2] = static_cast<char>('0' + __c);
661 __index += 3;
662 } else {
663 _VSTD::memcpy(__result + __index, __DIGIT_TABLE + 2 * _Scientific_exponent, 2);
664 __index += 2;
665 }
666
667 return { _First + _Total_scientific_length, errc{} };
668}
669
670[[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline bool __d2d_small_int(const uint64_t __ieeeMantissa, const uint32_t __ieeeExponent,
671 __floating_decimal_64* const __v) {
672 const uint64_t __m2 = (1ull << __DOUBLE_MANTISSA_BITS) | __ieeeMantissa;
673 const int32_t __e2 = static_cast<int32_t>(__ieeeExponent) - __DOUBLE_BIAS - __DOUBLE_MANTISSA_BITS;
674
675 if (__e2 > 0) {
676 // f = __m2 * 2^__e2 >= 2^53 is an integer.
677 // Ignore this case for now.
678 return false;
679 }
680
681 if (__e2 < -52) {
682 // f < 1.
683 return false;
684 }
685
686 // Since 2^52 <= __m2 < 2^53 and 0 <= -__e2 <= 52: 1 <= f = __m2 / 2^-__e2 < 2^53.
687 // Test if the lower -__e2 bits of the significand are 0, i.e. whether the fraction is 0.
688 const uint64_t __mask = (1ull << -__e2) - 1;
689 const uint64_t __fraction = __m2 & __mask;
690 if (__fraction != 0) {
691 return false;
692 }
693
694 // f is an integer in the range [1, 2^53).
695 // Note: __mantissa might contain trailing (decimal) 0's.
696 // Note: since 2^53 < 10^16, there is no need to adjust __decimalLength17().
697 __v->__mantissa = __m2 >> -__e2;
698 __v->__exponent = 0;
699 return true;
700}
701
702[[nodiscard]] to_chars_result __d2s_buffered_n(char* const _First, char* const _Last, const double __f,
703 const chars_format _Fmt) {
704
705 // Step 1: Decode the floating-point number, and unify normalized and subnormal cases.
706 const uint64_t __bits = __double_to_bits(__f);
707
708 // Case distinction; exit early for the easy cases.
709 if (__bits == 0) {
710 if (_Fmt == chars_format::scientific) {
711 if (_Last - _First < 5) {
712 return { _Last, errc::value_too_large };
713 }
714
715 _VSTD::memcpy(_First, "0e+00", 5);
716
717 return { _First + 5, errc{} };
718 }
719
720 // Print "0" for chars_format::fixed, chars_format::general, and chars_format{}.
721 if (_First == _Last) {
722 return { _Last, errc::value_too_large };
723 }
724
725 *_First = '0';
726
727 return { _First + 1, errc{} };
728 }
729
730 // Decode __bits into mantissa and exponent.
731 const uint64_t __ieeeMantissa = __bits & ((1ull << __DOUBLE_MANTISSA_BITS) - 1);
732 const uint32_t __ieeeExponent = static_cast<uint32_t>(__bits >> __DOUBLE_MANTISSA_BITS);
733
734 if (_Fmt == chars_format::fixed) {
735 // const uint64_t _Mantissa2 = __ieeeMantissa | (1ull << __DOUBLE_MANTISSA_BITS); // restore implicit bit
736 const int32_t _Exponent2 = static_cast<int32_t>(__ieeeExponent)
737 - __DOUBLE_BIAS - __DOUBLE_MANTISSA_BITS; // bias and normalization
738
739 // Normal values are equal to _Mantissa2 * 2^_Exponent2.
740 // (Subnormals are different, but they'll be rejected by the _Exponent2 test here, so they can be ignored.)
741
742 // For nonzero integers, _Exponent2 >= -52. (The minimum value occurs when _Mantissa2 * 2^_Exponent2 is 1.
743 // In that case, _Mantissa2 is the implicit 1 bit followed by 52 zeros, so _Exponent2 is -52 to shift away
744 // the zeros.) The dense range of exactly representable integers has negative or zero exponents
745 // (as positive exponents make the range non-dense). For that dense range, Ryu will always be used:
746 // every digit is necessary to uniquely identify the value, so Ryu must print them all.
747
748 // Positive exponents are the non-dense range of exactly representable integers. This contains all of the values
749 // for which Ryu can't be used (and a few Ryu-friendly values). We can save time by detecting positive
750 // exponents here and skipping Ryu. Calling __d2fixed_buffered_n() with precision 0 is valid for all integers
751 // (so it's okay if we call it with a Ryu-friendly value).
752 if (_Exponent2 > 0) {
753 return __d2fixed_buffered_n(_First, _Last, __f, 0);
754 }
755 }
756
757 __floating_decimal_64 __v;
758 const bool __isSmallInt = __d2d_small_int(__ieeeMantissa, __ieeeExponent, &__v);
759 if (__isSmallInt) {
760 // For small integers in the range [1, 2^53), __v.__mantissa might contain trailing (decimal) zeros.
761 // For scientific notation we need to move these zeros into the exponent.
762 // (This is not needed for fixed-point notation, so it might be beneficial to trim
763 // trailing zeros in __to_chars only if needed - once fixed-point notation output is implemented.)
764 for (;;) {
765 const uint64_t __q = __div10(__v.__mantissa);
766 const uint32_t __r = static_cast<uint32_t>(__v.__mantissa) - 10 * static_cast<uint32_t>(__q);
767 if (__r != 0) {
768 break;
769 }
770 __v.__mantissa = __q;
771 ++__v.__exponent;
772 }
773 } else {
774 __v = __d2d(__ieeeMantissa, __ieeeExponent);
775 }
776
777 return __to_chars(_First, _Last, __v, _Fmt, __f);
778}
779
780_LIBCPP_END_NAMESPACE_STD
781
782// clang-format on