| /* |
| * Copyright 2015-2016 ARM Limited |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "spirv_glsl.hpp" |
| #include "GLSL.std.450.h" |
| #include <algorithm> |
| #include <assert.h> |
| |
| using namespace spv; |
| using namespace spirv_cross; |
| using namespace std; |
| |
| static const char *to_pls_layout(PlsFormat format) |
| { |
| switch (format) |
| { |
| case PlsR11FG11FB10F: |
| return "layout(r11f_g11f_b10f) "; |
| case PlsR32F: |
| return "layout(r32f) "; |
| case PlsRG16F: |
| return "layout(rg16f) "; |
| case PlsRGB10A2: |
| return "layout(rgb10_a2) "; |
| case PlsRGBA8: |
| return "layout(rgba8) "; |
| case PlsRG16: |
| return "layout(rg16) "; |
| case PlsRGBA8I: |
| return "layout(rgba8i)"; |
| case PlsRG16I: |
| return "layout(rg16i) "; |
| case PlsRGB10A2UI: |
| return "layout(rgb10_a2ui) "; |
| case PlsRGBA8UI: |
| return "layout(rgba8ui) "; |
| case PlsRG16UI: |
| return "layout(rg16ui) "; |
| case PlsR32UI: |
| return "layout(r32ui) "; |
| default: |
| return ""; |
| } |
| } |
| |
| static SPIRType::BaseType pls_format_to_basetype(PlsFormat format) |
| { |
| switch (format) |
| { |
| default: |
| case PlsR11FG11FB10F: |
| case PlsR32F: |
| case PlsRG16F: |
| case PlsRGB10A2: |
| case PlsRGBA8: |
| case PlsRG16: |
| return SPIRType::Float; |
| |
| case PlsRGBA8I: |
| case PlsRG16I: |
| return SPIRType::Int; |
| |
| case PlsRGB10A2UI: |
| case PlsRGBA8UI: |
| case PlsRG16UI: |
| case PlsR32UI: |
| return SPIRType::UInt; |
| } |
| } |
| |
| static uint32_t pls_format_to_components(PlsFormat format) |
| { |
| switch (format) |
| { |
| default: |
| case PlsR32F: |
| case PlsR32UI: |
| return 1; |
| |
| case PlsRG16F: |
| case PlsRG16: |
| case PlsRG16UI: |
| case PlsRG16I: |
| return 2; |
| |
| case PlsR11FG11FB10F: |
| return 3; |
| |
| case PlsRGB10A2: |
| case PlsRGBA8: |
| case PlsRGBA8I: |
| case PlsRGB10A2UI: |
| case PlsRGBA8UI: |
| return 4; |
| } |
| } |
| |
| void CompilerGLSL::reset() |
| { |
| // We do some speculative optimizations which should pretty much always work out, |
| // but just in case the SPIR-V is rather weird, recompile until it's happy. |
| // This typically only means one extra pass. |
| force_recompile = false; |
| |
| // Clear invalid expression tracking. |
| invalid_expressions.clear(); |
| current_function = nullptr; |
| |
| // Clear temporary usage tracking. |
| expression_usage_counts.clear(); |
| forwarded_temporaries.clear(); |
| |
| resource_names.clear(); |
| |
| for (auto &id : ids) |
| { |
| if (id.get_type() == TypeVariable) |
| { |
| // Clear unflushed dependees. |
| id.get<SPIRVariable>().dependees.clear(); |
| } |
| else if (id.get_type() == TypeExpression) |
| { |
| // And remove all expressions. |
| id.reset(); |
| } |
| else if (id.get_type() == TypeFunction) |
| { |
| // Reset active state for all functions. |
| id.get<SPIRFunction>().active = false; |
| id.get<SPIRFunction>().flush_undeclared = true; |
| } |
| } |
| |
| statement_count = 0; |
| indent = 0; |
| } |
| |
| void CompilerGLSL::remap_pls_variables() |
| { |
| for (auto &input : pls_inputs) |
| { |
| auto &var = get<SPIRVariable>(input.id); |
| |
| bool input_is_target = false; |
| if (var.storage == StorageClassUniformConstant) |
| { |
| auto &type = get<SPIRType>(var.basetype); |
| input_is_target = type.image.dim == DimSubpassData; |
| } |
| |
| if (var.storage != StorageClassInput && !input_is_target) |
| throw CompilerError("Can only use in and target variables for PLS inputs."); |
| var.remapped_variable = true; |
| } |
| |
| for (auto &output : pls_outputs) |
| { |
| auto &var = get<SPIRVariable>(output.id); |
| if (var.storage != StorageClassOutput) |
| throw CompilerError("Can only use out variables for PLS outputs."); |
| var.remapped_variable = true; |
| } |
| } |
| |
| void CompilerGLSL::find_static_extensions() |
| { |
| for (auto &id : ids) |
| { |
| if (id.get_type() == TypeType) |
| { |
| auto &type = id.get<SPIRType>(); |
| if (type.basetype == SPIRType::Double) |
| { |
| if (options.es) |
| throw CompilerError("FP64 not supported in ES profile."); |
| if (!options.es && options.version < 400) |
| require_extension("GL_ARB_gpu_shader_fp64"); |
| } |
| |
| if (type.basetype == SPIRType::Int64 || type.basetype == SPIRType::UInt64) |
| { |
| if (options.es) |
| throw CompilerError("64-bit integers not supported in ES profile."); |
| if (!options.es) |
| require_extension("GL_ARB_gpu_shader_int64"); |
| } |
| } |
| } |
| } |
| |
| string CompilerGLSL::compile() |
| { |
| // Scan the SPIR-V to find trivial uses of extensions. |
| find_static_extensions(); |
| |
| uint32_t pass_count = 0; |
| do |
| { |
| if (pass_count >= 3) |
| throw CompilerError("Over 3 compilation loops detected. Must be a bug!"); |
| |
| reset(); |
| |
| // Move constructor for this type is broken on GCC 4.9 ... |
| buffer = unique_ptr<ostringstream>(new ostringstream()); |
| |
| emit_header(); |
| emit_resources(); |
| |
| emit_function(get<SPIRFunction>(entry_point), 0); |
| |
| pass_count++; |
| } while (force_recompile); |
| |
| return buffer->str(); |
| } |
| |
| void CompilerGLSL::emit_header() |
| { |
| auto &execution = get_entry_point(); |
| statement("#version ", options.version, options.es && options.version > 100 ? " es" : ""); |
| |
| for (auto &header : header_lines) |
| statement(header); |
| |
| // Needed for binding = # on UBOs, etc. |
| if (!options.es && options.version < 420) |
| { |
| statement("#ifdef GL_ARB_shading_language_420pack"); |
| statement("#extension GL_ARB_shading_language_420pack : require"); |
| statement("#endif"); |
| } |
| |
| for (auto &ext : forced_extensions) |
| statement("#extension ", ext, " : require"); |
| |
| if (!pls_inputs.empty() || !pls_outputs.empty()) |
| statement("#extension GL_EXT_shader_pixel_local_storage : require"); |
| |
| vector<string> inputs; |
| vector<string> outputs; |
| |
| switch (execution.model) |
| { |
| case ExecutionModelGeometry: |
| if (options.es && options.version < 320) |
| statement("#extension GL_EXT_geometry_shader : require"); |
| if (!options.es && options.version < 320) |
| statement("#extension GL_ARB_geometry_shader4 : require"); |
| outputs.push_back(join("max_vertices = ", execution.output_vertices)); |
| if ((execution.flags & (1ull << ExecutionModeInvocations)) && execution.invocations != 1) |
| { |
| // Instanced GS is part of 400 core or this extension. |
| if (!options.es && options.version < 400) |
| statement("#extension GL_ARB_gpu_shader5 : require"); |
| inputs.push_back(join("invocations = ", execution.invocations)); |
| } |
| if (execution.flags & (1ull << ExecutionModeInputPoints)) |
| inputs.push_back("points"); |
| if (execution.flags & (1ull << ExecutionModeInputLines)) |
| inputs.push_back("lines"); |
| if (execution.flags & (1ull << ExecutionModeInputLinesAdjacency)) |
| inputs.push_back("lines_adjacency"); |
| if (execution.flags & (1ull << ExecutionModeTriangles)) |
| inputs.push_back("triangles"); |
| if (execution.flags & (1ull << ExecutionModeInputTrianglesAdjacency)) |
| inputs.push_back("triangles_adjacency"); |
| if (execution.flags & (1ull << ExecutionModeOutputTriangleStrip)) |
| outputs.push_back("triangle_strip"); |
| if (execution.flags & (1ull << ExecutionModeOutputPoints)) |
| outputs.push_back("points"); |
| if (execution.flags & (1ull << ExecutionModeOutputLineStrip)) |
| outputs.push_back("line_strip"); |
| break; |
| |
| case ExecutionModelTessellationControl: |
| if (options.es && options.version < 320) |
| statement("#extension GL_EXT_tessellation_shader : require"); |
| if (!options.es && options.version < 400) |
| statement("#extension GL_ARB_tessellation_shader : require"); |
| if (execution.flags & (1ull << ExecutionModeOutputVertices)) |
| outputs.push_back(join("vertices = ", execution.output_vertices)); |
| break; |
| |
| case ExecutionModelTessellationEvaluation: |
| if (options.es && options.version < 320) |
| statement("#extension GL_EXT_tessellation_shader : require"); |
| if (!options.es && options.version < 400) |
| statement("#extension GL_ARB_tessellation_shader : require"); |
| if (execution.flags & (1ull << ExecutionModeQuads)) |
| inputs.push_back("quads"); |
| if (execution.flags & (1ull << ExecutionModeIsolines)) |
| inputs.push_back("isolines"); |
| if (execution.flags & (1ull << ExecutionModePointMode)) |
| inputs.push_back("point_mode"); |
| if (execution.flags & (1ull << ExecutionModeVertexOrderCw)) |
| inputs.push_back("cw"); |
| if (execution.flags & (1ull << ExecutionModeVertexOrderCcw)) |
| inputs.push_back("ccw"); |
| if (execution.flags & (1ull << ExecutionModeSpacingFractionalEven)) |
| inputs.push_back("fractional_even_spacing"); |
| if (execution.flags & (1ull << ExecutionModeSpacingFractionalOdd)) |
| inputs.push_back("fractional_odd_spacing"); |
| if (execution.flags & (1ull << ExecutionModeSpacingEqual)) |
| inputs.push_back("equal_spacing"); |
| break; |
| |
| case ExecutionModelGLCompute: |
| if (!options.es && options.version < 430) |
| statement("#extension GL_ARB_compute_shader : require"); |
| if (options.es && options.version < 310) |
| throw CompilerError("At least ESSL 3.10 required for compute shaders."); |
| inputs.push_back(join("local_size_x = ", execution.workgroup_size.x)); |
| inputs.push_back(join("local_size_y = ", execution.workgroup_size.y)); |
| inputs.push_back(join("local_size_z = ", execution.workgroup_size.z)); |
| break; |
| |
| case ExecutionModelFragment: |
| if (options.es) |
| { |
| switch (options.fragment.default_float_precision) |
| { |
| case Options::Lowp: |
| statement("precision lowp float;"); |
| break; |
| |
| case Options::Mediump: |
| statement("precision mediump float;"); |
| break; |
| |
| case Options::Highp: |
| statement("precision highp float;"); |
| break; |
| |
| default: |
| break; |
| } |
| |
| switch (options.fragment.default_int_precision) |
| { |
| case Options::Lowp: |
| statement("precision lowp int;"); |
| break; |
| |
| case Options::Mediump: |
| statement("precision mediump int;"); |
| break; |
| |
| case Options::Highp: |
| statement("precision highp int;"); |
| break; |
| |
| default: |
| break; |
| } |
| } |
| |
| if (execution.flags & (1ull << ExecutionModeEarlyFragmentTests)) |
| inputs.push_back("early_fragment_tests"); |
| if (execution.flags & (1ull << ExecutionModeDepthGreater)) |
| inputs.push_back("depth_greater"); |
| if (execution.flags & (1ull << ExecutionModeDepthLess)) |
| inputs.push_back("depth_less"); |
| |
| break; |
| |
| default: |
| break; |
| } |
| |
| if (!inputs.empty()) |
| statement("layout(", merge(inputs), ") in;"); |
| if (!outputs.empty()) |
| statement("layout(", merge(outputs), ") out;"); |
| |
| statement(""); |
| } |
| |
| void CompilerGLSL::emit_struct(SPIRType &type) |
| { |
| // Struct types can be stamped out multiple times |
| // with just different offsets, matrix layouts, etc ... |
| // Type-punning with these types is legal, which complicates things |
| // when we are storing struct and array types in an SSBO for example. |
| if (type.type_alias != 0) |
| return; |
| |
| add_resource_name(type.self); |
| auto name = type_to_glsl(type); |
| |
| statement(!backend.explicit_struct_type ? "struct " : "", name); |
| begin_scope(); |
| |
| type.member_name_cache.clear(); |
| |
| uint32_t i = 0; |
| bool emitted = false; |
| for (auto &member : type.member_types) |
| { |
| add_member_name(type, i); |
| |
| auto &membertype = get<SPIRType>(member); |
| statement(member_decl(type, membertype, i), ";"); |
| i++; |
| emitted = true; |
| } |
| end_scope_decl(); |
| |
| if (emitted) |
| statement(""); |
| } |
| |
| uint64_t CompilerGLSL::combined_decoration_for_member(const SPIRType &type, uint32_t index) |
| { |
| uint64_t flags = 0; |
| auto &memb = meta[type.self].members; |
| if (index >= memb.size()) |
| return 0; |
| auto &dec = memb[index]; |
| |
| // If our type is a sturct, traverse all the members as well recursively. |
| flags |= dec.decoration_flags; |
| for (uint32_t i = 0; i < type.member_types.size(); i++) |
| flags |= combined_decoration_for_member(get<SPIRType>(type.member_types[i]), i); |
| |
| return flags; |
| } |
| |
| string CompilerGLSL::layout_for_member(const SPIRType &type, uint32_t index) |
| { |
| bool is_block = (meta[type.self].decoration.decoration_flags & |
| ((1ull << DecorationBlock) | (1ull << DecorationBufferBlock))) != 0; |
| if (!is_block) |
| return ""; |
| |
| auto &memb = meta[type.self].members; |
| if (index >= memb.size()) |
| return ""; |
| auto &dec = memb[index]; |
| |
| vector<string> attr; |
| |
| // We can only apply layouts on members in block interfaces. |
| // This is a bit problematic because in SPIR-V decorations are applied on the struct types directly. |
| // This is not supported on GLSL, so we have to make the assumption that if a struct within our buffer block struct |
| // has a decoration, it was originally caused by a top-level layout() qualifier in GLSL. |
| // |
| // We would like to go from (SPIR-V style): |
| // |
| // struct Foo { layout(row_major) mat4 matrix; }; |
| // buffer UBO { Foo foo; }; |
| // |
| // to |
| // |
| // struct Foo { mat4 matrix; }; // GLSL doesn't support any layout shenanigans in raw struct declarations. |
| // buffer UBO { layout(row_major) Foo foo; }; // Apply the layout on top-level. |
| auto flags = combined_decoration_for_member(type, index); |
| |
| if (flags & (1ull << DecorationRowMajor)) |
| attr.push_back("row_major"); |
| // We don't emit any global layouts, so column_major is default. |
| //if (flags & (1ull << DecorationColMajor)) |
| // attr.push_back("column_major"); |
| |
| if (dec.decoration_flags & (1ull << DecorationLocation)) |
| attr.push_back(join("location = ", dec.location)); |
| |
| if (attr.empty()) |
| return ""; |
| |
| string res = "layout("; |
| res += merge(attr); |
| res += ") "; |
| return res; |
| } |
| |
| const char *CompilerGLSL::format_to_glsl(spv::ImageFormat format) |
| { |
| auto check_desktop = [this] { |
| if (options.es) |
| throw CompilerError("Attempting to use image format not supported in ES profile."); |
| }; |
| |
| switch (format) |
| { |
| case ImageFormatRgba32f: |
| return "rgba32f"; |
| case ImageFormatRgba16f: |
| return "rgba16f"; |
| case ImageFormatR32f: |
| return "r32f"; |
| case ImageFormatRgba8: |
| return "rgba8"; |
| case ImageFormatRgba8Snorm: |
| return "rgba8_snorm"; |
| case ImageFormatRg32f: |
| return "rg32f"; |
| case ImageFormatRg16f: |
| return "rg16f"; |
| |
| case ImageFormatRgba32i: |
| return "rgba32i"; |
| case ImageFormatRgba16i: |
| return "rgba16i"; |
| case ImageFormatR32i: |
| return "r32i"; |
| case ImageFormatRgba8i: |
| return "rgba8i"; |
| case ImageFormatRg32i: |
| return "rg32i"; |
| case ImageFormatRg16i: |
| return "rg16i"; |
| |
| case ImageFormatRgba32ui: |
| return "rgba32ui"; |
| case ImageFormatRgba16ui: |
| return "rgba16ui"; |
| case ImageFormatR32ui: |
| return "r32ui"; |
| case ImageFormatRgba8ui: |
| return "rgba8ui"; |
| case ImageFormatRg32ui: |
| return "rg32ui"; |
| case ImageFormatRg16ui: |
| return "rg16ui"; |
| |
| // Desktop-only formats |
| case ImageFormatR11fG11fB10f: |
| check_desktop(); |
| return "r11f_g11f_b10f"; |
| case ImageFormatR16f: |
| check_desktop(); |
| return "r16f"; |
| case ImageFormatRgb10A2: |
| check_desktop(); |
| return "rgb10_a2"; |
| case ImageFormatR8: |
| check_desktop(); |
| return "r8"; |
| case ImageFormatRg8: |
| check_desktop(); |
| return "rg8"; |
| case ImageFormatR16: |
| check_desktop(); |
| return "r16"; |
| case ImageFormatRg16: |
| check_desktop(); |
| return "rg16"; |
| case ImageFormatRgba16: |
| check_desktop(); |
| return "rgba16"; |
| case ImageFormatR16Snorm: |
| check_desktop(); |
| return "r16_snorm"; |
| case ImageFormatRg16Snorm: |
| check_desktop(); |
| return "rg16_snorm"; |
| case ImageFormatRgba16Snorm: |
| check_desktop(); |
| return "rgba16_snorm"; |
| case ImageFormatR8Snorm: |
| check_desktop(); |
| return "r8_snorm"; |
| case ImageFormatRg8Snorm: |
| check_desktop(); |
| return "rg8_snorm"; |
| |
| case ImageFormatR8ui: |
| check_desktop(); |
| return "r8ui"; |
| case ImageFormatRg8ui: |
| check_desktop(); |
| return "rg8ui"; |
| case ImageFormatR16ui: |
| check_desktop(); |
| return "r16ui"; |
| case ImageFormatRgb10a2ui: |
| check_desktop(); |
| return "rgb10_a2ui"; |
| |
| case ImageFormatR8i: |
| check_desktop(); |
| return "r8i"; |
| case ImageFormatRg8i: |
| check_desktop(); |
| return "rg8i"; |
| case ImageFormatR16i: |
| check_desktop(); |
| return "r16i"; |
| |
| default: |
| case ImageFormatUnknown: |
| return nullptr; |
| } |
| } |
| |
| uint32_t CompilerGLSL::type_to_std430_base_size(const SPIRType &type) |
| { |
| switch (type.basetype) |
| { |
| case SPIRType::Double: |
| case SPIRType::Int64: |
| case SPIRType::UInt64: |
| return 8; |
| default: |
| return 4; |
| } |
| } |
| |
| uint32_t CompilerGLSL::type_to_std430_alignment(const SPIRType &type, uint64_t flags) |
| { |
| const uint32_t base_alignment = type_to_std430_base_size(type); |
| |
| if (type.basetype == SPIRType::Struct) |
| { |
| // Rule 9. Structs alignments are maximum alignment of its members. |
| uint32_t alignment = 0; |
| for (uint32_t i = 0; i < type.member_types.size(); i++) |
| { |
| auto member_flags = meta[type.self].members.at(i).decoration_flags; |
| alignment = max(alignment, type_to_std430_alignment(get<SPIRType>(type.member_types[i]), member_flags)); |
| } |
| |
| return alignment; |
| } |
| else |
| { |
| // From 7.6.2.2 in GL 4.5 core spec. |
| // Rule 1 |
| if (type.vecsize == 1 && type.columns == 1) |
| return base_alignment; |
| |
| // Rule 2 |
| if ((type.vecsize == 2 || type.vecsize == 4) && type.columns == 1) |
| return type.vecsize * base_alignment; |
| |
| // Rule 3 |
| if (type.vecsize == 3 && type.columns == 1) |
| return 4 * base_alignment; |
| |
| // Rule 4 implied. Alignment does not change in std430. |
| |
| // Rule 5. Column-major matrices are stored as arrays of |
| // vectors. |
| if ((flags & (1ull << DecorationColMajor)) && type.columns > 1) |
| { |
| if (type.vecsize == 3) |
| return 4 * base_alignment; |
| else |
| return type.vecsize * base_alignment; |
| } |
| |
| // Rule 6 implied. |
| |
| // Rule 7. |
| if ((flags & (1ull << DecorationRowMajor)) && type.vecsize > 1) |
| { |
| if (type.columns == 3) |
| return 4 * base_alignment; |
| else |
| return type.columns * base_alignment; |
| } |
| |
| // Rule 8 implied. |
| } |
| |
| throw CompilerError("Did not find suitable std430 rule for type. Bogus decorations?"); |
| } |
| |
| uint32_t CompilerGLSL::type_to_std430_array_stride(const SPIRType &type, uint64_t flags) |
| { |
| // Array stride is equal to aligned size of the underlying type. |
| SPIRType tmp = type; |
| tmp.array.pop_back(); |
| uint32_t size = type_to_std430_size(tmp, flags); |
| uint32_t alignment = type_to_std430_alignment(tmp, flags); |
| return (size + alignment - 1) & ~(alignment - 1); |
| } |
| |
| uint32_t CompilerGLSL::type_to_std430_size(const SPIRType &type, uint64_t flags) |
| { |
| if (!type.array.empty()) |
| return type.array.back() * type_to_std430_array_stride(type, flags); |
| |
| const uint32_t base_alignment = type_to_std430_base_size(type); |
| uint32_t size = 0; |
| |
| if (type.basetype == SPIRType::Struct) |
| { |
| uint32_t pad_alignment = 1; |
| |
| for (uint32_t i = 0; i < type.member_types.size(); i++) |
| { |
| auto member_flags = meta[type.self].members.at(i).decoration_flags; |
| auto &member_type = get<SPIRType>(type.member_types[i]); |
| |
| uint32_t std430_alignment = type_to_std430_alignment(member_type, member_flags); |
| uint32_t alignment = max(std430_alignment, pad_alignment); |
| |
| // The next member following a struct member is aligned to the base alignment of the struct that came before. |
| // GL 4.5 spec, 7.6.2.2. |
| if (member_type.basetype == SPIRType::Struct) |
| pad_alignment = std430_alignment; |
| else |
| pad_alignment = 1; |
| |
| size = (size + alignment - 1) & ~(alignment - 1); |
| size += type_to_std430_size(member_type, member_flags); |
| } |
| } |
| else |
| { |
| if (type.columns == 1) |
| size = type.vecsize * base_alignment; |
| |
| if ((flags & (1ull << DecorationColMajor)) && type.columns > 1) |
| { |
| if (type.vecsize == 3) |
| size = type.columns * 4 * base_alignment; |
| else |
| size = type.columns * type.vecsize * base_alignment; |
| } |
| |
| if ((flags & (1ull << DecorationRowMajor)) && type.vecsize > 1) |
| { |
| if (type.columns == 3) |
| size = type.vecsize * 4 * base_alignment; |
| else |
| size = type.vecsize * type.columns * base_alignment; |
| } |
| } |
| |
| return size; |
| } |
| |
| bool CompilerGLSL::ssbo_is_std430_packing(const SPIRType &type) |
| { |
| // This is very tricky and error prone, but try to be exhaustive and correct here. |
| // SPIR-V doesn't directly say if we're using std430 or std140. |
| // SPIR-V communicates this using Offset and ArrayStride decorations (which is what really matters), |
| // so we have to try to infer whether or not the original GLSL source was std140 or std430 based on this information. |
| // We do not have to consider shared or packed since these layouts are not allowed in Vulkan SPIR-V (they are useless anyways, and custom offsets would do the same thing). |
| // |
| // It is almost certain that we're using std430, but it gets tricky with arrays in particular. |
| // We will assume std430, but infer std140 if we can prove the struct is not compliant with std430. |
| // |
| // The only two differences between std140 and std430 are related to padding alignment/array stride |
| // in arrays and structs. In std140 they take minimum vec4 alignment. |
| // std430 only removes the vec4 requirement. |
| |
| uint32_t offset = 0; |
| uint32_t pad_alignment = 1; |
| |
| for (uint32_t i = 0; i < type.member_types.size(); i++) |
| { |
| auto &memb_type = get<SPIRType>(type.member_types[i]); |
| auto member_flags = meta[type.self].members.at(i).decoration_flags; |
| |
| // Verify alignment rules. |
| uint32_t std430_alignment = type_to_std430_alignment(memb_type, member_flags); |
| uint32_t alignment = max(std430_alignment, pad_alignment); |
| offset = (offset + alignment - 1) & ~(alignment - 1); |
| |
| // The next member following a struct member is aligned to the base alignment of the struct that came before. |
| // GL 4.5 spec, 7.6.2.2. |
| if (memb_type.basetype == SPIRType::Struct) |
| pad_alignment = std430_alignment; |
| else |
| pad_alignment = 1; |
| |
| uint32_t actual_offset = type_struct_member_offset(type, i); |
| if (actual_offset != offset) // This cannot be std430. |
| return false; |
| |
| // Verify array stride rules. |
| if (!memb_type.array.empty() && |
| type_to_std430_array_stride(memb_type, member_flags) != type_struct_member_array_stride(type, i)) |
| return false; |
| |
| // Verify that sub-structs also follow std430 rules. |
| if (!memb_type.member_types.empty() && !ssbo_is_std430_packing(memb_type)) |
| return false; |
| |
| // Bump size. |
| offset += type_to_std430_size(memb_type, member_flags); |
| } |
| |
| return true; |
| } |
| |
| string CompilerGLSL::layout_for_variable(const SPIRVariable &var) |
| { |
| vector<string> attr; |
| |
| auto &dec = meta[var.self].decoration; |
| auto &type = get<SPIRType>(var.basetype); |
| auto flags = dec.decoration_flags; |
| auto typeflags = meta[type.self].decoration.decoration_flags; |
| |
| if (options.vulkan_semantics && var.storage == StorageClassPushConstant) |
| attr.push_back("push_constant"); |
| |
| if (flags & (1ull << DecorationRowMajor)) |
| attr.push_back("row_major"); |
| if (flags & (1ull << DecorationColMajor)) |
| attr.push_back("column_major"); |
| |
| if (options.vulkan_semantics) |
| { |
| if (flags & (1ull << DecorationInputAttachmentIndex)) |
| attr.push_back(join("input_attachment_index = ", dec.input_attachment)); |
| } |
| |
| if (flags & (1ull << DecorationLocation)) |
| attr.push_back(join("location = ", dec.location)); |
| |
| // set = 0 is the default. Do not emit set = decoration in regular GLSL output, but |
| // we should preserve it in Vulkan GLSL mode. |
| if (var.storage != StorageClassPushConstant) |
| { |
| if ((flags & (1ull << DecorationDescriptorSet)) && (dec.set != 0 || options.vulkan_semantics)) |
| attr.push_back(join("set = ", dec.set)); |
| } |
| |
| if (flags & (1ull << DecorationBinding)) |
| attr.push_back(join("binding = ", dec.binding)); |
| if (flags & (1ull << DecorationCoherent)) |
| attr.push_back("coherent"); |
| if (flags & (1ull << DecorationOffset)) |
| attr.push_back(join("offset = ", dec.offset)); |
| |
| // Instead of adding explicit offsets for every element here, just assume we're using std140 or std430. |
| // If SPIR-V does not comply with either layout, we cannot really work around it. |
| if (var.storage == StorageClassUniform && (typeflags & (1ull << DecorationBlock))) |
| attr.push_back("std140"); |
| else if (var.storage == StorageClassUniform && (typeflags & (1ull << DecorationBufferBlock))) |
| attr.push_back(ssbo_is_std430_packing(type) ? "std430" : "std140"); |
| else if (options.vulkan_semantics && var.storage == StorageClassPushConstant) |
| attr.push_back(ssbo_is_std430_packing(type) ? "std430" : "std140"); |
| |
| // For images, the type itself adds a layout qualifer. |
| if (type.basetype == SPIRType::Image) |
| { |
| const char *fmt = format_to_glsl(type.image.format); |
| if (fmt) |
| attr.push_back(fmt); |
| } |
| |
| if (attr.empty()) |
| return ""; |
| |
| string res = "layout("; |
| res += merge(attr); |
| res += ") "; |
| return res; |
| } |
| |
| void CompilerGLSL::emit_push_constant_block(const SPIRVariable &var) |
| { |
| if (options.vulkan_semantics) |
| emit_push_constant_block_vulkan(var); |
| else |
| emit_push_constant_block_glsl(var); |
| } |
| |
| void CompilerGLSL::emit_push_constant_block_vulkan(const SPIRVariable &var) |
| { |
| emit_buffer_block(var); |
| } |
| |
| void CompilerGLSL::emit_push_constant_block_glsl(const SPIRVariable &var) |
| { |
| // OpenGL has no concept of push constant blocks, implement it as a uniform struct. |
| auto &type = get<SPIRType>(var.basetype); |
| |
| auto &flags = meta[var.self].decoration.decoration_flags; |
| flags &= ~((1ull << DecorationBinding) | (1ull << DecorationDescriptorSet)); |
| |
| #if 0 |
| if (flags & ((1ull << DecorationBinding) | (1ull << DecorationDescriptorSet))) |
| throw CompilerError("Push constant blocks cannot be compiled to GLSL with Binding or Set syntax. " |
| "Remap to location with reflection API first or disable these decorations."); |
| #endif |
| |
| // We're emitting the push constant block as a regular struct, so disable the block qualifier temporarily. |
| // Otherwise, we will end up emitting layout() qualifiers on naked structs which is not allowed. |
| auto &block_flags = meta[type.self].decoration.decoration_flags; |
| uint64_t block_flag = block_flags & (1ull << DecorationBlock); |
| block_flags &= ~block_flag; |
| |
| emit_struct(type); |
| |
| block_flags |= block_flag; |
| |
| emit_uniform(var); |
| statement(""); |
| } |
| |
| void CompilerGLSL::emit_buffer_block(const SPIRVariable &var) |
| { |
| auto &type = get<SPIRType>(var.basetype); |
| bool ssbo = (meta[type.self].decoration.decoration_flags & (1ull << DecorationBufferBlock)) != 0; |
| bool is_restrict = (meta[var.self].decoration.decoration_flags & (1ull << DecorationRestrict)) != 0; |
| |
| add_resource_name(var.self); |
| |
| // Block names should never alias. |
| auto buffer_name = to_name(type.self, false); |
| |
| // Shaders never use the block by interface name, so we don't |
| // have to track this other than updating name caches. |
| if (resource_names.find(buffer_name) != end(resource_names)) |
| buffer_name = get_fallback_name(type.self); |
| else |
| resource_names.insert(buffer_name); |
| |
| statement(layout_for_variable(var), is_restrict ? "restrict " : "", ssbo ? "buffer " : "uniform ", buffer_name); |
| begin_scope(); |
| |
| type.member_name_cache.clear(); |
| |
| uint32_t i = 0; |
| for (auto &member : type.member_types) |
| { |
| add_member_name(type, i); |
| |
| auto &membertype = get<SPIRType>(member); |
| statement(member_decl(type, membertype, i), ";"); |
| i++; |
| } |
| |
| end_scope_decl(to_name(var.self) + type_to_array_glsl(type)); |
| statement(""); |
| } |
| |
| void CompilerGLSL::emit_interface_block(const SPIRVariable &var) |
| { |
| auto &execution = get_entry_point(); |
| auto &type = get<SPIRType>(var.basetype); |
| |
| // Either make it plain in/out or in/out blocks depending on what shader is doing ... |
| bool block = (meta[type.self].decoration.decoration_flags & (1ull << DecorationBlock)) != 0; |
| |
| const char *qual = nullptr; |
| if (is_legacy() && execution.model == ExecutionModelVertex) |
| qual = var.storage == StorageClassInput ? "attribute " : "varying "; |
| else if (is_legacy() && execution.model == ExecutionModelFragment) |
| qual = "varying "; // Fragment outputs are renamed so they never hit this case. |
| else |
| qual = var.storage == StorageClassInput ? "in " : "out "; |
| |
| if (block) |
| { |
| add_resource_name(var.self); |
| |
| // Block names should never alias. |
| auto block_name = to_name(type.self, false); |
| |
| // Shaders never use the block by interface name, so we don't |
| // have to track this other than updating name caches. |
| if (resource_names.find(block_name) != end(resource_names)) |
| block_name = get_fallback_name(type.self); |
| else |
| resource_names.insert(block_name); |
| |
| statement(layout_for_variable(var), qual, block_name); |
| begin_scope(); |
| |
| type.member_name_cache.clear(); |
| |
| uint32_t i = 0; |
| for (auto &member : type.member_types) |
| { |
| add_member_name(type, i); |
| |
| auto &membertype = get<SPIRType>(member); |
| statement(member_decl(type, membertype, i), ";"); |
| i++; |
| } |
| |
| end_scope_decl(join(to_name(var.self), type_to_array_glsl(type))); |
| statement(""); |
| } |
| else |
| { |
| add_resource_name(var.self); |
| statement(layout_for_variable(var), qual, variable_decl(var), ";"); |
| } |
| } |
| |
| void CompilerGLSL::emit_uniform(const SPIRVariable &var) |
| { |
| auto &type = get<SPIRType>(var.basetype); |
| if (type.basetype == SPIRType::Image && type.image.sampled == 2) |
| { |
| if (!options.es && options.version < 420) |
| require_extension("GL_ARB_shader_image_load_store"); |
| else if (options.es && options.version < 310) |
| throw CompilerError("At least ESSL 3.10 required for shader image load store."); |
| } |
| |
| add_resource_name(var.self); |
| statement(layout_for_variable(var), "uniform ", variable_decl(var), ";"); |
| } |
| |
| void CompilerGLSL::replace_illegal_names() |
| { |
| for (auto &id : ids) |
| { |
| if (id.get_type() == TypeVariable) |
| { |
| auto &var = id.get<SPIRVariable>(); |
| if (!is_hidden_variable(var)) |
| { |
| auto &m = meta[var.self].decoration; |
| if (m.alias.compare(0, 3, "gl_") == 0) |
| m.alias = join("_", m.alias); |
| } |
| } |
| } |
| } |
| |
| void CompilerGLSL::replace_fragment_output(SPIRVariable &var) |
| { |
| auto &m = meta[var.self].decoration; |
| uint32_t location = 0; |
| if (m.decoration_flags & (1ull << DecorationLocation)) |
| location = m.location; |
| |
| // If our variable is arrayed, we must not emit the array part of this as the SPIR-V will |
| // do the access chain part of this for us. |
| auto &type = get<SPIRType>(var.basetype); |
| |
| if (type.array.empty()) |
| { |
| // Redirect the write to a specific render target in legacy GLSL. |
| m.alias = join("gl_FragData[", location, "]"); |
| } |
| else if (type.array.size() == 1) |
| { |
| // If location is non-zero, we probably have to add an offset. |
| // This gets really tricky since we'd have to inject an offset in the access chain. |
| // FIXME: This seems like an extremely odd-ball case, so it's probably fine to leave it like this for now. |
| m.alias = "gl_FragData"; |
| if (location != 0) |
| throw CompilerError("Arrayed output variable used, but location is not 0. " |
| "This is unimplemented in SPIRV-Cross."); |
| } |
| else |
| throw CompilerError("Array-of-array output variable used. This cannot be implemented in legacy GLSL."); |
| |
| var.compat_builtin = true; // We don't want to declare this variable, but use the name as-is. |
| } |
| |
| void CompilerGLSL::replace_fragment_outputs() |
| { |
| for (auto &id : ids) |
| { |
| if (id.get_type() == TypeVariable) |
| { |
| auto &var = id.get<SPIRVariable>(); |
| auto &type = get<SPIRType>(var.basetype); |
| |
| if (!is_builtin_variable(var) && !var.remapped_variable && type.pointer && |
| var.storage == StorageClassOutput) |
| replace_fragment_output(var); |
| } |
| } |
| } |
| |
| string CompilerGLSL::remap_swizzle(uint32_t result_type, uint32_t input_components, uint32_t expr) |
| { |
| auto &out_type = get<SPIRType>(result_type); |
| |
| if (out_type.vecsize == input_components) |
| return to_expression(expr); |
| else if (input_components == 1) |
| return join(type_to_glsl(out_type), "(", to_expression(expr), ")"); |
| else |
| { |
| auto e = to_expression(expr) + "."; |
| // Just clamp the swizzle index if we have more outputs than inputs. |
| for (uint32_t c = 0; c < out_type.vecsize; c++) |
| e += index_to_swizzle(min(c, input_components - 1)); |
| if (backend.swizzle_is_function && out_type.vecsize > 1) |
| e += "()"; |
| return e; |
| } |
| } |
| |
| void CompilerGLSL::emit_pls() |
| { |
| auto &execution = get_entry_point(); |
| if (execution.model != ExecutionModelFragment) |
| throw CompilerError("Pixel local storage only supported in fragment shaders."); |
| |
| if (!options.es) |
| throw CompilerError("Pixel local storage only supported in OpenGL ES."); |
| |
| if (options.version < 300) |
| throw CompilerError("Pixel local storage only supported in ESSL 3.0 and above."); |
| |
| if (!pls_inputs.empty()) |
| { |
| statement("__pixel_local_inEXT _PLSIn"); |
| begin_scope(); |
| for (auto &input : pls_inputs) |
| statement(pls_decl(input), ";"); |
| end_scope_decl(); |
| statement(""); |
| } |
| |
| if (!pls_outputs.empty()) |
| { |
| statement("__pixel_local_outEXT _PLSOut"); |
| begin_scope(); |
| for (auto &output : pls_outputs) |
| statement(pls_decl(output), ";"); |
| end_scope_decl(); |
| statement(""); |
| } |
| } |
| |
| void CompilerGLSL::emit_resources() |
| { |
| auto &execution = get_entry_point(); |
| |
| replace_illegal_names(); |
| |
| // Legacy GL uses gl_FragData[], redeclare all fragment outputs |
| // with builtins. |
| if (execution.model == ExecutionModelFragment && is_legacy()) |
| replace_fragment_outputs(); |
| |
| // Emit PLS blocks if we have such variables. |
| if (!pls_inputs.empty() || !pls_outputs.empty()) |
| emit_pls(); |
| |
| // Output all basic struct types which are not Block or BufferBlock as these are declared inplace |
| // when such variables are instantiated. |
| for (auto &id : ids) |
| { |
| if (id.get_type() == TypeType) |
| { |
| auto &type = id.get<SPIRType>(); |
| if (type.basetype == SPIRType::Struct && type.array.empty() && !type.pointer && |
| (meta[type.self].decoration.decoration_flags & |
| ((1ull << DecorationBlock) | (1ull << DecorationBufferBlock))) == 0) |
| { |
| emit_struct(type); |
| } |
| } |
| } |
| |
| // Output UBOs and SSBOs |
| for (auto &id : ids) |
| { |
| if (id.get_type() == TypeVariable) |
| { |
| auto &var = id.get<SPIRVariable>(); |
| auto &type = get<SPIRType>(var.basetype); |
| |
| if (var.storage != StorageClassFunction && type.pointer && type.storage == StorageClassUniform && |
| !is_hidden_variable(var) && (meta[type.self].decoration.decoration_flags & |
| ((1ull << DecorationBlock) | (1ull << DecorationBufferBlock)))) |
| { |
| emit_buffer_block(var); |
| } |
| } |
| } |
| |
| // Output push constant blocks |
| for (auto &id : ids) |
| { |
| if (id.get_type() == TypeVariable) |
| { |
| auto &var = id.get<SPIRVariable>(); |
| auto &type = get<SPIRType>(var.basetype); |
| if (var.storage != StorageClassFunction && type.pointer && type.storage == StorageClassPushConstant && |
| !is_hidden_variable(var)) |
| { |
| emit_push_constant_block(var); |
| } |
| } |
| } |
| |
| bool emitted = false; |
| |
| bool skip_separate_image_sampler = !combined_image_samplers.empty() || !options.vulkan_semantics; |
| |
| // Output Uniform Constants (values, samplers, images, etc). |
| for (auto &id : ids) |
| { |
| if (id.get_type() == TypeVariable) |
| { |
| auto &var = id.get<SPIRVariable>(); |
| auto &type = get<SPIRType>(var.basetype); |
| |
| // If we're remapping separate samplers and images, only emit the combined samplers. |
| if (skip_separate_image_sampler) |
| { |
| bool separate_image = type.basetype == SPIRType::Image && type.image.sampled == 1; |
| bool separate_sampler = type.basetype == SPIRType::Sampler; |
| if (separate_image || separate_sampler) |
| continue; |
| } |
| |
| if (var.storage != StorageClassFunction && type.pointer && |
| (type.storage == StorageClassUniformConstant || type.storage == StorageClassAtomicCounter) && |
| !is_hidden_variable(var)) |
| { |
| emit_uniform(var); |
| emitted = true; |
| } |
| } |
| } |
| |
| if (emitted) |
| statement(""); |
| emitted = false; |
| |
| // Output in/out interfaces. |
| for (auto &id : ids) |
| { |
| if (id.get_type() == TypeVariable) |
| { |
| auto &var = id.get<SPIRVariable>(); |
| auto &type = get<SPIRType>(var.basetype); |
| |
| if (var.storage != StorageClassFunction && type.pointer && |
| (var.storage == StorageClassInput || var.storage == StorageClassOutput) && |
| interface_variable_exists_in_entry_point(var.self) && !is_hidden_variable(var)) |
| { |
| emit_interface_block(var); |
| emitted = true; |
| } |
| else if (is_builtin_variable(var)) |
| { |
| // For gl_InstanceIndex emulation on GLES, the API user needs to |
| // supply this uniform. |
| if (meta[var.self].decoration.builtin_type == BuiltInInstanceIndex && !options.vulkan_semantics) |
| { |
| statement("uniform int SPIRV_Cross_BaseInstance;"); |
| emitted = true; |
| } |
| } |
| } |
| } |
| |
| // Global variables. |
| for (auto global : global_variables) |
| { |
| auto &var = get<SPIRVariable>(global); |
| if (var.storage != StorageClassOutput) |
| { |
| add_resource_name(var.self); |
| statement(variable_decl(var), ";"); |
| emitted = true; |
| } |
| } |
| |
| if (emitted) |
| statement(""); |
| } |
| |
| void CompilerGLSL::handle_invalid_expression(uint32_t id) |
| { |
| auto &expr = get<SPIRExpression>(id); |
| |
| // This expression has been invalidated in the past. |
| // Be careful with this expression next pass ... |
| // Used for OpCompositeInsert forwarding atm. |
| expr.used_while_invalidated = true; |
| |
| // We tried to read an invalidated expression. |
| // This means we need another pass at compilation, but next time, force temporary variables so that they cannot be invalidated. |
| forced_temporaries.insert(id); |
| force_recompile = true; |
| } |
| |
| string CompilerGLSL::to_expression(uint32_t id) |
| { |
| auto itr = invalid_expressions.find(id); |
| if (itr != end(invalid_expressions)) |
| handle_invalid_expression(id); |
| |
| if (ids[id].get_type() == TypeExpression) |
| { |
| // We might have a more complex chain of dependencies. |
| // A possible scenario is that we |
| // |
| // %1 = OpLoad |
| // %2 = OpDoSomething %1 %1. here %2 will have a dependency on %1. |
| // %3 = OpDoSomethingAgain %2 %2. Here %3 will lose the link to %1 since we don't propagate the dependencies like that. |
| // OpStore %1 %foo // Here we can invalidate %1, and hence all expressions which depend on %1. Only %2 will know since it's part of invalid_expressions. |
| // %4 = OpDoSomethingAnotherTime %3 %3 // If we forward all expressions we will see %1 expression after store, not before. |
| // |
| // However, we can propagate up a list of depended expressions when we used %2, so we can check if %2 is invalid when reading %3 after the store, |
| // and see that we should not forward reads of the original variable. |
| auto &expr = get<SPIRExpression>(id); |
| for (uint32_t dep : expr.expression_dependencies) |
| if (invalid_expressions.find(dep) != end(invalid_expressions)) |
| handle_invalid_expression(dep); |
| } |
| |
| track_expression_read(id); |
| |
| switch (ids[id].get_type()) |
| { |
| case TypeExpression: |
| { |
| auto &e = get<SPIRExpression>(id); |
| if (e.base_expression) |
| return to_expression(e.base_expression) + e.expression; |
| else |
| return e.expression; |
| } |
| |
| case TypeConstant: |
| return constant_expression(get<SPIRConstant>(id)); |
| |
| case TypeVariable: |
| { |
| auto &var = get<SPIRVariable>(id); |
| if (var.statically_assigned) |
| return to_expression(var.static_expression); |
| else if (var.deferred_declaration) |
| { |
| var.deferred_declaration = false; |
| return variable_decl(var); |
| } |
| else |
| { |
| auto &dec = meta[var.self].decoration; |
| if (dec.builtin) |
| return builtin_to_glsl(dec.builtin_type); |
| else |
| return to_name(id); |
| } |
| } |
| |
| default: |
| return to_name(id); |
| } |
| } |
| |
| string CompilerGLSL::constant_expression(const SPIRConstant &c) |
| { |
| if (!c.subconstants.empty()) |
| { |
| // Handles Arrays and structures. |
| string res; |
| if (backend.use_initializer_list) |
| res = "{ "; |
| else |
| res = type_to_glsl_constructor(get<SPIRType>(c.constant_type)) + "("; |
| |
| for (auto &elem : c.subconstants) |
| { |
| res += constant_expression(get<SPIRConstant>(elem)); |
| if (&elem != &c.subconstants.back()) |
| res += ", "; |
| } |
| |
| res += backend.use_initializer_list ? " }" : ")"; |
| return res; |
| } |
| else if (c.columns() == 1) |
| { |
| return constant_expression_vector(c, 0); |
| } |
| else |
| { |
| string res = type_to_glsl(get<SPIRType>(c.constant_type)) + "("; |
| for (uint32_t col = 0; col < c.columns(); col++) |
| { |
| res += constant_expression_vector(c, col); |
| if (col + 1 < c.columns()) |
| res += ", "; |
| } |
| res += ")"; |
| return res; |
| } |
| } |
| |
| string CompilerGLSL::constant_expression_vector(const SPIRConstant &c, uint32_t vector) |
| { |
| auto type = get<SPIRType>(c.constant_type); |
| type.columns = 1; |
| |
| string res; |
| if (c.vector_size() > 1) |
| res += type_to_glsl(type) + "("; |
| |
| bool splat = c.vector_size() > 1; |
| if (splat) |
| { |
| if (type_to_std430_base_size(type) == 8) |
| { |
| uint64_t ident = c.scalar_u64(vector, 0); |
| for (uint32_t i = 1; i < c.vector_size(); i++) |
| if (ident != c.scalar_u64(vector, i)) |
| splat = false; |
| } |
| else |
| { |
| uint32_t ident = c.scalar(vector, 0); |
| for (uint32_t i = 1; i < c.vector_size(); i++) |
| if (ident != c.scalar(vector, i)) |
| splat = false; |
| } |
| } |
| |
| switch (type.basetype) |
| { |
| case SPIRType::Float: |
| if (splat) |
| { |
| res += convert_to_string(c.scalar_f32(vector, 0)); |
| if (backend.float_literal_suffix) |
| res += "f"; |
| } |
| else |
| { |
| for (uint32_t i = 0; i < c.vector_size(); i++) |
| { |
| res += convert_to_string(c.scalar_f32(vector, i)); |
| if (backend.float_literal_suffix) |
| res += "f"; |
| if (i + 1 < c.vector_size()) |
| res += ", "; |
| } |
| } |
| break; |
| |
| case SPIRType::Double: |
| if (splat) |
| { |
| res += convert_to_string(c.scalar_f64(vector, 0)); |
| if (backend.double_literal_suffix) |
| res += "lf"; |
| } |
| else |
| { |
| for (uint32_t i = 0; i < c.vector_size(); i++) |
| { |
| res += convert_to_string(c.scalar_f64(vector, i)); |
| if (backend.double_literal_suffix) |
| res += "lf"; |
| if (i + 1 < c.vector_size()) |
| res += ", "; |
| } |
| } |
| break; |
| |
| case SPIRType::Int64: |
| if (splat) |
| { |
| res += convert_to_string(c.scalar_i64(vector, 0)); |
| if (backend.long_long_literal_suffix) |
| res += "ll"; |
| else |
| res += "l"; |
| } |
| else |
| { |
| for (uint32_t i = 0; i < c.vector_size(); i++) |
| { |
| res += convert_to_string(c.scalar_i64(vector, i)); |
| if (backend.long_long_literal_suffix) |
| res += "ll"; |
| else |
| res += "l"; |
| if (i + 1 < c.vector_size()) |
| res += ", "; |
| } |
| } |
| break; |
| |
| case SPIRType::UInt64: |
| if (splat) |
| { |
| res += convert_to_string(c.scalar_u64(vector, 0)); |
| if (backend.long_long_literal_suffix) |
| res += "ull"; |
| else |
| res += "ul"; |
| } |
| else |
| { |
| for (uint32_t i = 0; i < c.vector_size(); i++) |
| { |
| res += convert_to_string(c.scalar_u64(vector, i)); |
| if (backend.long_long_literal_suffix) |
| res += "ull"; |
| else |
| res += "ul"; |
| if (i + 1 < c.vector_size()) |
| res += ", "; |
| } |
| } |
| break; |
| |
| case SPIRType::UInt: |
| if (splat) |
| { |
| res += convert_to_string(c.scalar(vector, 0)); |
| if (backend.uint32_t_literal_suffix) |
| res += "u"; |
| } |
| else |
| { |
| for (uint32_t i = 0; i < c.vector_size(); i++) |
| { |
| res += convert_to_string(c.scalar(vector, i)); |
| if (backend.uint32_t_literal_suffix) |
| res += "u"; |
| if (i + 1 < c.vector_size()) |
| res += ", "; |
| } |
| } |
| break; |
| |
| case SPIRType::Int: |
| if (splat) |
| res += convert_to_string(c.scalar_i32(vector, 0)); |
| else |
| { |
| for (uint32_t i = 0; i < c.vector_size(); i++) |
| { |
| res += convert_to_string(c.scalar_i32(vector, i)); |
| if (i + 1 < c.vector_size()) |
| res += ", "; |
| } |
| } |
| break; |
| |
| case SPIRType::Boolean: |
| if (splat) |
| res += c.scalar(vector, 0) ? "true" : "false"; |
| else |
| { |
| for (uint32_t i = 0; i < c.vector_size(); i++) |
| { |
| res += c.scalar(vector, i) ? "true" : "false"; |
| if (i + 1 < c.vector_size()) |
| res += ", "; |
| } |
| } |
| break; |
| |
| default: |
| throw CompilerError("Invalid constant expression basetype."); |
| } |
| |
| if (c.vector_size() > 1) |
| res += ")"; |
| |
| return res; |
| } |
| |
| string CompilerGLSL::declare_temporary(uint32_t result_type, uint32_t result_id) |
| { |
| auto &type = get<SPIRType>(result_type); |
| auto flags = meta[result_id].decoration.decoration_flags; |
| |
| // If we're declaring temporaries inside continue blocks, |
| // we must declare the temporary in the loop header so that the continue block can avoid declaring new variables. |
| if (current_continue_block) |
| { |
| auto &header = get<SPIRBlock>(current_continue_block->loop_dominator); |
| if (find_if(begin(header.declare_temporary), end(header.declare_temporary), |
| [result_type, result_id](const pair<uint32_t, uint32_t> &tmp) { |
| return tmp.first == result_type && tmp.second == result_id; |
| }) == end(header.declare_temporary)) |
| { |
| header.declare_temporary.emplace_back(result_type, result_id); |
| force_recompile = true; |
| } |
| |
| return join(to_name(result_id), " = "); |
| } |
| else |
| { |
| // The result_id has not been made into an expression yet, so use flags interface. |
| return join(flags_to_precision_qualifiers_glsl(type, flags), variable_decl(type, to_name(result_id)), " = "); |
| } |
| } |
| |
| bool CompilerGLSL::expression_is_forwarded(uint32_t id) |
| { |
| return forwarded_temporaries.find(id) != end(forwarded_temporaries); |
| } |
| |
| SPIRExpression &CompilerGLSL::emit_op(uint32_t result_type, uint32_t result_id, const string &rhs, bool forwarding, |
| bool extra_parens, bool suppress_usage_tracking) |
| { |
| if (forwarding && (forced_temporaries.find(result_id) == end(forced_temporaries))) |
| { |
| // Just forward it without temporary. |
| // If the forward is trivial, we do not force flushing to temporary for this expression. |
| if (!suppress_usage_tracking) |
| forwarded_temporaries.insert(result_id); |
| |
| if (extra_parens) |
| return set<SPIRExpression>(result_id, join("(", rhs, ")"), result_type, true); |
| else |
| return set<SPIRExpression>(result_id, rhs, result_type, true); |
| } |
| else |
| { |
| // If expression isn't immutable, bind it to a temporary and make the new temporary immutable (they always are). |
| statement(declare_temporary(result_type, result_id), rhs, ";"); |
| return set<SPIRExpression>(result_id, to_name(result_id), result_type, true); |
| } |
| } |
| |
| void CompilerGLSL::emit_unary_op(uint32_t result_type, uint32_t result_id, uint32_t op0, const char *op) |
| { |
| bool forward = should_forward(op0); |
| emit_op(result_type, result_id, join(op, to_expression(op0)), forward, true); |
| |
| if (forward && forced_temporaries.find(result_id) == end(forced_temporaries)) |
| inherit_expression_dependencies(result_id, op0); |
| } |
| |
| void CompilerGLSL::emit_binary_op(uint32_t result_type, uint32_t result_id, uint32_t op0, uint32_t op1, const char *op) |
| { |
| bool forward = should_forward(op0) && should_forward(op1); |
| emit_op(result_type, result_id, join(to_expression(op0), " ", op, " ", to_expression(op1)), forward, true); |
| |
| if (forward && forced_temporaries.find(result_id) == end(forced_temporaries)) |
| { |
| inherit_expression_dependencies(result_id, op0); |
| inherit_expression_dependencies(result_id, op1); |
| } |
| } |
| |
| SPIRType CompilerGLSL::binary_op_bitcast_helper(string &cast_op0, string &cast_op1, SPIRType::BaseType &input_type, |
| uint32_t op0, uint32_t op1, bool skip_cast_if_equal_type) |
| { |
| auto &type0 = expression_type(op0); |
| auto &type1 = expression_type(op1); |
| |
| // We have to bitcast if our inputs are of different type, or if our types are not equal to expected inputs. |
| // For some functions like OpIEqual and INotEqual, we don't care if inputs are of different types than expected |
| // since equality test is exactly the same. |
| bool cast = (type0.basetype != type1.basetype) || (!skip_cast_if_equal_type && type0.basetype != input_type); |
| |
| // Create a fake type so we can bitcast to it. |
| // We only deal with regular arithmetic types here like int, uints and so on. |
| SPIRType expected_type; |
| expected_type.basetype = input_type; |
| expected_type.vecsize = type0.vecsize; |
| expected_type.columns = type0.columns; |
| expected_type.width = type0.width; |
| |
| if (cast) |
| { |
| cast_op0 = bitcast_glsl(expected_type, op0); |
| cast_op1 = bitcast_glsl(expected_type, op1); |
| } |
| else |
| { |
| // If we don't cast, our actual input type is that of the first (or second) argument. |
| cast_op0 = to_expression(op0); |
| cast_op1 = to_expression(op1); |
| input_type = type0.basetype; |
| } |
| |
| return expected_type; |
| } |
| |
| void CompilerGLSL::emit_binary_op_cast(uint32_t result_type, uint32_t result_id, uint32_t op0, uint32_t op1, |
| const char *op, SPIRType::BaseType input_type, bool skip_cast_if_equal_type) |
| { |
| string cast_op0, cast_op1; |
| auto expected_type = binary_op_bitcast_helper(cast_op0, cast_op1, input_type, op0, op1, skip_cast_if_equal_type); |
| auto &out_type = get<SPIRType>(result_type); |
| |
| // We might have casted away from the result type, so bitcast again. |
| // For example, arithmetic right shift with uint inputs. |
| // Special case boolean outputs since relational opcodes output booleans instead of int/uint. |
| bool extra_parens = true; |
| string expr; |
| if (out_type.basetype != input_type && out_type.basetype != SPIRType::Boolean) |
| { |
| expected_type.basetype = input_type; |
| expr = bitcast_glsl_op(out_type, expected_type); |
| expr += '('; |
| expr += join(cast_op0, " ", op, " ", cast_op1); |
| expr += ')'; |
| extra_parens = false; |
| } |
| else |
| { |
| expr += join(cast_op0, " ", op, " ", cast_op1); |
| } |
| |
| emit_op(result_type, result_id, expr, should_forward(op0) && should_forward(op1), extra_parens); |
| } |
| |
| void CompilerGLSL::emit_unary_func_op(uint32_t result_type, uint32_t result_id, uint32_t op0, const char *op) |
| { |
| bool forward = should_forward(op0); |
| emit_op(result_type, result_id, join(op, "(", to_expression(op0), ")"), forward, false); |
| if (forward && forced_temporaries.find(result_id) == end(forced_temporaries)) |
| inherit_expression_dependencies(result_id, op0); |
| } |
| |
| void CompilerGLSL::emit_binary_func_op(uint32_t result_type, uint32_t result_id, uint32_t op0, uint32_t op1, |
| const char *op) |
| { |
| bool forward = should_forward(op0) && should_forward(op1); |
| emit_op(result_type, result_id, join(op, "(", to_expression(op0), ", ", to_expression(op1), ")"), forward, false); |
| |
| if (forward && forced_temporaries.find(result_id) == end(forced_temporaries)) |
| { |
| inherit_expression_dependencies(result_id, op0); |
| inherit_expression_dependencies(result_id, op1); |
| } |
| } |
| |
| void CompilerGLSL::emit_binary_func_op_cast(uint32_t result_type, uint32_t result_id, uint32_t op0, uint32_t op1, |
| const char *op, SPIRType::BaseType input_type, bool skip_cast_if_equal_type) |
| { |
| string cast_op0, cast_op1; |
| auto expected_type = binary_op_bitcast_helper(cast_op0, cast_op1, input_type, op0, op1, skip_cast_if_equal_type); |
| auto &out_type = get<SPIRType>(result_type); |
| |
| // Special case boolean outputs since relational opcodes output booleans instead of int/uint. |
| string expr; |
| if (out_type.basetype != input_type && out_type.basetype != SPIRType::Boolean) |
| { |
| expected_type.basetype = input_type; |
| expr = bitcast_glsl_op(out_type, expected_type); |
| expr += '('; |
| expr += join(op, "(", cast_op0, ", ", cast_op1, ")"); |
| expr += ')'; |
| } |
| else |
| { |
| expr += join(op, "(", cast_op0, ", ", cast_op1, ")"); |
| } |
| |
| emit_op(result_type, result_id, expr, should_forward(op0) && should_forward(op1), false); |
| } |
| |
| void CompilerGLSL::emit_trinary_func_op(uint32_t result_type, uint32_t result_id, uint32_t op0, uint32_t op1, |
| uint32_t op2, const char *op) |
| { |
| bool forward = should_forward(op0) && should_forward(op1) && should_forward(op2); |
| emit_op(result_type, result_id, |
| join(op, "(", to_expression(op0), ", ", to_expression(op1), ", ", to_expression(op2), ")"), forward, false); |
| |
| if (forward && forced_temporaries.find(result_id) == end(forced_temporaries)) |
| { |
| inherit_expression_dependencies(result_id, op0); |
| inherit_expression_dependencies(result_id, op1); |
| inherit_expression_dependencies(result_id, op2); |
| } |
| } |
| |
| void CompilerGLSL::emit_quaternary_func_op(uint32_t result_type, uint32_t result_id, uint32_t op0, uint32_t op1, |
| uint32_t op2, uint32_t op3, const char *op) |
| { |
| bool forward = should_forward(op0) && should_forward(op1) && should_forward(op2) && should_forward(op3); |
| emit_op(result_type, result_id, join(op, "(", to_expression(op0), ", ", to_expression(op1), ", ", |
| to_expression(op2), ", ", to_expression(op3), ")"), |
| forward, false); |
| |
| if (forward && forced_temporaries.find(result_id) == end(forced_temporaries)) |
| { |
| inherit_expression_dependencies(result_id, op0); |
| inherit_expression_dependencies(result_id, op1); |
| inherit_expression_dependencies(result_id, op2); |
| inherit_expression_dependencies(result_id, op3); |
| } |
| } |
| |
| string CompilerGLSL::legacy_tex_op(const std::string &op, const SPIRType &imgtype) |
| { |
| const char *type; |
| switch (imgtype.image.dim) |
| { |
| case spv::Dim1D: |
| type = "1D"; |
| break; |
| case spv::Dim2D: |
| type = "2D"; |
| break; |
| case spv::Dim3D: |
| type = "3D"; |
| break; |
| case spv::DimCube: |
| type = "Cube"; |
| break; |
| case spv::DimBuffer: |
| type = "Buffer"; |
| break; |
| case spv::DimSubpassData: |
| type = "2D"; |
| break; |
| default: |
| type = ""; |
| break; |
| } |
| |
| if (op == "texture") |
| return join("texture", type); |
| else if (op == "textureLod") |
| return join("texture", type, "Lod"); |
| else if (op == "textureProj") |
| return join("texture", type, "Proj"); |
| else if (op == "textureProjLod") |
| return join("texture", type, "ProjLod"); |
| else |
| throw CompilerError(join("Unsupported legacy texture op: ", op)); |
| } |
| |
| void CompilerGLSL::emit_mix_op(uint32_t result_type, uint32_t id, uint32_t left, uint32_t right, uint32_t lerp) |
| { |
| auto &lerptype = expression_type(lerp); |
| auto &restype = get<SPIRType>(result_type); |
| |
| bool has_boolean_mix = (options.es && options.version >= 310) || (!options.es && options.version >= 450); |
| |
| // Boolean mix not supported on desktop without extension. |
| // Was added in OpenGL 4.5 with ES 3.1 compat. |
| if (!has_boolean_mix && lerptype.basetype == SPIRType::Boolean) |
| { |
| // Could use GL_EXT_shader_integer_mix on desktop at least, |
| // but Apple doesn't support it. :( |
| // Just implement it as ternary expressions. |
| string expr; |
| if (lerptype.vecsize == 1) |
| expr = join(to_expression(lerp), " ? ", to_expression(right), " : ", to_expression(left)); |
| else |
| { |
| auto swiz = [this](uint32_t expression, uint32_t i) { |
| return join(to_expression(expression), ".", index_to_swizzle(i)); |
| }; |
| |
| expr = type_to_glsl_constructor(restype); |
| expr += "("; |
| for (uint32_t i = 0; i < restype.vecsize; i++) |
| { |
| expr += swiz(lerp, i); |
| expr += " ? "; |
| expr += swiz(right, i); |
| expr += " : "; |
| expr += swiz(left, i); |
| if (i + 1 < restype.vecsize) |
| expr += ", "; |
| } |
| expr += ")"; |
| } |
| |
| emit_op(result_type, id, expr, should_forward(left) && should_forward(right) && should_forward(lerp), false); |
| } |
| else |
| emit_trinary_func_op(result_type, id, left, right, lerp, "mix"); |
| } |
| |
| void CompilerGLSL::emit_sampled_image_op(uint32_t result_type, uint32_t result_id, uint32_t image_id, uint32_t samp_id) |
| { |
| if (options.vulkan_semantics) |
| emit_binary_func_op(result_type, result_id, image_id, samp_id, |
| type_to_glsl(get<SPIRType>(result_type)).c_str()); |
| else |
| { |
| // For GLSL and ESSL targets, we must enumerate all possible combinations for sampler2D(texture2D, sampler) and redirect |
| // all possible combinations into new sampler2D uniforms. |
| auto *image = maybe_get_backing_variable(image_id); |
| auto *samp = maybe_get_backing_variable(samp_id); |
| if (image) |
| image_id = image->self; |
| if (samp) |
| samp_id = samp->self; |
| |
| // FIXME: This must be context-dependent. |
| auto &mapping = combined_image_samplers; |
| |
| auto itr = find_if(begin(mapping), end(mapping), [image_id, samp_id](const CombinedImageSampler &combined) { |
| return combined.image_id == image_id && combined.sampler_id == samp_id; |
| }); |
| |
| if (itr != end(combined_image_samplers)) |
| emit_op(result_type, result_id, to_expression(itr->combined_id), true, false); |
| else |
| { |
| //throw CompilerError("Cannot find mapping for combined sampler, was build_combined_image_samplers() used " |
| // "before compile() was called?"); |
| emit_op(result_type, result_id, "DUMMY", true, false); |
| } |
| } |
| } |
| |
| void CompilerGLSL::emit_texture_op(const Instruction &i) |
| { |
| auto ops = stream(i); |
| auto op = static_cast<Op>(i.op); |
| uint32_t length = i.length; |
| |
| if (i.offset + length > spirv.size()) |
| throw CompilerError("Compiler::parse() opcode out of range."); |
| |
| uint32_t result_type = ops[0]; |
| uint32_t id = ops[1]; |
| uint32_t img = ops[2]; |
| uint32_t coord = ops[3]; |
| uint32_t dref = 0; |
| uint32_t comp = 0; |
| bool gather = false; |
| bool proj = false; |
| const uint32_t *opt = nullptr; |
| |
| switch (op) |
| { |
| case OpImageSampleDrefImplicitLod: |
| case OpImageSampleDrefExplicitLod: |
| dref = ops[4]; |
| opt = &ops[5]; |
| length -= 5; |
| break; |
| |
| case OpImageSampleProjDrefImplicitLod: |
| case OpImageSampleProjDrefExplicitLod: |
| dref = ops[4]; |
| proj = true; |
| opt = &ops[5]; |
| length -= 5; |
| break; |
| |
| case OpImageDrefGather: |
| dref = ops[4]; |
| opt = &ops[5]; |
| gather = true; |
| length -= 5; |
| break; |
| |
| case OpImageGather: |
| comp = ops[4]; |
| opt = &ops[5]; |
| gather = true; |
| length -= 5; |
| break; |
| |
| case OpImageSampleProjImplicitLod: |
| case OpImageSampleProjExplicitLod: |
| opt = &ops[4]; |
| length -= 4; |
| proj = true; |
| break; |
| |
| default: |
| opt = &ops[4]; |
| length -= 4; |
| break; |
| } |
| |
| auto &imgtype = expression_type(img); |
| uint32_t coord_components = 0; |
| switch (imgtype.image.dim) |
| { |
| case spv::Dim1D: |
| coord_components = 1; |
| break; |
| case spv::Dim2D: |
| coord_components = 2; |
| break; |
| case spv::Dim3D: |
| coord_components = 3; |
| break; |
| case spv::DimCube: |
| coord_components = 3; |
| break; |
| case spv::DimBuffer: |
| coord_components = 1; |
| break; |
| default: |
| coord_components = 2; |
| break; |
| } |
| |
| if (proj) |
| coord_components++; |
| if (imgtype.image.arrayed) |
| coord_components++; |
| |
| uint32_t bias = 0; |
| uint32_t lod = 0; |
| uint32_t grad_x = 0; |
| uint32_t grad_y = 0; |
| uint32_t coffset = 0; |
| uint32_t offset = 0; |
| uint32_t coffsets = 0; |
| uint32_t sample = 0; |
| uint32_t flags = 0; |
| |
| if (length) |
| { |
| flags = opt[0]; |
| opt++; |
| length--; |
| } |
| |
| auto test = [&](uint32_t &v, uint32_t flag) { |
| if (length && (flags & flag)) |
| { |
| v = *opt++; |
| length--; |
| } |
| }; |
| |
| test(bias, ImageOperandsBiasMask); |
| test(lod, ImageOperandsLodMask); |
| test(grad_x, ImageOperandsGradMask); |
| test(grad_y, ImageOperandsGradMask); |
| test(coffset, ImageOperandsConstOffsetMask); |
| test(offset, ImageOperandsOffsetMask); |
| test(coffsets, ImageOperandsConstOffsetsMask); |
| test(sample, ImageOperandsSampleMask); |
| |
| string expr; |
| string texop; |
| |
| if (op == OpImageFetch) |
| texop += "texelFetch"; |
| else |
| { |
| texop += "texture"; |
| |
| if (gather) |
| texop += "Gather"; |
| if (coffsets) |
| texop += "Offsets"; |
| if (proj) |
| texop += "Proj"; |
| if (grad_x || grad_y) |
| texop += "Grad"; |
| if (lod) |
| texop += "Lod"; |
| } |
| |
| if (coffset || offset) |
| texop += "Offset"; |
| |
| if (is_legacy()) |
| texop = legacy_tex_op(texop, imgtype); |
| |
| expr += texop; |
| expr += "("; |
| expr += to_expression(img); |
| |
| bool swizz_func = backend.swizzle_is_function; |
| auto swizzle = [swizz_func](uint32_t comps, uint32_t in_comps) -> const char * { |
| if (comps == in_comps) |
| return ""; |
| |
| switch (comps) |
| { |
| case 1: |
| return ".x"; |
| case 2: |
| return swizz_func ? ".xy()" : ".xy"; |
| case 3: |
| return swizz_func ? ".xyz()" : ".xyz"; |
| default: |
| return ""; |
| } |
| }; |
| |
| bool forward = should_forward(coord); |
| |
| // The IR can give us more components than we need, so chop them off as needed. |
| auto coord_expr = to_expression(coord) + swizzle(coord_components, expression_type(coord).vecsize); |
| |
| // TODO: implement rest ... A bit intensive. |
| |
| if (dref) |
| { |
| forward = forward && should_forward(dref); |
| |
| // SPIR-V splits dref and coordinate. |
| if (coord_components == 4) // GLSL also splits the arguments in two. |
| { |
| expr += ", "; |
| expr += to_expression(coord); |
| expr += ", "; |
| expr += to_expression(dref); |
| } |
| else |
| { |
| // Create a composite which merges coord/dref into a single vector. |
| auto type = expression_type(coord); |
| type.vecsize = coord_components + 1; |
| expr += ", "; |
| expr += type_to_glsl_constructor(type); |
| expr += "("; |
| expr += coord_expr; |
| expr += ", "; |
| expr += to_expression(dref); |
| expr += ")"; |
| } |
| } |
| else |
| { |
| expr += ", "; |
| expr += coord_expr; |
| } |
| |
| if (grad_x || grad_y) |
| { |
| forward = forward && should_forward(grad_x); |
| forward = forward && should_forward(grad_y); |
| expr += ", "; |
| expr += to_expression(grad_x); |
| expr += ", "; |
| expr += to_expression(grad_y); |
| } |
| |
| if (lod) |
| { |
| forward = forward && should_forward(lod); |
| expr += ", "; |
| expr += to_expression(lod); |
| } |
| |
| if (coffset) |
| { |
| forward = forward && should_forward(coffset); |
| expr += ", "; |
| expr += to_expression(coffset); |
| } |
| else if (offset) |
| { |
| forward = forward && should_forward(offset); |
| expr += ", "; |
| expr += to_expression(offset); |
| } |
| |
| if (bias) |
| { |
| forward = forward && should_forward(bias); |
| expr += ", "; |
| expr += to_expression(bias); |
| } |
| |
| if (comp) |
| { |
| forward = forward && should_forward(comp); |
| expr += ", "; |
| expr += to_expression(comp); |
| } |
| |
| if (sample) |
| { |
| expr += ", "; |
| expr += to_expression(sample); |
| } |
| |
| expr += ")"; |
| |
| emit_op(result_type, id, expr, forward, false); |
| } |
| |
| void CompilerGLSL::emit_glsl_op(uint32_t result_type, uint32_t id, uint32_t eop, const uint32_t *args, uint32_t) |
| { |
| GLSLstd450 op = static_cast<GLSLstd450>(eop); |
| |
| switch (op) |
| { |
| // FP fiddling |
| case GLSLstd450Round: |
| emit_unary_func_op(result_type, id, args[0], "round"); |
| break; |
| |
| case GLSLstd450RoundEven: |
| if ((options.es && options.version >= 300) || (!options.es && options.version >= 130)) |
| emit_unary_func_op(result_type, id, args[0], "roundEven"); |
| else |
| throw CompilerError("roundEven supported only in ESSL 300 and GLSL 130 and up."); |
| break; |
| |
| case GLSLstd450Trunc: |
| emit_unary_func_op(result_type, id, args[0], "trunc"); |
| break; |
| case GLSLstd450SAbs: |
| case GLSLstd450FAbs: |
| emit_unary_func_op(result_type, id, args[0], "abs"); |
| break; |
| case GLSLstd450SSign: |
| case GLSLstd450FSign: |
| emit_unary_func_op(result_type, id, args[0], "sign"); |
| break; |
| case GLSLstd450Floor: |
| emit_unary_func_op(result_type, id, args[0], "floor"); |
| break; |
| case GLSLstd450Ceil: |
| emit_unary_func_op(result_type, id, args[0], "ceil"); |
| break; |
| case GLSLstd450Fract: |
| emit_unary_func_op(result_type, id, args[0], "fract"); |
| break; |
| case GLSLstd450Radians: |
| emit_unary_func_op(result_type, id, args[0], "radians"); |
| break; |
| case GLSLstd450Degrees: |
| emit_unary_func_op(result_type, id, args[0], "degrees"); |
| break; |
| case GLSLstd450Fma: |
| emit_trinary_func_op(result_type, id, args[0], args[1], args[2], "fma"); |
| break; |
| case GLSLstd450Modf: |
| register_call_out_argument(args[1]); |
| forced_temporaries.insert(id); |
| emit_binary_func_op(result_type, id, args[0], args[1], "modf"); |
| break; |
| |
| // Minmax |
| case GLSLstd450FMin: |
| case GLSLstd450UMin: |
| case GLSLstd450SMin: |
| emit_binary_func_op(result_type, id, args[0], args[1], "min"); |
| break; |
| case GLSLstd450FMax: |
| case GLSLstd450UMax: |
| case GLSLstd450SMax: |
| emit_binary_func_op(result_type, id, args[0], args[1], "max"); |
| break; |
| case GLSLstd450FClamp: |
| case GLSLstd450UClamp: |
| case GLSLstd450SClamp: |
| emit_trinary_func_op(result_type, id, args[0], args[1], args[2], "clamp"); |
| break; |
| |
| // Trig |
| case GLSLstd450Sin: |
| emit_unary_func_op(result_type, id, args[0], "sin"); |
| break; |
| case GLSLstd450Cos: |
| emit_unary_func_op(result_type, id, args[0], "cos"); |
| break; |
| case GLSLstd450Tan: |
| emit_unary_func_op(result_type, id, args[0], "tan"); |
| break; |
| case GLSLstd450Asin: |
| emit_unary_func_op(result_type, id, args[0], "asin"); |
| break; |
| case GLSLstd450Acos: |
| emit_unary_func_op(result_type, id, args[0], "acos"); |
| break; |
| case GLSLstd450Atan: |
| emit_unary_func_op(result_type, id, args[0], "atan"); |
| break; |
| case GLSLstd450Sinh: |
| emit_unary_func_op(result_type, id, args[0], "sinh"); |
| break; |
| case GLSLstd450Cosh: |
| emit_unary_func_op(result_type, id, args[0], "cosh"); |
| break; |
| case GLSLstd450Tanh: |
| emit_unary_func_op(result_type, id, args[0], "tanh"); |
| break; |
| case GLSLstd450Asinh: |
| emit_unary_func_op(result_type, id, args[0], "asinh"); |
| break; |
| case GLSLstd450Acosh: |
| emit_unary_func_op(result_type, id, args[0], "acosh"); |
| break; |
| case GLSLstd450Atanh: |
| emit_unary_func_op(result_type, id, args[0], "atanh"); |
| break; |
| case GLSLstd450Atan2: |
| emit_binary_func_op(result_type, id, args[0], args[1], "atan"); |
| break; |
| |
| // Exponentials |
| case GLSLstd450Pow: |
| emit_binary_func_op(result_type, id, args[0], args[1], "pow"); |
| break; |
| case GLSLstd450Exp: |
| emit_unary_func_op(result_type, id, args[0], "exp"); |
| break; |
| case GLSLstd450Log: |
| emit_unary_func_op(result_type, id, args[0], "log"); |
| break; |
| case GLSLstd450Exp2: |
| emit_unary_func_op(result_type, id, args[0], "exp2"); |
| break; |
| case GLSLstd450Log2: |
| emit_unary_func_op(result_type, id, args[0], "log2"); |
| break; |
| case GLSLstd450Sqrt: |
| emit_unary_func_op(result_type, id, args[0], "sqrt"); |
| break; |
| case GLSLstd450InverseSqrt: |
| emit_unary_func_op(result_type, id, args[0], "inversesqrt"); |
| break; |
| |
| // Matrix math |
| case GLSLstd450Determinant: |
| emit_unary_func_op(result_type, id, args[0], "determinant"); |
| break; |
| case GLSLstd450MatrixInverse: |
| emit_unary_func_op(result_type, id, args[0], "inverse"); |
| break; |
| |
| // Lerping |
| case GLSLstd450FMix: |
| case GLSLstd450IMix: |
| { |
| emit_mix_op(result_type, id, args[0], args[1], args[2]); |
| break; |
| } |
| case GLSLstd450Step: |
| emit_binary_func_op(result_type, id, args[0], args[1], "step"); |
| break; |
| case GLSLstd450SmoothStep: |
| emit_trinary_func_op(result_type, id, args[0], args[1], args[2], "smoothstep"); |
| break; |
| |
| // Packing |
| case GLSLstd450Frexp: |
| register_call_out_argument(args[1]); |
| forced_temporaries.insert(id); |
| emit_binary_func_op(result_type, id, args[0], args[1], "frexp"); |
| break; |
| case GLSLstd450Ldexp: |
| emit_binary_func_op(result_type, id, args[0], args[1], "ldexp"); |
| break; |
| case GLSLstd450PackSnorm4x8: |
| emit_unary_func_op(result_type, id, args[0], "packSnorm4x8"); |
| break; |
| case GLSLstd450PackUnorm4x8: |
| emit_unary_func_op(result_type, id, args[0], "packUnorm4x8"); |
| break; |
| case GLSLstd450PackSnorm2x16: |
| emit_unary_func_op(result_type, id, args[0], "packSnorm2x16"); |
| break; |
| case GLSLstd450PackUnorm2x16: |
| emit_unary_func_op(result_type, id, args[0], "packUnorm2x16"); |
| break; |
| case GLSLstd450PackHalf2x16: |
| emit_unary_func_op(result_type, id, args[0], "packHalf2x16"); |
| break; |
| case GLSLstd450UnpackSnorm4x8: |
| emit_unary_func_op(result_type, id, args[0], "unpackSnorm4x8"); |
| break; |
| case GLSLstd450UnpackUnorm4x8: |
| emit_unary_func_op(result_type, id, args[0], "unpackUnorm4x8"); |
| break; |
| case GLSLstd450UnpackSnorm2x16: |
| emit_unary_func_op(result_type, id, args[0], "unpackSnorm2x16"); |
| break; |
| case GLSLstd450UnpackUnorm2x16: |
| emit_unary_func_op(result_type, id, args[0], "unpackUnorm2x16"); |
| break; |
| case GLSLstd450UnpackHalf2x16: |
| emit_unary_func_op(result_type, id, args[0], "unpackHalf2x16"); |
| break; |
| |
| case GLSLstd450PackDouble2x32: |
| emit_unary_func_op(result_type, id, args[0], "packDouble2x32"); |
| break; |
| case GLSLstd450UnpackDouble2x32: |
| emit_unary_func_op(result_type, id, args[0], "unpackDouble2x32"); |
| break; |
| |
| // Vector math |
| case GLSLstd450Length: |
| emit_unary_func_op(result_type, id, args[0], "length"); |
| break; |
| case GLSLstd450Distance: |
| emit_binary_func_op(result_type, id, args[0], args[1], "distance"); |
| break; |
| case GLSLstd450Cross: |
| emit_binary_func_op(result_type, id, args[0], args[1], "cross"); |
| break; |
| case GLSLstd450Normalize: |
| emit_unary_func_op(result_type, id, args[0], "normalize"); |
| break; |
| case GLSLstd450FaceForward: |
| emit_trinary_func_op(result_type, id, args[0], args[1], args[2], "faceforward"); |
| break; |
| case GLSLstd450Reflect: |
| emit_binary_func_op(result_type, id, args[0], args[1], "reflect"); |
| break; |
| case GLSLstd450Refract: |
| emit_trinary_func_op(result_type, id, args[0], args[1], args[2], "refract"); |
| break; |
| |
| // Bit-fiddling |
| case GLSLstd450FindILsb: |
| emit_unary_func_op(result_type, id, args[0], "findLSB"); |
| break; |
| case GLSLstd450FindSMsb: |
| case GLSLstd450FindUMsb: |
| emit_unary_func_op(result_type, id, args[0], "findMSB"); |
| break; |
| |
| // Multisampled varying |
| case GLSLstd450InterpolateAtCentroid: |
| emit_unary_func_op(result_type, id, args[0], "interpolateAtCentroid"); |
| break; |
| case GLSLstd450InterpolateAtSample: |
| emit_binary_func_op(result_type, id, args[0], args[1], "interpolateAtSample"); |
| break; |
| case GLSLstd450InterpolateAtOffset: |
| emit_binary_func_op(result_type, id, args[0], args[1], "interpolateAtOffset"); |
| break; |
| |
| default: |
| statement("// unimplemented GLSL op ", eop); |
| break; |
| } |
| } |
| |
| string CompilerGLSL::bitcast_glsl_op(const SPIRType &out_type, const SPIRType &in_type) |
| { |
| if (out_type.basetype == SPIRType::UInt && in_type.basetype == SPIRType::Int) |
| return type_to_glsl(out_type); |
| else if (out_type.basetype == SPIRType::UInt64 && in_type.basetype == SPIRType::Int64) |
| return type_to_glsl(out_type); |
| else if (out_type.basetype == SPIRType::UInt && in_type.basetype == SPIRType::Float) |
| return "floatBitsToUint"; |
| else if (out_type.basetype == SPIRType::Int && in_type.basetype == SPIRType::UInt) |
| return type_to_glsl(out_type); |
| else if (out_type.basetype == SPIRType::Int64 && in_type.basetype == SPIRType::UInt64) |
| return type_to_glsl(out_type); |
| else if (out_type.basetype == SPIRType::Int && in_type.basetype == SPIRType::Float) |
| return "floatBitsToInt"; |
| else if (out_type.basetype == SPIRType::Float && in_type.basetype == SPIRType::UInt) |
| return "uintBitsToFloat"; |
| else if (out_type.basetype == SPIRType::Float && in_type.basetype == SPIRType::Int) |
| return "intBitsToFloat"; |
| else if (out_type.basetype == SPIRType::Int64 && in_type.basetype == SPIRType::Double) |
| return "doubleBitsToInt64"; |
| else if (out_type.basetype == SPIRType::UInt64 && in_type.basetype == SPIRType::Double) |
| return "doubleBitsToUint64"; |
| else if (out_type.basetype == SPIRType::Double && in_type.basetype == SPIRType::Int64) |
| return "int64BitsToDouble"; |
| else if (out_type.basetype == SPIRType::Double && in_type.basetype == SPIRType::UInt64) |
| return "uint64BitsToDouble"; |
| else |
| return ""; |
| } |
| |
| string CompilerGLSL::bitcast_glsl(const SPIRType &result_type, uint32_t argument) |
| { |
| auto op = bitcast_glsl_op(result_type, expression_type(argument)); |
| if (op.empty()) |
| return to_expression(argument); |
| else |
| return join(op, "(", to_expression(argument), ")"); |
| } |
| |
| string CompilerGLSL::builtin_to_glsl(BuiltIn builtin) |
| { |
| switch (builtin) |
| { |
| case BuiltInPosition: |
| return "gl_Position"; |
| case BuiltInPointSize: |
| return "gl_PointSize"; |
| case BuiltInVertexId: |
| if (options.vulkan_semantics) |
| throw CompilerError( |
| "Cannot implement gl_VertexID in Vulkan GLSL. This shader was created with GL semantics."); |
| return "gl_VertexID"; |
| case BuiltInInstanceId: |
| if (options.vulkan_semantics) |
| throw CompilerError( |
| "Cannot implement gl_InstanceID in Vulkan GLSL. This shader was created with GL semantics."); |
| return "gl_InstanceID"; |
| case BuiltInVertexIndex: |
| if (options.vulkan_semantics) |
| return "gl_VertexIndex"; |
| else |
| return "gl_VertexID"; // gl_VertexID already has the base offset applied. |
| case BuiltInInstanceIndex: |
| if (options.vulkan_semantics) |
| return "gl_InstanceIndex"; |
| else |
| return "(gl_InstanceID + SPIRV_Cross_BaseInstance)"; // ... but not gl_InstanceID. |
| case BuiltInPrimitiveId: |
| return "gl_PrimitiveID"; |
| case BuiltInInvocationId: |
| return "gl_InvocationID"; |
| case BuiltInLayer: |
| return "gl_Layer"; |
| case BuiltInTessLevelOuter: |
| return "gl_TessLevelOuter"; |
| case BuiltInTessLevelInner: |
| return "gl_TessLevelInner"; |
| case BuiltInTessCoord: |
| return "gl_TessCoord"; |
| case BuiltInFragCoord: |
| return "gl_FragCoord"; |
| case BuiltInPointCoord: |
| return "gl_PointCoord"; |
| case BuiltInFrontFacing: |
| return "gl_FrontFacing"; |
| case BuiltInFragDepth: |
| return "gl_FragDepth"; |
| case BuiltInNumWorkgroups: |
| return "gl_NumWorkGroups"; |
| case BuiltInWorkgroupSize: |
| return "gl_WorkGroupSize"; |
| case BuiltInWorkgroupId: |
| return "gl_WorkGroupID"; |
| case BuiltInLocalInvocationId: |
| return "gl_LocalInvocationID"; |
| case BuiltInGlobalInvocationId: |
| return "gl_GlobalInvocationID"; |
| case BuiltInLocalInvocationIndex: |
| return "gl_LocalInvocationIndex"; |
| default: |
| return "gl_???"; |
| } |
| } |
| |
| const char *CompilerGLSL::index_to_swizzle(uint32_t index) |
| { |
| switch (index) |
| { |
| case 0: |
| return "x"; |
| case 1: |
| return "y"; |
| case 2: |
| return "z"; |
| case 3: |
| return "w"; |
| default: |
| throw CompilerError("Swizzle index out of range"); |
| } |
| } |
| |
| string CompilerGLSL::access_chain(uint32_t base, const uint32_t *indices, uint32_t count, bool index_is_literal, |
| bool chain_only) |
| { |
| string expr; |
| if (!chain_only) |
| expr = to_expression(base); |
| |
| const auto *type = &expression_type(base); |
| |
| // For resolving array accesses, etc, keep a local copy for poking. |
| SPIRType temp; |
| |
| bool access_chain_is_arrayed = false; |
| |
| for (uint32_t i = 0; i < count; i++) |
| { |
| uint32_t index = indices[i]; |
| |
| // Arrays |
| if (!type->array.empty()) |
| { |
| expr += "["; |
| if (index_is_literal) |
| expr += convert_to_string(index); |
| else |
| expr += to_expression(index); |
| expr += "]"; |
| |
| // We have to modify the type, so keep a local copy. |
| if (&temp != type) |
| temp = *type; |
| type = &temp; |
| temp.array.pop_back(); |
| |
| access_chain_is_arrayed = true; |
| } |
| // For structs, the index refers to a constant, which indexes into the members. |
| // We also check if this member is a builtin, since we then replace the entire expression with the builtin one. |
| else if (type->basetype == SPIRType::Struct) |
| { |
| if (!index_is_literal) |
| index = get<SPIRConstant>(index).scalar(); |
| |
| if (index >= type->member_types.size()) |
| throw CompilerError("Member index is out of bounds!"); |
| |
| BuiltIn builtin; |
| if (is_member_builtin(*type, index, &builtin)) |
| { |
| // FIXME: We rely here on OpName on gl_in/gl_out to make this work properly. |
| // To make this properly work by omitting all OpName opcodes, |
| // we need to infer gl_in or gl_out based on the builtin, and stage. |
| if (access_chain_is_arrayed) |
| { |
| expr += "."; |
| expr += builtin_to_glsl(builtin); |
| } |
| else |
| expr = builtin_to_glsl(builtin); |
| } |
| else |
| { |
| expr += "."; |
| expr += to_member_name(*type, index); |
| } |
| type = &get<SPIRType>(type->member_types[index]); |
| } |
| // Matrix -> Vector |
| else if (type->columns > 1) |
| { |
| expr += "["; |
| if (index_is_literal) |
| expr += convert_to_string(index); |
| else |
| expr += to_expression(index); |
| expr += "]"; |
| |
| // We have to modify the type, so keep a local copy. |
| if (&temp != type) |
| temp = *type; |
| type = &temp; |
| temp.columns = 1; |
| } |
| // Vector -> Scalar |
| else if (type->vecsize > 1) |
| { |
| if (index_is_literal) |
| { |
| expr += "."; |
| expr += index_to_swizzle(index); |
| } |
| else if (ids[index].get_type() == TypeConstant) |
| { |
| auto &c = get<SPIRConstant>(index); |
| expr += "."; |
| expr += index_to_swizzle(c.scalar()); |
| } |
| else |
| { |
| expr += "["; |
| expr += to_expression(index); |
| expr += "]"; |
| } |
| |
| // We have to modify the type, so keep a local copy. |
| if (&temp != type) |
| temp = *type; |
| type = &temp; |
| temp.vecsize = 1; |
| } |
| else |
| throw CompilerError("Cannot subdivide a scalar value!"); |
| } |
| |
| return expr; |
| } |
| |
| bool CompilerGLSL::should_forward(uint32_t id) |
| { |
| // Immutable expression can always be forwarded. |
| // If not immutable, we can speculate about it by forwarding potentially mutable variables. |
| auto *var = maybe_get<SPIRVariable>(id); |
| bool forward = var ? var->forwardable : false; |
| return (is_immutable(id) || forward) && !options.force_temporary; |
| } |
| |
| void CompilerGLSL::track_expression_read(uint32_t id) |
| { |
| // If we try to read a forwarded temporary more than once we will stamp out possibly complex code twice. |
| // In this case, it's better to just bind the complex expression to the temporary and read that temporary twice. |
| if (expression_is_forwarded(id)) |
| { |
| auto &v = expression_usage_counts[id]; |
| v++; |
| |
| if (v >= 2) |
| { |
| //if (v == 2) |
| // fprintf(stderr, "ID %u was forced to temporary due to more than 1 expression use!\n", id); |
| |
| forced_temporaries.insert(id); |
| // Force a recompile after this pass to avoid forwarding this variable. |
| force_recompile = true; |
| } |
| } |
| } |
| |
| bool CompilerGLSL::args_will_forward(uint32_t id, const uint32_t *args, uint32_t num_args, bool pure) |
| { |
| if (forced_temporaries.find(id) != end(forced_temporaries)) |
| return false; |
| |
| for (uint32_t i = 0; i < num_args; i++) |
| if (!should_forward(args[i])) |
| return false; |
| |
| // We need to forward globals as well. |
| if (!pure) |
| { |
| for (auto global : global_variables) |
| if (!should_forward(global)) |
| return false; |
| for (auto aliased : aliased_variables) |
| if (!should_forward(aliased)) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| void CompilerGLSL::register_impure_function_call() |
| { |
| // Impure functions can modify globals and aliased variables, so invalidate them as well. |
| for (auto global : global_variables) |
| flush_dependees(get<SPIRVariable>(global)); |
| for (auto aliased : aliased_variables) |
| flush_dependees(get<SPIRVariable>(aliased)); |
| } |
| |
| void CompilerGLSL::register_call_out_argument(uint32_t id) |
| { |
| register_write(id); |
| |
| auto *var = maybe_get<SPIRVariable>(id); |
| if (var) |
| flush_variable_declaration(var->self); |
| } |
| |
| void CompilerGLSL::flush_variable_declaration(uint32_t id) |
| { |
| auto *var = maybe_get<SPIRVariable>(id); |
| if (var && var->deferred_declaration) |
| { |
| statement(variable_decl(*var), ";"); |
| var->deferred_declaration = false; |
| } |
| } |
| |
| bool CompilerGLSL::remove_duplicate_swizzle(string &op) |
| { |
| auto pos = op.find_last_of('.'); |
| if (pos == string::npos || pos == 0) |
| return false; |
| |
| string final_swiz = op.substr(pos + 1, string::npos); |
| |
| if (backend.swizzle_is_function) |
| { |
| if (final_swiz.size() < 2) |
| return false; |
| |
| if (final_swiz.substr(final_swiz.size() - 2, string::npos) == "()") |
| final_swiz.erase(final_swiz.size() - 2, string::npos); |
| else |
| return false; |
| } |
| |
| // Check if final swizzle is of form .x, .xy, .xyz, .xyzw or similar. |
| // If so, and previous swizzle is of same length, |
| // we can drop the final swizzle altogether. |
| for (uint32_t i = 0; i < final_swiz.size(); i++) |
| { |
| static const char expected[] = { 'x', 'y', 'z', 'w' }; |
| if (i >= 4 || final_swiz[i] != expected[i]) |
| return false; |
| } |
| |
| auto prevpos = op.find_last_of('.', pos - 1); |
| if (prevpos == string::npos) |
| return false; |
| |
| prevpos++; |
| |
| // Make sure there are only swizzles here ... |
| for (auto i = prevpos; i < pos; i++) |
| { |
| if (op[i] < 'w' || op[i] > 'z') |
| { |
| // If swizzles are foo.xyz() like in C++ backend for example, check for that. |
| if (backend.swizzle_is_function && i + 2 == pos && op[i] == '(' && op[i + 1] == ')') |
| break; |
| return false; |
| } |
| } |
| |
| // If original swizzle is large enough, just carve out the components we need. |
| // E.g. foobar.wyx.xy will turn into foobar.wy. |
| if (pos - prevpos >= final_swiz.size()) |
| { |
| op.erase(prevpos + final_swiz.size(), string::npos); |
| |
| // Add back the function call ... |
| if (backend.swizzle_is_function) |
| op += "()"; |
| } |
| return true; |
| } |
| |
| // Optimizes away vector swizzles where we have something like |
| // vec3 foo; |
| // foo.xyz <-- swizzle expression does nothing. |
| // This is a very common pattern after OpCompositeCombine. |
| bool CompilerGLSL::remove_unity_swizzle(uint32_t base, string &op) |
| { |
| auto pos = op.find_last_of('.'); |
| if (pos == string::npos || pos == 0) |
| return false; |
| |
| string final_swiz = op.substr(pos + 1, string::npos); |
| |
| if (backend.swizzle_is_function) |
| { |
| if (final_swiz.size() < 2) |
| return false; |
| |
| if (final_swiz.substr(final_swiz.size() - 2, string::npos) == "()") |
| final_swiz.erase(final_swiz.size() - 2, string::npos); |
| else |
| return false; |
| } |
| |
| // Check if final swizzle is of form .x, .xy, .xyz, .xyzw or similar. |
| // If so, and previous swizzle is of same length, |
| // we can drop the final swizzle altogether. |
| for (uint32_t i = 0; i < final_swiz.size(); i++) |
| { |
| static const char expected[] = { 'x', 'y', 'z', 'w' }; |
| if (i >= 4 || final_swiz[i] != expected[i]) |
| return false; |
| } |
| |
| auto &type = expression_type(base); |
| |
| // Sanity checking ... |
| assert(type.columns == 1 && type.array.empty()); |
| |
| if (type.vecsize == final_swiz.size()) |
| op.erase(pos, string::npos); |
| return true; |
| } |
| |
| string CompilerGLSL::build_composite_combiner(const uint32_t *elems, uint32_t length) |
| { |
| uint32_t base = 0; |
| bool swizzle_optimization = false; |
| string op; |
| |
| for (uint32_t i = 0; i < length; i++) |
| { |
| auto *e = maybe_get<SPIRExpression>(elems[i]); |
| |
| // If we're merging another scalar which belongs to the same base |
| // object, just merge the swizzles to avoid triggering more than 1 expression read as much as possible! |
| if (e && e->base_expression && e->base_expression == base) |
| { |
| // Only supposed to be used for vector swizzle -> scalar. |
| assert(!e->expression.empty() && e->expression.front() == '.'); |
| op += e->expression.substr(1, string::npos); |
| swizzle_optimization = true; |
| } |
| else |
| { |
| // We'll likely end up with duplicated swizzles, e.g. |
| // foobar.xyz.xyz from patterns like |
| // OpVectorSwizzle |
| // OpCompositeExtract x 3 |
| // OpCompositeConstruct 3x + other scalar. |
| // Just modify op in-place. |
| if (swizzle_optimization) |
| { |
| if (backend.swizzle_is_function) |
| op += "()"; |
| |
| // Don't attempt to remove unity swizzling if we managed to remove duplicate swizzles. |
| // The base "foo" might be vec4, while foo.xyz is vec3 (OpVectorShuffle) and looks like a vec3 due to the .xyz tacked on. |
| // We only want to remove the swizzles if we're certain that the resulting base will be the same vecsize. |
| // Essentially, we can only remove one set of swizzles, since that's what we have control over ... |
| // Case 1: |
| // foo.yxz.xyz: Duplicate swizzle kicks in, giving foo.yxz, we are done. |
| // foo.yxz was the result of OpVectorShuffle and we don't know the type of foo. |
| // Case 2: |
| // foo.xyz: Duplicate swizzle won't kick in. |
| // If foo is vec3, we can remove xyz, giving just foo. |
| if (!remove_duplicate_swizzle(op)) |
| remove_unity_swizzle(base, op); |
| swizzle_optimization = false; |
| } |
| |
| if (i) |
| op += ", "; |
| op += to_expression(elems[i]); |
| } |
| |
| base = e ? e->base_expression : 0; |
| } |
| |
| if (swizzle_optimization) |
| { |
| if (backend.swizzle_is_function) |
| op += "()"; |
| |
| if (!remove_duplicate_swizzle(op)) |
| remove_unity_swizzle(base, op); |
| } |
| |
| return op; |
| } |
| |
| void CompilerGLSL::emit_instruction(const Instruction &instruction) |
| { |
| auto ops = stream(instruction); |
| auto opcode = static_cast<Op>(instruction.op); |
| uint32_t length = instruction.length; |
| |
| #define BOP(op) emit_binary_op(ops[0], ops[1], ops[2], ops[3], #op) |
| #define BOP_CAST(op, type, skip_cast) emit_binary_op_cast(ops[0], ops[1], ops[2], ops[3], #op, type, skip_cast) |
| #define UOP(op) emit_unary_op(ops[0], ops[1], ops[2], #op) |
| #define QFOP(op) emit_quaternary_func_op(ops[0], ops[1], ops[2], ops[3], ops[4], ops[5], #op) |
| #define TFOP(op) emit_trinary_func_op(ops[0], ops[1], ops[2], ops[3], ops[4], #op) |
| #define BFOP(op) emit_binary_func_op(ops[0], ops[1], ops[2], ops[3], #op) |
| #define BFOP_CAST(op, type, skip_cast) emit_binary_func_op_cast(ops[0], ops[1], ops[2], ops[3], #op, type, skip_cast) |
| #define BFOP(op) emit_binary_func_op(ops[0], ops[1], ops[2], ops[3], #op) |
| #define UFOP(op) emit_unary_func_op(ops[0], ops[1], ops[2], #op) |
| |
| switch (opcode) |
| { |
| // Dealing with memory |
| case OpLoad: |
| { |
| uint32_t result_type = ops[0]; |
| uint32_t id = ops[1]; |
| uint32_t ptr = ops[2]; |
| |
| flush_variable_declaration(ptr); |
| |
| // If we're loading from memory that cannot be changed by the shader, |
| // just forward the expression directly to avoid needless temporaries. |
| // If an expression is mutable and forwardable, we speculate that it is immutable. |
| bool forward = should_forward(ptr) && forced_temporaries.find(id) == end(forced_temporaries); |
| |
| // Suppress usage tracking since using same expression multiple times does not imply any extra work. |
| emit_op(result_type, id, to_expression(ptr), forward, false, true); |
| register_read(id, ptr, forward); |
| break; |
| } |
| |
| case OpInBoundsAccessChain: |
| case OpAccessChain: |
| { |
| auto *var = maybe_get<SPIRVariable>(ops[2]); |
| if (var) |
| flush_variable_declaration(var->self); |
| |
| // If the base is immutable, the access chain pointer must also be. |
| // If an expression is mutable and forwardable, we speculate that it is immutable. |
| auto e = access_chain(ops[2], &ops[3], length - 3, false); |
| auto &expr = set<SPIRExpression>(ops[1], move(e), ops[0], should_forward(ops[2])); |
| expr.loaded_from = ops[2]; |
| break; |
| } |
| |
| case OpStore: |
| { |
| auto *var = maybe_get<SPIRVariable>(ops[0]); |
| |
| if (var && var->statically_assigned) |
| var->static_expression = ops[1]; |
| else |
| { |
| auto lhs = to_expression(ops[0]); |
| auto rhs = to_expression(ops[1]); |
| |
| // It is possible with OpLoad/OpCompositeInsert/OpStore that we get <expr> = <same-expr>. |
| // For this case, we don't need to invalidate anything and emit any opcode. |
| if (lhs != rhs) |
| { |
| statement(lhs, " = ", rhs, ";"); |
| register_write(ops[0]); |
| } |
| } |
| break; |
| } |
| |
| case OpArrayLength: |
| { |
| uint32_t result_type = ops[0]; |
| uint32_t id = ops[1]; |
| auto e = access_chain(ops[2], &ops[3], length - 3, true); |
| set<SPIRExpression>(id, e + ".length()", result_type, true); |
| break; |
| } |
| |
| // Function calls |
| case OpFunctionCall: |
| { |
| uint32_t result_type = ops[0]; |
| uint32_t id = ops[1]; |
| uint32_t func = ops[2]; |
| const auto *arg = &ops[3]; |
| length -= 3; |
| |
| auto &callee = get<SPIRFunction>(func); |
| bool pure = function_is_pure(callee); |
| |
| bool callee_has_out_variables = false; |
| |
| // Invalidate out variables passed to functions since they can be OpStore'd to. |
| for (uint32_t i = 0; i < length; i++) |
| { |
| if (callee.arguments[i].write_count) |
| { |
| register_call_out_argument(arg[i]); |
| callee_has_out_variables = true; |
| } |
| |
| flush_variable_declaration(arg[i]); |
| } |
| |
| if (!pure) |
| register_impure_function_call(); |
| |
| string funexpr; |
| funexpr += to_name(func) + "("; |
| for (uint32_t i = 0; i < length; i++) |
| { |
| funexpr += to_expression(arg[i]); |
| if (i + 1 < length) |
| funexpr += ", "; |
| } |
| funexpr += ")"; |
| |
| // Check for function call constraints. |
| check_function_call_constraints(arg, length); |
| |
| if (get<SPIRType>(result_type).basetype != SPIRType::Void) |
| { |
| // If the function actually writes to an out variable, |
| // take the conservative route and do not forward. |
| // The problem is that we might not read the function |
| // result (and emit the function) before an out variable |
| // is read (common case when return value is ignored! |
| // In order to avoid start tracking invalid variables, |
| // just avoid the forwarding problem altogether. |
| bool forward = args_will_forward(id, arg, length, pure) && !callee_has_out_variables && pure && |
| (forced_temporaries.find(id) == end(forced_temporaries)); |
| |
| emit_op(result_type, id, funexpr, forward, false); |
| |
| // Function calls are implicit loads from all variables in question. |
| // Set dependencies for them. |
| for (uint32_t i = 0; i < length; i++) |
| register_read(id, arg[i], forward); |
| |
| // If we're going to forward the temporary result, |
| // put dependencies on every variable that must not change. |
| if (forward) |
| register_global_read_dependencies(callee, id); |
| } |
| else |
| statement(funexpr, ";"); |
| |
| break; |
| } |
| |
| // Composite munging |
| case OpCompositeConstruct: |
| { |
| uint32_t result_type = ops[0]; |
| uint32_t id = ops[1]; |
| const auto *elems = &ops[2]; |
| length -= 2; |
| |
| if (!length) |
| throw CompilerError("Invalid input to OpCompositeConstruct."); |
| |
| bool forward = true; |
| for (uint32_t i = 0; i < length; i++) |
| forward = forward && should_forward(elems[i]); |
| |
| auto &in_type = expression_type(elems[0]); |
| auto &out_type = get<SPIRType>(result_type); |
| |
| // Only splat if we have vector constructors. |
| // Arrays and structs must be initialized properly in full. |
| bool composite = !out_type.array.empty() || out_type.basetype == SPIRType::Struct; |
| bool splat = in_type.vecsize == 1 && in_type.columns == 1 && !composite; |
| |
| if (splat) |
| { |
| uint32_t input = elems[0]; |
| for (uint32_t i = 0; i < length; i++) |
| if (input != elems[i]) |
| splat = false; |
| } |
| |
| string constructor_op; |
| if (backend.use_initializer_list && composite) |
| { |
| // Only use this path if we are building composites. |
| // This path cannot be used for arithmetic. |
| constructor_op += "{ "; |
| if (splat) |
| constructor_op += to_expression(elems[0]); |
| else |
| constructor_op += build_composite_combiner(elems, length); |
| constructor_op += " }"; |
| } |
| else |
| { |
| constructor_op = type_to_glsl_constructor(get<SPIRType>(result_type)) + "("; |
| if (splat) |
| constructor_op += to_expression(elems[0]); |
| else |
| constructor_op += build_composite_combiner(elems, length); |
| constructor_op += ")"; |
| } |
| |
| emit_op(result_type, id, constructor_op, forward, false); |
| break; |
| } |
| |
| case OpVectorInsertDynamic: |
| { |
| uint32_t result_type = ops[0]; |
| uint32_t id = ops[1]; |
| uint32_t vec = ops[2]; |
| uint32_t comp = ops[3]; |
| uint32_t index = ops[4]; |
| |
| flush_variable_declaration(vec); |
| |
| // Make a copy, then use access chain to store the variable. |
| statement(declare_temporary(result_type, id), to_expression(vec), ";"); |
| set<SPIRExpression>(id, to_name(id), result_type, true); |
| auto chain = access_chain(id, &index, 1, false); |
| statement(chain, " = ", to_expression(comp), ";"); |
| break; |
| } |
| |
| case OpVectorExtractDynamic: |
| { |
| uint32_t result_type = ops[0]; |
| uint32_t id = ops[1]; |
| |
| auto expr = access_chain(ops[2], &ops[3], 1, false); |
| emit_op(result_type, id, expr, should_forward(ops[2]), false); |
| break; |
| } |
| |
| case OpCompositeExtract: |
| { |
| uint32_t result_type = ops[0]; |
| uint32_t id = ops[1]; |
| length -= 3; |
| |
| auto &type = get<SPIRType>(result_type); |
| |
| // We can only split the expression here if our expression is forwarded as a temporary. |
| bool allow_base_expression = forced_temporaries.find(id) == end(forced_temporaries); |
| |
| // Only apply this optimization if result is scalar. |
| if (allow_base_expression && should_forward(ops[2]) && type.vecsize == 1 && type.columns == 1 && length == 1) |
| { |
| // We want to split the access chain from the base. |
| // This is so we can later combine different CompositeExtract results |
| // with CompositeConstruct without emitting code like |
| // |
| // vec3 temp = texture(...).xyz |
| // vec4(temp.x, temp.y, temp.z, 1.0). |
| // |
| // when we actually wanted to emit this |
| // vec4(texture(...).xyz, 1.0). |
| // |
| // Including the base will prevent this and would trigger multiple reads |
| // from expression causing it to be forced to an actual temporary in GLSL. |
| auto expr = access_chain(ops[2], &ops[3], length, true, true); |
| auto &e = emit_op(result_type, id, expr, true, false, !expression_is_forwarded(ops[2])); |
| e.base_expression = ops[2]; |
| } |
| else |
| { |
| auto expr = access_chain(ops[2], &ops[3], length, true); |
| emit_op(result_type, id, expr, should_forward(ops[2]), false, !expression_is_forwarded(ops[2])); |
| } |
| break; |
| } |
| |
| case OpCompositeInsert: |
| { |
| uint32_t result_type = ops[0]; |
| uint32_t id = ops[1]; |
| uint32_t obj = ops[2]; |
| uint32_t composite = ops[3]; |
| const auto *elems = &ops[4]; |
| length -= 4; |
| |
| flush_variable_declaration(composite); |
| |
| auto *expr = maybe_get<SPIRExpression>(id); |
| if ((expr && expr->used_while_invalidated) || !should_forward(composite)) |
| { |
| // Make a copy, then use access chain to store the variable. |
| statement(declare_temporary(result_type, id), to_expression(composite), ";"); |
| set<SPIRExpression>(id, to_name(id), result_type, true); |
| auto chain = access_chain(id, elems, length, true); |
| statement(chain, " = ", to_expression(obj), ";"); |
| } |
| else |
| { |
| auto chain = access_chain(composite, elems, length, true); |
| statement(chain, " = ", to_expression(obj), ";"); |
| set<SPIRExpression>(id, to_expression(composite), result_type, true); |
| |
| register_write(composite); |
| register_read(id, composite, true); |
| // Invalidate the old expression we inserted into. |
| invalid_expressions.insert(composite); |
| } |
| break; |
| } |
| |
| case OpCopyObject: |
| { |
| uint32_t result_type = ops[0]; |
| uint32_t id = ops[1]; |
| uint32_t rhs = ops[2]; |
| if (expression_is_lvalue(rhs)) |
| { |
| // Need a copy. |
| statement(declare_temporary(result_type, id), to_expression(rhs), ";"); |
| set<SPIRExpression>(id, to_name(id), result_type, true); |
| } |
| else |
| { |
| // RHS expression is immutable, so just forward it. |
| // Copying these things really make no sense, but |
| // seems to be allowed anyways. |
| set<SPIRExpression>(id, to_expression(rhs), result_type, true); |
| } |
| break; |
| } |
| |
| case OpVectorShuffle: |
| { |
| uint32_t result_type = ops[0]; |
| uint32_t id = ops[1]; |
| uint32_t vec0 = ops[2]; |
| uint32_t vec1 = ops[3]; |
| const auto *elems = &ops[4]; |
| length -= 4; |
| |
| auto &type0 = expression_type(vec0); |
| |
| bool shuffle = false; |
| for (uint32_t i = 0; i < length; i++) |
| if (elems[i] >= type0.vecsize) |
| shuffle = true; |
| |
| string expr; |
| bool trivial_forward; |
| |
| if (shuffle) |
| { |
| trivial_forward = !expression_is_forwarded(vec0) && !expression_is_forwarded(vec1); |
| |
| // Constructor style and shuffling from two different vectors. |
| vector<string> args; |
| for (uint32_t i = 0; i < length; i++) |
| { |
| if (elems[i] >= type0.vecsize) |
| args.push_back(join(to_expression(vec1), ".", index_to_swizzle(elems[i] - type0.vecsize))); |
| else |
| args.push_back(join(to_expression(vec0), ".", index_to_swizzle(elems[i]))); |
| } |
| expr += join(type_to_glsl_constructor(get<SPIRType>(result_type)), "(", merge(args), ")"); |
| } |
| else |
| { |
| trivial_forward = !expression_is_forwarded(vec0); |
| |
| // We only source from first vector, so can use swizzle. |
| expr += to_expression(vec0); |
| expr += "."; |
| for (uint32_t i = 0; i < length; i++) |
| expr += index_to_swizzle(elems[i]); |
| if (backend.swizzle_is_function && length > 1) |
| expr += "()"; |
| } |
| |
| // A shuffle is trivial in that it doesn't actually *do* anything. |
| // We inherit the forwardedness from our arguments to avoid flushing out to temporaries when it's not really needed. |
| |
| emit_op(result_type, id, expr, should_forward(vec0) && should_forward(vec1), false, trivial_forward); |
| break; |
| } |
| |
| // ALU |
| case OpIsNan: |
| UFOP(isnan); |
| break; |
| |
| case OpIsInf: |
| UFOP(isinf); |
| break; |
| |
| case OpSNegate: |
| case OpFNegate: |
| UOP(-); |
| break; |
| |
| case OpIAdd: |
| { |
| // For simple arith ops, prefer the output type if there's a mismatch to avoid extra bitcasts. |
| auto type = get<SPIRType>(ops[0]).basetype; |
| BOP_CAST(+, type, true); |
| break; |
| } |
| |
| case OpFAdd: |
| BOP(+); |
| break; |
| |
| case OpISub: |
| { |
| auto type = get<SPIRType>(ops[0]).basetype; |
| BOP_CAST(-, type, true); |
| break; |
| } |
| |
| case OpFSub: |
| BOP(-); |
| break; |
| |
| case OpIMul: |
| { |
| auto type = get<SPIRType>(ops[0]).basetype; |
| BOP_CAST(*, type, true); |
| break; |
| } |
| |
| case OpFMul: |
| case OpMatrixTimesVector: |
| case OpMatrixTimesScalar: |
| case OpVectorTimesScalar: |
| case OpVectorTimesMatrix: |
| case OpMatrixTimesMatrix: |
| BOP(*); |
| break; |
| |
| case OpOuterProduct: |
| BFOP(outerProduct); |
| break; |
| |
| case OpDot: |
| BFOP(dot); |
| break; |
| |
| case OpTranspose: |
| UFOP(transpose); |
| break; |
| |
| case OpSDiv: |
| BOP_CAST(/, SPIRType::Int, false); |
| break; |
| |
| case OpUDiv: |
| BOP_CAST(/, SPIRType::UInt, false); |
| break; |
| |
| case OpFDiv: |
| BOP(/); |
| break; |
| |
| case OpShiftRightLogical: |
| BOP_CAST(>>, SPIRType::UInt, false); |
| break; |
| |
| case OpShiftRightArithmetic: |
| BOP_CAST(>>, SPIRType::Int, false); |
| break; |
| |
| case OpShiftLeftLogical: |
| { |
| auto type = get<SPIRType>(ops[0]).basetype; |
| BOP_CAST(<<, type, true); |
| break; |
| } |
| |
| case OpBitwiseOr: |
| { |
| auto type = get<SPIRType>(ops[0]).basetype; |
| BOP_CAST(|, type, true); |
| break; |
| } |
| |
| case OpBitwiseXor: |
| { |
| auto type = get<SPIRType>(ops[0]).basetype; |
| BOP_CAST (^, type, true); |
| break; |
| } |
| |
| case OpBitwiseAnd: |
| { |
| auto type = get<SPIRType>(ops[0]).basetype; |
| BOP_CAST(&, type, true); |
| break; |
| } |
| |
| case OpNot: |
| UOP(~); |
| break; |
| |
| case OpUMod: |
| BOP_CAST(%, SPIRType::UInt, false); |
| break; |
| |
| case OpSMod: |
| BOP_CAST(%, SPIRType::Int, false); |
| break; |
| |
| case OpFMod: |
| BFOP(mod); |
| break; |
| |
| // Relational |
| case OpAny: |
| UFOP(any); |
| break; |
| |
| case OpAll: |
| UFOP(all); |
| break; |
| |
| case OpSelect: |
| emit_mix_op(ops[0], ops[1], ops[4], ops[3], ops[2]); |
| break; |
| |
| case OpLogicalOr: |
| BOP(||); |
| break; |
| |
| case OpLogicalAnd: |
| BOP(&&); |
| break; |
| |
| case OpLogicalNot: |
| UOP(!); |
| break; |
| |
| case OpIEqual: |
| { |
| if (expression_type(ops[2]).vecsize > 1) |
| BFOP_CAST(equal, SPIRType::Int, true); |
| else |
| BOP_CAST(==, SPIRType::Int, true); |
| break; |
| } |
| |
| case OpLogicalEqual: |
| case OpFOrdEqual: |
| { |
| if (expression_type(ops[2]).vecsize > 1) |
| BFOP(equal); |
| else |
| BOP(==); |
| break; |
| } |
| |
| case OpINotEqual: |
| { |
| if (expression_type(ops[2]).vecsize > 1) |
| BFOP_CAST(notEqual, SPIRType::Int, true); |
| else |
| BOP_CAST(!=, SPIRType::Int, true); |
| break; |
| } |
| |
| case OpLogicalNotEqual: |
| case OpFOrdNotEqual: |
| { |
| if (expression_type(ops[2]).vecsize > 1) |
| BFOP(notEqual); |
| else |
| BOP(!=); |
| break; |
| } |
| |
| case OpUGreaterThan: |
| case OpSGreaterThan: |
| { |
| auto type = opcode == OpUGreaterThan ? SPIRType::UInt : SPIRType::Int; |
| if (expression_type(ops[2]).vecsize > 1) |
| BFOP_CAST(greaterThan, type, false); |
| else |
| BOP_CAST(>, type, false); |
| break; |
| } |
| |
| case OpFOrdGreaterThan: |
| { |
| if (expression_type(ops[2]).vecsize > 1) |
| BFOP(greaterThan); |
| else |
| BOP(>); |
| break; |
| } |
| |
| case OpUGreaterThanEqual: |
| case OpSGreaterThanEqual: |
| { |
| auto type = opcode == OpUGreaterThanEqual ? SPIRType::UInt : SPIRType::Int; |
| if (expression_type(ops[2]).vecsize > 1) |
| BFOP_CAST(greaterThanEqual, type, false); |
| else |
| BOP_CAST(>=, type, false); |
| break; |
| } |
| |
| case OpFOrdGreaterThanEqual: |
| { |
| if (expression_type(ops[2]).vecsize > 1) |
| BFOP(greaterThanEqual); |
| else |
| BOP(>=); |
| break; |
| } |
| |
| case OpULessThan: |
| case OpSLessThan: |
| { |
| auto type = opcode == OpULessThan ? SPIRType::UInt : SPIRType::Int; |
| if (expression_type(ops[2]).vecsize > 1) |
| BFOP_CAST(lessThan, type, false); |
| else |
| BOP_CAST(<, type, false); |
| break; |
| } |
| |
| case OpFOrdLessThan: |
| { |
| if (expression_type(ops[2]).vecsize > 1) |
| BFOP(lessThan); |
| else |
| BOP(<); |
| break; |
| } |
| |
| case OpULessThanEqual: |
| case OpSLessThanEqual: |
| { |
| auto type = opcode == OpULessThanEqual ? SPIRType::UInt : SPIRType::Int; |
| if (expression_type(ops[2]).vecsize > 1) |
| BFOP_CAST(lessThanEqual, type, false); |
| else |
| BOP_CAST(<=, type, false); |
| break; |
| } |
| |
| case OpFOrdLessThanEqual: |
| { |
| if (expression_type(ops[2]).vecsize > 1) |
| BFOP(lessThanEqual); |
| else |
| BOP(<=); |
| break; |
| } |
| |
| // Conversion |
| case OpConvertFToU: |
| case OpConvertFToS: |
| case OpConvertSToF: |
| case OpConvertUToF: |
| case OpUConvert: |
| case OpSConvert: |
| case OpFConvert: |
| { |
| uint32_t result_type = ops[0]; |
| uint32_t id = ops[1]; |
| |
| auto func = type_to_glsl_constructor(get<SPIRType>(result_type)); |
| emit_unary_func_op(result_type, id, ops[2], func.c_str()); |
| break; |
| } |
| |
| case OpBitcast: |
| { |
| uint32_t result_type = ops[0]; |
| uint32_t id = ops[1]; |
| uint32_t arg = ops[2]; |
| |
| auto op = bitcast_glsl_op(get<SPIRType>(result_type), expression_type(arg)); |
| emit_unary_func_op(result_type, id, arg, op.c_str()); |
| break; |
| } |
| |
| case OpQuantizeToF16: |
| { |
| uint32_t result_type = ops[0]; |
| uint32_t id = ops[1]; |
| uint32_t arg = ops[2]; |
| |
| string op; |
| auto &type = get<SPIRType>(result_type); |
| |
| switch (type.vecsize) |
| { |
| case 1: |
| op = join("unpackHalf2x16(packHalf2x16(vec2(", to_expression(arg), "))).x"); |
| break; |
| case 2: |
| op = join("unpackHalf2x16(packHalf2x16(", to_expression(arg), "))"); |
| break; |
| case 3: |
| { |
| auto op0 = join("unpackHalf2x16(packHalf2x16(", to_expression(arg), ".xy))"); |
| auto op1 = join("unpackHalf2x16(packHalf2x16(", to_expression(arg), ".zz)).x"); |
| op = join("vec3(", op0, ", ", op1, ")"); |
| break; |
| } |
| case 4: |
| { |
| auto op0 = join("unpackHalf2x16(packHalf2x16(", to_expression(arg), ".xy))"); |
| auto op1 = join("unpackHalf2x16(packHalf2x16(", to_expression(arg), ".zw))"); |
| op = join("vec4(", op0, ", ", op1, ")"); |
| break; |
| } |
| default: |
| throw CompilerError("Illegal argument to OpQuantizeToF16."); |
| } |
| |
| emit_op(result_type, id, op, should_forward(arg), false); |
| break; |
| } |
| |
| // Derivatives |
| case OpDPdx: |
| UFOP(dFdx); |
| break; |
| |
| case OpDPdy: |
| UFOP(dFdy); |
| break; |
| |
| case OpFwidth: |
| UFOP(fwidth); |
| break; |
| |
| // Bitfield |
| case OpBitFieldInsert: |
| QFOP(bitfieldInsert); |
| break; |
| |
| case OpBitFieldSExtract: |
| case OpBitFieldUExtract: |
| QFOP(bitfieldExtract); |
| break; |
| |
| case OpBitReverse: |
| UFOP(bitfieldReverse); |
| break; |
| |
| case OpBitCount: |
| UFOP(bitCount); |
| break; |
| |
| // Atomics |
| case OpAtomicExchange: |
| { |
| uint32_t result_type = ops[0]; |
| uint32_t id = ops[1]; |
| uint32_t ptr = ops[2]; |
| // Ignore semantics for now, probably only relevant to CL. |
| uint32_t val = ops[5]; |
| const char *op = check_atomic_image(ptr) ? "imageAtomicExchange" : "atomicExchange"; |
| forced_temporaries.insert(id); |
| emit_binary_func_op(result_type, id, ptr, val, op); |
| flush_all_atomic_capable_variables(); |
| break; |
| } |
| |
| case OpAtomicCompareExchange: |
| { |
| uint32_t result_type = ops[0]; |
| uint32_t id = ops[1]; |
| uint32_t ptr = ops[2]; |
| uint32_t val = ops[6]; |
| uint32_t comp = ops[7]; |
| const char *op = check_atomic_image(ptr) ? "imageAtomicCompSwap" : "atomicCompSwap"; |
| |
| forced_temporaries.insert(id); |
| emit_trinary_func_op(result_type, id, ptr, comp, val, op); |
| flush_all_atomic_capable_variables(); |
| break; |
| } |
| |
| case OpAtomicLoad: |
| flush_all_atomic_capable_variables(); |
| // FIXME: Image? |
| UFOP(atomicCounter); |
| register_read(ops[1], ops[2], should_forward(ops[2])); |
| break; |
| |
| // OpAtomicStore unimplemented. Not sure what would use that. |
| // OpAtomicLoad seems to only be relevant for atomic counters. |
| |
| case OpAtomicIIncrement: |
| forced_temporaries.insert(ops[1]); |
| // FIXME: Image? |
| UFOP(atomicCounterIncrement); |
| flush_all_atomic_capable_variables(); |
| register_read(ops[1], ops[2], should_forward(ops[2])); |
| break; |
| |
| case OpAtomicIDecrement: |
| forced_temporaries.insert(ops[1]); |
| // FIXME: Image? |
| UFOP(atomicCounterDecrement); |
| flush_all_atomic_capable_variables(); |
| register_read(ops[1], ops[2], should_forward(ops[2])); |
| break; |
| |
| case OpAtomicIAdd: |
| { |
| const char *op = check_atomic_image(ops[2]) ? "imageAtomicAdd" : "atomicAdd"; |
| forced_temporaries.insert(ops[1]); |
| emit_binary_func_op(ops[0], ops[1], ops[2], ops[5], op); |
| flush_all_atomic_capable_variables(); |
| register_read(ops[1], ops[2], should_forward(ops[2])); |
| break; |
| } |
| |
| case OpAtomicISub: |
| { |
| const char *op = check_atomic_image(ops[2]) ? "imageAtomicAdd" : "atomicAdd"; |
| forced_temporaries.insert(ops[1]); |
| auto expr = join(op, "(", to_expression(ops[2]), ", -", to_expression(ops[5]), ")"); |
| emit_op(ops[0], ops[1], expr, should_forward(ops[2]) && should_forward(ops[5]), false); |
| flush_all_atomic_capable_variables(); |
| register_read(ops[1], ops[2], should_forward(ops[2])); |
| break; |
| } |
| |
| case OpAtomicSMin: |
| case OpAtomicUMin: |
| { |
| const char *op = check_atomic_image(ops[2]) ? "imageAtomicMin" : "atomicMin"; |
| forced_temporaries.insert(ops[1]); |
| emit_binary_func_op(ops[0], ops[1], ops[2], ops[5], op); |
| flush_all_atomic_capable_variables(); |
| register_read(ops[1], ops[2], should_forward(ops[2])); |
| break; |
| } |
| |
| case OpAtomicSMax: |
| case OpAtomicUMax: |
| { |
| const char *op = check_atomic_image(ops[2]) ? "imageAtomicMax" : "atomicMax"; |
| forced_temporaries.insert(ops[1]); |
| emit_binary_func_op(ops[0], ops[1], ops[2], ops[5], op); |
| flush_all_atomic_capable_variables(); |
| register_read(ops[1], ops[2], should_forward(ops[2])); |
| break; |
| } |
| |
| case OpAtomicAnd: |
| { |
| const char *op = check_atomic_image(ops[2]) ? "imageAtomicAnd" : "atomicAnd"; |
| forced_temporaries.insert(ops[1]); |
| emit_binary_func_op(ops[0], ops[1], ops[2], ops[5], op); |
| flush_all_atomic_capable_variables(); |
| register_read(ops[1], ops[2], should_forward(ops[2])); |
| break; |
| } |
| |
| case OpAtomicOr: |
| { |
| const char *op = check_atomic_image(ops[2]) ? "imageAtomicOr" : "atomicOr"; |
| forced_temporaries.insert(ops[1]); |
| emit_binary_func_op(ops[0], ops[1], ops[2], ops[5], op); |
| flush_all_atomic_capable_variables(); |
| register_read(ops[1], ops[2], should_forward(ops[2])); |
| break; |
| } |
| |
| case OpAtomicXor: |
| { |
| const char *op = check_atomic_image(ops[2]) ? "imageAtomicXor" : "atomicXor"; |
| forced_temporaries.insert(ops[1]); |
| emit_binary_func_op(ops[0], ops[1], ops[2], ops[5], op); |
| flush_all_atomic_capable_variables(); |
| register_read(ops[1], ops[2], should_forward(ops[2])); |
| break; |
| } |
| |
| // Geometry shaders |
| case OpEmitVertex: |
| statement("EmitVertex();"); |
| break; |
| |
| case OpEndPrimitive: |
| statement("EndPrimitive();"); |
| break; |
| |
| case OpEmitStreamVertex: |
| statement("EmitStreamVertex();"); |
| break; |
| |
| case OpEndStreamPrimitive: |
| statement("EndStreamPrimitive();"); |
| break; |
| |
| // Textures |
| case OpImageSampleImplicitLod: |
| case OpImageSampleExplicitLod: |
| case OpImageSampleProjImplicitLod: |
| case OpImageSampleProjExplicitLod: |
| case OpImageSampleDrefImplicitLod: |
| case OpImageSampleDrefExplicitLod: |
| case OpImageSampleProjDrefImplicitLod: |
| case OpImageSampleProjDrefExplicitLod: |
| case OpImageFetch: |
| case OpImageGather: |
| case OpImageDrefGather: |
| // Gets a bit hairy, so move this to a separate instruction. |
| emit_texture_op(instruction); |
| break; |
| |
| case OpImage: |
| { |
| uint32_t result_type = ops[0]; |
| uint32_t id = ops[1]; |
| auto &e = emit_op(result_type, id, to_expression(ops[2]), true, false); |
| |
| // When using the image, we need to know which variable it is actually loaded from. |
| auto *var = maybe_get_backing_variable(ops[2]); |
| e.loaded_from = var ? var->self : 0; |
| break; |
| } |
| |
| case OpImageQueryLod: |
| { |
| if (!options.es && options.version < 400) |
| { |
| require_extension("GL_ARB_texture_query_lod"); |
| // For some reason, the ARB spec is all-caps. |
| BFOP(textureQueryLOD); |
| } |
| else if (options.es) |
| throw CompilerError("textureQueryLod not supported in ES profile."); |
| else |
| BFOP(textureQueryLod); |
| break; |
| } |
| |
| case OpImageQueryLevels: |
| { |
| if (!options.es && options.version < 430) |
| require_extension("GL_ARB_texture_query_levels"); |
| if (options.es) |
| throw CompilerError("textureQueryLevels not supported in ES profile."); |
| UFOP(textureQueryLevels); |
| break; |
| } |
| |
| case OpImageQuerySamples: |
| { |
| auto *var = maybe_get_backing_variable(ops[2]); |
| if (!var) |
| throw CompilerError( |
| "Bug. OpImageQuerySamples must have a backing variable so we know if the image is sampled or not."); |
| |
| auto &type = get<SPIRType>(var->basetype); |
| bool image = type.image.sampled == 2; |
| if (image) |
| UFOP(imageSamples); |
| else |
| UFOP(textureSamples); |
| break; |
| } |
| |
| case OpSampledImage: |
| { |
| uint32_t result_type = ops[0]; |
| uint32_t id = ops[1]; |
| emit_sampled_image_op(result_type, id, ops[2], ops[3]); |
| break; |
| } |
| |
| case OpImageQuerySizeLod: |
| BFOP(textureSize); |
| break; |
| |
| // Image load/store |
| case OpImageRead: |
| { |
| // We added Nonreadable speculatively to the OpImage variable due to glslangValidator |
| // not adding the proper qualifiers. |
| // If it turns out we need to read the image after all, remove the qualifier and recompile. |
| auto *var = maybe_get_backing_variable(ops[2]); |
| if (var) |
| { |
| auto &flags = meta.at(var->self).decoration.decoration_flags; |
| if (flags & (1ull << DecorationNonReadable)) |
| { |
| flags &= ~(1ull << DecorationNonReadable); |
| force_recompile = true; |
| } |
| } |
| |
| uint32_t result_type = ops[0]; |
| uint32_t id = ops[1]; |
| |
| bool pure; |
| string imgexpr; |
| auto &type = expression_type(ops[2]); |
| |
| if (var && var->remapped_variable) // Remapped input, just read as-is without any op-code |
| { |
| if (type.image.ms) |
| throw CompilerError("Trying to remap multisampled image to variable, this is not possible."); |
| |
| auto itr = |
| find_if(begin(pls_inputs), end(pls_inputs), [var](const PlsRemap &pls) { return pls.id == var->self; }); |
| |
| if (itr == end(pls_inputs)) |
| { |
| // For non-PLS inputs, we rely on subpass type remapping information to get it right |
| // since ImageRead always returns 4-component vectors and the backing type is opaque. |
| if (!var->remapped_components) |
| throw CompilerError("subpassInput was remapped, but remap_components is not set correctly."); |
| imgexpr = remap_swizzle(result_type, var->remapped_components, ops[2]); |
| } |
| else |
| { |
| // PLS input could have different number of components than what the SPIR expects, swizzle to |
| // the appropriate vector size. |
| uint32_t components = pls_format_to_components(itr->format); |
| imgexpr = remap_swizzle(result_type, components, ops[2]); |
| } |
| pure = true; |
| } |
| else if (type.image.dim == DimSubpassData) |
| { |
| if (options.vulkan_semantics) |
| { |
| // With Vulkan semantics, use the proper Vulkan GLSL construct. |
| if (type.image.ms) |
| { |
| uint32_t operands = ops[4]; |
| if (operands != ImageOperandsSampleMask || length != 6) |
| throw CompilerError( |
| "Multisampled image used in OpImageRead, but unexpected operand mask was used."); |
| |
| uint32_t samples = ops[5]; |
| imgexpr = join("subpassLoad(", to_expression(ops[2]), ", ", to_expression(samples), ")"); |
| } |
| else |
| imgexpr = join("subpassLoad(", to_expression(ops[2]), ")"); |
| } |
| else |
| { |
| if (type.image.ms) |
| { |
| uint32_t operands = ops[4]; |
| if (operands != ImageOperandsSampleMask || length != 6) |
| throw CompilerError( |
| "Multisampled image used in OpImageRead, but unexpected operand mask was used."); |
| |
| uint32_t samples = ops[5]; |
| imgexpr = join("texelFetch(", to_expression(ops[2]), ", ivec2(gl_FragCoord.xy), ", |
| to_expression(samples), ")"); |
| } |
| else |
| { |
| // Implement subpass loads via texture barrier style sampling. |
| imgexpr = join("texelFetch(", to_expression(ops[2]), ", ivec2(gl_FragCoord.xy), 0)"); |
| } |
| } |
| pure = true; |
| } |
| else |
| { |
| // Plain image load/store. |
| if (type.image.ms) |
| { |
| uint32_t operands = ops[4]; |
| if (operands != ImageOperandsSampleMask || length != 6) |
| throw CompilerError( |
| "Multisampled image used in OpImageRead, but unexpected operand mask was used."); |
| |
| uint32_t samples = ops[5]; |
| imgexpr = join("imageLoad(", to_expression(ops[2]), ", ", to_expression(ops[3]), ", ", |
| to_expression(samples), ")"); |
| } |
| else |
| imgexpr = join("imageLoad(", to_expression(ops[2]), ", ", to_expression(ops[3]), ")"); |
| pure = false; |
| } |
| |
| if (var && var->forwardable) |
| { |
| auto &e = emit_op(result_type, id, imgexpr, true, false); |
| |
| // We only need to track dependencies if we're reading from image load/store. |
| if (!pure) |
| { |
| e.loaded_from = var->self; |
| var->dependees.push_back(id); |
| } |
| } |
| else |
| emit_op(result_type, id, imgexpr, false, false); |
| break; |
| } |
| |
| case OpImageTexelPointer: |
| { |
| uint32_t result_type = ops[0]; |
| uint32_t id = ops[1]; |
| auto &e = set<SPIRExpression>(id, join(to_expression(ops[2]), ", ", to_expression(ops[3])), result_type, true); |
| |
| // When using the pointer, we need to know which variable it is actually loaded from. |
| auto *var = maybe_get_backing_variable(ops[2]); |
| e.loaded_from = var ? var->self : 0; |
| break; |
| } |
| |
| case OpImageWrite: |
| { |
| // We added Nonwritable speculatively to the OpImage variable due to glslangValidator |
| // not adding the proper qualifiers. |
| // If it turns out we need to write to the image after all, remove the qualifier and recompile. |
| auto *var = maybe_get_backing_variable(ops[0]); |
| if (var) |
| { |
| auto &flags = meta.at(var->self).decoration.decoration_flags; |
| if (flags & (1ull << DecorationNonWritable)) |
| { |
| flags &= ~(1ull << DecorationNonWritable); |
| force_recompile = true; |
| } |
| } |
| |
| auto &type = expression_type(ops[0]); |
| if (type.image.ms) |
| { |
| uint32_t operands = ops[3]; |
| if (operands != ImageOperandsSampleMask || length != 5) |
| throw CompilerError("Multisampled image used in OpImageWrite, but unexpected operand mask was used."); |
| uint32_t samples = ops[4]; |
| statement("imageStore(", to_expression(ops[0]), ", ", to_expression(ops[1]), ", ", to_expression(samples), |
| ", ", to_expression(ops[2]), ");"); |
| } |
| else |
| statement("imageStore(", to_expression(ops[0]), ", ", to_expression(ops[1]), ", ", to_expression(ops[2]), |
| ");"); |
| |
| if (var && variable_storage_is_aliased(*var)) |
| flush_all_aliased_variables(); |
| break; |
| } |
| |
| case OpImageQuerySize: |
| { |
| auto &type = expression_type(ops[2]); |
| uint32_t result_type = ops[0]; |
| uint32_t id = ops[1]; |
| |
| if (type.basetype == SPIRType::Image) |
| { |
| // The size of an image is always constant. |
| emit_op(result_type, id, join("imageSize(", to_expression(ops[2]), ")"), true, false); |
| } |
| else |
| throw CompilerError("Invalid type for OpImageQuerySize."); |
| break; |
| } |
| |
| // Compute |
| case OpControlBarrier: |
| { |
| // Ignore execution and memory scope. |
| if (get_entry_point().model == ExecutionModelGLCompute) |
| { |
| uint32_t mem = get<SPIRConstant>(ops[2]).scalar(); |
| if (mem == MemorySemanticsWorkgroupMemoryMask) |
| statement("memoryBarrierShared();"); |
| else if (mem) |
| statement("memoryBarrier();"); |
| } |
| statement("barrier();"); |
| break; |
| } |
| |
| case OpMemoryBarrier: |
| { |
| uint32_t mem = get<SPIRConstant>(ops[1]).scalar(); |
| |
| // We cannot forward any loads beyond the memory barrier. |
| if (mem) |
| flush_all_active_variables(); |
| |
| if (mem == MemorySemanticsWorkgroupMemoryMask) |
| statement("memoryBarrierShared();"); |
| else if (mem) |
| statement("memoryBarrier();"); |
| break; |
| } |
| |
| case OpExtInst: |
| { |
| uint32_t extension_set = ops[2]; |
| if (get<SPIRExtension>(extension_set).ext != SPIRExtension::GLSL) |
| { |
| statement("// unimplemented ext op ", instruction.op); |
| break; |
| } |
| |
| emit_glsl_op(ops[0], ops[1], ops[3], &ops[4], length - 4); |
| break; |
| } |
| |
| default: |
| statement("// unimplemented op ", instruction.op); |
| break; |
| } |
| } |
| |
| string CompilerGLSL::to_member_name(const SPIRType &type, uint32_t index) |
| { |
| auto &memb = meta[type.self].members; |
| if (index < memb.size() && !memb[index].alias.empty()) |
| return memb[index].alias; |
| else |
| return join("_", index); |
| } |
| |
| void CompilerGLSL::add_member_name(SPIRType &type, uint32_t index) |
| { |
| auto &memb = meta[type.self].members; |
| if (index < memb.size() && !memb[index].alias.empty()) |
| { |
| auto &name = memb[index].alias; |
| if (name.empty()) |
| return; |
| |
| // Reserved for temporaries. |
| if (name[0] == '_' && name.size() >= 2 && isdigit(name[1])) |
| { |
| name.clear(); |
| return; |
| } |
| |
| update_name_cache(type.member_name_cache, name); |
| } |
| } |
| |
| string CompilerGLSL::variable_decl(const SPIRType &type, const std::string &name) |
| { |
| return join(type_to_glsl(type), " ", name, type_to_array_glsl(type)); |
| } |
| |
| string CompilerGLSL::member_decl(const SPIRType &type, const SPIRType &membertype, uint32_t index) |
| { |
| uint64_t memberflags = 0; |
| auto &memb = meta[type.self].members; |
| if (index < memb.size()) |
| memberflags = memb[index].decoration_flags; |
| |
| return join(layout_for_member(type, index), flags_to_precision_qualifiers_glsl(membertype, memberflags), |
| variable_decl(membertype, to_member_name(type, index))); |
| } |
| |
| const char *CompilerGLSL::flags_to_precision_qualifiers_glsl(const SPIRType &type, uint64_t flags) |
| { |
| if (options.es) |
| { |
| auto &execution = get_entry_point(); |
| |
| // Structs do not have precision qualifiers, neither do doubles (desktop only anyways, so no mediump/highp). |
| if (type.basetype != SPIRType::Float && type.basetype != SPIRType::Int && type.basetype != SPIRType::UInt && |
| type.basetype != SPIRType::Image && type.basetype != SPIRType::SampledImage && |
| type.basetype != SPIRType::Sampler) |
| return ""; |
| |
| if (flags & (1ull << DecorationRelaxedPrecision)) |
| { |
| bool implied_fmediump = type.basetype == SPIRType::Float && |
| options.fragment.default_float_precision == Options::Mediump && |
| execution.model == ExecutionModelFragment; |
| |
| bool implied_imediump = (type.basetype == SPIRType::Int || type.basetype == SPIRType::UInt) && |
| options.fragment.default_int_precision == Options::Mediump && |
| execution.model == ExecutionModelFragment; |
| |
| return implied_fmediump || implied_imediump ? "" : "mediump "; |
| } |
| else |
| { |
| bool implied_fhighp = |
| type.basetype == SPIRType::Float && ((options.fragment.default_float_precision == Options::Highp && |
| execution.model == ExecutionModelFragment) || |
| (execution.model != ExecutionModelFragment)); |
| |
| bool implied_ihighp = (type.basetype == SPIRType::Int || type.basetype == SPIRType::UInt) && |
| ((options.fragment.default_int_precision == Options::Highp && |
| execution.model == ExecutionModelFragment) || |
| (execution.model != ExecutionModelFragment)); |
| |
| return implied_fhighp || implied_ihighp ? "" : "highp "; |
| } |
| } |
| else |
| return ""; |
| } |
| |
| const char *CompilerGLSL::to_precision_qualifiers_glsl(uint32_t id) |
| { |
| return flags_to_precision_qualifiers_glsl(expression_type(id), meta[id].decoration.decoration_flags); |
| } |
| |
| string CompilerGLSL::to_qualifiers_glsl(uint32_t id) |
| { |
| auto flags = meta[id].decoration.decoration_flags; |
| string res; |
| |
| auto *var = maybe_get<SPIRVariable>(id); |
| |
| if (var && var->storage == StorageClassWorkgroup && !backend.shared_is_implied) |
| res += "shared "; |
| |
| res += to_precision_qualifiers_glsl(id); |
| |
| //if (flags & (1ull << DecorationSmooth)) |
| // res += "smooth "; |
| if (flags & (1ull << DecorationFlat)) |
| res += "flat "; |
| if (flags & (1ull << DecorationNoPerspective)) |
| res += "noperspective "; |
| if (flags & (1ull << DecorationPatch)) |
| res += "patch "; |
| if (flags & (1ull << DecorationSample)) |
| res += "sample "; |
| if (flags & (1ull << DecorationInvariant)) |
| res += "invariant "; |
| |
| auto &type = expression_type(id); |
| if (type.image.dim != DimSubpassData && type.image.sampled == 2) |
| { |
| if (flags & (1ull << DecorationNonWritable)) |
| res += "readonly "; |
| if (flags & (1ull << DecorationNonReadable)) |
| res += "writeonly "; |
| } |
| |
| return res; |
| } |
| |
| string CompilerGLSL::argument_decl(const SPIRFunction::Parameter &arg) |
| { |
| // glslangValidator seems to make all arguments pointer no matter what which is rather bizarre ... |
| // Not sure if argument being pointer type should make the argument inout. |
| auto &type = expression_type(arg.id); |
| const char *direction = ""; |
| |
| if (type.pointer) |
| { |
| if (arg.write_count && arg.read_count) |
| direction = "inout "; |
| else if (arg.write_count) |
| direction = "out "; |
| } |
| |
| return join(direction, to_qualifiers_glsl(arg.id), variable_decl(type, to_name(arg.id))); |
| } |
| |
| string CompilerGLSL::variable_decl(const SPIRVariable &variable) |
| { |
| // Ignore the pointer type since GLSL doesn't have pointers. |
| auto &type = get<SPIRType>(variable.basetype); |
| auto res = join(to_qualifiers_glsl(variable.self), variable_decl(type, to_name(variable.self))); |
| if (variable.initializer) |
| res += join(" = ", to_expression(variable.initializer)); |
| return res; |
| } |
| |
| const char *CompilerGLSL::to_pls_qualifiers_glsl(const SPIRVariable &variable) |
| { |
| auto flags = meta[variable.self].decoration.decoration_flags; |
| if (flags & (1ull << DecorationRelaxedPrecision)) |
| return "mediump "; |
| else |
| return "highp "; |
| } |
| |
| string CompilerGLSL::pls_decl(const PlsRemap &var) |
| { |
| auto &variable = get<SPIRVariable>(var.id); |
| |
| SPIRType type; |
| type.vecsize = pls_format_to_components(var.format); |
| type.basetype = pls_format_to_basetype(var.format); |
| |
| return join(to_pls_layout(var.format), to_pls_qualifiers_glsl(variable), type_to_glsl(type), " ", |
| to_name(variable.self)); |
| } |
| |
| string CompilerGLSL::type_to_array_glsl(const SPIRType &type) |
| { |
| if (type.array.empty()) |
| return ""; |
| |
| string res; |
| for (size_t i = type.array.size(); i; i--) |
| { |
| auto &size = type.array[i - 1]; |
| |
| res += "["; |
| if (size) |
| { |
| res += convert_to_string(size); |
| } |
| else if (!backend.flexible_member_array_supported) |
| { |
| // For runtime-sized arrays, we can work around |
| // lack of standard support for this by simply having |
| // a single element array. |
| // |
| // Runtime length arrays must always be the last element |
| // in an interface block. |
| res += '1'; |
| } |
| res += "]"; |
| } |
| return res; |
| } |
| |
| string CompilerGLSL::image_type_glsl(const SPIRType &type) |
| { |
| auto &imagetype = get<SPIRType>(type.image.type); |
| string res; |
| |
| switch (imagetype.basetype) |
| { |
| case SPIRType::Int: |
| res = "i"; |
| break; |
| case SPIRType::UInt: |
| res = "u"; |
| break; |
| default: |
| break; |
| } |
| |
| if (type.basetype == SPIRType::Image && type.image.dim == DimSubpassData && options.vulkan_semantics) |
| return res + "subpassInput" + (type.image.ms ? "MS" : ""); |
| |
| // If we're emulating subpassInput with samplers, force sampler2D |
| // so we don't have to specify format. |
| if (type.basetype == SPIRType::Image && type.image.dim != DimSubpassData) |
| res += type.image.sampled == 2 ? "image" : "texture"; |
| else |
| res += "sampler"; |
| |
| switch (type.image.dim) |
| { |
| case Dim1D: |
| res += "1D"; |
| break; |
| case Dim2D: |
| res += "2D"; |
| break; |
| case Dim3D: |
| res += "3D"; |
| break; |
| case DimCube: |
| res += "Cube"; |
| break; |
| |
| case DimBuffer: |
| if (options.es && options.version < 320) |
| require_extension("GL_OES_texture_buffer"); |
| else if (!options.es && options.version < 300) |
| require_extension("GL_EXT_texture_buffer_object"); |
| res += "Buffer"; |
| break; |
| |
| case DimSubpassData: |
| res += "2D"; |
| break; |
| default: |
| throw CompilerError("Only 1D, 2D, 3D, Buffer, InputTarget and Cube textures supported."); |
| } |
| |
| if (type.image.ms) |
| res += "MS"; |
| if (type.image.arrayed) |
| res += "Array"; |
| if (type.image.depth) |
| res += "Shadow"; |
| |
| return res; |
| } |
| |
| string CompilerGLSL::type_to_glsl_constructor(const SPIRType &type) |
| { |
| auto e = type_to_glsl(type); |
| for (uint32_t i = 0; i < type.array.size(); i++) |
| e += "[]"; |
| return e; |
| } |
| |
| string CompilerGLSL::type_to_glsl(const SPIRType &type) |
| { |
| // Ignore the pointer type since GLSL doesn't have pointers. |
| |
| switch (type.basetype) |
| { |
| case SPIRType::Struct: |
| // Need OpName lookup here to get a "sensible" name for a struct. |
| if (backend.explicit_struct_type) |
| return join("struct ", to_name(type.self)); |
| else |
| return to_name(type.self); |
| |
| case SPIRType::Image: |
| case SPIRType::SampledImage: |
| return image_type_glsl(type); |
| |
| case SPIRType::Sampler: |
| // Not really used. |
| return "sampler"; |
| |
| case SPIRType::Void: |
| return "void"; |
| |
| default: |
| break; |
| } |
| |
| if (type.vecsize == 1 && type.columns == 1) // Scalar builtin |
| { |
| switch (type.basetype) |
| { |
| case SPIRType::Boolean: |
| return "bool"; |
| case SPIRType::Int: |
| return backend.basic_int_type; |
| case SPIRType::UInt: |
| return backend.basic_uint_type; |
| case SPIRType::AtomicCounter: |
| return "atomic_uint"; |
| case SPIRType::Float: |
| return "float"; |
| case SPIRType::Double: |
| return "double"; |
| case SPIRType::Int64: |
| return "int64_t"; |
| case SPIRType::UInt64: |
| return "uint64_t"; |
| default: |
| return "???"; |
| } |
| } |
| else if (type.vecsize > 1 && type.columns == 1) // Vector builtin |
| { |
| switch (type.basetype) |
| { |
| case SPIRType::Boolean: |
| return join("bvec", type.vecsize); |
| case SPIRType::Int: |
| return join("ivec", type.vecsize); |
| case SPIRType::UInt: |
| return join("uvec", type.vecsize); |
| case SPIRType::Float: |
| return join("vec", type.vecsize); |
| case SPIRType::Double: |
| return join("dvec", type.vecsize); |
| case SPIRType::Int64: |
| return join("i64vec", type.vecsize); |
| case SPIRType::UInt64: |
| return join("u64vec", type.vecsize); |
| default: |
| return "???"; |
| } |
| } |
| else if (type.vecsize == type.columns) // Simple Matrix builtin |
| { |
| switch (type.basetype) |
| { |
| case SPIRType::Boolean: |
| return join("bmat", type.vecsize); |
| case SPIRType::Int: |
| return join("imat", type.vecsize); |
| case SPIRType::UInt: |
| return join("umat", type.vecsize); |
| case SPIRType::Float: |
| return join("mat", type.vecsize); |
| case SPIRType::Double: |
| return join("dmat", type.vecsize); |
| // Matrix types not supported for int64/uint64. |
| default: |
| return "???"; |
| } |
| } |
| else |
| { |
| switch (type.basetype) |
| { |
| case SPIRType::Boolean: |
| return join("bmat", type.columns, "x", type.vecsize); |
| case SPIRType::Int: |
| return join("imat", type.columns, "x", type.vecsize); |
| case SPIRType::UInt: |
| return join("umat", type.columns, "x", type.vecsize); |
| case SPIRType::Float: |
| return join("mat", type.columns, "x", type.vecsize); |
| case SPIRType::Double: |
| return join("dmat", type.columns, "x", type.vecsize); |
| // Matrix types not supported for int64/uint64. |
| default: |
| return "???"; |
| } |
| } |
| } |
| |
| void CompilerGLSL::add_variable(unordered_set<string> &variables, uint32_t id) |
| { |
| auto &name = meta[id].decoration.alias; |
| if (name.empty()) |
| return; |
| |
| // Reserved for temporaries. |
| if (name[0] == '_' && name.size() >= 2 && isdigit(name[1])) |
| { |
| name.clear(); |
| return; |
| } |
| |
| update_name_cache(variables, name); |
| } |
| |
| void CompilerGLSL::add_local_variable_name(uint32_t id) |
| { |
| add_variable(local_variable_names, id); |
| } |
| |
| void CompilerGLSL::add_resource_name(uint32_t id) |
| { |
| add_variable(resource_names, id); |
| } |
| |
| void CompilerGLSL::add_header_line(const std::string &line) |
| { |
| header_lines.push_back(line); |
| } |
| |
| void CompilerGLSL::require_extension(const string &ext) |
| { |
| if (forced_extensions.find(ext) == end(forced_extensions)) |
| { |
| forced_extensions.insert(ext); |
| force_recompile = true; |
| } |
| } |
| |
| bool CompilerGLSL::check_atomic_image(uint32_t id) |
| { |
| auto &type = expression_type(id); |
| if (type.storage == StorageClassImage) |
| { |
| if (options.es && options.version < 320) |
| require_extension("GL_OES_shader_image_atomic"); |
| |
| auto *var = maybe_get_backing_variable(id); |
| if (var) |
| { |
| auto &flags = meta.at(var->self).decoration.decoration_flags; |
| if (flags & ((1ull << DecorationNonWritable) | (1ull << DecorationNonReadable))) |
| { |
| flags &= ~(1ull << DecorationNonWritable); |
| flags &= ~(1ull << DecorationNonReadable); |
| force_recompile = true; |
| } |
| } |
| return true; |
| } |
| else |
| return false; |
| } |
| |
| void CompilerGLSL::emit_function_prototype(SPIRFunction &func, uint64_t return_flags) |
| { |
| // Avoid shadow declarations. |
| local_variable_names = resource_names; |
| |
| string decl; |
| |
| auto &type = get<SPIRType>(func.return_type); |
| decl += flags_to_precision_qualifiers_glsl(type, return_flags); |
| decl += type_to_glsl(type); |
| decl += " "; |
| |
| if (func.self == entry_point) |
| { |
| decl += "main"; |
| processing_entry_point = true; |
| } |
| else |
| decl += to_name(func.self); |
| |
| decl += "("; |
| for (auto &arg : func.arguments) |
| { |
| // Might change the variable name if it already exists in this function. |
| // SPIRV OpName doesn't have any semantic effect, so it's valid for an implementation |
| // to use same name for variables. |
| // Since we want to make the GLSL debuggable and somewhat sane, use fallback names for variables which are duplicates. |
| add_local_variable_name(arg.id); |
| |
| decl += argument_decl(arg); |
| if (&arg != &func.arguments.back()) |
| decl += ", "; |
| |
| // Hold a pointer to the parameter so we can invalidate the readonly field if needed. |
| auto *var = maybe_get<SPIRVariable>(arg.id); |
| if (var) |
| var->parameter = &arg; |
| } |
| |
| decl += ")"; |
| statement(decl); |
| } |
| |
| void CompilerGLSL::emit_function(SPIRFunction &func, uint64_t return_flags) |
| { |
| // Avoid potential cycles. |
| if (func.active) |
| return; |
| func.active = true; |
| |
| // If we depend on a function, emit that function before we emit our own function. |
| for (auto block : func.blocks) |
| { |
| auto &b = get<SPIRBlock>(block); |
| for (auto &i : b.ops) |
| { |
| auto ops = stream(i); |
| auto op = static_cast<Op>(i.op); |
| |
| if (op == OpFunctionCall) |
| { |
| // Recursively emit functions which are called. |
| uint32_t id = ops[2]; |
| emit_function(get<SPIRFunction>(id), meta[ops[1]].decoration.decoration_flags); |
| } |
| } |
| } |
| |
| emit_function_prototype(func, return_flags); |
| begin_scope(); |
| |
| current_function = &func; |
| |
| for (auto &v : func.local_variables) |
| { |
| auto &var = get<SPIRVariable>(v); |
| if (expression_is_lvalue(v)) |
| { |
| add_local_variable_name(var.self); |
| |
| if (var.initializer) |
| statement(variable_decl(var), ";"); |
| else |
| { |
| // Don't declare variable until first use to declutter the GLSL output quite a lot. |
| // If we don't touch the variable before first branch, |
| // declare it then since we need variable declaration to be in top scope. |
| var.deferred_declaration = true; |
| } |
| } |
| else |
| { |
| // HACK: SPIRV likes to use samplers and images as local variables, but GLSL does not allow |
| // this. For these types (non-lvalue), we enforce forwarding through a shadowed variable. |
| // This means that when we OpStore to these variables, we just write in the expression ID directly. |
| // This breaks any kind of branching, since the variable must be statically assigned. |
| // Branching on samplers and images would be pretty much impossible to fake in GLSL. |
| var.statically_assigned = true; |
| } |
| } |
| |
| auto &entry_block = get<SPIRBlock>(func.entry_block); |
| entry_block.loop_dominator = SPIRBlock::NoDominator; |
| emit_block_chain(entry_block); |
| |
| end_scope(); |
| processing_entry_point = false; |
| statement(""); |
| } |
| |
| void CompilerGLSL::emit_fixup() |
| { |
| auto &execution = get_entry_point(); |
| if (execution.model == ExecutionModelVertex && options.vertex.fixup_clipspace) |
| { |
| const char *suffix = backend.float_literal_suffix ? "f" : ""; |
| statement("gl_Position.z = 2.0", suffix, " * gl_Position.z - gl_Position.w;"); |
| } |
| } |
| |
| bool CompilerGLSL::flush_phi_required(uint32_t from, uint32_t to) |
| { |
| auto &child = get<SPIRBlock>(to); |
| for (auto &phi : child.phi_variables) |
| if (phi.parent == from) |
| return true; |
| return false; |
| } |
| |
| void CompilerGLSL::flush_phi(uint32_t from, uint32_t to) |
| { |
| auto &child = get<SPIRBlock>(to); |
| |
| for (auto &phi : child.phi_variables) |
| if (phi.parent == from) |
| statement(to_expression(phi.function_variable), " = ", to_expression(phi.local_variable), ";"); |
| } |
| |
| void CompilerGLSL::branch(uint32_t from, uint32_t to) |
| { |
| flush_phi(from, to); |
| flush_all_active_variables(); |
| |
| // This is only a continue if we branch to our loop dominator. |
| if (loop_blocks.find(to) != end(loop_blocks) && get<SPIRBlock>(from).loop_dominator == to) |
| { |
| // This can happen if we had a complex continue block which was emitted. |
| // Once the continue block tries to branch to the loop header, just emit continue; |
| // and end the chain here. |
| statement("continue;"); |
| } |
| else if (is_continue(to)) |
| { |
| auto &to_block = get<SPIRBlock>(to); |
| if (to_block.complex_continue) |
| { |
| // Just emit the whole block chain as is. |
| auto usage_counts = expression_usage_counts; |
| auto invalid = invalid_expressions; |
| |
| emit_block_chain(to_block); |
| |
| // Expression usage counts and invalid expressions |
| // are moot after returning from the continue block. |
| // Since we emit the same block multiple times, |
| // we don't want to invalidate ourselves. |
| expression_usage_counts = usage_counts; |
| invalid_expressions = invalid; |
| } |
| else |
| { |
| auto &from_block = get<SPIRBlock>(from); |
| auto &dominator = get<SPIRBlock>(from_block.loop_dominator); |
| |
| // For non-complex continue blocks, we implicitly branch to the continue block |
| // by having the continue block be part of the loop header in for (; ; continue-block). |
| bool outside_control_flow = block_is_outside_flow_control_from_block(dominator, from_block); |
| |
| // Some simplification for for-loops. We always end up with a useless continue; |
| // statement since we branch to a loop block. |
| // Walk the CFG, if we uncoditionally execute the block calling continue assuming we're in the loop block, |
| // we can avoid writing out an explicit continue statement. |
| // Similar optimization to return statements if we know we're outside flow control. |
| if (!outside_control_flow) |
| statement("continue;"); |
| } |
| } |
| else if (is_break(to)) |
| statement("break;"); |
| else if (!is_conditional(to)) |
| emit_block_chain(get<SPIRBlock>(to)); |
| } |
| |
| void CompilerGLSL::branch(uint32_t from, uint32_t cond, uint32_t true_block, uint32_t false_block) |
| { |
| // If we branch directly to a selection merge target, we don't really need a code path. |
| bool true_sub = !is_conditional(true_block); |
| bool false_sub = !is_conditional(false_block); |
| |
| if (true_sub) |
| { |
| statement("if (", to_expression(cond), ")"); |
| begin_scope(); |
| branch(from, true_block); |
| end_scope(); |
| |
| if (false_sub) |
| { |
| statement("else"); |
| begin_scope(); |
| branch(from, false_block); |
| end_scope(); |
| } |
| else if (flush_phi_required(from, false_block)) |
| { |
| statement("else"); |
| begin_scope(); |
| flush_phi(from, false_block); |
| end_scope(); |
| } |
| } |
| else if (false_sub && !true_sub) |
| { |
| // Only need false path, use negative conditional. |
| statement("if (!", to_expression(cond), ")"); |
| begin_scope(); |
| branch(from, false_block); |
| end_scope(); |
| |
| if (flush_phi_required(from, true_block)) |
| { |
| statement("else"); |
| begin_scope(); |
| flush_phi(from, true_block); |
| end_scope(); |
| } |
| } |
| } |
| |
| void CompilerGLSL::propagate_loop_dominators(const SPIRBlock &block) |
| { |
| // Propagate down the loop dominator block, so that dominated blocks can back trace. |
| if (block.merge == SPIRBlock::MergeLoop || block.loop_dominator) |
| { |
| uint32_t dominator = block.merge == SPIRBlock::MergeLoop ? block.self : block.loop_dominator; |
| |
| auto set_dominator = [this](uint32_t self, uint32_t new_dominator) { |
| auto &dominated_block = this->get<SPIRBlock>(self); |
| |
| // If we already have a loop dominator, we're trying to break out to merge targets |
| // which should not update the loop dominator. |
| if (!dominated_block.loop_dominator) |
| dominated_block.loop_dominator = new_dominator; |
| }; |
| |
| // After merging a loop, we inherit the loop dominator always. |
| if (block.merge_block) |
| set_dominator(block.merge_block, block.loop_dominator); |
| |
| if (block.true_block) |
| set_dominator(block.true_block, dominator); |
| if (block.false_block) |
| set_dominator(block.false_block, dominator); |
| if (block.next_block) |
| set_dominator(block.next_block, dominator); |
| |
| for (auto &c : block.cases) |
| set_dominator(c.block, dominator); |
| |
| // In older glslang output continue_block can be == loop header. |
| if (block.continue_block && block.continue_block != block.self) |
| set_dominator(block.continue_block, dominator); |
| } |
| } |
| |
| // FIXME: This currently cannot handle complex continue blocks |
| // as in do-while. |
| // This should be seen as a "trivial" continue block. |
| string CompilerGLSL::emit_continue_block(uint32_t continue_block) |
| { |
| auto *block = &get<SPIRBlock>(continue_block); |
| |
| // While emitting the continue block, declare_temporary will check this |
| // if we have to emit temporaries. |
| current_continue_block = block; |
| |
| vector<string> statements; |
| |
| // Capture all statements into our list. |
| auto *old = redirect_statement; |
| redirect_statement = &statements; |
| |
| // Stamp out all blocks one after each other. |
| while (loop_blocks.find(block->self) == end(loop_blocks)) |
| { |
| propagate_loop_dominators(*block); |
| // Write out all instructions we have in this block. |
| for (auto &op : block->ops) |
| emit_instruction(op); |
| |
| // For plain branchless for/while continue blocks. |
| if (block->next_block) |
| { |
| flush_phi(continue_block, block->next_block); |
| block = &get<SPIRBlock>(block->next_block); |
| } |
| // For do while blocks. The last block will be a select block. |
| else if (block->true_block) |
| { |
| flush_phi(continue_block, block->true_block); |
| block = &get<SPIRBlock>(block->true_block); |
| } |
| } |
| |
| // Restore old pointer. |
| redirect_statement = old; |
| |
| // Somewhat ugly, strip off the last ';' since we use ',' instead. |
| // Ideally, we should select this behavior in statement(). |
| for (auto &s : statements) |
| { |
| if (!s.empty() && s.back() == ';') |
| s.pop_back(); |
| } |
| |
| current_continue_block = nullptr; |
| return merge(statements); |
| } |
| |
| bool CompilerGLSL::attempt_emit_loop_header(SPIRBlock &block, SPIRBlock::Method method) |
| { |
| SPIRBlock::ContinueBlockType continue_type = continue_block_type(get<SPIRBlock>(block.continue_block)); |
| |
| if (method == SPIRBlock::MergeToSelectForLoop) |
| { |
| uint32_t current_count = statement_count; |
| // If we're trying to create a true for loop, |
| // we need to make sure that all opcodes before branch statement do not actually emit any code. |
| // We can then take the condition expression and create a for (; cond ; ) { body; } structure instead. |
| for (auto &op : block.ops) |
| emit_instruction(op); |
| |
| bool condition_is_temporary = forced_temporaries.find(block.condition) == end(forced_temporaries); |
| |
| // This can work! We only did trivial things which could be forwarded in block body! |
| if (current_count == statement_count && condition_is_temporary) |
| { |
| switch (continue_type) |
| { |
| case SPIRBlock::ForLoop: |
| statement("for (; ", to_expression(block.condition), "; ", emit_continue_block(block.continue_block), |
| ")"); |
| break; |
| |
| case SPIRBlock::WhileLoop: |
| statement("while (", to_expression(block.condition), ")"); |
| break; |
| |
| default: |
| throw CompilerError("For/while loop detected, but need while/for loop semantics."); |
| } |
| |
| begin_scope(); |
| return true; |
| } |
| else |
| { |
| block.disable_block_optimization = true; |
| force_recompile = true; |
| begin_scope(); // We'll see an end_scope() later. |
| return false; |
| } |
| } |
| else if (method == SPIRBlock::MergeToDirectForLoop) |
| { |
| uint32_t current_count = statement_count; |
| auto &child = get<SPIRBlock>(block.next_block); |
| |
| // If we're trying to create a true for loop, |
| // we need to make sure that all opcodes before branch statement do not actually emit any code. |
| // We can then take the condition expression and create a for (; cond ; ) { body; } structure instead. |
| for (auto &op : child.ops) |
| emit_instruction(op); |
| |
| bool condition_is_temporary = forced_temporaries.find(child.condition) == end(forced_temporaries); |
| |
| if (current_count == statement_count && condition_is_temporary) |
| { |
| propagate_loop_dominators(child); |
| |
| switch (continue_type) |
| { |
| case SPIRBlock::ForLoop: |
| statement("for (; ", to_expression(child.condition), "; ", emit_continue_block(block.continue_block), |
| ")"); |
| break; |
| |
| case SPIRBlock::WhileLoop: |
| statement("while (", to_expression(child.condition), ")"); |
| break; |
| |
| default: |
| throw CompilerError("For/while loop detected, but need while/for loop semantics."); |
| } |
| |
| begin_scope(); |
| branch(child.self, child.true_block); |
| return true; |
| } |
| else |
| { |
| block.disable_block_optimization = true; |
| force_recompile = true; |
| begin_scope(); // We'll see an end_scope() later. |
| return false; |
| } |
| } |
| else |
| return false; |
| } |
| |
| void CompilerGLSL::flush_undeclared_variables() |
| { |
| // Declare undeclared variables. |
| if (current_function->flush_undeclared) |
| { |
| for (auto &v : current_function->local_variables) |
| { |
| auto &var = get<SPIRVariable>(v); |
| if (var.deferred_declaration) |
| statement(variable_decl(var), ";"); |
| var.deferred_declaration = false; |
| } |
| current_function->flush_undeclared = false; |
| } |
| } |
| |
| void CompilerGLSL::emit_block_chain(SPIRBlock &block) |
| { |
| propagate_loop_dominators(block); |
| |
| bool select_branch_to_true_block = false; |
| bool skip_direct_branch = false; |
| |
| // If we need to force temporaries for certain IDs due to continue blocks, do it before starting loop header. |
| for (auto &tmp : block.declare_temporary) |
| { |
| auto flags = meta[tmp.second].decoration.decoration_flags; |
| auto &type = get<SPIRType>(tmp.first); |
| statement(flags_to_precision_qualifiers_glsl(type, flags), variable_decl(type, to_name(tmp.second)), ";"); |
| } |
| |
| SPIRBlock::ContinueBlockType continue_type = SPIRBlock::ContinueNone; |
| if (block.continue_block) |
| continue_type = continue_block_type(get<SPIRBlock>(block.continue_block)); |
| |
| // This is the older loop behavior in glslang which branches to loop body directly from the loop header. |
| if (block_is_loop_candidate(block, SPIRBlock::MergeToSelectForLoop)) |
| { |
| flush_undeclared_variables(); |
| if (attempt_emit_loop_header(block, SPIRBlock::MergeToSelectForLoop)) |
| { |
| // The body of while, is actually just the true block, so always branch there |
| // unconditionally. |
| select_branch_to_true_block = true; |
| } |
| } |
| // This is the newer loop behavior in glslang which branches from Loop header directly to |
| // a new block, which in turn has a OpBranchSelection without a selection merge. |
| else if (block_is_loop_candidate(block, SPIRBlock::MergeToDirectForLoop)) |
| { |
| flush_undeclared_variables(); |
| if (attempt_emit_loop_header(block, SPIRBlock::MergeToDirectForLoop)) |
| skip_direct_branch = true; |
| } |
| else if (continue_type == SPIRBlock::DoWhileLoop) |
| { |
| statement("do"); |
| begin_scope(); |
| for (auto &op : block.ops) |
| emit_instruction(op); |
| } |
| else if (block.merge == SPIRBlock::MergeLoop) |
| { |
| flush_undeclared_variables(); |
| |
| // We have a generic loop without any distinguishable pattern like for, while or do while. |
| get<SPIRBlock>(block.continue_block).complex_continue = true; |
| continue_type = SPIRBlock::ComplexLoop; |
| |
| statement("for (;;)"); |
| begin_scope(); |
| for (auto &op : block.ops) |
| emit_instruction(op); |
| } |
| else |
| { |
| for (auto &op : block.ops) |
| emit_instruction(op); |
| } |
| |
| bool emit_next_block = true; |
| |
| // Handle end of block. |
| switch (block.terminator) |
| { |
| case SPIRBlock::Direct: |
| // True when emitting complex continue block. |
| if (block.loop_dominator == block.next_block) |
| { |
| branch(block.self, block.next_block); |
| emit_next_block = false; |
| } |
| // True if MergeToDirectForLoop succeeded. |
| else if (skip_direct_branch) |
| emit_next_block = false; |
| else if (is_continue(block.next_block) || is_break(block.next_block) || is_conditional(block.next_block)) |
| { |
| branch(block.self, block.next_block); |
| emit_next_block = false; |
| } |
| break; |
| |
| case SPIRBlock::Select: |
| // True if MergeToSelectForLoop succeeded. |
| if (select_branch_to_true_block) |
| branch(block.self, block.true_block); |
| else |
| { |
| flush_undeclared_variables(); |
| branch(block.self, block.condition, block.true_block, block.false_block); |
| } |
| break; |
| |
| case SPIRBlock::MultiSelect: |
| { |
| flush_undeclared_variables(); |
| auto &type = expression_type(block.condition); |
| bool uint32_t_case = type.basetype == SPIRType::UInt; |
| |
| statement("switch (", to_expression(block.condition), ")"); |
| begin_scope(); |
| |
| for (auto &c : block.cases) |
| { |
| auto case_value = |
| uint32_t_case ? convert_to_string(uint32_t(c.value)) : convert_to_string(int32_t(c.value)); |
| statement("case ", case_value, ":"); |
| begin_scope(); |
| branch(block.self, c.block); |
| end_scope(); |
| } |
| |
| if (block.default_block != block.next_block) |
| { |
| statement("default:"); |
| begin_scope(); |
| if (is_break(block.default_block)) |
| throw CompilerError("Cannot break; out of a switch statement and out of a loop at the same time ..."); |
| branch(block.self, block.default_block); |
| end_scope(); |
| } |
| else if (flush_phi_required(block.self, block.next_block)) |
| { |
| statement("default:"); |
| begin_scope(); |
| flush_phi(block.self, block.next_block); |
| statement("break;"); |
| end_scope(); |
| } |
| |
| end_scope(); |
| break; |
| } |
| |
| case SPIRBlock::Return: |
| if (processing_entry_point) |
| emit_fixup(); |
| |
| if (block.return_value) |
| { |
| // OpReturnValue can return Undef, so don't emit anything for this case. |
| if (ids.at(block.return_value).get_type() != TypeUndef) |
| statement("return ", to_expression(block.return_value), ";"); |
| } |
| // If this block is the very final block and not called from control flow, |
| // we do not need an explicit return which looks out of place. Just end the function here. |
| // In the very weird case of for(;;) { return; } executing return is unconditional, |
| // but we actually need a return here ... |
| else if (!block_is_outside_flow_control_from_block(get<SPIRBlock>(current_function->entry_block), block) || |
| block.loop_dominator != SPIRBlock::NoDominator) |
| statement("return;"); |
| break; |
| |
| case SPIRBlock::Kill: |
| statement("discard;"); |
| break; |
| |
| default: |
| throw CompilerError("Unimplemented block terminator."); |
| } |
| |
| if (block.next_block && emit_next_block) |
| { |
| // If we hit this case, we're dealing with an unconditional branch, which means we will output |
| // that block after this. If we had selection merge, we already flushed phi variables. |
| if (block.merge != SPIRBlock::MergeSelection) |
| flush_phi(block.self, block.next_block); |
| emit_block_chain(get<SPIRBlock>(block.next_block)); |
| } |
| |
| if (block.merge == SPIRBlock::MergeLoop) |
| { |
| if (continue_type == SPIRBlock::DoWhileLoop) |
| { |
| // Make sure that we run the continue block to get the expressions set, but this |
| // should become an empty string. |
| // We have no fallbacks if we cannot forward everything to temporaries ... |
| auto statements = emit_continue_block(block.continue_block); |
| if (!statements.empty()) |
| { |
| // The DoWhile block has side effects, force ComplexLoop pattern next pass. |
| get<SPIRBlock>(block.continue_block).complex_continue = true; |
| force_recompile = true; |
| } |
| |
| end_scope_decl(join("while (", to_expression(get<SPIRBlock>(block.continue_block).condition), ")")); |
| } |
| else |
| end_scope(); |
| |
| flush_phi(block.self, block.merge_block); |
| emit_block_chain(get<SPIRBlock>(block.merge_block)); |
| } |
| } |
| |
| void CompilerGLSL::begin_scope() |
| { |
| statement("{"); |
| indent++; |
| } |
| |
| void CompilerGLSL::end_scope() |
| { |
| if (!indent) |
| throw CompilerError("Popping empty indent stack."); |
| indent--; |
| statement("}"); |
| } |
| |
| void CompilerGLSL::end_scope_decl() |
| { |
| if (!indent) |
| throw CompilerError("Popping empty indent stack."); |
| indent--; |
| statement("};"); |
| } |
| |
| void CompilerGLSL::end_scope_decl(const string &decl) |
| { |
| if (!indent) |
| throw CompilerError("Popping empty indent stack."); |
| indent--; |
| statement("} ", decl, ";"); |
| } |
| |
| void CompilerGLSL::check_function_call_constraints(const uint32_t *args, uint32_t length) |
| { |
| // If our variable is remapped, and we rely on type-remapping information as |
| // well, then we cannot pass the variable as a function parameter. |
| // Fixing this is non-trivial without stamping out variants of the same function, |
| // so for now warn about this and suggest workarounds instead. |
| for (uint32_t i = 0; i < length; i++) |
| { |
| auto *var = maybe_get<SPIRVariable>(args[i]); |
| if (!var || !var->remapped_variable) |
| continue; |
| |
| auto &type = get<SPIRType>(var->basetype); |
| if (type.basetype == SPIRType::Image && type.image.dim == DimSubpassData) |
| { |
| throw CompilerError("Tried passing a remapped subpassInput variable to a function. " |
| "This will not work correctly because type-remapping information is lost. " |
| "To workaround, please consider not passing the subpass input as a function parameter, " |
| "or use in/out variables instead which do not need type remapping information."); |
| } |
| } |
| } |