Adam Sawicki | f1a793c | 2018-03-13 15:42:22 +0100 | [diff] [blame] | 1 | #include "Tests.h"
|
| 2 | #include "VmaUsage.h"
|
| 3 | #include "Common.h"
|
Adam Sawicki | b8333fb | 2018-03-13 16:15:53 +0100 | [diff] [blame] | 4 | #include <atomic>
|
| 5 | #include <thread>
|
| 6 | #include <mutex>
|
Adam Sawicki | f1a793c | 2018-03-13 15:42:22 +0100 | [diff] [blame] | 7 |
|
| 8 | #ifdef _WIN32
|
| 9 |
|
Adam Sawicki | 0a60713 | 2018-08-24 11:18:41 +0200 | [diff] [blame] | 10 | enum CONFIG_TYPE {
|
| 11 | CONFIG_TYPE_MINIMUM,
|
| 12 | CONFIG_TYPE_SMALL,
|
| 13 | CONFIG_TYPE_AVERAGE,
|
| 14 | CONFIG_TYPE_LARGE,
|
| 15 | CONFIG_TYPE_MAXIMUM,
|
| 16 | CONFIG_TYPE_COUNT
|
| 17 | };
|
| 18 |
|
| 19 | static constexpr CONFIG_TYPE ConfigType = CONFIG_TYPE_SMALL;
|
| 20 | //static constexpr CONFIG_TYPE ConfigType = CONFIG_TYPE_LARGE;
|
| 21 |
|
Adam Sawicki | b8333fb | 2018-03-13 16:15:53 +0100 | [diff] [blame] | 22 | enum class FREE_ORDER { FORWARD, BACKWARD, RANDOM, COUNT };
|
| 23 |
|
Adam Sawicki | 0a60713 | 2018-08-24 11:18:41 +0200 | [diff] [blame] | 24 | static const wchar_t* FREE_ORDER_NAMES[] = {
|
| 25 | L"FORWARD",
|
| 26 | L"BACKWARD",
|
| 27 | L"RANDOM",
|
| 28 | };
|
| 29 |
|
Adam Sawicki | b8333fb | 2018-03-13 16:15:53 +0100 | [diff] [blame] | 30 | struct AllocationSize
|
| 31 | {
|
| 32 | uint32_t Probability;
|
| 33 | VkDeviceSize BufferSizeMin, BufferSizeMax;
|
| 34 | uint32_t ImageSizeMin, ImageSizeMax;
|
| 35 | };
|
| 36 |
|
| 37 | struct Config
|
| 38 | {
|
| 39 | uint32_t RandSeed;
|
| 40 | VkDeviceSize BeginBytesToAllocate;
|
| 41 | uint32_t AdditionalOperationCount;
|
| 42 | VkDeviceSize MaxBytesToAllocate;
|
| 43 | uint32_t MemUsageProbability[4]; // For VMA_MEMORY_USAGE_*
|
| 44 | std::vector<AllocationSize> AllocationSizes;
|
| 45 | uint32_t ThreadCount;
|
| 46 | uint32_t ThreadsUsingCommonAllocationsProbabilityPercent;
|
| 47 | FREE_ORDER FreeOrder;
|
| 48 | };
|
| 49 |
|
| 50 | struct Result
|
| 51 | {
|
| 52 | duration TotalTime;
|
| 53 | duration AllocationTimeMin, AllocationTimeAvg, AllocationTimeMax;
|
| 54 | duration DeallocationTimeMin, DeallocationTimeAvg, DeallocationTimeMax;
|
| 55 | VkDeviceSize TotalMemoryAllocated;
|
| 56 | VkDeviceSize FreeRangeSizeAvg, FreeRangeSizeMax;
|
| 57 | };
|
| 58 |
|
| 59 | void TestDefragmentationSimple();
|
| 60 | void TestDefragmentationFull();
|
| 61 |
|
| 62 | struct PoolTestConfig
|
| 63 | {
|
| 64 | uint32_t RandSeed;
|
| 65 | uint32_t ThreadCount;
|
| 66 | VkDeviceSize PoolSize;
|
| 67 | uint32_t FrameCount;
|
| 68 | uint32_t TotalItemCount;
|
| 69 | // Range for number of items used in each frame.
|
| 70 | uint32_t UsedItemCountMin, UsedItemCountMax;
|
| 71 | // Percent of items to make unused, and possibly make some others used in each frame.
|
| 72 | uint32_t ItemsToMakeUnusedPercent;
|
| 73 | std::vector<AllocationSize> AllocationSizes;
|
| 74 |
|
| 75 | VkDeviceSize CalcAvgResourceSize() const
|
| 76 | {
|
| 77 | uint32_t probabilitySum = 0;
|
| 78 | VkDeviceSize sizeSum = 0;
|
| 79 | for(size_t i = 0; i < AllocationSizes.size(); ++i)
|
| 80 | {
|
| 81 | const AllocationSize& allocSize = AllocationSizes[i];
|
| 82 | if(allocSize.BufferSizeMax > 0)
|
| 83 | sizeSum += (allocSize.BufferSizeMin + allocSize.BufferSizeMax) / 2 * allocSize.Probability;
|
| 84 | else
|
| 85 | {
|
| 86 | const VkDeviceSize avgDimension = (allocSize.ImageSizeMin + allocSize.ImageSizeMax) / 2;
|
| 87 | sizeSum += avgDimension * avgDimension * 4 * allocSize.Probability;
|
| 88 | }
|
| 89 | probabilitySum += allocSize.Probability;
|
| 90 | }
|
| 91 | return sizeSum / probabilitySum;
|
| 92 | }
|
| 93 |
|
| 94 | bool UsesBuffers() const
|
| 95 | {
|
| 96 | for(size_t i = 0; i < AllocationSizes.size(); ++i)
|
| 97 | if(AllocationSizes[i].BufferSizeMax > 0)
|
| 98 | return true;
|
| 99 | return false;
|
| 100 | }
|
| 101 |
|
| 102 | bool UsesImages() const
|
| 103 | {
|
| 104 | for(size_t i = 0; i < AllocationSizes.size(); ++i)
|
| 105 | if(AllocationSizes[i].ImageSizeMax > 0)
|
| 106 | return true;
|
| 107 | return false;
|
| 108 | }
|
| 109 | };
|
| 110 |
|
| 111 | struct PoolTestResult
|
| 112 | {
|
| 113 | duration TotalTime;
|
| 114 | duration AllocationTimeMin, AllocationTimeAvg, AllocationTimeMax;
|
| 115 | duration DeallocationTimeMin, DeallocationTimeAvg, DeallocationTimeMax;
|
| 116 | size_t LostAllocationCount, LostAllocationTotalSize;
|
| 117 | size_t FailedAllocationCount, FailedAllocationTotalSize;
|
| 118 | };
|
| 119 |
|
| 120 | static const uint32_t IMAGE_BYTES_PER_PIXEL = 1;
|
| 121 |
|
Adam Sawicki | 8cfe05f | 2018-08-22 16:48:17 +0200 | [diff] [blame] | 122 | static uint32_t g_FrameIndex = 0;
|
| 123 |
|
Adam Sawicki | b8333fb | 2018-03-13 16:15:53 +0100 | [diff] [blame] | 124 | struct BufferInfo
|
| 125 | {
|
| 126 | VkBuffer Buffer = VK_NULL_HANDLE;
|
| 127 | VmaAllocation Allocation = VK_NULL_HANDLE;
|
| 128 | };
|
| 129 |
|
| 130 | static void InitResult(Result& outResult)
|
| 131 | {
|
| 132 | outResult.TotalTime = duration::zero();
|
| 133 | outResult.AllocationTimeMin = duration::max();
|
| 134 | outResult.AllocationTimeAvg = duration::zero();
|
| 135 | outResult.AllocationTimeMax = duration::min();
|
| 136 | outResult.DeallocationTimeMin = duration::max();
|
| 137 | outResult.DeallocationTimeAvg = duration::zero();
|
| 138 | outResult.DeallocationTimeMax = duration::min();
|
| 139 | outResult.TotalMemoryAllocated = 0;
|
| 140 | outResult.FreeRangeSizeAvg = 0;
|
| 141 | outResult.FreeRangeSizeMax = 0;
|
| 142 | }
|
| 143 |
|
| 144 | class TimeRegisterObj
|
| 145 | {
|
| 146 | public:
|
| 147 | TimeRegisterObj(duration& min, duration& sum, duration& max) :
|
| 148 | m_Min(min),
|
| 149 | m_Sum(sum),
|
| 150 | m_Max(max),
|
| 151 | m_TimeBeg(std::chrono::high_resolution_clock::now())
|
| 152 | {
|
| 153 | }
|
| 154 |
|
| 155 | ~TimeRegisterObj()
|
| 156 | {
|
| 157 | duration d = std::chrono::high_resolution_clock::now() - m_TimeBeg;
|
| 158 | m_Sum += d;
|
| 159 | if(d < m_Min) m_Min = d;
|
| 160 | if(d > m_Max) m_Max = d;
|
| 161 | }
|
| 162 |
|
| 163 | private:
|
| 164 | duration& m_Min;
|
| 165 | duration& m_Sum;
|
| 166 | duration& m_Max;
|
| 167 | time_point m_TimeBeg;
|
| 168 | };
|
| 169 |
|
| 170 | struct PoolTestThreadResult
|
| 171 | {
|
| 172 | duration AllocationTimeMin, AllocationTimeSum, AllocationTimeMax;
|
| 173 | duration DeallocationTimeMin, DeallocationTimeSum, DeallocationTimeMax;
|
| 174 | size_t AllocationCount, DeallocationCount;
|
| 175 | size_t LostAllocationCount, LostAllocationTotalSize;
|
| 176 | size_t FailedAllocationCount, FailedAllocationTotalSize;
|
| 177 | };
|
| 178 |
|
| 179 | class AllocationTimeRegisterObj : public TimeRegisterObj
|
| 180 | {
|
| 181 | public:
|
| 182 | AllocationTimeRegisterObj(Result& result) :
|
| 183 | TimeRegisterObj(result.AllocationTimeMin, result.AllocationTimeAvg, result.AllocationTimeMax)
|
| 184 | {
|
| 185 | }
|
| 186 | };
|
| 187 |
|
| 188 | class DeallocationTimeRegisterObj : public TimeRegisterObj
|
| 189 | {
|
| 190 | public:
|
| 191 | DeallocationTimeRegisterObj(Result& result) :
|
| 192 | TimeRegisterObj(result.DeallocationTimeMin, result.DeallocationTimeAvg, result.DeallocationTimeMax)
|
| 193 | {
|
| 194 | }
|
| 195 | };
|
| 196 |
|
| 197 | class PoolAllocationTimeRegisterObj : public TimeRegisterObj
|
| 198 | {
|
| 199 | public:
|
| 200 | PoolAllocationTimeRegisterObj(PoolTestThreadResult& result) :
|
| 201 | TimeRegisterObj(result.AllocationTimeMin, result.AllocationTimeSum, result.AllocationTimeMax)
|
| 202 | {
|
| 203 | }
|
| 204 | };
|
| 205 |
|
| 206 | class PoolDeallocationTimeRegisterObj : public TimeRegisterObj
|
| 207 | {
|
| 208 | public:
|
| 209 | PoolDeallocationTimeRegisterObj(PoolTestThreadResult& result) :
|
| 210 | TimeRegisterObj(result.DeallocationTimeMin, result.DeallocationTimeSum, result.DeallocationTimeMax)
|
| 211 | {
|
| 212 | }
|
| 213 | };
|
| 214 |
|
| 215 | VkResult MainTest(Result& outResult, const Config& config)
|
| 216 | {
|
| 217 | assert(config.ThreadCount > 0);
|
| 218 |
|
| 219 | InitResult(outResult);
|
| 220 |
|
| 221 | RandomNumberGenerator mainRand{config.RandSeed};
|
| 222 |
|
| 223 | time_point timeBeg = std::chrono::high_resolution_clock::now();
|
| 224 |
|
| 225 | std::atomic<size_t> allocationCount = 0;
|
| 226 | VkResult res = VK_SUCCESS;
|
| 227 |
|
| 228 | uint32_t memUsageProbabilitySum =
|
| 229 | config.MemUsageProbability[0] + config.MemUsageProbability[1] +
|
| 230 | config.MemUsageProbability[2] + config.MemUsageProbability[3];
|
| 231 | assert(memUsageProbabilitySum > 0);
|
| 232 |
|
| 233 | uint32_t allocationSizeProbabilitySum = std::accumulate(
|
| 234 | config.AllocationSizes.begin(),
|
| 235 | config.AllocationSizes.end(),
|
| 236 | 0u,
|
| 237 | [](uint32_t sum, const AllocationSize& allocSize) {
|
| 238 | return sum + allocSize.Probability;
|
| 239 | });
|
| 240 |
|
| 241 | struct Allocation
|
| 242 | {
|
| 243 | VkBuffer Buffer;
|
| 244 | VkImage Image;
|
| 245 | VmaAllocation Alloc;
|
| 246 | };
|
| 247 |
|
| 248 | std::vector<Allocation> commonAllocations;
|
| 249 | std::mutex commonAllocationsMutex;
|
| 250 |
|
| 251 | auto Allocate = [&](
|
| 252 | VkDeviceSize bufferSize,
|
| 253 | const VkExtent2D imageExtent,
|
| 254 | RandomNumberGenerator& localRand,
|
| 255 | VkDeviceSize& totalAllocatedBytes,
|
| 256 | std::vector<Allocation>& allocations) -> VkResult
|
| 257 | {
|
| 258 | assert((bufferSize == 0) != (imageExtent.width == 0 && imageExtent.height == 0));
|
| 259 |
|
| 260 | uint32_t memUsageIndex = 0;
|
| 261 | uint32_t memUsageRand = localRand.Generate() % memUsageProbabilitySum;
|
| 262 | while(memUsageRand >= config.MemUsageProbability[memUsageIndex])
|
| 263 | memUsageRand -= config.MemUsageProbability[memUsageIndex++];
|
| 264 |
|
| 265 | VmaAllocationCreateInfo memReq = {};
|
| 266 | memReq.usage = (VmaMemoryUsage)(VMA_MEMORY_USAGE_GPU_ONLY + memUsageIndex);
|
| 267 |
|
| 268 | Allocation allocation = {};
|
| 269 | VmaAllocationInfo allocationInfo;
|
| 270 |
|
| 271 | // Buffer
|
| 272 | if(bufferSize > 0)
|
| 273 | {
|
| 274 | assert(imageExtent.width == 0);
|
| 275 | VkBufferCreateInfo bufferInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
|
| 276 | bufferInfo.size = bufferSize;
|
| 277 | bufferInfo.usage = VK_BUFFER_USAGE_VERTEX_BUFFER_BIT;
|
| 278 |
|
| 279 | {
|
| 280 | AllocationTimeRegisterObj timeRegisterObj{outResult};
|
| 281 | res = vmaCreateBuffer(g_hAllocator, &bufferInfo, &memReq, &allocation.Buffer, &allocation.Alloc, &allocationInfo);
|
| 282 | }
|
| 283 | }
|
| 284 | // Image
|
| 285 | else
|
| 286 | {
|
| 287 | VkImageCreateInfo imageInfo = { VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO };
|
| 288 | imageInfo.imageType = VK_IMAGE_TYPE_2D;
|
| 289 | imageInfo.extent.width = imageExtent.width;
|
| 290 | imageInfo.extent.height = imageExtent.height;
|
| 291 | imageInfo.extent.depth = 1;
|
| 292 | imageInfo.mipLevels = 1;
|
| 293 | imageInfo.arrayLayers = 1;
|
| 294 | imageInfo.format = VK_FORMAT_R8G8B8A8_UNORM;
|
| 295 | imageInfo.tiling = memReq.usage == VMA_MEMORY_USAGE_GPU_ONLY ?
|
| 296 | VK_IMAGE_TILING_OPTIMAL :
|
| 297 | VK_IMAGE_TILING_LINEAR;
|
| 298 | imageInfo.initialLayout = VK_IMAGE_LAYOUT_PREINITIALIZED;
|
| 299 | switch(memReq.usage)
|
| 300 | {
|
| 301 | case VMA_MEMORY_USAGE_GPU_ONLY:
|
| 302 | switch(localRand.Generate() % 3)
|
| 303 | {
|
| 304 | case 0:
|
| 305 | imageInfo.usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT;
|
| 306 | break;
|
| 307 | case 1:
|
| 308 | imageInfo.usage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_SAMPLED_BIT;
|
| 309 | break;
|
| 310 | case 2:
|
| 311 | imageInfo.usage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT;
|
| 312 | break;
|
| 313 | }
|
| 314 | break;
|
| 315 | case VMA_MEMORY_USAGE_CPU_ONLY:
|
| 316 | case VMA_MEMORY_USAGE_CPU_TO_GPU:
|
| 317 | imageInfo.usage = VK_IMAGE_USAGE_TRANSFER_SRC_BIT;
|
| 318 | break;
|
| 319 | case VMA_MEMORY_USAGE_GPU_TO_CPU:
|
| 320 | imageInfo.usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT;
|
| 321 | break;
|
| 322 | }
|
| 323 | imageInfo.samples = VK_SAMPLE_COUNT_1_BIT;
|
| 324 | imageInfo.flags = 0;
|
| 325 |
|
| 326 | {
|
| 327 | AllocationTimeRegisterObj timeRegisterObj{outResult};
|
| 328 | res = vmaCreateImage(g_hAllocator, &imageInfo, &memReq, &allocation.Image, &allocation.Alloc, &allocationInfo);
|
| 329 | }
|
| 330 | }
|
| 331 |
|
| 332 | if(res == VK_SUCCESS)
|
| 333 | {
|
| 334 | ++allocationCount;
|
| 335 | totalAllocatedBytes += allocationInfo.size;
|
| 336 | bool useCommonAllocations = localRand.Generate() % 100 < config.ThreadsUsingCommonAllocationsProbabilityPercent;
|
| 337 | if(useCommonAllocations)
|
| 338 | {
|
| 339 | std::unique_lock<std::mutex> lock(commonAllocationsMutex);
|
| 340 | commonAllocations.push_back(allocation);
|
| 341 | }
|
| 342 | else
|
| 343 | allocations.push_back(allocation);
|
| 344 | }
|
| 345 | else
|
| 346 | {
|
| 347 | assert(0);
|
| 348 | }
|
| 349 | return res;
|
| 350 | };
|
| 351 |
|
| 352 | auto GetNextAllocationSize = [&](
|
| 353 | VkDeviceSize& outBufSize,
|
| 354 | VkExtent2D& outImageSize,
|
| 355 | RandomNumberGenerator& localRand)
|
| 356 | {
|
| 357 | outBufSize = 0;
|
| 358 | outImageSize = {0, 0};
|
| 359 |
|
| 360 | uint32_t allocSizeIndex = 0;
|
| 361 | uint32_t r = localRand.Generate() % allocationSizeProbabilitySum;
|
| 362 | while(r >= config.AllocationSizes[allocSizeIndex].Probability)
|
| 363 | r -= config.AllocationSizes[allocSizeIndex++].Probability;
|
| 364 |
|
| 365 | const AllocationSize& allocSize = config.AllocationSizes[allocSizeIndex];
|
| 366 | if(allocSize.BufferSizeMax > 0)
|
| 367 | {
|
| 368 | assert(allocSize.ImageSizeMax == 0);
|
| 369 | if(allocSize.BufferSizeMax == allocSize.BufferSizeMin)
|
| 370 | outBufSize = allocSize.BufferSizeMin;
|
| 371 | else
|
| 372 | {
|
| 373 | outBufSize = allocSize.BufferSizeMin + localRand.Generate() % (allocSize.BufferSizeMax - allocSize.BufferSizeMin);
|
| 374 | outBufSize = outBufSize / 16 * 16;
|
| 375 | }
|
| 376 | }
|
| 377 | else
|
| 378 | {
|
| 379 | if(allocSize.ImageSizeMax == allocSize.ImageSizeMin)
|
| 380 | outImageSize.width = outImageSize.height = allocSize.ImageSizeMax;
|
| 381 | else
|
| 382 | {
|
| 383 | outImageSize.width = allocSize.ImageSizeMin + localRand.Generate() % (allocSize.ImageSizeMax - allocSize.ImageSizeMin);
|
| 384 | outImageSize.height = allocSize.ImageSizeMin + localRand.Generate() % (allocSize.ImageSizeMax - allocSize.ImageSizeMin);
|
| 385 | }
|
| 386 | }
|
| 387 | };
|
| 388 |
|
| 389 | std::atomic<uint32_t> numThreadsReachedMaxAllocations = 0;
|
| 390 | HANDLE threadsFinishEvent = CreateEvent(NULL, TRUE, FALSE, NULL);
|
| 391 |
|
| 392 | auto ThreadProc = [&](uint32_t randSeed) -> void
|
| 393 | {
|
| 394 | RandomNumberGenerator threadRand(randSeed);
|
| 395 | VkDeviceSize threadTotalAllocatedBytes = 0;
|
| 396 | std::vector<Allocation> threadAllocations;
|
| 397 | VkDeviceSize threadBeginBytesToAllocate = config.BeginBytesToAllocate / config.ThreadCount;
|
| 398 | VkDeviceSize threadMaxBytesToAllocate = config.MaxBytesToAllocate / config.ThreadCount;
|
| 399 | uint32_t threadAdditionalOperationCount = config.AdditionalOperationCount / config.ThreadCount;
|
| 400 |
|
| 401 | // BEGIN ALLOCATIONS
|
| 402 | for(;;)
|
| 403 | {
|
| 404 | VkDeviceSize bufferSize = 0;
|
| 405 | VkExtent2D imageExtent = {};
|
| 406 | GetNextAllocationSize(bufferSize, imageExtent, threadRand);
|
| 407 | if(threadTotalAllocatedBytes + bufferSize + imageExtent.width * imageExtent.height * IMAGE_BYTES_PER_PIXEL <
|
| 408 | threadBeginBytesToAllocate)
|
| 409 | {
|
| 410 | if(Allocate(bufferSize, imageExtent, threadRand, threadTotalAllocatedBytes, threadAllocations) != VK_SUCCESS)
|
| 411 | break;
|
| 412 | }
|
| 413 | else
|
| 414 | break;
|
| 415 | }
|
| 416 |
|
| 417 | // ADDITIONAL ALLOCATIONS AND FREES
|
| 418 | for(size_t i = 0; i < threadAdditionalOperationCount; ++i)
|
| 419 | {
|
| 420 | VkDeviceSize bufferSize = 0;
|
| 421 | VkExtent2D imageExtent = {};
|
| 422 | GetNextAllocationSize(bufferSize, imageExtent, threadRand);
|
| 423 |
|
| 424 | // true = allocate, false = free
|
| 425 | bool allocate = threadRand.Generate() % 2 != 0;
|
| 426 |
|
| 427 | if(allocate)
|
| 428 | {
|
| 429 | if(threadTotalAllocatedBytes +
|
| 430 | bufferSize +
|
| 431 | imageExtent.width * imageExtent.height * IMAGE_BYTES_PER_PIXEL <
|
| 432 | threadMaxBytesToAllocate)
|
| 433 | {
|
| 434 | if(Allocate(bufferSize, imageExtent, threadRand, threadTotalAllocatedBytes, threadAllocations) != VK_SUCCESS)
|
| 435 | break;
|
| 436 | }
|
| 437 | }
|
| 438 | else
|
| 439 | {
|
| 440 | bool useCommonAllocations = threadRand.Generate() % 100 < config.ThreadsUsingCommonAllocationsProbabilityPercent;
|
| 441 | if(useCommonAllocations)
|
| 442 | {
|
| 443 | std::unique_lock<std::mutex> lock(commonAllocationsMutex);
|
| 444 | if(!commonAllocations.empty())
|
| 445 | {
|
| 446 | size_t indexToFree = threadRand.Generate() % commonAllocations.size();
|
| 447 | VmaAllocationInfo allocationInfo;
|
| 448 | vmaGetAllocationInfo(g_hAllocator, commonAllocations[indexToFree].Alloc, &allocationInfo);
|
| 449 | if(threadTotalAllocatedBytes >= allocationInfo.size)
|
| 450 | {
|
| 451 | DeallocationTimeRegisterObj timeRegisterObj{outResult};
|
| 452 | if(commonAllocations[indexToFree].Buffer != VK_NULL_HANDLE)
|
| 453 | vmaDestroyBuffer(g_hAllocator, commonAllocations[indexToFree].Buffer, commonAllocations[indexToFree].Alloc);
|
| 454 | else
|
| 455 | vmaDestroyImage(g_hAllocator, commonAllocations[indexToFree].Image, commonAllocations[indexToFree].Alloc);
|
| 456 | threadTotalAllocatedBytes -= allocationInfo.size;
|
| 457 | commonAllocations.erase(commonAllocations.begin() + indexToFree);
|
| 458 | }
|
| 459 | }
|
| 460 | }
|
| 461 | else
|
| 462 | {
|
| 463 | if(!threadAllocations.empty())
|
| 464 | {
|
| 465 | size_t indexToFree = threadRand.Generate() % threadAllocations.size();
|
| 466 | VmaAllocationInfo allocationInfo;
|
| 467 | vmaGetAllocationInfo(g_hAllocator, threadAllocations[indexToFree].Alloc, &allocationInfo);
|
| 468 | if(threadTotalAllocatedBytes >= allocationInfo.size)
|
| 469 | {
|
| 470 | DeallocationTimeRegisterObj timeRegisterObj{outResult};
|
| 471 | if(threadAllocations[indexToFree].Buffer != VK_NULL_HANDLE)
|
| 472 | vmaDestroyBuffer(g_hAllocator, threadAllocations[indexToFree].Buffer, threadAllocations[indexToFree].Alloc);
|
| 473 | else
|
| 474 | vmaDestroyImage(g_hAllocator, threadAllocations[indexToFree].Image, threadAllocations[indexToFree].Alloc);
|
| 475 | threadTotalAllocatedBytes -= allocationInfo.size;
|
| 476 | threadAllocations.erase(threadAllocations.begin() + indexToFree);
|
| 477 | }
|
| 478 | }
|
| 479 | }
|
| 480 | }
|
| 481 | }
|
| 482 |
|
| 483 | ++numThreadsReachedMaxAllocations;
|
| 484 |
|
| 485 | WaitForSingleObject(threadsFinishEvent, INFINITE);
|
| 486 |
|
| 487 | // DEALLOCATION
|
| 488 | while(!threadAllocations.empty())
|
| 489 | {
|
| 490 | size_t indexToFree = 0;
|
| 491 | switch(config.FreeOrder)
|
| 492 | {
|
| 493 | case FREE_ORDER::FORWARD:
|
| 494 | indexToFree = 0;
|
| 495 | break;
|
| 496 | case FREE_ORDER::BACKWARD:
|
| 497 | indexToFree = threadAllocations.size() - 1;
|
| 498 | break;
|
| 499 | case FREE_ORDER::RANDOM:
|
| 500 | indexToFree = mainRand.Generate() % threadAllocations.size();
|
| 501 | break;
|
| 502 | }
|
| 503 |
|
| 504 | {
|
| 505 | DeallocationTimeRegisterObj timeRegisterObj{outResult};
|
| 506 | if(threadAllocations[indexToFree].Buffer != VK_NULL_HANDLE)
|
| 507 | vmaDestroyBuffer(g_hAllocator, threadAllocations[indexToFree].Buffer, threadAllocations[indexToFree].Alloc);
|
| 508 | else
|
| 509 | vmaDestroyImage(g_hAllocator, threadAllocations[indexToFree].Image, threadAllocations[indexToFree].Alloc);
|
| 510 | }
|
| 511 | threadAllocations.erase(threadAllocations.begin() + indexToFree);
|
| 512 | }
|
| 513 | };
|
| 514 |
|
| 515 | uint32_t threadRandSeed = mainRand.Generate();
|
| 516 | std::vector<std::thread> bkgThreads;
|
| 517 | for(size_t i = 0; i < config.ThreadCount; ++i)
|
| 518 | {
|
| 519 | bkgThreads.emplace_back(std::bind(ThreadProc, threadRandSeed + (uint32_t)i));
|
| 520 | }
|
| 521 |
|
| 522 | // Wait for threads reached max allocations
|
| 523 | while(numThreadsReachedMaxAllocations < config.ThreadCount)
|
| 524 | Sleep(0);
|
| 525 |
|
| 526 | // CALCULATE MEMORY STATISTICS ON FINAL USAGE
|
| 527 | VmaStats vmaStats = {};
|
| 528 | vmaCalculateStats(g_hAllocator, &vmaStats);
|
| 529 | outResult.TotalMemoryAllocated = vmaStats.total.usedBytes + vmaStats.total.unusedBytes;
|
| 530 | outResult.FreeRangeSizeMax = vmaStats.total.unusedRangeSizeMax;
|
| 531 | outResult.FreeRangeSizeAvg = vmaStats.total.unusedRangeSizeAvg;
|
| 532 |
|
| 533 | // Signal threads to deallocate
|
| 534 | SetEvent(threadsFinishEvent);
|
| 535 |
|
| 536 | // Wait for threads finished
|
| 537 | for(size_t i = 0; i < bkgThreads.size(); ++i)
|
| 538 | bkgThreads[i].join();
|
| 539 | bkgThreads.clear();
|
| 540 |
|
| 541 | CloseHandle(threadsFinishEvent);
|
| 542 |
|
| 543 | // Deallocate remaining common resources
|
| 544 | while(!commonAllocations.empty())
|
| 545 | {
|
| 546 | size_t indexToFree = 0;
|
| 547 | switch(config.FreeOrder)
|
| 548 | {
|
| 549 | case FREE_ORDER::FORWARD:
|
| 550 | indexToFree = 0;
|
| 551 | break;
|
| 552 | case FREE_ORDER::BACKWARD:
|
| 553 | indexToFree = commonAllocations.size() - 1;
|
| 554 | break;
|
| 555 | case FREE_ORDER::RANDOM:
|
| 556 | indexToFree = mainRand.Generate() % commonAllocations.size();
|
| 557 | break;
|
| 558 | }
|
| 559 |
|
| 560 | {
|
| 561 | DeallocationTimeRegisterObj timeRegisterObj{outResult};
|
| 562 | if(commonAllocations[indexToFree].Buffer != VK_NULL_HANDLE)
|
| 563 | vmaDestroyBuffer(g_hAllocator, commonAllocations[indexToFree].Buffer, commonAllocations[indexToFree].Alloc);
|
| 564 | else
|
| 565 | vmaDestroyImage(g_hAllocator, commonAllocations[indexToFree].Image, commonAllocations[indexToFree].Alloc);
|
| 566 | }
|
| 567 | commonAllocations.erase(commonAllocations.begin() + indexToFree);
|
| 568 | }
|
| 569 |
|
| 570 | if(allocationCount)
|
| 571 | {
|
| 572 | outResult.AllocationTimeAvg /= allocationCount;
|
| 573 | outResult.DeallocationTimeAvg /= allocationCount;
|
| 574 | }
|
| 575 |
|
| 576 | outResult.TotalTime = std::chrono::high_resolution_clock::now() - timeBeg;
|
| 577 |
|
| 578 | return res;
|
| 579 | }
|
| 580 |
|
Adam Sawicki | e44c626 | 2018-06-15 14:30:39 +0200 | [diff] [blame] | 581 | static void SaveAllocatorStatsToFile(const wchar_t* filePath)
|
Adam Sawicki | b8333fb | 2018-03-13 16:15:53 +0100 | [diff] [blame] | 582 | {
|
| 583 | char* stats;
|
Adam Sawicki | e44c626 | 2018-06-15 14:30:39 +0200 | [diff] [blame] | 584 | vmaBuildStatsString(g_hAllocator, &stats, VK_TRUE);
|
Adam Sawicki | b8333fb | 2018-03-13 16:15:53 +0100 | [diff] [blame] | 585 | SaveFile(filePath, stats, strlen(stats));
|
Adam Sawicki | e44c626 | 2018-06-15 14:30:39 +0200 | [diff] [blame] | 586 | vmaFreeStatsString(g_hAllocator, stats);
|
Adam Sawicki | b8333fb | 2018-03-13 16:15:53 +0100 | [diff] [blame] | 587 | }
|
| 588 |
|
| 589 | struct AllocInfo
|
| 590 | {
|
| 591 | VmaAllocation m_Allocation;
|
| 592 | VkBuffer m_Buffer;
|
| 593 | VkImage m_Image;
|
| 594 | uint32_t m_StartValue;
|
| 595 | union
|
| 596 | {
|
| 597 | VkBufferCreateInfo m_BufferInfo;
|
| 598 | VkImageCreateInfo m_ImageInfo;
|
| 599 | };
|
| 600 | };
|
| 601 |
|
| 602 | static void GetMemReq(VmaAllocationCreateInfo& outMemReq)
|
| 603 | {
|
| 604 | outMemReq = {};
|
| 605 | outMemReq.usage = VMA_MEMORY_USAGE_CPU_TO_GPU;
|
| 606 | //outMemReq.flags = VMA_ALLOCATION_CREATE_PERSISTENT_MAP_BIT;
|
| 607 | }
|
| 608 |
|
| 609 | static void CreateBuffer(
|
| 610 | VmaPool pool,
|
| 611 | const VkBufferCreateInfo& bufCreateInfo,
|
| 612 | bool persistentlyMapped,
|
| 613 | AllocInfo& outAllocInfo)
|
| 614 | {
|
| 615 | outAllocInfo = {};
|
| 616 | outAllocInfo.m_BufferInfo = bufCreateInfo;
|
| 617 |
|
| 618 | VmaAllocationCreateInfo allocCreateInfo = {};
|
| 619 | allocCreateInfo.pool = pool;
|
| 620 | if(persistentlyMapped)
|
| 621 | allocCreateInfo.flags = VMA_ALLOCATION_CREATE_MAPPED_BIT;
|
| 622 |
|
| 623 | VmaAllocationInfo vmaAllocInfo = {};
|
| 624 | ERR_GUARD_VULKAN( vmaCreateBuffer(g_hAllocator, &bufCreateInfo, &allocCreateInfo, &outAllocInfo.m_Buffer, &outAllocInfo.m_Allocation, &vmaAllocInfo) );
|
| 625 |
|
| 626 | // Setup StartValue and fill.
|
| 627 | {
|
| 628 | outAllocInfo.m_StartValue = (uint32_t)rand();
|
| 629 | uint32_t* data = (uint32_t*)vmaAllocInfo.pMappedData;
|
| 630 | assert((data != nullptr) == persistentlyMapped);
|
| 631 | if(!persistentlyMapped)
|
| 632 | {
|
| 633 | ERR_GUARD_VULKAN( vmaMapMemory(g_hAllocator, outAllocInfo.m_Allocation, (void**)&data) );
|
| 634 | }
|
| 635 |
|
| 636 | uint32_t value = outAllocInfo.m_StartValue;
|
| 637 | assert(bufCreateInfo.size % 4 == 0);
|
| 638 | for(size_t i = 0; i < bufCreateInfo.size / sizeof(uint32_t); ++i)
|
| 639 | data[i] = value++;
|
| 640 |
|
| 641 | if(!persistentlyMapped)
|
| 642 | vmaUnmapMemory(g_hAllocator, outAllocInfo.m_Allocation);
|
| 643 | }
|
| 644 | }
|
| 645 |
|
| 646 | static void CreateAllocation(AllocInfo& outAllocation, VmaAllocator allocator)
|
| 647 | {
|
| 648 | outAllocation.m_Allocation = nullptr;
|
| 649 | outAllocation.m_Buffer = nullptr;
|
| 650 | outAllocation.m_Image = nullptr;
|
| 651 | outAllocation.m_StartValue = (uint32_t)rand();
|
| 652 |
|
| 653 | VmaAllocationCreateInfo vmaMemReq;
|
| 654 | GetMemReq(vmaMemReq);
|
| 655 |
|
| 656 | VmaAllocationInfo allocInfo;
|
| 657 |
|
| 658 | const bool isBuffer = true;//(rand() & 0x1) != 0;
|
| 659 | const bool isLarge = (rand() % 16) == 0;
|
| 660 | if(isBuffer)
|
| 661 | {
|
| 662 | const uint32_t bufferSize = isLarge ?
|
| 663 | (rand() % 10 + 1) * (1024 * 1024) : // 1 MB ... 10 MB
|
| 664 | (rand() % 1024 + 1) * 1024; // 1 KB ... 1 MB
|
| 665 |
|
| 666 | VkBufferCreateInfo bufferInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
|
| 667 | bufferInfo.size = bufferSize;
|
| 668 | bufferInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
|
| 669 |
|
| 670 | VkResult res = vmaCreateBuffer(allocator, &bufferInfo, &vmaMemReq, &outAllocation.m_Buffer, &outAllocation.m_Allocation, &allocInfo);
|
| 671 | outAllocation.m_BufferInfo = bufferInfo;
|
| 672 | assert(res == VK_SUCCESS);
|
| 673 | }
|
| 674 | else
|
| 675 | {
|
| 676 | const uint32_t imageSizeX = isLarge ?
|
| 677 | 1024 + rand() % (4096 - 1024) : // 1024 ... 4096
|
| 678 | rand() % 1024 + 1; // 1 ... 1024
|
| 679 | const uint32_t imageSizeY = isLarge ?
|
| 680 | 1024 + rand() % (4096 - 1024) : // 1024 ... 4096
|
| 681 | rand() % 1024 + 1; // 1 ... 1024
|
| 682 |
|
| 683 | VkImageCreateInfo imageInfo = { VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO };
|
| 684 | imageInfo.imageType = VK_IMAGE_TYPE_2D;
|
| 685 | imageInfo.format = VK_FORMAT_R8G8B8A8_UNORM;
|
| 686 | imageInfo.extent.width = imageSizeX;
|
| 687 | imageInfo.extent.height = imageSizeY;
|
| 688 | imageInfo.extent.depth = 1;
|
| 689 | imageInfo.mipLevels = 1;
|
| 690 | imageInfo.arrayLayers = 1;
|
| 691 | imageInfo.samples = VK_SAMPLE_COUNT_1_BIT;
|
| 692 | imageInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
|
| 693 | imageInfo.initialLayout = VK_IMAGE_LAYOUT_PREINITIALIZED;
|
| 694 | imageInfo.usage = VK_IMAGE_USAGE_TRANSFER_SRC_BIT;
|
| 695 |
|
| 696 | VkResult res = vmaCreateImage(allocator, &imageInfo, &vmaMemReq, &outAllocation.m_Image, &outAllocation.m_Allocation, &allocInfo);
|
| 697 | outAllocation.m_ImageInfo = imageInfo;
|
| 698 | assert(res == VK_SUCCESS);
|
| 699 | }
|
| 700 |
|
| 701 | uint32_t* data = (uint32_t*)allocInfo.pMappedData;
|
| 702 | if(allocInfo.pMappedData == nullptr)
|
| 703 | {
|
| 704 | VkResult res = vmaMapMemory(allocator, outAllocation.m_Allocation, (void**)&data);
|
| 705 | assert(res == VK_SUCCESS);
|
| 706 | }
|
| 707 |
|
| 708 | uint32_t value = outAllocation.m_StartValue;
|
| 709 | assert(allocInfo.size % 4 == 0);
|
| 710 | for(size_t i = 0; i < allocInfo.size / sizeof(uint32_t); ++i)
|
| 711 | data[i] = value++;
|
| 712 |
|
| 713 | if(allocInfo.pMappedData == nullptr)
|
| 714 | vmaUnmapMemory(allocator, outAllocation.m_Allocation);
|
| 715 | }
|
| 716 |
|
| 717 | static void DestroyAllocation(const AllocInfo& allocation)
|
| 718 | {
|
| 719 | if(allocation.m_Buffer)
|
| 720 | vmaDestroyBuffer(g_hAllocator, allocation.m_Buffer, allocation.m_Allocation);
|
| 721 | else
|
| 722 | vmaDestroyImage(g_hAllocator, allocation.m_Image, allocation.m_Allocation);
|
| 723 | }
|
| 724 |
|
| 725 | static void DestroyAllAllocations(std::vector<AllocInfo>& allocations)
|
| 726 | {
|
| 727 | for(size_t i = allocations.size(); i--; )
|
| 728 | DestroyAllocation(allocations[i]);
|
| 729 | allocations.clear();
|
| 730 | }
|
| 731 |
|
| 732 | static void ValidateAllocationData(const AllocInfo& allocation)
|
| 733 | {
|
| 734 | VmaAllocationInfo allocInfo;
|
| 735 | vmaGetAllocationInfo(g_hAllocator, allocation.m_Allocation, &allocInfo);
|
| 736 |
|
| 737 | uint32_t* data = (uint32_t*)allocInfo.pMappedData;
|
| 738 | if(allocInfo.pMappedData == nullptr)
|
| 739 | {
|
| 740 | VkResult res = vmaMapMemory(g_hAllocator, allocation.m_Allocation, (void**)&data);
|
| 741 | assert(res == VK_SUCCESS);
|
| 742 | }
|
| 743 |
|
| 744 | uint32_t value = allocation.m_StartValue;
|
| 745 | bool ok = true;
|
| 746 | size_t i;
|
| 747 | assert(allocInfo.size % 4 == 0);
|
| 748 | for(i = 0; i < allocInfo.size / sizeof(uint32_t); ++i)
|
| 749 | {
|
| 750 | if(data[i] != value++)
|
| 751 | {
|
| 752 | ok = false;
|
| 753 | break;
|
| 754 | }
|
| 755 | }
|
| 756 | assert(ok);
|
| 757 |
|
| 758 | if(allocInfo.pMappedData == nullptr)
|
| 759 | vmaUnmapMemory(g_hAllocator, allocation.m_Allocation);
|
| 760 | }
|
| 761 |
|
| 762 | static void RecreateAllocationResource(AllocInfo& allocation)
|
| 763 | {
|
| 764 | VmaAllocationInfo allocInfo;
|
| 765 | vmaGetAllocationInfo(g_hAllocator, allocation.m_Allocation, &allocInfo);
|
| 766 |
|
| 767 | if(allocation.m_Buffer)
|
| 768 | {
|
| 769 | vkDestroyBuffer(g_hDevice, allocation.m_Buffer, nullptr);
|
| 770 |
|
| 771 | VkResult res = vkCreateBuffer(g_hDevice, &allocation.m_BufferInfo, nullptr, &allocation.m_Buffer);
|
| 772 | assert(res == VK_SUCCESS);
|
| 773 |
|
| 774 | // Just to silence validation layer warnings.
|
| 775 | VkMemoryRequirements vkMemReq;
|
| 776 | vkGetBufferMemoryRequirements(g_hDevice, allocation.m_Buffer, &vkMemReq);
|
| 777 | assert(vkMemReq.size == allocation.m_BufferInfo.size);
|
| 778 |
|
| 779 | res = vkBindBufferMemory(g_hDevice, allocation.m_Buffer, allocInfo.deviceMemory, allocInfo.offset);
|
| 780 | assert(res == VK_SUCCESS);
|
| 781 | }
|
| 782 | else
|
| 783 | {
|
| 784 | vkDestroyImage(g_hDevice, allocation.m_Image, nullptr);
|
| 785 |
|
| 786 | VkResult res = vkCreateImage(g_hDevice, &allocation.m_ImageInfo, nullptr, &allocation.m_Image);
|
| 787 | assert(res == VK_SUCCESS);
|
| 788 |
|
| 789 | // Just to silence validation layer warnings.
|
| 790 | VkMemoryRequirements vkMemReq;
|
| 791 | vkGetImageMemoryRequirements(g_hDevice, allocation.m_Image, &vkMemReq);
|
| 792 |
|
| 793 | res = vkBindImageMemory(g_hDevice, allocation.m_Image, allocInfo.deviceMemory, allocInfo.offset);
|
| 794 | assert(res == VK_SUCCESS);
|
| 795 | }
|
| 796 | }
|
| 797 |
|
| 798 | static void Defragment(AllocInfo* allocs, size_t allocCount,
|
| 799 | const VmaDefragmentationInfo* defragmentationInfo = nullptr,
|
| 800 | VmaDefragmentationStats* defragmentationStats = nullptr)
|
| 801 | {
|
| 802 | std::vector<VmaAllocation> vmaAllocs(allocCount);
|
| 803 | for(size_t i = 0; i < allocCount; ++i)
|
| 804 | vmaAllocs[i] = allocs[i].m_Allocation;
|
| 805 |
|
| 806 | std::vector<VkBool32> allocChanged(allocCount);
|
| 807 |
|
| 808 | ERR_GUARD_VULKAN( vmaDefragment(g_hAllocator, vmaAllocs.data(), allocCount, allocChanged.data(),
|
| 809 | defragmentationInfo, defragmentationStats) );
|
| 810 |
|
| 811 | for(size_t i = 0; i < allocCount; ++i)
|
| 812 | {
|
| 813 | if(allocChanged[i])
|
| 814 | {
|
| 815 | RecreateAllocationResource(allocs[i]);
|
| 816 | }
|
| 817 | }
|
| 818 | }
|
| 819 |
|
| 820 | static void ValidateAllocationsData(const AllocInfo* allocs, size_t allocCount)
|
| 821 | {
|
| 822 | std::for_each(allocs, allocs + allocCount, [](const AllocInfo& allocInfo) {
|
| 823 | ValidateAllocationData(allocInfo);
|
| 824 | });
|
| 825 | }
|
| 826 |
|
| 827 | void TestDefragmentationSimple()
|
| 828 | {
|
| 829 | wprintf(L"Test defragmentation simple\n");
|
| 830 |
|
| 831 | RandomNumberGenerator rand(667);
|
| 832 |
|
| 833 | const VkDeviceSize BUF_SIZE = 0x10000;
|
| 834 | const VkDeviceSize BLOCK_SIZE = BUF_SIZE * 8;
|
| 835 |
|
| 836 | const VkDeviceSize MIN_BUF_SIZE = 32;
|
| 837 | const VkDeviceSize MAX_BUF_SIZE = BUF_SIZE * 4;
|
| 838 | auto RandomBufSize = [&]() -> VkDeviceSize {
|
| 839 | return align_up<VkDeviceSize>(rand.Generate() % (MAX_BUF_SIZE - MIN_BUF_SIZE + 1) + MIN_BUF_SIZE, 32);
|
| 840 | };
|
| 841 |
|
| 842 | VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
|
| 843 | bufCreateInfo.size = BUF_SIZE;
|
| 844 | bufCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
|
| 845 |
|
| 846 | VmaAllocationCreateInfo exampleAllocCreateInfo = {};
|
| 847 | exampleAllocCreateInfo.usage = VMA_MEMORY_USAGE_CPU_ONLY;
|
| 848 |
|
| 849 | uint32_t memTypeIndex = UINT32_MAX;
|
| 850 | vmaFindMemoryTypeIndexForBufferInfo(g_hAllocator, &bufCreateInfo, &exampleAllocCreateInfo, &memTypeIndex);
|
| 851 |
|
| 852 | VmaPoolCreateInfo poolCreateInfo = {};
|
| 853 | poolCreateInfo.blockSize = BLOCK_SIZE;
|
| 854 | poolCreateInfo.memoryTypeIndex = memTypeIndex;
|
| 855 |
|
| 856 | VmaPool pool;
|
| 857 | ERR_GUARD_VULKAN( vmaCreatePool(g_hAllocator, &poolCreateInfo, &pool) );
|
| 858 |
|
| 859 | std::vector<AllocInfo> allocations;
|
| 860 |
|
| 861 | // persistentlyMappedOption = 0 - not persistently mapped.
|
| 862 | // persistentlyMappedOption = 1 - persistently mapped.
|
| 863 | for(uint32_t persistentlyMappedOption = 0; persistentlyMappedOption < 2; ++persistentlyMappedOption)
|
| 864 | {
|
| 865 | wprintf(L" Persistently mapped option = %u\n", persistentlyMappedOption);
|
| 866 | const bool persistentlyMapped = persistentlyMappedOption != 0;
|
| 867 |
|
| 868 | // # Test 1
|
| 869 | // Buffers of fixed size.
|
| 870 | // Fill 2 blocks. Remove odd buffers. Defragment everything.
|
| 871 | // Expected result: at least 1 block freed.
|
| 872 | {
|
| 873 | for(size_t i = 0; i < BLOCK_SIZE / BUF_SIZE * 2; ++i)
|
| 874 | {
|
| 875 | AllocInfo allocInfo;
|
| 876 | CreateBuffer(pool, bufCreateInfo, persistentlyMapped, allocInfo);
|
| 877 | allocations.push_back(allocInfo);
|
| 878 | }
|
| 879 |
|
| 880 | for(size_t i = 1; i < allocations.size(); ++i)
|
| 881 | {
|
| 882 | DestroyAllocation(allocations[i]);
|
| 883 | allocations.erase(allocations.begin() + i);
|
| 884 | }
|
| 885 |
|
| 886 | VmaDefragmentationStats defragStats;
|
| 887 | Defragment(allocations.data(), allocations.size(), nullptr, &defragStats);
|
| 888 | assert(defragStats.allocationsMoved > 0 && defragStats.bytesMoved > 0);
|
| 889 | assert(defragStats.deviceMemoryBlocksFreed >= 1);
|
| 890 |
|
| 891 | ValidateAllocationsData(allocations.data(), allocations.size());
|
| 892 |
|
| 893 | DestroyAllAllocations(allocations);
|
| 894 | }
|
| 895 |
|
| 896 | // # Test 2
|
| 897 | // Buffers of fixed size.
|
| 898 | // Fill 2 blocks. Remove odd buffers. Defragment one buffer at time.
|
| 899 | // Expected result: Each of 4 interations makes some progress.
|
| 900 | {
|
| 901 | for(size_t i = 0; i < BLOCK_SIZE / BUF_SIZE * 2; ++i)
|
| 902 | {
|
| 903 | AllocInfo allocInfo;
|
| 904 | CreateBuffer(pool, bufCreateInfo, persistentlyMapped, allocInfo);
|
| 905 | allocations.push_back(allocInfo);
|
| 906 | }
|
| 907 |
|
| 908 | for(size_t i = 1; i < allocations.size(); ++i)
|
| 909 | {
|
| 910 | DestroyAllocation(allocations[i]);
|
| 911 | allocations.erase(allocations.begin() + i);
|
| 912 | }
|
| 913 |
|
| 914 | VmaDefragmentationInfo defragInfo = {};
|
| 915 | defragInfo.maxAllocationsToMove = 1;
|
| 916 | defragInfo.maxBytesToMove = BUF_SIZE;
|
| 917 |
|
| 918 | for(size_t i = 0; i < BLOCK_SIZE / BUF_SIZE / 2; ++i)
|
| 919 | {
|
| 920 | VmaDefragmentationStats defragStats;
|
| 921 | Defragment(allocations.data(), allocations.size(), &defragInfo, &defragStats);
|
| 922 | assert(defragStats.allocationsMoved > 0 && defragStats.bytesMoved > 0);
|
| 923 | }
|
| 924 |
|
| 925 | ValidateAllocationsData(allocations.data(), allocations.size());
|
| 926 |
|
| 927 | DestroyAllAllocations(allocations);
|
| 928 | }
|
| 929 |
|
| 930 | // # Test 3
|
| 931 | // Buffers of variable size.
|
| 932 | // Create a number of buffers. Remove some percent of them.
|
| 933 | // Defragment while having some percent of them unmovable.
|
| 934 | // Expected result: Just simple validation.
|
| 935 | {
|
| 936 | for(size_t i = 0; i < 100; ++i)
|
| 937 | {
|
| 938 | VkBufferCreateInfo localBufCreateInfo = bufCreateInfo;
|
| 939 | localBufCreateInfo.size = RandomBufSize();
|
| 940 |
|
| 941 | AllocInfo allocInfo;
|
| 942 | CreateBuffer(pool, bufCreateInfo, persistentlyMapped, allocInfo);
|
| 943 | allocations.push_back(allocInfo);
|
| 944 | }
|
| 945 |
|
| 946 | const uint32_t percentToDelete = 60;
|
| 947 | const size_t numberToDelete = allocations.size() * percentToDelete / 100;
|
| 948 | for(size_t i = 0; i < numberToDelete; ++i)
|
| 949 | {
|
| 950 | size_t indexToDelete = rand.Generate() % (uint32_t)allocations.size();
|
| 951 | DestroyAllocation(allocations[indexToDelete]);
|
| 952 | allocations.erase(allocations.begin() + indexToDelete);
|
| 953 | }
|
| 954 |
|
| 955 | // Non-movable allocations will be at the beginning of allocations array.
|
| 956 | const uint32_t percentNonMovable = 20;
|
| 957 | const size_t numberNonMovable = allocations.size() * percentNonMovable / 100;
|
| 958 | for(size_t i = 0; i < numberNonMovable; ++i)
|
| 959 | {
|
| 960 | size_t indexNonMovable = i + rand.Generate() % (uint32_t)(allocations.size() - i);
|
| 961 | if(indexNonMovable != i)
|
| 962 | std::swap(allocations[i], allocations[indexNonMovable]);
|
| 963 | }
|
| 964 |
|
| 965 | VmaDefragmentationStats defragStats;
|
| 966 | Defragment(
|
| 967 | allocations.data() + numberNonMovable,
|
| 968 | allocations.size() - numberNonMovable,
|
| 969 | nullptr, &defragStats);
|
| 970 |
|
| 971 | ValidateAllocationsData(allocations.data(), allocations.size());
|
| 972 |
|
| 973 | DestroyAllAllocations(allocations);
|
| 974 | }
|
| 975 | }
|
| 976 |
|
| 977 | vmaDestroyPool(g_hAllocator, pool);
|
| 978 | }
|
| 979 |
|
| 980 | void TestDefragmentationFull()
|
| 981 | {
|
| 982 | std::vector<AllocInfo> allocations;
|
| 983 |
|
| 984 | // Create initial allocations.
|
| 985 | for(size_t i = 0; i < 400; ++i)
|
| 986 | {
|
| 987 | AllocInfo allocation;
|
| 988 | CreateAllocation(allocation, g_hAllocator);
|
| 989 | allocations.push_back(allocation);
|
| 990 | }
|
| 991 |
|
| 992 | // Delete random allocations
|
| 993 | const size_t allocationsToDeletePercent = 80;
|
| 994 | size_t allocationsToDelete = allocations.size() * allocationsToDeletePercent / 100;
|
| 995 | for(size_t i = 0; i < allocationsToDelete; ++i)
|
| 996 | {
|
| 997 | size_t index = (size_t)rand() % allocations.size();
|
| 998 | DestroyAllocation(allocations[index]);
|
| 999 | allocations.erase(allocations.begin() + index);
|
| 1000 | }
|
| 1001 |
|
| 1002 | for(size_t i = 0; i < allocations.size(); ++i)
|
| 1003 | ValidateAllocationData(allocations[i]);
|
| 1004 |
|
Adam Sawicki | e44c626 | 2018-06-15 14:30:39 +0200 | [diff] [blame] | 1005 | SaveAllocatorStatsToFile(L"Before.csv");
|
Adam Sawicki | b8333fb | 2018-03-13 16:15:53 +0100 | [diff] [blame] | 1006 |
|
| 1007 | {
|
| 1008 | std::vector<VmaAllocation> vmaAllocations(allocations.size());
|
| 1009 | for(size_t i = 0; i < allocations.size(); ++i)
|
| 1010 | vmaAllocations[i] = allocations[i].m_Allocation;
|
| 1011 |
|
| 1012 | const size_t nonMovablePercent = 0;
|
| 1013 | size_t nonMovableCount = vmaAllocations.size() * nonMovablePercent / 100;
|
| 1014 | for(size_t i = 0; i < nonMovableCount; ++i)
|
| 1015 | {
|
| 1016 | size_t index = (size_t)rand() % vmaAllocations.size();
|
| 1017 | vmaAllocations.erase(vmaAllocations.begin() + index);
|
| 1018 | }
|
| 1019 |
|
| 1020 | const uint32_t defragCount = 1;
|
| 1021 | for(uint32_t defragIndex = 0; defragIndex < defragCount; ++defragIndex)
|
| 1022 | {
|
| 1023 | std::vector<VkBool32> allocationsChanged(vmaAllocations.size());
|
| 1024 |
|
| 1025 | VmaDefragmentationInfo defragmentationInfo;
|
| 1026 | defragmentationInfo.maxAllocationsToMove = UINT_MAX;
|
| 1027 | defragmentationInfo.maxBytesToMove = SIZE_MAX;
|
| 1028 |
|
| 1029 | wprintf(L"Defragmentation #%u\n", defragIndex);
|
| 1030 |
|
| 1031 | time_point begTime = std::chrono::high_resolution_clock::now();
|
| 1032 |
|
| 1033 | VmaDefragmentationStats stats;
|
| 1034 | VkResult res = vmaDefragment(g_hAllocator, vmaAllocations.data(), vmaAllocations.size(), allocationsChanged.data(), &defragmentationInfo, &stats);
|
| 1035 | assert(res >= 0);
|
| 1036 |
|
| 1037 | float defragmentDuration = ToFloatSeconds(std::chrono::high_resolution_clock::now() - begTime);
|
| 1038 |
|
| 1039 | wprintf(L"Moved allocations %u, bytes %llu\n", stats.allocationsMoved, stats.bytesMoved);
|
| 1040 | wprintf(L"Freed blocks %u, bytes %llu\n", stats.deviceMemoryBlocksFreed, stats.bytesFreed);
|
| 1041 | wprintf(L"Time: %.2f s\n", defragmentDuration);
|
| 1042 |
|
| 1043 | for(size_t i = 0; i < vmaAllocations.size(); ++i)
|
| 1044 | {
|
| 1045 | if(allocationsChanged[i])
|
| 1046 | {
|
| 1047 | RecreateAllocationResource(allocations[i]);
|
| 1048 | }
|
| 1049 | }
|
| 1050 |
|
| 1051 | for(size_t i = 0; i < allocations.size(); ++i)
|
| 1052 | ValidateAllocationData(allocations[i]);
|
| 1053 |
|
| 1054 | wchar_t fileName[MAX_PATH];
|
| 1055 | swprintf(fileName, MAX_PATH, L"After_%02u.csv", defragIndex);
|
Adam Sawicki | e44c626 | 2018-06-15 14:30:39 +0200 | [diff] [blame] | 1056 | SaveAllocatorStatsToFile(fileName);
|
Adam Sawicki | b8333fb | 2018-03-13 16:15:53 +0100 | [diff] [blame] | 1057 | }
|
| 1058 | }
|
| 1059 |
|
| 1060 | // Destroy all remaining allocations.
|
| 1061 | DestroyAllAllocations(allocations);
|
| 1062 | }
|
| 1063 |
|
| 1064 | static void TestUserData()
|
| 1065 | {
|
| 1066 | VkResult res;
|
| 1067 |
|
| 1068 | VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
|
| 1069 | bufCreateInfo.usage = VK_BUFFER_USAGE_INDEX_BUFFER_BIT;
|
| 1070 | bufCreateInfo.size = 0x10000;
|
| 1071 |
|
| 1072 | for(uint32_t testIndex = 0; testIndex < 2; ++testIndex)
|
| 1073 | {
|
| 1074 | // Opaque pointer
|
| 1075 | {
|
| 1076 |
|
| 1077 | void* numberAsPointer = (void*)(size_t)0xC2501FF3u;
|
| 1078 | void* pointerToSomething = &res;
|
| 1079 |
|
| 1080 | VmaAllocationCreateInfo allocCreateInfo = {};
|
| 1081 | allocCreateInfo.usage = VMA_MEMORY_USAGE_CPU_ONLY;
|
| 1082 | allocCreateInfo.pUserData = numberAsPointer;
|
| 1083 | if(testIndex == 1)
|
| 1084 | allocCreateInfo.flags |= VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT;
|
| 1085 |
|
| 1086 | VkBuffer buf; VmaAllocation alloc; VmaAllocationInfo allocInfo;
|
| 1087 | res = vmaCreateBuffer(g_hAllocator, &bufCreateInfo, &allocCreateInfo, &buf, &alloc, &allocInfo);
|
| 1088 | assert(res == VK_SUCCESS);
|
| 1089 | assert(allocInfo.pUserData = numberAsPointer);
|
| 1090 |
|
| 1091 | vmaGetAllocationInfo(g_hAllocator, alloc, &allocInfo);
|
| 1092 | assert(allocInfo.pUserData == numberAsPointer);
|
| 1093 |
|
| 1094 | vmaSetAllocationUserData(g_hAllocator, alloc, pointerToSomething);
|
| 1095 | vmaGetAllocationInfo(g_hAllocator, alloc, &allocInfo);
|
| 1096 | assert(allocInfo.pUserData == pointerToSomething);
|
| 1097 |
|
| 1098 | vmaDestroyBuffer(g_hAllocator, buf, alloc);
|
| 1099 | }
|
| 1100 |
|
| 1101 | // String
|
| 1102 | {
|
| 1103 | const char* name1 = "Buffer name \\\"\'<>&% \nSecond line .,;=";
|
| 1104 | const char* name2 = "2";
|
| 1105 | const size_t name1Len = strlen(name1);
|
| 1106 |
|
| 1107 | char* name1Buf = new char[name1Len + 1];
|
| 1108 | strcpy_s(name1Buf, name1Len + 1, name1);
|
| 1109 |
|
| 1110 | VmaAllocationCreateInfo allocCreateInfo = {};
|
| 1111 | allocCreateInfo.usage = VMA_MEMORY_USAGE_CPU_ONLY;
|
| 1112 | allocCreateInfo.flags = VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT;
|
| 1113 | allocCreateInfo.pUserData = name1Buf;
|
| 1114 | if(testIndex == 1)
|
| 1115 | allocCreateInfo.flags |= VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT;
|
| 1116 |
|
| 1117 | VkBuffer buf; VmaAllocation alloc; VmaAllocationInfo allocInfo;
|
| 1118 | res = vmaCreateBuffer(g_hAllocator, &bufCreateInfo, &allocCreateInfo, &buf, &alloc, &allocInfo);
|
| 1119 | assert(res == VK_SUCCESS);
|
| 1120 | assert(allocInfo.pUserData != nullptr && allocInfo.pUserData != name1Buf);
|
| 1121 | assert(strcmp(name1, (const char*)allocInfo.pUserData) == 0);
|
| 1122 |
|
| 1123 | delete[] name1Buf;
|
| 1124 |
|
| 1125 | vmaGetAllocationInfo(g_hAllocator, alloc, &allocInfo);
|
| 1126 | assert(strcmp(name1, (const char*)allocInfo.pUserData) == 0);
|
| 1127 |
|
| 1128 | vmaSetAllocationUserData(g_hAllocator, alloc, (void*)name2);
|
| 1129 | vmaGetAllocationInfo(g_hAllocator, alloc, &allocInfo);
|
| 1130 | assert(strcmp(name2, (const char*)allocInfo.pUserData) == 0);
|
| 1131 |
|
| 1132 | vmaSetAllocationUserData(g_hAllocator, alloc, nullptr);
|
| 1133 | vmaGetAllocationInfo(g_hAllocator, alloc, &allocInfo);
|
| 1134 | assert(allocInfo.pUserData == nullptr);
|
| 1135 |
|
| 1136 | vmaDestroyBuffer(g_hAllocator, buf, alloc);
|
| 1137 | }
|
| 1138 | }
|
| 1139 | }
|
| 1140 |
|
| 1141 | static void TestMemoryRequirements()
|
| 1142 | {
|
| 1143 | VkResult res;
|
| 1144 | VkBuffer buf;
|
| 1145 | VmaAllocation alloc;
|
| 1146 | VmaAllocationInfo allocInfo;
|
| 1147 |
|
| 1148 | const VkPhysicalDeviceMemoryProperties* memProps;
|
| 1149 | vmaGetMemoryProperties(g_hAllocator, &memProps);
|
| 1150 |
|
| 1151 | VkBufferCreateInfo bufInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
|
| 1152 | bufInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
|
| 1153 | bufInfo.size = 128;
|
| 1154 |
|
| 1155 | VmaAllocationCreateInfo allocCreateInfo = {};
|
| 1156 |
|
| 1157 | // No requirements.
|
| 1158 | res = vmaCreateBuffer(g_hAllocator, &bufInfo, &allocCreateInfo, &buf, &alloc, &allocInfo);
|
| 1159 | assert(res == VK_SUCCESS);
|
| 1160 | vmaDestroyBuffer(g_hAllocator, buf, alloc);
|
| 1161 |
|
| 1162 | // Usage.
|
| 1163 | allocCreateInfo.usage = VMA_MEMORY_USAGE_CPU_ONLY;
|
| 1164 | allocCreateInfo.requiredFlags = 0;
|
| 1165 | allocCreateInfo.preferredFlags = 0;
|
| 1166 | allocCreateInfo.memoryTypeBits = UINT32_MAX;
|
| 1167 |
|
| 1168 | res = vmaCreateBuffer(g_hAllocator, &bufInfo, &allocCreateInfo, &buf, &alloc, &allocInfo);
|
| 1169 | assert(res == VK_SUCCESS);
|
| 1170 | assert(memProps->memoryTypes[allocInfo.memoryType].propertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT);
|
| 1171 | vmaDestroyBuffer(g_hAllocator, buf, alloc);
|
| 1172 |
|
| 1173 | // Required flags, preferred flags.
|
| 1174 | allocCreateInfo.usage = VMA_MEMORY_USAGE_UNKNOWN;
|
| 1175 | allocCreateInfo.requiredFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT;
|
| 1176 | allocCreateInfo.preferredFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT | VK_MEMORY_PROPERTY_HOST_CACHED_BIT;
|
| 1177 | allocCreateInfo.memoryTypeBits = 0;
|
| 1178 |
|
| 1179 | res = vmaCreateBuffer(g_hAllocator, &bufInfo, &allocCreateInfo, &buf, &alloc, &allocInfo);
|
| 1180 | assert(res == VK_SUCCESS);
|
| 1181 | assert(memProps->memoryTypes[allocInfo.memoryType].propertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT);
|
| 1182 | assert(memProps->memoryTypes[allocInfo.memoryType].propertyFlags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT);
|
| 1183 | vmaDestroyBuffer(g_hAllocator, buf, alloc);
|
| 1184 |
|
| 1185 | // memoryTypeBits.
|
| 1186 | const uint32_t memType = allocInfo.memoryType;
|
| 1187 | allocCreateInfo.usage = VMA_MEMORY_USAGE_CPU_ONLY;
|
| 1188 | allocCreateInfo.requiredFlags = 0;
|
| 1189 | allocCreateInfo.preferredFlags = 0;
|
| 1190 | allocCreateInfo.memoryTypeBits = 1u << memType;
|
| 1191 |
|
| 1192 | res = vmaCreateBuffer(g_hAllocator, &bufInfo, &allocCreateInfo, &buf, &alloc, &allocInfo);
|
| 1193 | assert(res == VK_SUCCESS);
|
| 1194 | assert(allocInfo.memoryType == memType);
|
| 1195 | vmaDestroyBuffer(g_hAllocator, buf, alloc);
|
| 1196 |
|
| 1197 | }
|
| 1198 |
|
| 1199 | static void TestBasics()
|
| 1200 | {
|
| 1201 | VkResult res;
|
| 1202 |
|
| 1203 | TestMemoryRequirements();
|
| 1204 |
|
| 1205 | // Lost allocation
|
| 1206 | {
|
| 1207 | VmaAllocation alloc = VK_NULL_HANDLE;
|
| 1208 | vmaCreateLostAllocation(g_hAllocator, &alloc);
|
| 1209 | assert(alloc != VK_NULL_HANDLE);
|
| 1210 |
|
| 1211 | VmaAllocationInfo allocInfo;
|
| 1212 | vmaGetAllocationInfo(g_hAllocator, alloc, &allocInfo);
|
| 1213 | assert(allocInfo.deviceMemory == VK_NULL_HANDLE);
|
| 1214 | assert(allocInfo.size == 0);
|
| 1215 |
|
| 1216 | vmaFreeMemory(g_hAllocator, alloc);
|
| 1217 | }
|
| 1218 |
|
| 1219 | // Allocation that is MAPPED and not necessarily HOST_VISIBLE.
|
| 1220 | {
|
| 1221 | VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
|
| 1222 | bufCreateInfo.usage = VK_BUFFER_USAGE_INDEX_BUFFER_BIT;
|
| 1223 | bufCreateInfo.size = 128;
|
| 1224 |
|
| 1225 | VmaAllocationCreateInfo allocCreateInfo = {};
|
| 1226 | allocCreateInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY;
|
| 1227 | allocCreateInfo.flags = VMA_ALLOCATION_CREATE_MAPPED_BIT;
|
| 1228 |
|
| 1229 | VkBuffer buf; VmaAllocation alloc; VmaAllocationInfo allocInfo;
|
| 1230 | res = vmaCreateBuffer(g_hAllocator, &bufCreateInfo, &allocCreateInfo, &buf, &alloc, &allocInfo);
|
| 1231 | assert(res == VK_SUCCESS);
|
| 1232 |
|
| 1233 | vmaDestroyBuffer(g_hAllocator, buf, alloc);
|
| 1234 |
|
| 1235 | // Same with OWN_MEMORY.
|
| 1236 | allocCreateInfo.flags |= VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT;
|
| 1237 |
|
| 1238 | res = vmaCreateBuffer(g_hAllocator, &bufCreateInfo, &allocCreateInfo, &buf, &alloc, &allocInfo);
|
| 1239 | assert(res == VK_SUCCESS);
|
| 1240 |
|
| 1241 | vmaDestroyBuffer(g_hAllocator, buf, alloc);
|
| 1242 | }
|
| 1243 |
|
| 1244 | TestUserData();
|
| 1245 | }
|
| 1246 |
|
| 1247 | void TestHeapSizeLimit()
|
| 1248 | {
|
| 1249 | const VkDeviceSize HEAP_SIZE_LIMIT = 1ull * 1024 * 1024 * 1024; // 1 GB
|
| 1250 | const VkDeviceSize BLOCK_SIZE = 128ull * 1024 * 1024; // 128 MB
|
| 1251 |
|
| 1252 | VkDeviceSize heapSizeLimit[VK_MAX_MEMORY_HEAPS];
|
| 1253 | for(uint32_t i = 0; i < VK_MAX_MEMORY_HEAPS; ++i)
|
| 1254 | {
|
| 1255 | heapSizeLimit[i] = HEAP_SIZE_LIMIT;
|
| 1256 | }
|
| 1257 |
|
| 1258 | VmaAllocatorCreateInfo allocatorCreateInfo = {};
|
| 1259 | allocatorCreateInfo.physicalDevice = g_hPhysicalDevice;
|
| 1260 | allocatorCreateInfo.device = g_hDevice;
|
| 1261 | allocatorCreateInfo.pHeapSizeLimit = heapSizeLimit;
|
| 1262 |
|
| 1263 | VmaAllocator hAllocator;
|
| 1264 | VkResult res = vmaCreateAllocator(&allocatorCreateInfo, &hAllocator);
|
| 1265 | assert(res == VK_SUCCESS);
|
| 1266 |
|
| 1267 | struct Item
|
| 1268 | {
|
| 1269 | VkBuffer hBuf;
|
| 1270 | VmaAllocation hAlloc;
|
| 1271 | };
|
| 1272 | std::vector<Item> items;
|
| 1273 |
|
| 1274 | VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
|
| 1275 | bufCreateInfo.usage = VK_BUFFER_USAGE_VERTEX_BUFFER_BIT;
|
| 1276 |
|
| 1277 | // 1. Allocate two blocks of Own Memory, half the size of BLOCK_SIZE.
|
| 1278 | VmaAllocationInfo ownAllocInfo;
|
| 1279 | {
|
| 1280 | VmaAllocationCreateInfo allocCreateInfo = {};
|
| 1281 | allocCreateInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY;
|
| 1282 | allocCreateInfo.flags = VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT;
|
| 1283 |
|
| 1284 | bufCreateInfo.size = BLOCK_SIZE / 2;
|
| 1285 |
|
| 1286 | for(size_t i = 0; i < 2; ++i)
|
| 1287 | {
|
| 1288 | Item item;
|
| 1289 | res = vmaCreateBuffer(hAllocator, &bufCreateInfo, &allocCreateInfo, &item.hBuf, &item.hAlloc, &ownAllocInfo);
|
| 1290 | assert(res == VK_SUCCESS);
|
| 1291 | items.push_back(item);
|
| 1292 | }
|
| 1293 | }
|
| 1294 |
|
| 1295 | // Create pool to make sure allocations must be out of this memory type.
|
| 1296 | VmaPoolCreateInfo poolCreateInfo = {};
|
| 1297 | poolCreateInfo.memoryTypeIndex = ownAllocInfo.memoryType;
|
| 1298 | poolCreateInfo.blockSize = BLOCK_SIZE;
|
| 1299 |
|
| 1300 | VmaPool hPool;
|
| 1301 | res = vmaCreatePool(hAllocator, &poolCreateInfo, &hPool);
|
| 1302 | assert(res == VK_SUCCESS);
|
| 1303 |
|
| 1304 | // 2. Allocate normal buffers from all the remaining memory.
|
| 1305 | {
|
| 1306 | VmaAllocationCreateInfo allocCreateInfo = {};
|
| 1307 | allocCreateInfo.pool = hPool;
|
| 1308 |
|
| 1309 | bufCreateInfo.size = BLOCK_SIZE / 2;
|
| 1310 |
|
| 1311 | const size_t bufCount = ((HEAP_SIZE_LIMIT / BLOCK_SIZE) - 1) * 2;
|
| 1312 | for(size_t i = 0; i < bufCount; ++i)
|
| 1313 | {
|
| 1314 | Item item;
|
| 1315 | res = vmaCreateBuffer(hAllocator, &bufCreateInfo, &allocCreateInfo, &item.hBuf, &item.hAlloc, nullptr);
|
| 1316 | assert(res == VK_SUCCESS);
|
| 1317 | items.push_back(item);
|
| 1318 | }
|
| 1319 | }
|
| 1320 |
|
| 1321 | // 3. Allocation of one more (even small) buffer should fail.
|
| 1322 | {
|
| 1323 | VmaAllocationCreateInfo allocCreateInfo = {};
|
| 1324 | allocCreateInfo.pool = hPool;
|
| 1325 |
|
| 1326 | bufCreateInfo.size = 128;
|
| 1327 |
|
| 1328 | VkBuffer hBuf;
|
| 1329 | VmaAllocation hAlloc;
|
| 1330 | res = vmaCreateBuffer(hAllocator, &bufCreateInfo, &allocCreateInfo, &hBuf, &hAlloc, nullptr);
|
| 1331 | assert(res == VK_ERROR_OUT_OF_DEVICE_MEMORY);
|
| 1332 | }
|
| 1333 |
|
| 1334 | // Destroy everything.
|
| 1335 | for(size_t i = items.size(); i--; )
|
| 1336 | {
|
| 1337 | vmaDestroyBuffer(hAllocator, items[i].hBuf, items[i].hAlloc);
|
| 1338 | }
|
| 1339 |
|
| 1340 | vmaDestroyPool(hAllocator, hPool);
|
| 1341 |
|
| 1342 | vmaDestroyAllocator(hAllocator);
|
| 1343 | }
|
| 1344 |
|
Adam Sawicki | 212a4a6 | 2018-06-14 15:44:45 +0200 | [diff] [blame] | 1345 | #if VMA_DEBUG_MARGIN
|
Adam Sawicki | 73b1665 | 2018-06-11 16:39:25 +0200 | [diff] [blame] | 1346 | static void TestDebugMargin()
|
| 1347 | {
|
| 1348 | if(VMA_DEBUG_MARGIN == 0)
|
| 1349 | {
|
| 1350 | return;
|
| 1351 | }
|
| 1352 |
|
| 1353 | VkBufferCreateInfo bufInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
|
Adam Sawicki | 212a4a6 | 2018-06-14 15:44:45 +0200 | [diff] [blame] | 1354 | bufInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
|
Adam Sawicki | 73b1665 | 2018-06-11 16:39:25 +0200 | [diff] [blame] | 1355 |
|
| 1356 | VmaAllocationCreateInfo allocCreateInfo = {};
|
Adam Sawicki | 212a4a6 | 2018-06-14 15:44:45 +0200 | [diff] [blame] | 1357 | allocCreateInfo.usage = VMA_MEMORY_USAGE_CPU_ONLY;
|
Adam Sawicki | 73b1665 | 2018-06-11 16:39:25 +0200 | [diff] [blame] | 1358 |
|
| 1359 | // Create few buffers of different size.
|
| 1360 | const size_t BUF_COUNT = 10;
|
| 1361 | BufferInfo buffers[BUF_COUNT];
|
| 1362 | VmaAllocationInfo allocInfo[BUF_COUNT];
|
| 1363 | for(size_t i = 0; i < 10; ++i)
|
| 1364 | {
|
| 1365 | bufInfo.size = (VkDeviceSize)(i + 1) * 64;
|
Adam Sawicki | 212a4a6 | 2018-06-14 15:44:45 +0200 | [diff] [blame] | 1366 | // Last one will be mapped.
|
| 1367 | allocCreateInfo.flags = (i == BUF_COUNT - 1) ? VMA_ALLOCATION_CREATE_MAPPED_BIT : 0;
|
Adam Sawicki | 73b1665 | 2018-06-11 16:39:25 +0200 | [diff] [blame] | 1368 |
|
| 1369 | VkResult res = vmaCreateBuffer(g_hAllocator, &bufInfo, &allocCreateInfo, &buffers[i].Buffer, &buffers[i].Allocation, &allocInfo[i]);
|
| 1370 | assert(res == VK_SUCCESS);
|
| 1371 | // Margin is preserved also at the beginning of a block.
|
| 1372 | assert(allocInfo[i].offset >= VMA_DEBUG_MARGIN);
|
Adam Sawicki | 212a4a6 | 2018-06-14 15:44:45 +0200 | [diff] [blame] | 1373 |
|
| 1374 | if(i == BUF_COUNT - 1)
|
| 1375 | {
|
| 1376 | // Fill with data.
|
| 1377 | assert(allocInfo[i].pMappedData != nullptr);
|
| 1378 | // Uncomment this "+ 1" to overwrite past end of allocation and check corruption detection.
|
| 1379 | memset(allocInfo[i].pMappedData, 0xFF, bufInfo.size /* + 1 */);
|
| 1380 | }
|
Adam Sawicki | 73b1665 | 2018-06-11 16:39:25 +0200 | [diff] [blame] | 1381 | }
|
| 1382 |
|
| 1383 | // Check if their offsets preserve margin between them.
|
| 1384 | std::sort(allocInfo, allocInfo + BUF_COUNT, [](const VmaAllocationInfo& lhs, const VmaAllocationInfo& rhs) -> bool
|
| 1385 | {
|
| 1386 | if(lhs.deviceMemory != rhs.deviceMemory)
|
| 1387 | {
|
| 1388 | return lhs.deviceMemory < rhs.deviceMemory;
|
| 1389 | }
|
| 1390 | return lhs.offset < rhs.offset;
|
| 1391 | });
|
| 1392 | for(size_t i = 1; i < BUF_COUNT; ++i)
|
| 1393 | {
|
| 1394 | if(allocInfo[i].deviceMemory == allocInfo[i - 1].deviceMemory)
|
| 1395 | {
|
| 1396 | assert(allocInfo[i].offset >= allocInfo[i - 1].offset + VMA_DEBUG_MARGIN);
|
| 1397 | }
|
| 1398 | }
|
| 1399 |
|
Adam Sawicki | 212a4a6 | 2018-06-14 15:44:45 +0200 | [diff] [blame] | 1400 | VkResult res = vmaCheckCorruption(g_hAllocator, UINT32_MAX);
|
| 1401 | assert(res == VK_SUCCESS);
|
| 1402 |
|
Adam Sawicki | 73b1665 | 2018-06-11 16:39:25 +0200 | [diff] [blame] | 1403 | // Destroy all buffers.
|
| 1404 | for(size_t i = BUF_COUNT; i--; )
|
| 1405 | {
|
| 1406 | vmaDestroyBuffer(g_hAllocator, buffers[i].Buffer, buffers[i].Allocation);
|
| 1407 | }
|
| 1408 | }
|
Adam Sawicki | 212a4a6 | 2018-06-14 15:44:45 +0200 | [diff] [blame] | 1409 | #endif
|
Adam Sawicki | 73b1665 | 2018-06-11 16:39:25 +0200 | [diff] [blame] | 1410 |
|
Adam Sawicki | 0876c0d | 2018-06-20 15:18:11 +0200 | [diff] [blame] | 1411 | static void TestLinearAllocator()
|
| 1412 | {
|
| 1413 | wprintf(L"Test linear allocator\n");
|
| 1414 |
|
| 1415 | RandomNumberGenerator rand{645332};
|
| 1416 |
|
| 1417 | VkBufferCreateInfo sampleBufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
|
| 1418 | sampleBufCreateInfo.size = 1024; // Whatever.
|
| 1419 | sampleBufCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_DST_BIT | VK_BUFFER_USAGE_VERTEX_BUFFER_BIT;
|
| 1420 |
|
| 1421 | VmaAllocationCreateInfo sampleAllocCreateInfo = {};
|
| 1422 | sampleAllocCreateInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY;
|
| 1423 |
|
| 1424 | VmaPoolCreateInfo poolCreateInfo = {};
|
| 1425 | VkResult res = vmaFindMemoryTypeIndexForBufferInfo(g_hAllocator, &sampleBufCreateInfo, &sampleAllocCreateInfo, &poolCreateInfo.memoryTypeIndex);
|
| 1426 | assert(res == VK_SUCCESS);
|
| 1427 |
|
Adam Sawicki | ee08277 | 2018-06-20 17:45:49 +0200 | [diff] [blame] | 1428 | poolCreateInfo.blockSize = 1024 * 300;
|
Adam Sawicki | 0876c0d | 2018-06-20 15:18:11 +0200 | [diff] [blame] | 1429 | poolCreateInfo.flags = VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT;
|
| 1430 | poolCreateInfo.minBlockCount = poolCreateInfo.maxBlockCount = 1;
|
| 1431 |
|
| 1432 | VmaPool pool = nullptr;
|
| 1433 | res = vmaCreatePool(g_hAllocator, &poolCreateInfo, &pool);
|
| 1434 | assert(res == VK_SUCCESS);
|
| 1435 |
|
| 1436 | VkBufferCreateInfo bufCreateInfo = sampleBufCreateInfo;
|
| 1437 |
|
| 1438 | VmaAllocationCreateInfo allocCreateInfo = {};
|
| 1439 | allocCreateInfo.pool = pool;
|
| 1440 |
|
| 1441 | constexpr size_t maxBufCount = 100;
|
| 1442 | std::vector<BufferInfo> bufInfo;
|
| 1443 |
|
| 1444 | constexpr VkDeviceSize bufSizeMin = 16;
|
| 1445 | constexpr VkDeviceSize bufSizeMax = 1024;
|
| 1446 | VmaAllocationInfo allocInfo;
|
| 1447 | VkDeviceSize prevOffset = 0;
|
| 1448 |
|
| 1449 | // Test one-time free.
|
| 1450 | for(size_t i = 0; i < 2; ++i)
|
| 1451 | {
|
| 1452 | // Allocate number of buffers of varying size that surely fit into this block.
|
| 1453 | VkDeviceSize bufSumSize = 0;
|
| 1454 | for(size_t i = 0; i < maxBufCount; ++i)
|
| 1455 | {
|
| 1456 | bufCreateInfo.size = bufSizeMin + rand.Generate() % (bufSizeMax - bufSizeMin);
|
| 1457 | BufferInfo newBufInfo;
|
| 1458 | res = vmaCreateBuffer(g_hAllocator, &bufCreateInfo, &allocCreateInfo,
|
| 1459 | &newBufInfo.Buffer, &newBufInfo.Allocation, &allocInfo);
|
| 1460 | assert(res == VK_SUCCESS);
|
| 1461 | assert(i == 0 || allocInfo.offset > prevOffset);
|
| 1462 | bufInfo.push_back(newBufInfo);
|
| 1463 | prevOffset = allocInfo.offset;
|
| 1464 | bufSumSize += bufCreateInfo.size;
|
| 1465 | }
|
| 1466 |
|
| 1467 | // Validate pool stats.
|
| 1468 | VmaPoolStats stats;
|
| 1469 | vmaGetPoolStats(g_hAllocator, pool, &stats);
|
| 1470 | assert(stats.size == poolCreateInfo.blockSize);
|
| 1471 | assert(stats.unusedSize = poolCreateInfo.blockSize - bufSumSize);
|
| 1472 | assert(stats.allocationCount == bufInfo.size());
|
| 1473 |
|
| 1474 | // Destroy the buffers in random order.
|
| 1475 | while(!bufInfo.empty())
|
| 1476 | {
|
| 1477 | const size_t indexToDestroy = rand.Generate() % bufInfo.size();
|
| 1478 | const BufferInfo& currBufInfo = bufInfo[indexToDestroy];
|
| 1479 | vmaDestroyBuffer(g_hAllocator, currBufInfo.Buffer, currBufInfo.Allocation);
|
| 1480 | bufInfo.erase(bufInfo.begin() + indexToDestroy);
|
| 1481 | }
|
| 1482 | }
|
| 1483 |
|
| 1484 | // Test stack.
|
| 1485 | {
|
| 1486 | // Allocate number of buffers of varying size that surely fit into this block.
|
| 1487 | for(size_t i = 0; i < maxBufCount; ++i)
|
| 1488 | {
|
| 1489 | bufCreateInfo.size = bufSizeMin + rand.Generate() % (bufSizeMax - bufSizeMin);
|
| 1490 | BufferInfo newBufInfo;
|
| 1491 | res = vmaCreateBuffer(g_hAllocator, &bufCreateInfo, &allocCreateInfo,
|
| 1492 | &newBufInfo.Buffer, &newBufInfo.Allocation, &allocInfo);
|
| 1493 | assert(res == VK_SUCCESS);
|
| 1494 | assert(i == 0 || allocInfo.offset > prevOffset);
|
| 1495 | bufInfo.push_back(newBufInfo);
|
| 1496 | prevOffset = allocInfo.offset;
|
| 1497 | }
|
| 1498 |
|
| 1499 | // Destroy few buffers from top of the stack.
|
| 1500 | for(size_t i = 0; i < maxBufCount / 5; ++i)
|
| 1501 | {
|
| 1502 | const BufferInfo& currBufInfo = bufInfo.back();
|
| 1503 | vmaDestroyBuffer(g_hAllocator, currBufInfo.Buffer, currBufInfo.Allocation);
|
| 1504 | bufInfo.pop_back();
|
| 1505 | }
|
| 1506 |
|
| 1507 | // Create some more
|
| 1508 | for(size_t i = 0; i < maxBufCount / 5; ++i)
|
| 1509 | {
|
| 1510 | bufCreateInfo.size = bufSizeMin + rand.Generate() % (bufSizeMax - bufSizeMin);
|
| 1511 | BufferInfo newBufInfo;
|
| 1512 | res = vmaCreateBuffer(g_hAllocator, &bufCreateInfo, &allocCreateInfo,
|
| 1513 | &newBufInfo.Buffer, &newBufInfo.Allocation, &allocInfo);
|
| 1514 | assert(res == VK_SUCCESS);
|
| 1515 | assert(i == 0 || allocInfo.offset > prevOffset);
|
| 1516 | bufInfo.push_back(newBufInfo);
|
| 1517 | prevOffset = allocInfo.offset;
|
| 1518 | }
|
| 1519 |
|
| 1520 | // Destroy the buffers in reverse order.
|
| 1521 | while(!bufInfo.empty())
|
| 1522 | {
|
| 1523 | const BufferInfo& currBufInfo = bufInfo.back();
|
| 1524 | vmaDestroyBuffer(g_hAllocator, currBufInfo.Buffer, currBufInfo.Allocation);
|
| 1525 | bufInfo.pop_back();
|
| 1526 | }
|
| 1527 | }
|
| 1528 |
|
Adam Sawicki | ee08277 | 2018-06-20 17:45:49 +0200 | [diff] [blame] | 1529 | // Test ring buffer.
|
| 1530 | {
|
| 1531 | // Allocate number of buffers that surely fit into this block.
|
| 1532 | bufCreateInfo.size = bufSizeMax;
|
| 1533 | for(size_t i = 0; i < maxBufCount; ++i)
|
| 1534 | {
|
| 1535 | BufferInfo newBufInfo;
|
| 1536 | res = vmaCreateBuffer(g_hAllocator, &bufCreateInfo, &allocCreateInfo,
|
| 1537 | &newBufInfo.Buffer, &newBufInfo.Allocation, &allocInfo);
|
| 1538 | assert(res == VK_SUCCESS);
|
| 1539 | assert(i == 0 || allocInfo.offset > prevOffset);
|
| 1540 | bufInfo.push_back(newBufInfo);
|
| 1541 | prevOffset = allocInfo.offset;
|
| 1542 | }
|
| 1543 |
|
| 1544 | // Free and allocate new buffers so many times that we make sure we wrap-around at least once.
|
| 1545 | const size_t buffersPerIter = maxBufCount / 10 - 1;
|
| 1546 | const size_t iterCount = poolCreateInfo.blockSize / bufCreateInfo.size / buffersPerIter * 2;
|
| 1547 | for(size_t iter = 0; iter < iterCount; ++iter)
|
| 1548 | {
|
| 1549 | for(size_t bufPerIter = 0; bufPerIter < buffersPerIter; ++bufPerIter)
|
| 1550 | {
|
| 1551 | const BufferInfo& currBufInfo = bufInfo.front();
|
| 1552 | vmaDestroyBuffer(g_hAllocator, currBufInfo.Buffer, currBufInfo.Allocation);
|
| 1553 | bufInfo.erase(bufInfo.begin());
|
| 1554 | }
|
| 1555 | for(size_t bufPerIter = 0; bufPerIter < buffersPerIter; ++bufPerIter)
|
| 1556 | {
|
| 1557 | BufferInfo newBufInfo;
|
| 1558 | res = vmaCreateBuffer(g_hAllocator, &bufCreateInfo, &allocCreateInfo,
|
| 1559 | &newBufInfo.Buffer, &newBufInfo.Allocation, &allocInfo);
|
| 1560 | assert(res == VK_SUCCESS);
|
| 1561 | bufInfo.push_back(newBufInfo);
|
| 1562 | }
|
| 1563 | }
|
| 1564 |
|
| 1565 | // Allocate buffers until we reach out-of-memory.
|
| 1566 | uint32_t debugIndex = 0;
|
| 1567 | while(res == VK_SUCCESS)
|
| 1568 | {
|
| 1569 | BufferInfo newBufInfo;
|
| 1570 | res = vmaCreateBuffer(g_hAllocator, &bufCreateInfo, &allocCreateInfo,
|
| 1571 | &newBufInfo.Buffer, &newBufInfo.Allocation, &allocInfo);
|
| 1572 | if(res == VK_SUCCESS)
|
| 1573 | {
|
| 1574 | bufInfo.push_back(newBufInfo);
|
| 1575 | }
|
| 1576 | else
|
| 1577 | {
|
| 1578 | assert(res == VK_ERROR_OUT_OF_DEVICE_MEMORY);
|
| 1579 | }
|
| 1580 | ++debugIndex;
|
| 1581 | }
|
| 1582 |
|
| 1583 | // Destroy the buffers in random order.
|
| 1584 | while(!bufInfo.empty())
|
| 1585 | {
|
| 1586 | const size_t indexToDestroy = rand.Generate() % bufInfo.size();
|
| 1587 | const BufferInfo& currBufInfo = bufInfo[indexToDestroy];
|
| 1588 | vmaDestroyBuffer(g_hAllocator, currBufInfo.Buffer, currBufInfo.Allocation);
|
| 1589 | bufInfo.erase(bufInfo.begin() + indexToDestroy);
|
| 1590 | }
|
| 1591 | }
|
| 1592 |
|
Adam Sawicki | 680b225 | 2018-08-22 14:47:32 +0200 | [diff] [blame] | 1593 | // Test double stack.
|
| 1594 | {
|
| 1595 | // Allocate number of buffers of varying size that surely fit into this block, alternate from bottom/top.
|
| 1596 | VkDeviceSize prevOffsetLower = 0;
|
| 1597 | VkDeviceSize prevOffsetUpper = poolCreateInfo.blockSize;
|
| 1598 | for(size_t i = 0; i < maxBufCount; ++i)
|
| 1599 | {
|
| 1600 | const bool upperAddress = (i % 2) != 0;
|
| 1601 | if(upperAddress)
|
| 1602 | allocCreateInfo.flags |= VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT;
|
| 1603 | else
|
| 1604 | allocCreateInfo.flags &= ~VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT;
|
| 1605 | bufCreateInfo.size = bufSizeMin + rand.Generate() % (bufSizeMax - bufSizeMin);
|
| 1606 | BufferInfo newBufInfo;
|
| 1607 | res = vmaCreateBuffer(g_hAllocator, &bufCreateInfo, &allocCreateInfo,
|
| 1608 | &newBufInfo.Buffer, &newBufInfo.Allocation, &allocInfo);
|
| 1609 | assert(res == VK_SUCCESS);
|
| 1610 | if(upperAddress)
|
| 1611 | {
|
| 1612 | assert(allocInfo.offset < prevOffsetUpper);
|
| 1613 | prevOffsetUpper = allocInfo.offset;
|
| 1614 | }
|
| 1615 | else
|
| 1616 | {
|
| 1617 | assert(allocInfo.offset >= prevOffsetLower);
|
| 1618 | prevOffsetLower = allocInfo.offset;
|
| 1619 | }
|
| 1620 | assert(prevOffsetLower < prevOffsetUpper);
|
| 1621 | bufInfo.push_back(newBufInfo);
|
| 1622 | }
|
| 1623 |
|
| 1624 | // Destroy few buffers from top of the stack.
|
| 1625 | for(size_t i = 0; i < maxBufCount / 5; ++i)
|
| 1626 | {
|
| 1627 | const BufferInfo& currBufInfo = bufInfo.back();
|
| 1628 | vmaDestroyBuffer(g_hAllocator, currBufInfo.Buffer, currBufInfo.Allocation);
|
| 1629 | bufInfo.pop_back();
|
| 1630 | }
|
| 1631 |
|
| 1632 | // Create some more
|
| 1633 | for(size_t i = 0; i < maxBufCount / 5; ++i)
|
| 1634 | {
|
| 1635 | const bool upperAddress = (i % 2) != 0;
|
| 1636 | if(upperAddress)
|
| 1637 | allocCreateInfo.flags |= VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT;
|
| 1638 | else
|
| 1639 | allocCreateInfo.flags &= ~VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT;
|
| 1640 | bufCreateInfo.size = bufSizeMin + rand.Generate() % (bufSizeMax - bufSizeMin);
|
| 1641 | BufferInfo newBufInfo;
|
| 1642 | res = vmaCreateBuffer(g_hAllocator, &bufCreateInfo, &allocCreateInfo,
|
| 1643 | &newBufInfo.Buffer, &newBufInfo.Allocation, &allocInfo);
|
| 1644 | assert(res == VK_SUCCESS);
|
| 1645 | bufInfo.push_back(newBufInfo);
|
| 1646 | }
|
| 1647 |
|
| 1648 | // Destroy the buffers in reverse order.
|
| 1649 | while(!bufInfo.empty())
|
| 1650 | {
|
| 1651 | const BufferInfo& currBufInfo = bufInfo.back();
|
| 1652 | vmaDestroyBuffer(g_hAllocator, currBufInfo.Buffer, currBufInfo.Allocation);
|
| 1653 | bufInfo.pop_back();
|
| 1654 | }
|
| 1655 |
|
| 1656 | // Create buffers on both sides until we reach out of memory.
|
| 1657 | prevOffsetLower = 0;
|
| 1658 | prevOffsetUpper = poolCreateInfo.blockSize;
|
| 1659 | res = VK_SUCCESS;
|
| 1660 | for(size_t i = 0; res == VK_SUCCESS; ++i)
|
| 1661 | {
|
| 1662 | const bool upperAddress = (i % 2) != 0;
|
| 1663 | if(upperAddress)
|
| 1664 | allocCreateInfo.flags |= VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT;
|
| 1665 | else
|
| 1666 | allocCreateInfo.flags &= ~VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT;
|
| 1667 | bufCreateInfo.size = bufSizeMin + rand.Generate() % (bufSizeMax - bufSizeMin);
|
| 1668 | BufferInfo newBufInfo;
|
| 1669 | res = vmaCreateBuffer(g_hAllocator, &bufCreateInfo, &allocCreateInfo,
|
| 1670 | &newBufInfo.Buffer, &newBufInfo.Allocation, &allocInfo);
|
| 1671 | if(res == VK_SUCCESS)
|
| 1672 | {
|
| 1673 | if(upperAddress)
|
| 1674 | {
|
| 1675 | assert(allocInfo.offset < prevOffsetUpper);
|
| 1676 | prevOffsetUpper = allocInfo.offset;
|
| 1677 | }
|
| 1678 | else
|
| 1679 | {
|
| 1680 | assert(allocInfo.offset >= prevOffsetLower);
|
| 1681 | prevOffsetLower = allocInfo.offset;
|
| 1682 | }
|
| 1683 | assert(prevOffsetLower < prevOffsetUpper);
|
| 1684 | bufInfo.push_back(newBufInfo);
|
| 1685 | }
|
| 1686 | }
|
| 1687 |
|
| 1688 | // Destroy the buffers in random order.
|
| 1689 | while(!bufInfo.empty())
|
| 1690 | {
|
| 1691 | const size_t indexToDestroy = rand.Generate() % bufInfo.size();
|
| 1692 | const BufferInfo& currBufInfo = bufInfo[indexToDestroy];
|
| 1693 | vmaDestroyBuffer(g_hAllocator, currBufInfo.Buffer, currBufInfo.Allocation);
|
| 1694 | bufInfo.erase(bufInfo.begin() + indexToDestroy);
|
| 1695 | }
|
| 1696 |
|
| 1697 | // Create buffers on upper side only, constant size, until we reach out of memory.
|
| 1698 | prevOffsetUpper = poolCreateInfo.blockSize;
|
| 1699 | res = VK_SUCCESS;
|
| 1700 | allocCreateInfo.flags |= VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT;
|
| 1701 | bufCreateInfo.size = bufSizeMax;
|
| 1702 | for(size_t i = 0; res == VK_SUCCESS; ++i)
|
| 1703 | {
|
| 1704 | BufferInfo newBufInfo;
|
| 1705 | res = vmaCreateBuffer(g_hAllocator, &bufCreateInfo, &allocCreateInfo,
|
| 1706 | &newBufInfo.Buffer, &newBufInfo.Allocation, &allocInfo);
|
| 1707 | if(res == VK_SUCCESS)
|
| 1708 | {
|
| 1709 | assert(allocInfo.offset < prevOffsetUpper);
|
| 1710 | prevOffsetUpper = allocInfo.offset;
|
| 1711 | bufInfo.push_back(newBufInfo);
|
| 1712 | }
|
| 1713 | }
|
| 1714 |
|
| 1715 | // Destroy the buffers in reverse order.
|
| 1716 | while(!bufInfo.empty())
|
| 1717 | {
|
| 1718 | const BufferInfo& currBufInfo = bufInfo.back();
|
| 1719 | vmaDestroyBuffer(g_hAllocator, currBufInfo.Buffer, currBufInfo.Allocation);
|
| 1720 | bufInfo.pop_back();
|
| 1721 | }
|
| 1722 | }
|
| 1723 |
|
Adam Sawicki | 8cfe05f | 2018-08-22 16:48:17 +0200 | [diff] [blame] | 1724 | // Test ring buffer with lost allocations.
|
| 1725 | {
|
| 1726 | // Allocate number of buffers until pool is full.
|
| 1727 | // Notice CAN_BECOME_LOST flag and call to vmaSetCurrentFrameIndex.
|
| 1728 | allocCreateInfo.flags = VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT;
|
| 1729 | res = VK_SUCCESS;
|
| 1730 | for(size_t i = 0; res == VK_SUCCESS; ++i)
|
| 1731 | {
|
| 1732 | vmaSetCurrentFrameIndex(g_hAllocator, ++g_FrameIndex);
|
| 1733 |
|
| 1734 | bufCreateInfo.size = bufSizeMin + rand.Generate() % (bufSizeMax - bufSizeMin);
|
| 1735 |
|
| 1736 | BufferInfo newBufInfo;
|
| 1737 | res = vmaCreateBuffer(g_hAllocator, &bufCreateInfo, &allocCreateInfo,
|
| 1738 | &newBufInfo.Buffer, &newBufInfo.Allocation, &allocInfo);
|
| 1739 | if(res == VK_SUCCESS)
|
| 1740 | bufInfo.push_back(newBufInfo);
|
| 1741 | }
|
| 1742 |
|
| 1743 | // Free first half of it.
|
| 1744 | {
|
| 1745 | const size_t buffersToDelete = bufInfo.size() / 2;
|
| 1746 | for(size_t i = 0; i < buffersToDelete; ++i)
|
| 1747 | {
|
| 1748 | vmaDestroyBuffer(g_hAllocator, bufInfo[i].Buffer, bufInfo[i].Allocation);
|
| 1749 | }
|
| 1750 | bufInfo.erase(bufInfo.begin(), bufInfo.begin() + buffersToDelete);
|
| 1751 | }
|
| 1752 |
|
| 1753 | // Allocate number of buffers until pool is full again.
|
Adam Sawicki | 0ebdf0c | 2018-08-22 17:02:44 +0200 | [diff] [blame] | 1754 | // This way we make sure ring buffers wraps around, front in in the middle.
|
Adam Sawicki | 8cfe05f | 2018-08-22 16:48:17 +0200 | [diff] [blame] | 1755 | res = VK_SUCCESS;
|
| 1756 | for(size_t i = 0; res == VK_SUCCESS; ++i)
|
| 1757 | {
|
| 1758 | vmaSetCurrentFrameIndex(g_hAllocator, ++g_FrameIndex);
|
| 1759 |
|
| 1760 | bufCreateInfo.size = bufSizeMin + rand.Generate() % (bufSizeMax - bufSizeMin);
|
| 1761 |
|
| 1762 | BufferInfo newBufInfo;
|
| 1763 | res = vmaCreateBuffer(g_hAllocator, &bufCreateInfo, &allocCreateInfo,
|
| 1764 | &newBufInfo.Buffer, &newBufInfo.Allocation, &allocInfo);
|
| 1765 | if(res == VK_SUCCESS)
|
| 1766 | bufInfo.push_back(newBufInfo);
|
| 1767 | }
|
| 1768 |
|
| 1769 | VkDeviceSize firstNewOffset;
|
| 1770 | {
|
| 1771 | vmaSetCurrentFrameIndex(g_hAllocator, ++g_FrameIndex);
|
| 1772 |
|
| 1773 | // Allocate a large buffer with CAN_MAKE_OTHER_LOST.
|
| 1774 | allocCreateInfo.flags = VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT;
|
| 1775 | bufCreateInfo.size = bufSizeMax;
|
| 1776 |
|
| 1777 | BufferInfo newBufInfo;
|
| 1778 | res = vmaCreateBuffer(g_hAllocator, &bufCreateInfo, &allocCreateInfo,
|
| 1779 | &newBufInfo.Buffer, &newBufInfo.Allocation, &allocInfo);
|
| 1780 | assert(res == VK_SUCCESS);
|
| 1781 | bufInfo.push_back(newBufInfo);
|
| 1782 | firstNewOffset = allocInfo.offset;
|
| 1783 |
|
| 1784 | // Make sure at least one buffer from the beginning became lost.
|
| 1785 | vmaGetAllocationInfo(g_hAllocator, bufInfo[0].Allocation, &allocInfo);
|
| 1786 | assert(allocInfo.deviceMemory == VK_NULL_HANDLE);
|
| 1787 | }
|
| 1788 |
|
| 1789 | // Allocate more buffers that CAN_MAKE_OTHER_LOST until we wrap-around with this.
|
| 1790 | size_t newCount = 1;
|
| 1791 | for(;;)
|
| 1792 | {
|
| 1793 | vmaSetCurrentFrameIndex(g_hAllocator, ++g_FrameIndex);
|
| 1794 |
|
| 1795 | bufCreateInfo.size = bufSizeMin + rand.Generate() % (bufSizeMax - bufSizeMin);
|
| 1796 |
|
| 1797 | BufferInfo newBufInfo;
|
| 1798 | res = vmaCreateBuffer(g_hAllocator, &bufCreateInfo, &allocCreateInfo,
|
| 1799 | &newBufInfo.Buffer, &newBufInfo.Allocation, &allocInfo);
|
| 1800 | assert(res == VK_SUCCESS);
|
| 1801 | bufInfo.push_back(newBufInfo);
|
| 1802 | ++newCount;
|
| 1803 | if(allocInfo.offset < firstNewOffset)
|
| 1804 | break;
|
| 1805 | }
|
| 1806 |
|
Adam Sawicki | 0ebdf0c | 2018-08-22 17:02:44 +0200 | [diff] [blame] | 1807 | // Delete buffers that are lost.
|
| 1808 | for(size_t i = bufInfo.size(); i--; )
|
| 1809 | {
|
| 1810 | vmaGetAllocationInfo(g_hAllocator, bufInfo[i].Allocation, &allocInfo);
|
| 1811 | if(allocInfo.deviceMemory == VK_NULL_HANDLE)
|
| 1812 | {
|
| 1813 | vmaDestroyBuffer(g_hAllocator, bufInfo[i].Buffer, bufInfo[i].Allocation);
|
| 1814 | bufInfo.erase(bufInfo.begin() + i);
|
| 1815 | }
|
| 1816 | }
|
| 1817 |
|
| 1818 | // Test vmaMakePoolAllocationsLost
|
| 1819 | {
|
| 1820 | vmaSetCurrentFrameIndex(g_hAllocator, ++g_FrameIndex);
|
| 1821 |
|
| 1822 | size_t lostAllocCount = SIZE_MAX;
|
| 1823 | vmaMakePoolAllocationsLost(g_hAllocator, pool, &lostAllocCount);
|
| 1824 | assert(lostAllocCount > 0);
|
| 1825 |
|
| 1826 | size_t realLostAllocCount = 0;
|
| 1827 | for(size_t i = 0; i < bufInfo.size(); ++i)
|
| 1828 | {
|
| 1829 | vmaGetAllocationInfo(g_hAllocator, bufInfo[i].Allocation, &allocInfo);
|
| 1830 | if(allocInfo.deviceMemory == VK_NULL_HANDLE)
|
| 1831 | ++realLostAllocCount;
|
| 1832 | }
|
| 1833 | assert(realLostAllocCount == lostAllocCount);
|
| 1834 | }
|
| 1835 |
|
Adam Sawicki | 8cfe05f | 2018-08-22 16:48:17 +0200 | [diff] [blame] | 1836 | // Destroy all the buffers in forward order.
|
| 1837 | for(size_t i = 0; i < bufInfo.size(); ++i)
|
| 1838 | vmaDestroyBuffer(g_hAllocator, bufInfo[i].Buffer, bufInfo[i].Allocation);
|
| 1839 | bufInfo.clear();
|
| 1840 | }
|
| 1841 |
|
Adam Sawicki | f799c4f | 2018-08-23 10:40:30 +0200 | [diff] [blame] | 1842 | // Try to create pool with maxBlockCount higher than 1. It should fail.
|
| 1843 | {
|
| 1844 | VmaPoolCreateInfo altPoolCreateInfo = poolCreateInfo;
|
| 1845 | altPoolCreateInfo.maxBlockCount = 2;
|
| 1846 |
|
| 1847 | VmaPool altPool = nullptr;
|
| 1848 | res = vmaCreatePool(g_hAllocator, &altPoolCreateInfo, &altPool);
|
| 1849 | assert(res != VK_SUCCESS);
|
| 1850 | }
|
| 1851 |
|
Adam Sawicki | 0876c0d | 2018-06-20 15:18:11 +0200 | [diff] [blame] | 1852 | vmaDestroyPool(g_hAllocator, pool);
|
| 1853 | }
|
| 1854 |
|
Adam Sawicki | fd11d75 | 2018-08-22 15:02:10 +0200 | [diff] [blame] | 1855 | static void ManuallyTestLinearAllocator()
|
| 1856 | {
|
| 1857 | VmaStats origStats;
|
| 1858 | vmaCalculateStats(g_hAllocator, &origStats);
|
| 1859 |
|
| 1860 | wprintf(L"Manually test linear allocator\n");
|
| 1861 |
|
| 1862 | RandomNumberGenerator rand{645332};
|
| 1863 |
|
| 1864 | VkBufferCreateInfo sampleBufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
|
| 1865 | sampleBufCreateInfo.size = 1024; // Whatever.
|
| 1866 | sampleBufCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_DST_BIT | VK_BUFFER_USAGE_VERTEX_BUFFER_BIT;
|
| 1867 |
|
| 1868 | VmaAllocationCreateInfo sampleAllocCreateInfo = {};
|
| 1869 | sampleAllocCreateInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY;
|
| 1870 |
|
| 1871 | VmaPoolCreateInfo poolCreateInfo = {};
|
| 1872 | VkResult res = vmaFindMemoryTypeIndexForBufferInfo(g_hAllocator, &sampleBufCreateInfo, &sampleAllocCreateInfo, &poolCreateInfo.memoryTypeIndex);
|
| 1873 | assert(res == VK_SUCCESS);
|
| 1874 |
|
| 1875 | poolCreateInfo.blockSize = 10 * 1024;
|
| 1876 | poolCreateInfo.flags = VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT;
|
| 1877 | poolCreateInfo.minBlockCount = poolCreateInfo.maxBlockCount = 1;
|
| 1878 |
|
| 1879 | VmaPool pool = nullptr;
|
| 1880 | res = vmaCreatePool(g_hAllocator, &poolCreateInfo, &pool);
|
| 1881 | assert(res == VK_SUCCESS);
|
| 1882 |
|
| 1883 | VkBufferCreateInfo bufCreateInfo = sampleBufCreateInfo;
|
| 1884 |
|
| 1885 | VmaAllocationCreateInfo allocCreateInfo = {};
|
| 1886 | allocCreateInfo.pool = pool;
|
| 1887 |
|
| 1888 | std::vector<BufferInfo> bufInfo;
|
| 1889 | VmaAllocationInfo allocInfo;
|
| 1890 | BufferInfo newBufInfo;
|
| 1891 |
|
| 1892 | // Test double stack.
|
| 1893 | {
|
| 1894 | /*
|
| 1895 | Lower: Buffer 32 B, Buffer 1024 B, Buffer 32 B
|
| 1896 | Upper: Buffer 16 B, Buffer 1024 B, Buffer 128 B
|
| 1897 |
|
| 1898 | Totally:
|
| 1899 | 1 block allocated
|
| 1900 | 10240 Vulkan bytes
|
| 1901 | 6 new allocations
|
| 1902 | 2256 bytes in allocations
|
| 1903 | */
|
| 1904 |
|
| 1905 | bufCreateInfo.size = 32;
|
| 1906 | res = vmaCreateBuffer(g_hAllocator, &bufCreateInfo, &allocCreateInfo,
|
| 1907 | &newBufInfo.Buffer, &newBufInfo.Allocation, &allocInfo);
|
| 1908 | assert(res == VK_SUCCESS);
|
| 1909 | bufInfo.push_back(newBufInfo);
|
| 1910 |
|
| 1911 | bufCreateInfo.size = 1024;
|
| 1912 | res = vmaCreateBuffer(g_hAllocator, &bufCreateInfo, &allocCreateInfo,
|
| 1913 | &newBufInfo.Buffer, &newBufInfo.Allocation, &allocInfo);
|
| 1914 | assert(res == VK_SUCCESS);
|
| 1915 | bufInfo.push_back(newBufInfo);
|
| 1916 |
|
| 1917 | bufCreateInfo.size = 32;
|
| 1918 | res = vmaCreateBuffer(g_hAllocator, &bufCreateInfo, &allocCreateInfo,
|
| 1919 | &newBufInfo.Buffer, &newBufInfo.Allocation, &allocInfo);
|
| 1920 | assert(res == VK_SUCCESS);
|
| 1921 | bufInfo.push_back(newBufInfo);
|
| 1922 |
|
| 1923 | allocCreateInfo.flags |= VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT;
|
| 1924 |
|
| 1925 | bufCreateInfo.size = 128;
|
| 1926 | res = vmaCreateBuffer(g_hAllocator, &bufCreateInfo, &allocCreateInfo,
|
| 1927 | &newBufInfo.Buffer, &newBufInfo.Allocation, &allocInfo);
|
| 1928 | assert(res == VK_SUCCESS);
|
| 1929 | bufInfo.push_back(newBufInfo);
|
| 1930 |
|
| 1931 | bufCreateInfo.size = 1024;
|
| 1932 | res = vmaCreateBuffer(g_hAllocator, &bufCreateInfo, &allocCreateInfo,
|
| 1933 | &newBufInfo.Buffer, &newBufInfo.Allocation, &allocInfo);
|
| 1934 | assert(res == VK_SUCCESS);
|
| 1935 | bufInfo.push_back(newBufInfo);
|
| 1936 |
|
| 1937 | bufCreateInfo.size = 16;
|
| 1938 | res = vmaCreateBuffer(g_hAllocator, &bufCreateInfo, &allocCreateInfo,
|
| 1939 | &newBufInfo.Buffer, &newBufInfo.Allocation, &allocInfo);
|
| 1940 | assert(res == VK_SUCCESS);
|
| 1941 | bufInfo.push_back(newBufInfo);
|
| 1942 |
|
| 1943 | VmaStats currStats;
|
| 1944 | vmaCalculateStats(g_hAllocator, &currStats);
|
| 1945 | VmaPoolStats poolStats;
|
| 1946 | vmaGetPoolStats(g_hAllocator, pool, &poolStats);
|
| 1947 |
|
| 1948 | char* statsStr = nullptr;
|
| 1949 | vmaBuildStatsString(g_hAllocator, &statsStr, VK_TRUE);
|
| 1950 |
|
| 1951 | // PUT BREAKPOINT HERE TO CHECK.
|
| 1952 | // Inspect: currStats versus origStats, poolStats, statsStr.
|
| 1953 | int I = 0;
|
| 1954 |
|
| 1955 | vmaFreeStatsString(g_hAllocator, statsStr);
|
| 1956 |
|
| 1957 | // Destroy the buffers in reverse order.
|
| 1958 | while(!bufInfo.empty())
|
| 1959 | {
|
| 1960 | const BufferInfo& currBufInfo = bufInfo.back();
|
| 1961 | vmaDestroyBuffer(g_hAllocator, currBufInfo.Buffer, currBufInfo.Allocation);
|
| 1962 | bufInfo.pop_back();
|
| 1963 | }
|
| 1964 | }
|
| 1965 |
|
| 1966 | vmaDestroyPool(g_hAllocator, pool);
|
| 1967 | }
|
| 1968 |
|
Adam Sawicki | 0a60713 | 2018-08-24 11:18:41 +0200 | [diff] [blame] | 1969 | static void BenchmarkLinearAllocatorCase(bool linear, bool empty, FREE_ORDER freeOrder)
|
| 1970 | {
|
| 1971 | RandomNumberGenerator rand{16223};
|
| 1972 |
|
| 1973 | const VkDeviceSize bufSizeMin = 32;
|
| 1974 | const VkDeviceSize bufSizeMax = 1024;
|
| 1975 | const size_t maxBufCapacity = 10000;
|
| 1976 | const uint32_t iterationCount = 10;
|
| 1977 |
|
| 1978 | VkBufferCreateInfo sampleBufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
|
| 1979 | sampleBufCreateInfo.size = bufSizeMax;
|
| 1980 | sampleBufCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_DST_BIT | VK_BUFFER_USAGE_VERTEX_BUFFER_BIT;
|
| 1981 |
|
| 1982 | VmaAllocationCreateInfo sampleAllocCreateInfo = {};
|
| 1983 | sampleAllocCreateInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY;
|
| 1984 |
|
| 1985 | VmaPoolCreateInfo poolCreateInfo = {};
|
| 1986 | VkResult res = vmaFindMemoryTypeIndexForBufferInfo(g_hAllocator, &sampleBufCreateInfo, &sampleAllocCreateInfo, &poolCreateInfo.memoryTypeIndex);
|
| 1987 | assert(res == VK_SUCCESS);
|
| 1988 |
|
| 1989 | poolCreateInfo.blockSize = bufSizeMax * maxBufCapacity;
|
| 1990 | if(linear)
|
| 1991 | poolCreateInfo.flags = VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT;
|
| 1992 | poolCreateInfo.minBlockCount = poolCreateInfo.maxBlockCount = 1;
|
| 1993 |
|
| 1994 | VmaPool pool = nullptr;
|
| 1995 | res = vmaCreatePool(g_hAllocator, &poolCreateInfo, &pool);
|
| 1996 | assert(res == VK_SUCCESS);
|
| 1997 |
|
| 1998 | // Buffer created just to get memory requirements. Never bound to any memory.
|
| 1999 | VkBuffer dummyBuffer = VK_NULL_HANDLE;
|
| 2000 | res = vkCreateBuffer(g_hDevice, &sampleBufCreateInfo, nullptr, &dummyBuffer);
|
| 2001 | assert(res == VK_SUCCESS && dummyBuffer);
|
| 2002 |
|
| 2003 | VkMemoryRequirements memReq = {};
|
| 2004 | vkGetBufferMemoryRequirements(g_hDevice, dummyBuffer, &memReq);
|
| 2005 |
|
| 2006 | vkDestroyBuffer(g_hDevice, dummyBuffer, nullptr);
|
| 2007 |
|
| 2008 | VmaAllocationCreateInfo allocCreateInfo = {};
|
| 2009 | allocCreateInfo.pool = pool;
|
| 2010 |
|
| 2011 | VmaAllocation alloc;
|
| 2012 | std::vector<VmaAllocation> baseAllocations;
|
| 2013 |
|
| 2014 | if(!empty)
|
| 2015 | {
|
| 2016 | // Make allocations up to half of pool size.
|
| 2017 | VkDeviceSize totalSize = 0;
|
| 2018 | while(totalSize < poolCreateInfo.blockSize / 2)
|
| 2019 | {
|
| 2020 | memReq.size = bufSizeMin + rand.Generate() % (bufSizeMax - bufSizeMin);
|
| 2021 | res = vmaAllocateMemory(g_hAllocator, &memReq, &allocCreateInfo, &alloc, nullptr);
|
| 2022 | assert(res == VK_SUCCESS);
|
| 2023 | baseAllocations.push_back(alloc);
|
| 2024 | totalSize += memReq.size;
|
| 2025 | }
|
| 2026 |
|
| 2027 | // Delete half of them, choose randomly.
|
| 2028 | size_t allocsToDelete = baseAllocations.size() / 2;
|
| 2029 | for(size_t i = 0; i < allocsToDelete; ++i)
|
| 2030 | {
|
| 2031 | const size_t index = (size_t)rand.Generate() % baseAllocations.size();
|
| 2032 | vmaFreeMemory(g_hAllocator, baseAllocations[index]);
|
| 2033 | baseAllocations.erase(baseAllocations.begin() + index);
|
| 2034 | }
|
| 2035 | }
|
| 2036 |
|
| 2037 | // BENCHMARK
|
| 2038 | const size_t allocCount = maxBufCapacity / 2;
|
| 2039 | std::vector<VmaAllocation> testAllocations;
|
| 2040 | testAllocations.reserve(allocCount);
|
| 2041 | duration allocTotalDuration = duration::zero();
|
| 2042 | duration freeTotalDuration = duration::zero();
|
| 2043 | for(uint32_t iterationIndex = 0; iterationIndex < iterationCount; ++iterationIndex)
|
| 2044 | {
|
| 2045 | // Allocations
|
| 2046 | time_point allocTimeBeg = std::chrono::high_resolution_clock::now();
|
| 2047 | for(size_t i = 0; i < allocCount; ++i)
|
| 2048 | {
|
| 2049 | memReq.size = bufSizeMin + rand.Generate() % (bufSizeMax - bufSizeMin);
|
| 2050 | res = vmaAllocateMemory(g_hAllocator, &memReq, &allocCreateInfo, &alloc, nullptr);
|
| 2051 | assert(res == VK_SUCCESS);
|
| 2052 | testAllocations.push_back(alloc);
|
| 2053 | }
|
| 2054 | allocTotalDuration += std::chrono::high_resolution_clock::now() - allocTimeBeg;
|
| 2055 |
|
| 2056 | // Deallocations
|
| 2057 | switch(freeOrder)
|
| 2058 | {
|
| 2059 | case FREE_ORDER::FORWARD:
|
| 2060 | // Leave testAllocations unchanged.
|
| 2061 | break;
|
| 2062 | case FREE_ORDER::BACKWARD:
|
| 2063 | std::reverse(testAllocations.begin(), testAllocations.end());
|
| 2064 | break;
|
| 2065 | case FREE_ORDER::RANDOM:
|
| 2066 | std::shuffle(testAllocations.begin(), testAllocations.end(), MyUniformRandomNumberGenerator(rand));
|
| 2067 | break;
|
| 2068 | default: assert(0);
|
| 2069 | }
|
| 2070 |
|
| 2071 | time_point freeTimeBeg = std::chrono::high_resolution_clock::now();
|
| 2072 | for(size_t i = 0; i < allocCount; ++i)
|
| 2073 | vmaFreeMemory(g_hAllocator, testAllocations[i]);
|
| 2074 | freeTotalDuration += std::chrono::high_resolution_clock::now() - freeTimeBeg;
|
| 2075 |
|
| 2076 | testAllocations.clear();
|
| 2077 | }
|
| 2078 |
|
| 2079 | // Delete baseAllocations
|
| 2080 | while(!baseAllocations.empty())
|
| 2081 | {
|
| 2082 | vmaFreeMemory(g_hAllocator, baseAllocations.back());
|
| 2083 | baseAllocations.pop_back();
|
| 2084 | }
|
| 2085 |
|
| 2086 | vmaDestroyPool(g_hAllocator, pool);
|
| 2087 |
|
| 2088 | wprintf(L" LinearAlgorithm=%u %s FreeOrder=%s: allocations %g s, free %g s\n",
|
| 2089 | linear ? 1 : 0,
|
| 2090 | empty ? L"Empty" : L"Not empty",
|
| 2091 | FREE_ORDER_NAMES[(size_t)freeOrder],
|
| 2092 | ToFloatSeconds(allocTotalDuration),
|
| 2093 | ToFloatSeconds(freeTotalDuration));
|
| 2094 | }
|
| 2095 |
|
| 2096 | static void BenchmarkLinearAllocator()
|
| 2097 | {
|
| 2098 | wprintf(L"Benchmark linear allocator\n");
|
| 2099 |
|
| 2100 | uint32_t freeOrderCount = 1;
|
| 2101 | if(ConfigType >= CONFIG_TYPE::CONFIG_TYPE_LARGE)
|
| 2102 | freeOrderCount = 3;
|
| 2103 | else if(ConfigType >= CONFIG_TYPE::CONFIG_TYPE_SMALL)
|
| 2104 | freeOrderCount = 2;
|
| 2105 |
|
| 2106 | const uint32_t emptyCount = ConfigType >= CONFIG_TYPE::CONFIG_TYPE_SMALL ? 2 : 1;
|
| 2107 |
|
| 2108 | for(uint32_t freeOrderIndex = 0; freeOrderIndex < freeOrderCount; ++freeOrderIndex)
|
| 2109 | {
|
| 2110 | FREE_ORDER freeOrder = FREE_ORDER::COUNT;
|
| 2111 | switch(freeOrderIndex)
|
| 2112 | {
|
| 2113 | case 0: freeOrder = FREE_ORDER::BACKWARD; break;
|
| 2114 | case 1: freeOrder = FREE_ORDER::FORWARD; break;
|
| 2115 | case 2: freeOrder = FREE_ORDER::RANDOM; break;
|
| 2116 | default: assert(0);
|
| 2117 | }
|
| 2118 |
|
| 2119 | for(uint32_t emptyIndex = 0; emptyIndex < emptyCount; ++emptyIndex)
|
| 2120 | {
|
| 2121 | for(uint32_t linearIndex = 0; linearIndex < 2; ++linearIndex)
|
| 2122 | {
|
| 2123 | BenchmarkLinearAllocatorCase(
|
| 2124 | linearIndex ? 1 : 0, // linear
|
| 2125 | emptyIndex ? 0 : 1, // empty
|
| 2126 | freeOrder); // freeOrder
|
| 2127 | }
|
| 2128 | }
|
| 2129 | }
|
| 2130 | }
|
| 2131 |
|
Adam Sawicki | b8333fb | 2018-03-13 16:15:53 +0100 | [diff] [blame] | 2132 | static void TestPool_SameSize()
|
| 2133 | {
|
| 2134 | const VkDeviceSize BUF_SIZE = 1024 * 1024;
|
| 2135 | const size_t BUF_COUNT = 100;
|
| 2136 | VkResult res;
|
| 2137 |
|
| 2138 | RandomNumberGenerator rand{123};
|
| 2139 |
|
| 2140 | VkBufferCreateInfo bufferInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
|
| 2141 | bufferInfo.size = BUF_SIZE;
|
| 2142 | bufferInfo.usage = VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_INDEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;
|
| 2143 |
|
| 2144 | uint32_t memoryTypeBits = UINT32_MAX;
|
| 2145 | {
|
| 2146 | VkBuffer dummyBuffer;
|
| 2147 | res = vkCreateBuffer(g_hDevice, &bufferInfo, nullptr, &dummyBuffer);
|
| 2148 | assert(res == VK_SUCCESS);
|
| 2149 |
|
| 2150 | VkMemoryRequirements memReq;
|
| 2151 | vkGetBufferMemoryRequirements(g_hDevice, dummyBuffer, &memReq);
|
| 2152 | memoryTypeBits = memReq.memoryTypeBits;
|
| 2153 |
|
| 2154 | vkDestroyBuffer(g_hDevice, dummyBuffer, nullptr);
|
| 2155 | }
|
| 2156 |
|
| 2157 | VmaAllocationCreateInfo poolAllocInfo = {};
|
| 2158 | poolAllocInfo.usage = VMA_MEMORY_USAGE_CPU_ONLY;
|
| 2159 | uint32_t memTypeIndex;
|
| 2160 | res = vmaFindMemoryTypeIndex(
|
| 2161 | g_hAllocator,
|
| 2162 | memoryTypeBits,
|
| 2163 | &poolAllocInfo,
|
| 2164 | &memTypeIndex);
|
| 2165 |
|
| 2166 | VmaPoolCreateInfo poolCreateInfo = {};
|
| 2167 | poolCreateInfo.memoryTypeIndex = memTypeIndex;
|
| 2168 | poolCreateInfo.blockSize = BUF_SIZE * BUF_COUNT / 4;
|
| 2169 | poolCreateInfo.minBlockCount = 1;
|
| 2170 | poolCreateInfo.maxBlockCount = 4;
|
| 2171 | poolCreateInfo.frameInUseCount = 0;
|
| 2172 |
|
| 2173 | VmaPool pool;
|
| 2174 | res = vmaCreatePool(g_hAllocator, &poolCreateInfo, &pool);
|
| 2175 | assert(res == VK_SUCCESS);
|
| 2176 |
|
| 2177 | vmaSetCurrentFrameIndex(g_hAllocator, 1);
|
| 2178 |
|
| 2179 | VmaAllocationCreateInfo allocInfo = {};
|
| 2180 | allocInfo.pool = pool;
|
| 2181 | allocInfo.flags = VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT |
|
| 2182 | VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT;
|
| 2183 |
|
| 2184 | struct BufItem
|
| 2185 | {
|
| 2186 | VkBuffer Buf;
|
| 2187 | VmaAllocation Alloc;
|
| 2188 | };
|
| 2189 | std::vector<BufItem> items;
|
| 2190 |
|
| 2191 | // Fill entire pool.
|
| 2192 | for(size_t i = 0; i < BUF_COUNT; ++i)
|
| 2193 | {
|
| 2194 | BufItem item;
|
| 2195 | res = vmaCreateBuffer(g_hAllocator, &bufferInfo, &allocInfo, &item.Buf, &item.Alloc, nullptr);
|
| 2196 | assert(res == VK_SUCCESS);
|
| 2197 | items.push_back(item);
|
| 2198 | }
|
| 2199 |
|
| 2200 | // Make sure that another allocation would fail.
|
| 2201 | {
|
| 2202 | BufItem item;
|
| 2203 | res = vmaCreateBuffer(g_hAllocator, &bufferInfo, &allocInfo, &item.Buf, &item.Alloc, nullptr);
|
| 2204 | assert(res == VK_ERROR_OUT_OF_DEVICE_MEMORY);
|
| 2205 | }
|
| 2206 |
|
| 2207 | // Validate that no buffer is lost. Also check that they are not mapped.
|
| 2208 | for(size_t i = 0; i < items.size(); ++i)
|
| 2209 | {
|
| 2210 | VmaAllocationInfo allocInfo;
|
| 2211 | vmaGetAllocationInfo(g_hAllocator, items[i].Alloc, &allocInfo);
|
| 2212 | assert(allocInfo.deviceMemory != VK_NULL_HANDLE);
|
| 2213 | assert(allocInfo.pMappedData == nullptr);
|
| 2214 | }
|
| 2215 |
|
| 2216 | // Free some percent of random items.
|
| 2217 | {
|
| 2218 | const size_t PERCENT_TO_FREE = 10;
|
| 2219 | size_t itemsToFree = items.size() * PERCENT_TO_FREE / 100;
|
| 2220 | for(size_t i = 0; i < itemsToFree; ++i)
|
| 2221 | {
|
| 2222 | size_t index = (size_t)rand.Generate() % items.size();
|
| 2223 | vmaDestroyBuffer(g_hAllocator, items[index].Buf, items[index].Alloc);
|
| 2224 | items.erase(items.begin() + index);
|
| 2225 | }
|
| 2226 | }
|
| 2227 |
|
| 2228 | // Randomly allocate and free items.
|
| 2229 | {
|
| 2230 | const size_t OPERATION_COUNT = BUF_COUNT;
|
| 2231 | for(size_t i = 0; i < OPERATION_COUNT; ++i)
|
| 2232 | {
|
| 2233 | bool allocate = rand.Generate() % 2 != 0;
|
| 2234 | if(allocate)
|
| 2235 | {
|
| 2236 | if(items.size() < BUF_COUNT)
|
| 2237 | {
|
| 2238 | BufItem item;
|
| 2239 | res = vmaCreateBuffer(g_hAllocator, &bufferInfo, &allocInfo, &item.Buf, &item.Alloc, nullptr);
|
| 2240 | assert(res == VK_SUCCESS);
|
| 2241 | items.push_back(item);
|
| 2242 | }
|
| 2243 | }
|
| 2244 | else // Free
|
| 2245 | {
|
| 2246 | if(!items.empty())
|
| 2247 | {
|
| 2248 | size_t index = (size_t)rand.Generate() % items.size();
|
| 2249 | vmaDestroyBuffer(g_hAllocator, items[index].Buf, items[index].Alloc);
|
| 2250 | items.erase(items.begin() + index);
|
| 2251 | }
|
| 2252 | }
|
| 2253 | }
|
| 2254 | }
|
| 2255 |
|
| 2256 | // Allocate up to maximum.
|
| 2257 | while(items.size() < BUF_COUNT)
|
| 2258 | {
|
| 2259 | BufItem item;
|
| 2260 | res = vmaCreateBuffer(g_hAllocator, &bufferInfo, &allocInfo, &item.Buf, &item.Alloc, nullptr);
|
| 2261 | assert(res == VK_SUCCESS);
|
| 2262 | items.push_back(item);
|
| 2263 | }
|
| 2264 |
|
| 2265 | // Validate that no buffer is lost.
|
| 2266 | for(size_t i = 0; i < items.size(); ++i)
|
| 2267 | {
|
| 2268 | VmaAllocationInfo allocInfo;
|
| 2269 | vmaGetAllocationInfo(g_hAllocator, items[i].Alloc, &allocInfo);
|
| 2270 | assert(allocInfo.deviceMemory != VK_NULL_HANDLE);
|
| 2271 | }
|
| 2272 |
|
| 2273 | // Next frame.
|
| 2274 | vmaSetCurrentFrameIndex(g_hAllocator, 2);
|
| 2275 |
|
| 2276 | // Allocate another BUF_COUNT buffers.
|
| 2277 | for(size_t i = 0; i < BUF_COUNT; ++i)
|
| 2278 | {
|
| 2279 | BufItem item;
|
| 2280 | res = vmaCreateBuffer(g_hAllocator, &bufferInfo, &allocInfo, &item.Buf, &item.Alloc, nullptr);
|
| 2281 | assert(res == VK_SUCCESS);
|
| 2282 | items.push_back(item);
|
| 2283 | }
|
| 2284 |
|
| 2285 | // Make sure the first BUF_COUNT is lost. Delete them.
|
| 2286 | for(size_t i = 0; i < BUF_COUNT; ++i)
|
| 2287 | {
|
| 2288 | VmaAllocationInfo allocInfo;
|
| 2289 | vmaGetAllocationInfo(g_hAllocator, items[i].Alloc, &allocInfo);
|
| 2290 | assert(allocInfo.deviceMemory == VK_NULL_HANDLE);
|
| 2291 | vmaDestroyBuffer(g_hAllocator, items[i].Buf, items[i].Alloc);
|
| 2292 | }
|
| 2293 | items.erase(items.begin(), items.begin() + BUF_COUNT);
|
| 2294 |
|
| 2295 | // Validate that no buffer is lost.
|
| 2296 | for(size_t i = 0; i < items.size(); ++i)
|
| 2297 | {
|
| 2298 | VmaAllocationInfo allocInfo;
|
| 2299 | vmaGetAllocationInfo(g_hAllocator, items[i].Alloc, &allocInfo);
|
| 2300 | assert(allocInfo.deviceMemory != VK_NULL_HANDLE);
|
| 2301 | }
|
| 2302 |
|
| 2303 | // Free one item.
|
| 2304 | vmaDestroyBuffer(g_hAllocator, items.back().Buf, items.back().Alloc);
|
| 2305 | items.pop_back();
|
| 2306 |
|
| 2307 | // Validate statistics.
|
| 2308 | {
|
| 2309 | VmaPoolStats poolStats = {};
|
| 2310 | vmaGetPoolStats(g_hAllocator, pool, &poolStats);
|
| 2311 | assert(poolStats.allocationCount == items.size());
|
| 2312 | assert(poolStats.size = BUF_COUNT * BUF_SIZE);
|
| 2313 | assert(poolStats.unusedRangeCount == 1);
|
| 2314 | assert(poolStats.unusedRangeSizeMax == BUF_SIZE);
|
| 2315 | assert(poolStats.unusedSize == BUF_SIZE);
|
| 2316 | }
|
| 2317 |
|
| 2318 | // Free all remaining items.
|
| 2319 | for(size_t i = items.size(); i--; )
|
| 2320 | vmaDestroyBuffer(g_hAllocator, items[i].Buf, items[i].Alloc);
|
| 2321 | items.clear();
|
| 2322 |
|
| 2323 | // Allocate maximum items again.
|
| 2324 | for(size_t i = 0; i < BUF_COUNT; ++i)
|
| 2325 | {
|
| 2326 | BufItem item;
|
| 2327 | res = vmaCreateBuffer(g_hAllocator, &bufferInfo, &allocInfo, &item.Buf, &item.Alloc, nullptr);
|
| 2328 | assert(res == VK_SUCCESS);
|
| 2329 | items.push_back(item);
|
| 2330 | }
|
| 2331 |
|
| 2332 | // Delete every other item.
|
| 2333 | for(size_t i = 0; i < BUF_COUNT / 2; ++i)
|
| 2334 | {
|
| 2335 | vmaDestroyBuffer(g_hAllocator, items[i].Buf, items[i].Alloc);
|
| 2336 | items.erase(items.begin() + i);
|
| 2337 | }
|
| 2338 |
|
| 2339 | // Defragment!
|
| 2340 | {
|
| 2341 | std::vector<VmaAllocation> allocationsToDefragment(items.size());
|
| 2342 | for(size_t i = 0; i < items.size(); ++i)
|
| 2343 | allocationsToDefragment[i] = items[i].Alloc;
|
| 2344 |
|
| 2345 | VmaDefragmentationStats defragmentationStats;
|
| 2346 | res = vmaDefragment(g_hAllocator, allocationsToDefragment.data(), items.size(), nullptr, nullptr, &defragmentationStats);
|
| 2347 | assert(res == VK_SUCCESS);
|
| 2348 | assert(defragmentationStats.deviceMemoryBlocksFreed == 2);
|
| 2349 | }
|
| 2350 |
|
| 2351 | // Free all remaining items.
|
| 2352 | for(size_t i = items.size(); i--; )
|
| 2353 | vmaDestroyBuffer(g_hAllocator, items[i].Buf, items[i].Alloc);
|
| 2354 | items.clear();
|
| 2355 |
|
| 2356 | ////////////////////////////////////////////////////////////////////////////////
|
| 2357 | // Test for vmaMakePoolAllocationsLost
|
| 2358 |
|
| 2359 | // Allocate 4 buffers on frame 10.
|
| 2360 | vmaSetCurrentFrameIndex(g_hAllocator, 10);
|
| 2361 | for(size_t i = 0; i < 4; ++i)
|
| 2362 | {
|
| 2363 | BufItem item;
|
| 2364 | res = vmaCreateBuffer(g_hAllocator, &bufferInfo, &allocInfo, &item.Buf, &item.Alloc, nullptr);
|
| 2365 | assert(res == VK_SUCCESS);
|
| 2366 | items.push_back(item);
|
| 2367 | }
|
| 2368 |
|
| 2369 | // Touch first 2 of them on frame 11.
|
| 2370 | vmaSetCurrentFrameIndex(g_hAllocator, 11);
|
| 2371 | for(size_t i = 0; i < 2; ++i)
|
| 2372 | {
|
| 2373 | VmaAllocationInfo allocInfo;
|
| 2374 | vmaGetAllocationInfo(g_hAllocator, items[i].Alloc, &allocInfo);
|
| 2375 | }
|
| 2376 |
|
| 2377 | // vmaMakePoolAllocationsLost. Only remaining 2 should be lost.
|
| 2378 | size_t lostCount = 0xDEADC0DE;
|
| 2379 | vmaMakePoolAllocationsLost(g_hAllocator, pool, &lostCount);
|
| 2380 | assert(lostCount == 2);
|
| 2381 |
|
| 2382 | // Make another call. Now 0 should be lost.
|
| 2383 | vmaMakePoolAllocationsLost(g_hAllocator, pool, &lostCount);
|
| 2384 | assert(lostCount == 0);
|
| 2385 |
|
| 2386 | // Make another call, with null count. Should not crash.
|
| 2387 | vmaMakePoolAllocationsLost(g_hAllocator, pool, nullptr);
|
| 2388 |
|
| 2389 | // END: Free all remaining items.
|
| 2390 | for(size_t i = items.size(); i--; )
|
| 2391 | vmaDestroyBuffer(g_hAllocator, items[i].Buf, items[i].Alloc);
|
| 2392 |
|
| 2393 | items.clear();
|
| 2394 |
|
Adam Sawicki | d292417 | 2018-06-11 12:48:46 +0200 | [diff] [blame] | 2395 | ////////////////////////////////////////////////////////////////////////////////
|
| 2396 | // Test for allocation too large for pool
|
| 2397 |
|
| 2398 | {
|
| 2399 | VmaAllocationCreateInfo allocCreateInfo = {};
|
| 2400 | allocCreateInfo.pool = pool;
|
| 2401 |
|
| 2402 | VkMemoryRequirements memReq;
|
| 2403 | memReq.memoryTypeBits = UINT32_MAX;
|
| 2404 | memReq.alignment = 1;
|
| 2405 | memReq.size = poolCreateInfo.blockSize + 4;
|
| 2406 |
|
| 2407 | VmaAllocation alloc = nullptr;
|
| 2408 | res = vmaAllocateMemory(g_hAllocator, &memReq, &allocCreateInfo, &alloc, nullptr);
|
| 2409 | assert(res == VK_ERROR_OUT_OF_DEVICE_MEMORY && alloc == nullptr);
|
| 2410 | }
|
| 2411 |
|
Adam Sawicki | b8333fb | 2018-03-13 16:15:53 +0100 | [diff] [blame] | 2412 | vmaDestroyPool(g_hAllocator, pool);
|
| 2413 | }
|
| 2414 |
|
Adam Sawicki | e44c626 | 2018-06-15 14:30:39 +0200 | [diff] [blame] | 2415 | static bool ValidatePattern(const void* pMemory, size_t size, uint8_t pattern)
|
| 2416 | {
|
| 2417 | const uint8_t* pBytes = (const uint8_t*)pMemory;
|
| 2418 | for(size_t i = 0; i < size; ++i)
|
| 2419 | {
|
| 2420 | if(pBytes[i] != pattern)
|
| 2421 | {
|
| 2422 | return false;
|
| 2423 | }
|
| 2424 | }
|
| 2425 | return true;
|
| 2426 | }
|
| 2427 |
|
| 2428 | static void TestAllocationsInitialization()
|
| 2429 | {
|
| 2430 | VkResult res;
|
| 2431 |
|
| 2432 | const size_t BUF_SIZE = 1024;
|
| 2433 |
|
| 2434 | // Create pool.
|
| 2435 |
|
| 2436 | VkBufferCreateInfo bufInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
|
| 2437 | bufInfo.size = BUF_SIZE;
|
| 2438 | bufInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
|
| 2439 |
|
| 2440 | VmaAllocationCreateInfo dummyBufAllocCreateInfo = {};
|
| 2441 | dummyBufAllocCreateInfo.usage = VMA_MEMORY_USAGE_CPU_ONLY;
|
| 2442 |
|
| 2443 | VmaPoolCreateInfo poolCreateInfo = {};
|
| 2444 | poolCreateInfo.blockSize = BUF_SIZE * 10;
|
| 2445 | poolCreateInfo.minBlockCount = 1; // To keep memory alive while pool exists.
|
| 2446 | poolCreateInfo.maxBlockCount = 1;
|
| 2447 | res = vmaFindMemoryTypeIndexForBufferInfo(g_hAllocator, &bufInfo, &dummyBufAllocCreateInfo, &poolCreateInfo.memoryTypeIndex);
|
| 2448 | assert(res == VK_SUCCESS);
|
| 2449 |
|
| 2450 | VmaAllocationCreateInfo bufAllocCreateInfo = {};
|
| 2451 | res = vmaCreatePool(g_hAllocator, &poolCreateInfo, &bufAllocCreateInfo.pool);
|
| 2452 | assert(res == VK_SUCCESS);
|
| 2453 |
|
| 2454 | // Create one persistently mapped buffer to keep memory of this block mapped,
|
| 2455 | // so that pointer to mapped data will remain (more or less...) valid even
|
| 2456 | // after destruction of other allocations.
|
| 2457 |
|
| 2458 | bufAllocCreateInfo.flags = VMA_ALLOCATION_CREATE_MAPPED_BIT;
|
| 2459 | VkBuffer firstBuf;
|
| 2460 | VmaAllocation firstAlloc;
|
| 2461 | res = vmaCreateBuffer(g_hAllocator, &bufInfo, &bufAllocCreateInfo, &firstBuf, &firstAlloc, nullptr);
|
| 2462 | assert(res == VK_SUCCESS);
|
| 2463 |
|
| 2464 | // Test buffers.
|
| 2465 |
|
| 2466 | for(uint32_t i = 0; i < 2; ++i)
|
| 2467 | {
|
| 2468 | const bool persistentlyMapped = i == 0;
|
| 2469 | bufAllocCreateInfo.flags = persistentlyMapped ? VMA_ALLOCATION_CREATE_MAPPED_BIT : 0;
|
| 2470 | VkBuffer buf;
|
| 2471 | VmaAllocation alloc;
|
| 2472 | VmaAllocationInfo allocInfo;
|
| 2473 | res = vmaCreateBuffer(g_hAllocator, &bufInfo, &bufAllocCreateInfo, &buf, &alloc, &allocInfo);
|
| 2474 | assert(res == VK_SUCCESS);
|
| 2475 |
|
| 2476 | void* pMappedData;
|
| 2477 | if(!persistentlyMapped)
|
| 2478 | {
|
| 2479 | res = vmaMapMemory(g_hAllocator, alloc, &pMappedData);
|
| 2480 | assert(res == VK_SUCCESS);
|
| 2481 | }
|
| 2482 | else
|
| 2483 | {
|
| 2484 | pMappedData = allocInfo.pMappedData;
|
| 2485 | }
|
| 2486 |
|
| 2487 | // Validate initialized content
|
| 2488 | bool valid = ValidatePattern(pMappedData, BUF_SIZE, 0xDC);
|
| 2489 | assert(valid);
|
| 2490 |
|
| 2491 | if(!persistentlyMapped)
|
| 2492 | {
|
| 2493 | vmaUnmapMemory(g_hAllocator, alloc);
|
| 2494 | }
|
| 2495 |
|
| 2496 | vmaDestroyBuffer(g_hAllocator, buf, alloc);
|
| 2497 |
|
| 2498 | // Validate freed content
|
| 2499 | valid = ValidatePattern(pMappedData, BUF_SIZE, 0xEF);
|
| 2500 | assert(valid);
|
| 2501 | }
|
| 2502 |
|
| 2503 | vmaDestroyBuffer(g_hAllocator, firstBuf, firstAlloc);
|
| 2504 | vmaDestroyPool(g_hAllocator, bufAllocCreateInfo.pool);
|
| 2505 | }
|
| 2506 |
|
Adam Sawicki | b8333fb | 2018-03-13 16:15:53 +0100 | [diff] [blame] | 2507 | static void TestPool_Benchmark(
|
| 2508 | PoolTestResult& outResult,
|
| 2509 | const PoolTestConfig& config)
|
| 2510 | {
|
| 2511 | assert(config.ThreadCount > 0);
|
| 2512 |
|
| 2513 | RandomNumberGenerator mainRand{config.RandSeed};
|
| 2514 |
|
| 2515 | uint32_t allocationSizeProbabilitySum = std::accumulate(
|
| 2516 | config.AllocationSizes.begin(),
|
| 2517 | config.AllocationSizes.end(),
|
| 2518 | 0u,
|
| 2519 | [](uint32_t sum, const AllocationSize& allocSize) {
|
| 2520 | return sum + allocSize.Probability;
|
| 2521 | });
|
| 2522 |
|
| 2523 | VkBufferCreateInfo bufferInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
|
| 2524 | bufferInfo.size = 256; // Whatever.
|
| 2525 | bufferInfo.usage = VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_INDEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;
|
| 2526 |
|
| 2527 | VkImageCreateInfo imageInfo = { VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO };
|
| 2528 | imageInfo.imageType = VK_IMAGE_TYPE_2D;
|
| 2529 | imageInfo.extent.width = 256; // Whatever.
|
| 2530 | imageInfo.extent.height = 256; // Whatever.
|
| 2531 | imageInfo.extent.depth = 1;
|
| 2532 | imageInfo.mipLevels = 1;
|
| 2533 | imageInfo.arrayLayers = 1;
|
| 2534 | imageInfo.format = VK_FORMAT_R8G8B8A8_UNORM;
|
| 2535 | imageInfo.tiling = VK_IMAGE_TILING_OPTIMAL; // LINEAR if CPU memory.
|
| 2536 | imageInfo.initialLayout = VK_IMAGE_LAYOUT_PREINITIALIZED;
|
| 2537 | imageInfo.usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT; // TRANSFER_SRC if CPU memory.
|
| 2538 | imageInfo.samples = VK_SAMPLE_COUNT_1_BIT;
|
| 2539 |
|
| 2540 | uint32_t bufferMemoryTypeBits = UINT32_MAX;
|
| 2541 | {
|
| 2542 | VkBuffer dummyBuffer;
|
| 2543 | VkResult res = vkCreateBuffer(g_hDevice, &bufferInfo, nullptr, &dummyBuffer);
|
| 2544 | assert(res == VK_SUCCESS);
|
| 2545 |
|
| 2546 | VkMemoryRequirements memReq;
|
| 2547 | vkGetBufferMemoryRequirements(g_hDevice, dummyBuffer, &memReq);
|
| 2548 | bufferMemoryTypeBits = memReq.memoryTypeBits;
|
| 2549 |
|
| 2550 | vkDestroyBuffer(g_hDevice, dummyBuffer, nullptr);
|
| 2551 | }
|
| 2552 |
|
| 2553 | uint32_t imageMemoryTypeBits = UINT32_MAX;
|
| 2554 | {
|
| 2555 | VkImage dummyImage;
|
| 2556 | VkResult res = vkCreateImage(g_hDevice, &imageInfo, nullptr, &dummyImage);
|
| 2557 | assert(res == VK_SUCCESS);
|
| 2558 |
|
| 2559 | VkMemoryRequirements memReq;
|
| 2560 | vkGetImageMemoryRequirements(g_hDevice, dummyImage, &memReq);
|
| 2561 | imageMemoryTypeBits = memReq.memoryTypeBits;
|
| 2562 |
|
| 2563 | vkDestroyImage(g_hDevice, dummyImage, nullptr);
|
| 2564 | }
|
| 2565 |
|
| 2566 | uint32_t memoryTypeBits = 0;
|
| 2567 | if(config.UsesBuffers() && config.UsesImages())
|
| 2568 | {
|
| 2569 | memoryTypeBits = bufferMemoryTypeBits & imageMemoryTypeBits;
|
| 2570 | if(memoryTypeBits == 0)
|
| 2571 | {
|
| 2572 | PrintWarning(L"Cannot test buffers + images in the same memory pool on this GPU.");
|
| 2573 | return;
|
| 2574 | }
|
| 2575 | }
|
| 2576 | else if(config.UsesBuffers())
|
| 2577 | memoryTypeBits = bufferMemoryTypeBits;
|
| 2578 | else if(config.UsesImages())
|
| 2579 | memoryTypeBits = imageMemoryTypeBits;
|
| 2580 | else
|
| 2581 | assert(0);
|
| 2582 |
|
| 2583 | VmaPoolCreateInfo poolCreateInfo = {};
|
| 2584 | poolCreateInfo.memoryTypeIndex = 0;
|
| 2585 | poolCreateInfo.minBlockCount = 1;
|
| 2586 | poolCreateInfo.maxBlockCount = 1;
|
| 2587 | poolCreateInfo.blockSize = config.PoolSize;
|
| 2588 | poolCreateInfo.frameInUseCount = 1;
|
| 2589 |
|
| 2590 | VmaAllocationCreateInfo dummyAllocCreateInfo = {};
|
| 2591 | dummyAllocCreateInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY;
|
| 2592 | vmaFindMemoryTypeIndex(g_hAllocator, memoryTypeBits, &dummyAllocCreateInfo, &poolCreateInfo.memoryTypeIndex);
|
| 2593 |
|
| 2594 | VmaPool pool;
|
| 2595 | VkResult res = vmaCreatePool(g_hAllocator, &poolCreateInfo, &pool);
|
| 2596 | assert(res == VK_SUCCESS);
|
| 2597 |
|
| 2598 | // Start time measurement - after creating pool and initializing data structures.
|
| 2599 | time_point timeBeg = std::chrono::high_resolution_clock::now();
|
| 2600 |
|
| 2601 | ////////////////////////////////////////////////////////////////////////////////
|
| 2602 | // ThreadProc
|
| 2603 | auto ThreadProc = [&](
|
| 2604 | PoolTestThreadResult* outThreadResult,
|
| 2605 | uint32_t randSeed,
|
| 2606 | HANDLE frameStartEvent,
|
| 2607 | HANDLE frameEndEvent) -> void
|
| 2608 | {
|
| 2609 | RandomNumberGenerator threadRand{randSeed};
|
| 2610 |
|
| 2611 | outThreadResult->AllocationTimeMin = duration::max();
|
| 2612 | outThreadResult->AllocationTimeSum = duration::zero();
|
| 2613 | outThreadResult->AllocationTimeMax = duration::min();
|
| 2614 | outThreadResult->DeallocationTimeMin = duration::max();
|
| 2615 | outThreadResult->DeallocationTimeSum = duration::zero();
|
| 2616 | outThreadResult->DeallocationTimeMax = duration::min();
|
| 2617 | outThreadResult->AllocationCount = 0;
|
| 2618 | outThreadResult->DeallocationCount = 0;
|
| 2619 | outThreadResult->LostAllocationCount = 0;
|
| 2620 | outThreadResult->LostAllocationTotalSize = 0;
|
| 2621 | outThreadResult->FailedAllocationCount = 0;
|
| 2622 | outThreadResult->FailedAllocationTotalSize = 0;
|
| 2623 |
|
| 2624 | struct Item
|
| 2625 | {
|
| 2626 | VkDeviceSize BufferSize;
|
| 2627 | VkExtent2D ImageSize;
|
| 2628 | VkBuffer Buf;
|
| 2629 | VkImage Image;
|
| 2630 | VmaAllocation Alloc;
|
| 2631 |
|
| 2632 | VkDeviceSize CalcSizeBytes() const
|
| 2633 | {
|
| 2634 | return BufferSize +
|
| 2635 | ImageSize.width * ImageSize.height * 4;
|
| 2636 | }
|
| 2637 | };
|
| 2638 | std::vector<Item> unusedItems, usedItems;
|
| 2639 |
|
| 2640 | const size_t threadTotalItemCount = config.TotalItemCount / config.ThreadCount;
|
| 2641 |
|
| 2642 | // Create all items - all unused, not yet allocated.
|
| 2643 | for(size_t i = 0; i < threadTotalItemCount; ++i)
|
| 2644 | {
|
| 2645 | Item item = {};
|
| 2646 |
|
| 2647 | uint32_t allocSizeIndex = 0;
|
| 2648 | uint32_t r = threadRand.Generate() % allocationSizeProbabilitySum;
|
| 2649 | while(r >= config.AllocationSizes[allocSizeIndex].Probability)
|
| 2650 | r -= config.AllocationSizes[allocSizeIndex++].Probability;
|
| 2651 |
|
| 2652 | const AllocationSize& allocSize = config.AllocationSizes[allocSizeIndex];
|
| 2653 | if(allocSize.BufferSizeMax > 0)
|
| 2654 | {
|
| 2655 | assert(allocSize.BufferSizeMin > 0);
|
| 2656 | assert(allocSize.ImageSizeMin == 0 && allocSize.ImageSizeMax == 0);
|
| 2657 | if(allocSize.BufferSizeMax == allocSize.BufferSizeMin)
|
| 2658 | item.BufferSize = allocSize.BufferSizeMin;
|
| 2659 | else
|
| 2660 | {
|
| 2661 | item.BufferSize = allocSize.BufferSizeMin + threadRand.Generate() % (allocSize.BufferSizeMax - allocSize.BufferSizeMin);
|
| 2662 | item.BufferSize = item.BufferSize / 16 * 16;
|
| 2663 | }
|
| 2664 | }
|
| 2665 | else
|
| 2666 | {
|
| 2667 | assert(allocSize.ImageSizeMin > 0 && allocSize.ImageSizeMax > 0);
|
| 2668 | if(allocSize.ImageSizeMax == allocSize.ImageSizeMin)
|
| 2669 | item.ImageSize.width = item.ImageSize.height = allocSize.ImageSizeMax;
|
| 2670 | else
|
| 2671 | {
|
| 2672 | item.ImageSize.width = allocSize.ImageSizeMin + threadRand.Generate() % (allocSize.ImageSizeMax - allocSize.ImageSizeMin);
|
| 2673 | item.ImageSize.height = allocSize.ImageSizeMin + threadRand.Generate() % (allocSize.ImageSizeMax - allocSize.ImageSizeMin);
|
| 2674 | }
|
| 2675 | }
|
| 2676 |
|
| 2677 | unusedItems.push_back(item);
|
| 2678 | }
|
| 2679 |
|
| 2680 | auto Allocate = [&](Item& item) -> VkResult
|
| 2681 | {
|
| 2682 | VmaAllocationCreateInfo allocCreateInfo = {};
|
| 2683 | allocCreateInfo.pool = pool;
|
| 2684 | allocCreateInfo.flags = VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT |
|
| 2685 | VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT;
|
| 2686 |
|
| 2687 | if(item.BufferSize)
|
| 2688 | {
|
| 2689 | bufferInfo.size = item.BufferSize;
|
| 2690 | PoolAllocationTimeRegisterObj timeRegisterObj(*outThreadResult);
|
| 2691 | return vmaCreateBuffer(g_hAllocator, &bufferInfo, &allocCreateInfo, &item.Buf, &item.Alloc, nullptr);
|
| 2692 | }
|
| 2693 | else
|
| 2694 | {
|
| 2695 | assert(item.ImageSize.width && item.ImageSize.height);
|
| 2696 |
|
| 2697 | imageInfo.extent.width = item.ImageSize.width;
|
| 2698 | imageInfo.extent.height = item.ImageSize.height;
|
| 2699 | PoolAllocationTimeRegisterObj timeRegisterObj(*outThreadResult);
|
| 2700 | return vmaCreateImage(g_hAllocator, &imageInfo, &allocCreateInfo, &item.Image, &item.Alloc, nullptr);
|
| 2701 | }
|
| 2702 | };
|
| 2703 |
|
| 2704 | ////////////////////////////////////////////////////////////////////////////////
|
| 2705 | // Frames
|
| 2706 | for(uint32_t frameIndex = 0; frameIndex < config.FrameCount; ++frameIndex)
|
| 2707 | {
|
| 2708 | WaitForSingleObject(frameStartEvent, INFINITE);
|
| 2709 |
|
| 2710 | // Always make some percent of used bufs unused, to choose different used ones.
|
| 2711 | const size_t bufsToMakeUnused = usedItems.size() * config.ItemsToMakeUnusedPercent / 100;
|
| 2712 | for(size_t i = 0; i < bufsToMakeUnused; ++i)
|
| 2713 | {
|
| 2714 | size_t index = threadRand.Generate() % usedItems.size();
|
| 2715 | unusedItems.push_back(usedItems[index]);
|
| 2716 | usedItems.erase(usedItems.begin() + index);
|
| 2717 | }
|
| 2718 |
|
| 2719 | // Determine which bufs we want to use in this frame.
|
| 2720 | const size_t usedBufCount = (threadRand.Generate() % (config.UsedItemCountMax - config.UsedItemCountMin) + config.UsedItemCountMin)
|
| 2721 | / config.ThreadCount;
|
| 2722 | assert(usedBufCount < usedItems.size() + unusedItems.size());
|
| 2723 | // Move some used to unused.
|
| 2724 | while(usedBufCount < usedItems.size())
|
| 2725 | {
|
| 2726 | size_t index = threadRand.Generate() % usedItems.size();
|
| 2727 | unusedItems.push_back(usedItems[index]);
|
| 2728 | usedItems.erase(usedItems.begin() + index);
|
| 2729 | }
|
| 2730 | // Move some unused to used.
|
| 2731 | while(usedBufCount > usedItems.size())
|
| 2732 | {
|
| 2733 | size_t index = threadRand.Generate() % unusedItems.size();
|
| 2734 | usedItems.push_back(unusedItems[index]);
|
| 2735 | unusedItems.erase(unusedItems.begin() + index);
|
| 2736 | }
|
| 2737 |
|
| 2738 | uint32_t touchExistingCount = 0;
|
| 2739 | uint32_t touchLostCount = 0;
|
| 2740 | uint32_t createSucceededCount = 0;
|
| 2741 | uint32_t createFailedCount = 0;
|
| 2742 |
|
| 2743 | // Touch all used bufs. If not created or lost, allocate.
|
| 2744 | for(size_t i = 0; i < usedItems.size(); ++i)
|
| 2745 | {
|
| 2746 | Item& item = usedItems[i];
|
| 2747 | // Not yet created.
|
| 2748 | if(item.Alloc == VK_NULL_HANDLE)
|
| 2749 | {
|
| 2750 | res = Allocate(item);
|
| 2751 | ++outThreadResult->AllocationCount;
|
| 2752 | if(res != VK_SUCCESS)
|
| 2753 | {
|
| 2754 | item.Alloc = VK_NULL_HANDLE;
|
| 2755 | item.Buf = VK_NULL_HANDLE;
|
| 2756 | ++outThreadResult->FailedAllocationCount;
|
| 2757 | outThreadResult->FailedAllocationTotalSize += item.CalcSizeBytes();
|
| 2758 | ++createFailedCount;
|
| 2759 | }
|
| 2760 | else
|
| 2761 | ++createSucceededCount;
|
| 2762 | }
|
| 2763 | else
|
| 2764 | {
|
| 2765 | // Touch.
|
| 2766 | VmaAllocationInfo allocInfo;
|
| 2767 | vmaGetAllocationInfo(g_hAllocator, item.Alloc, &allocInfo);
|
| 2768 | // Lost.
|
| 2769 | if(allocInfo.deviceMemory == VK_NULL_HANDLE)
|
| 2770 | {
|
| 2771 | ++touchLostCount;
|
| 2772 |
|
| 2773 | // Destroy.
|
| 2774 | {
|
| 2775 | PoolDeallocationTimeRegisterObj timeRegisterObj(*outThreadResult);
|
| 2776 | if(item.Buf)
|
| 2777 | vmaDestroyBuffer(g_hAllocator, item.Buf, item.Alloc);
|
| 2778 | else
|
| 2779 | vmaDestroyImage(g_hAllocator, item.Image, item.Alloc);
|
| 2780 | ++outThreadResult->DeallocationCount;
|
| 2781 | }
|
| 2782 | item.Alloc = VK_NULL_HANDLE;
|
| 2783 | item.Buf = VK_NULL_HANDLE;
|
| 2784 |
|
| 2785 | ++outThreadResult->LostAllocationCount;
|
| 2786 | outThreadResult->LostAllocationTotalSize += item.CalcSizeBytes();
|
| 2787 |
|
| 2788 | // Recreate.
|
| 2789 | res = Allocate(item);
|
| 2790 | ++outThreadResult->AllocationCount;
|
| 2791 | // Creation failed.
|
| 2792 | if(res != VK_SUCCESS)
|
| 2793 | {
|
| 2794 | ++outThreadResult->FailedAllocationCount;
|
| 2795 | outThreadResult->FailedAllocationTotalSize += item.CalcSizeBytes();
|
| 2796 | ++createFailedCount;
|
| 2797 | }
|
| 2798 | else
|
| 2799 | ++createSucceededCount;
|
| 2800 | }
|
| 2801 | else
|
| 2802 | ++touchExistingCount;
|
| 2803 | }
|
| 2804 | }
|
| 2805 |
|
| 2806 | /*
|
| 2807 | printf("Thread %u frame %u: Touch existing %u lost %u, create succeeded %u failed %u\n",
|
| 2808 | randSeed, frameIndex,
|
| 2809 | touchExistingCount, touchLostCount,
|
| 2810 | createSucceededCount, createFailedCount);
|
| 2811 | */
|
| 2812 |
|
| 2813 | SetEvent(frameEndEvent);
|
| 2814 | }
|
| 2815 |
|
| 2816 | // Free all remaining items.
|
| 2817 | for(size_t i = usedItems.size(); i--; )
|
| 2818 | {
|
| 2819 | PoolDeallocationTimeRegisterObj timeRegisterObj(*outThreadResult);
|
| 2820 | if(usedItems[i].Buf)
|
| 2821 | vmaDestroyBuffer(g_hAllocator, usedItems[i].Buf, usedItems[i].Alloc);
|
| 2822 | else
|
| 2823 | vmaDestroyImage(g_hAllocator, usedItems[i].Image, usedItems[i].Alloc);
|
| 2824 | ++outThreadResult->DeallocationCount;
|
| 2825 | }
|
| 2826 | for(size_t i = unusedItems.size(); i--; )
|
| 2827 | {
|
| 2828 | PoolDeallocationTimeRegisterObj timeRegisterOb(*outThreadResult);
|
| 2829 | if(unusedItems[i].Buf)
|
| 2830 | vmaDestroyBuffer(g_hAllocator, unusedItems[i].Buf, unusedItems[i].Alloc);
|
| 2831 | else
|
| 2832 | vmaDestroyImage(g_hAllocator, unusedItems[i].Image, unusedItems[i].Alloc);
|
| 2833 | ++outThreadResult->DeallocationCount;
|
| 2834 | }
|
| 2835 | };
|
| 2836 |
|
| 2837 | // Launch threads.
|
| 2838 | uint32_t threadRandSeed = mainRand.Generate();
|
| 2839 | std::vector<HANDLE> frameStartEvents{config.ThreadCount};
|
| 2840 | std::vector<HANDLE> frameEndEvents{config.ThreadCount};
|
| 2841 | std::vector<std::thread> bkgThreads;
|
| 2842 | std::vector<PoolTestThreadResult> threadResults{config.ThreadCount};
|
| 2843 | for(uint32_t threadIndex = 0; threadIndex < config.ThreadCount; ++threadIndex)
|
| 2844 | {
|
| 2845 | frameStartEvents[threadIndex] = CreateEvent(NULL, FALSE, FALSE, NULL);
|
| 2846 | frameEndEvents[threadIndex] = CreateEvent(NULL, FALSE, FALSE, NULL);
|
| 2847 | bkgThreads.emplace_back(std::bind(
|
| 2848 | ThreadProc,
|
| 2849 | &threadResults[threadIndex],
|
| 2850 | threadRandSeed + threadIndex,
|
| 2851 | frameStartEvents[threadIndex],
|
| 2852 | frameEndEvents[threadIndex]));
|
| 2853 | }
|
| 2854 |
|
| 2855 | // Execute frames.
|
| 2856 | assert(config.ThreadCount <= MAXIMUM_WAIT_OBJECTS);
|
| 2857 | for(uint32_t frameIndex = 0; frameIndex < config.FrameCount; ++frameIndex)
|
| 2858 | {
|
| 2859 | vmaSetCurrentFrameIndex(g_hAllocator, frameIndex);
|
| 2860 | for(size_t threadIndex = 0; threadIndex < config.ThreadCount; ++threadIndex)
|
| 2861 | SetEvent(frameStartEvents[threadIndex]);
|
| 2862 | WaitForMultipleObjects(config.ThreadCount, &frameEndEvents[0], TRUE, INFINITE);
|
| 2863 | }
|
| 2864 |
|
| 2865 | // Wait for threads finished
|
| 2866 | for(size_t i = 0; i < bkgThreads.size(); ++i)
|
| 2867 | {
|
| 2868 | bkgThreads[i].join();
|
| 2869 | CloseHandle(frameEndEvents[i]);
|
| 2870 | CloseHandle(frameStartEvents[i]);
|
| 2871 | }
|
| 2872 | bkgThreads.clear();
|
| 2873 |
|
| 2874 | // Finish time measurement - before destroying pool.
|
| 2875 | outResult.TotalTime = std::chrono::high_resolution_clock::now() - timeBeg;
|
| 2876 |
|
| 2877 | vmaDestroyPool(g_hAllocator, pool);
|
| 2878 |
|
| 2879 | outResult.AllocationTimeMin = duration::max();
|
| 2880 | outResult.AllocationTimeAvg = duration::zero();
|
| 2881 | outResult.AllocationTimeMax = duration::min();
|
| 2882 | outResult.DeallocationTimeMin = duration::max();
|
| 2883 | outResult.DeallocationTimeAvg = duration::zero();
|
| 2884 | outResult.DeallocationTimeMax = duration::min();
|
| 2885 | outResult.LostAllocationCount = 0;
|
| 2886 | outResult.LostAllocationTotalSize = 0;
|
| 2887 | outResult.FailedAllocationCount = 0;
|
| 2888 | outResult.FailedAllocationTotalSize = 0;
|
| 2889 | size_t allocationCount = 0;
|
| 2890 | size_t deallocationCount = 0;
|
| 2891 | for(size_t threadIndex = 0; threadIndex < config.ThreadCount; ++threadIndex)
|
| 2892 | {
|
| 2893 | const PoolTestThreadResult& threadResult = threadResults[threadIndex];
|
| 2894 | outResult.AllocationTimeMin = std::min(outResult.AllocationTimeMin, threadResult.AllocationTimeMin);
|
| 2895 | outResult.AllocationTimeMax = std::max(outResult.AllocationTimeMax, threadResult.AllocationTimeMax);
|
| 2896 | outResult.AllocationTimeAvg += threadResult.AllocationTimeSum;
|
| 2897 | outResult.DeallocationTimeMin = std::min(outResult.DeallocationTimeMin, threadResult.DeallocationTimeMin);
|
| 2898 | outResult.DeallocationTimeMax = std::max(outResult.DeallocationTimeMax, threadResult.DeallocationTimeMax);
|
| 2899 | outResult.DeallocationTimeAvg += threadResult.DeallocationTimeSum;
|
| 2900 | allocationCount += threadResult.AllocationCount;
|
| 2901 | deallocationCount += threadResult.DeallocationCount;
|
| 2902 | outResult.FailedAllocationCount += threadResult.FailedAllocationCount;
|
| 2903 | outResult.FailedAllocationTotalSize += threadResult.FailedAllocationTotalSize;
|
| 2904 | outResult.LostAllocationCount += threadResult.LostAllocationCount;
|
| 2905 | outResult.LostAllocationTotalSize += threadResult.LostAllocationTotalSize;
|
| 2906 | }
|
| 2907 | if(allocationCount)
|
| 2908 | outResult.AllocationTimeAvg /= allocationCount;
|
| 2909 | if(deallocationCount)
|
| 2910 | outResult.DeallocationTimeAvg /= deallocationCount;
|
| 2911 | }
|
| 2912 |
|
| 2913 | static inline bool MemoryRegionsOverlap(char* ptr1, size_t size1, char* ptr2, size_t size2)
|
| 2914 | {
|
| 2915 | if(ptr1 < ptr2)
|
| 2916 | return ptr1 + size1 > ptr2;
|
| 2917 | else if(ptr2 < ptr1)
|
| 2918 | return ptr2 + size2 > ptr1;
|
| 2919 | else
|
| 2920 | return true;
|
| 2921 | }
|
| 2922 |
|
| 2923 | static void TestMapping()
|
| 2924 | {
|
| 2925 | wprintf(L"Testing mapping...\n");
|
| 2926 |
|
| 2927 | VkResult res;
|
| 2928 | uint32_t memTypeIndex = UINT32_MAX;
|
| 2929 |
|
| 2930 | enum TEST
|
| 2931 | {
|
| 2932 | TEST_NORMAL,
|
| 2933 | TEST_POOL,
|
| 2934 | TEST_DEDICATED,
|
| 2935 | TEST_COUNT
|
| 2936 | };
|
| 2937 | for(uint32_t testIndex = 0; testIndex < TEST_COUNT; ++testIndex)
|
| 2938 | {
|
| 2939 | VmaPool pool = nullptr;
|
| 2940 | if(testIndex == TEST_POOL)
|
| 2941 | {
|
| 2942 | assert(memTypeIndex != UINT32_MAX);
|
| 2943 | VmaPoolCreateInfo poolInfo = {};
|
| 2944 | poolInfo.memoryTypeIndex = memTypeIndex;
|
| 2945 | res = vmaCreatePool(g_hAllocator, &poolInfo, &pool);
|
| 2946 | assert(res == VK_SUCCESS);
|
| 2947 | }
|
| 2948 |
|
| 2949 | VkBufferCreateInfo bufInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
|
| 2950 | bufInfo.size = 0x10000;
|
| 2951 | bufInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
|
| 2952 |
|
| 2953 | VmaAllocationCreateInfo allocCreateInfo = {};
|
| 2954 | allocCreateInfo.usage = VMA_MEMORY_USAGE_CPU_ONLY;
|
| 2955 | allocCreateInfo.pool = pool;
|
| 2956 | if(testIndex == TEST_DEDICATED)
|
| 2957 | allocCreateInfo.flags |= VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT;
|
| 2958 |
|
| 2959 | VmaAllocationInfo allocInfo;
|
| 2960 |
|
| 2961 | // Mapped manually
|
| 2962 |
|
| 2963 | // Create 2 buffers.
|
| 2964 | BufferInfo bufferInfos[3];
|
| 2965 | for(size_t i = 0; i < 2; ++i)
|
| 2966 | {
|
| 2967 | res = vmaCreateBuffer(g_hAllocator, &bufInfo, &allocCreateInfo,
|
| 2968 | &bufferInfos[i].Buffer, &bufferInfos[i].Allocation, &allocInfo);
|
| 2969 | assert(res == VK_SUCCESS);
|
| 2970 | assert(allocInfo.pMappedData == nullptr);
|
| 2971 | memTypeIndex = allocInfo.memoryType;
|
| 2972 | }
|
| 2973 |
|
| 2974 | // Map buffer 0.
|
| 2975 | char* data00 = nullptr;
|
| 2976 | res = vmaMapMemory(g_hAllocator, bufferInfos[0].Allocation, (void**)&data00);
|
| 2977 | assert(res == VK_SUCCESS && data00 != nullptr);
|
| 2978 | data00[0xFFFF] = data00[0];
|
| 2979 |
|
| 2980 | // Map buffer 0 second time.
|
| 2981 | char* data01 = nullptr;
|
| 2982 | res = vmaMapMemory(g_hAllocator, bufferInfos[0].Allocation, (void**)&data01);
|
| 2983 | assert(res == VK_SUCCESS && data01 == data00);
|
| 2984 |
|
| 2985 | // Map buffer 1.
|
| 2986 | char* data1 = nullptr;
|
| 2987 | res = vmaMapMemory(g_hAllocator, bufferInfos[1].Allocation, (void**)&data1);
|
| 2988 | assert(res == VK_SUCCESS && data1 != nullptr);
|
| 2989 | assert(!MemoryRegionsOverlap(data00, (size_t)bufInfo.size, data1, (size_t)bufInfo.size));
|
| 2990 | data1[0xFFFF] = data1[0];
|
| 2991 |
|
| 2992 | // Unmap buffer 0 two times.
|
| 2993 | vmaUnmapMemory(g_hAllocator, bufferInfos[0].Allocation);
|
| 2994 | vmaUnmapMemory(g_hAllocator, bufferInfos[0].Allocation);
|
| 2995 | vmaGetAllocationInfo(g_hAllocator, bufferInfos[0].Allocation, &allocInfo);
|
| 2996 | assert(allocInfo.pMappedData == nullptr);
|
| 2997 |
|
| 2998 | // Unmap buffer 1.
|
| 2999 | vmaUnmapMemory(g_hAllocator, bufferInfos[1].Allocation);
|
| 3000 | vmaGetAllocationInfo(g_hAllocator, bufferInfos[1].Allocation, &allocInfo);
|
| 3001 | assert(allocInfo.pMappedData == nullptr);
|
| 3002 |
|
| 3003 | // Create 3rd buffer - persistently mapped.
|
| 3004 | allocCreateInfo.flags |= VMA_ALLOCATION_CREATE_MAPPED_BIT;
|
| 3005 | res = vmaCreateBuffer(g_hAllocator, &bufInfo, &allocCreateInfo,
|
| 3006 | &bufferInfos[2].Buffer, &bufferInfos[2].Allocation, &allocInfo);
|
| 3007 | assert(res == VK_SUCCESS && allocInfo.pMappedData != nullptr);
|
| 3008 |
|
| 3009 | // Map buffer 2.
|
| 3010 | char* data2 = nullptr;
|
| 3011 | res = vmaMapMemory(g_hAllocator, bufferInfos[2].Allocation, (void**)&data2);
|
| 3012 | assert(res == VK_SUCCESS && data2 == allocInfo.pMappedData);
|
| 3013 | data2[0xFFFF] = data2[0];
|
| 3014 |
|
| 3015 | // Unmap buffer 2.
|
| 3016 | vmaUnmapMemory(g_hAllocator, bufferInfos[2].Allocation);
|
| 3017 | vmaGetAllocationInfo(g_hAllocator, bufferInfos[2].Allocation, &allocInfo);
|
| 3018 | assert(allocInfo.pMappedData == data2);
|
| 3019 |
|
| 3020 | // Destroy all buffers.
|
| 3021 | for(size_t i = 3; i--; )
|
| 3022 | vmaDestroyBuffer(g_hAllocator, bufferInfos[i].Buffer, bufferInfos[i].Allocation);
|
| 3023 |
|
| 3024 | vmaDestroyPool(g_hAllocator, pool);
|
| 3025 | }
|
| 3026 | }
|
| 3027 |
|
| 3028 | static void TestMappingMultithreaded()
|
| 3029 | {
|
| 3030 | wprintf(L"Testing mapping multithreaded...\n");
|
| 3031 |
|
| 3032 | static const uint32_t threadCount = 16;
|
| 3033 | static const uint32_t bufferCount = 1024;
|
| 3034 | static const uint32_t threadBufferCount = bufferCount / threadCount;
|
| 3035 |
|
| 3036 | VkResult res;
|
| 3037 | volatile uint32_t memTypeIndex = UINT32_MAX;
|
| 3038 |
|
| 3039 | enum TEST
|
| 3040 | {
|
| 3041 | TEST_NORMAL,
|
| 3042 | TEST_POOL,
|
| 3043 | TEST_DEDICATED,
|
| 3044 | TEST_COUNT
|
| 3045 | };
|
| 3046 | for(uint32_t testIndex = 0; testIndex < TEST_COUNT; ++testIndex)
|
| 3047 | {
|
| 3048 | VmaPool pool = nullptr;
|
| 3049 | if(testIndex == TEST_POOL)
|
| 3050 | {
|
| 3051 | assert(memTypeIndex != UINT32_MAX);
|
| 3052 | VmaPoolCreateInfo poolInfo = {};
|
| 3053 | poolInfo.memoryTypeIndex = memTypeIndex;
|
| 3054 | res = vmaCreatePool(g_hAllocator, &poolInfo, &pool);
|
| 3055 | assert(res == VK_SUCCESS);
|
| 3056 | }
|
| 3057 |
|
| 3058 | VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
|
| 3059 | bufCreateInfo.size = 0x10000;
|
| 3060 | bufCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
|
| 3061 |
|
| 3062 | VmaAllocationCreateInfo allocCreateInfo = {};
|
| 3063 | allocCreateInfo.usage = VMA_MEMORY_USAGE_CPU_ONLY;
|
| 3064 | allocCreateInfo.pool = pool;
|
| 3065 | if(testIndex == TEST_DEDICATED)
|
| 3066 | allocCreateInfo.flags |= VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT;
|
| 3067 |
|
| 3068 | std::thread threads[threadCount];
|
| 3069 | for(uint32_t threadIndex = 0; threadIndex < threadCount; ++threadIndex)
|
| 3070 | {
|
| 3071 | threads[threadIndex] = std::thread([=, &memTypeIndex](){
|
| 3072 | // ======== THREAD FUNCTION ========
|
| 3073 |
|
| 3074 | RandomNumberGenerator rand{threadIndex};
|
| 3075 |
|
| 3076 | enum class MODE
|
| 3077 | {
|
| 3078 | // Don't map this buffer at all.
|
| 3079 | DONT_MAP,
|
| 3080 | // Map and quickly unmap.
|
| 3081 | MAP_FOR_MOMENT,
|
| 3082 | // Map and unmap before destruction.
|
| 3083 | MAP_FOR_LONGER,
|
| 3084 | // Map two times. Quickly unmap, second unmap before destruction.
|
| 3085 | MAP_TWO_TIMES,
|
| 3086 | // Create this buffer as persistently mapped.
|
| 3087 | PERSISTENTLY_MAPPED,
|
| 3088 | COUNT
|
| 3089 | };
|
| 3090 | std::vector<BufferInfo> bufInfos{threadBufferCount};
|
| 3091 | std::vector<MODE> bufModes{threadBufferCount};
|
| 3092 |
|
| 3093 | for(uint32_t bufferIndex = 0; bufferIndex < threadBufferCount; ++bufferIndex)
|
| 3094 | {
|
| 3095 | BufferInfo& bufInfo = bufInfos[bufferIndex];
|
| 3096 | const MODE mode = (MODE)(rand.Generate() % (uint32_t)MODE::COUNT);
|
| 3097 | bufModes[bufferIndex] = mode;
|
| 3098 |
|
| 3099 | VmaAllocationCreateInfo localAllocCreateInfo = allocCreateInfo;
|
| 3100 | if(mode == MODE::PERSISTENTLY_MAPPED)
|
| 3101 | localAllocCreateInfo.flags |= VMA_ALLOCATION_CREATE_MAPPED_BIT;
|
| 3102 |
|
| 3103 | VmaAllocationInfo allocInfo;
|
| 3104 | VkResult res = vmaCreateBuffer(g_hAllocator, &bufCreateInfo, &localAllocCreateInfo,
|
| 3105 | &bufInfo.Buffer, &bufInfo.Allocation, &allocInfo);
|
| 3106 | assert(res == VK_SUCCESS);
|
| 3107 |
|
| 3108 | if(memTypeIndex == UINT32_MAX)
|
| 3109 | memTypeIndex = allocInfo.memoryType;
|
| 3110 |
|
| 3111 | char* data = nullptr;
|
| 3112 |
|
| 3113 | if(mode == MODE::PERSISTENTLY_MAPPED)
|
| 3114 | {
|
| 3115 | data = (char*)allocInfo.pMappedData;
|
| 3116 | assert(data != nullptr);
|
| 3117 | }
|
| 3118 | else if(mode == MODE::MAP_FOR_MOMENT || mode == MODE::MAP_FOR_LONGER ||
|
| 3119 | mode == MODE::MAP_TWO_TIMES)
|
| 3120 | {
|
| 3121 | assert(data == nullptr);
|
| 3122 | res = vmaMapMemory(g_hAllocator, bufInfo.Allocation, (void**)&data);
|
| 3123 | assert(res == VK_SUCCESS && data != nullptr);
|
| 3124 |
|
| 3125 | if(mode == MODE::MAP_TWO_TIMES)
|
| 3126 | {
|
| 3127 | char* data2 = nullptr;
|
| 3128 | res = vmaMapMemory(g_hAllocator, bufInfo.Allocation, (void**)&data2);
|
| 3129 | assert(res == VK_SUCCESS && data2 == data);
|
| 3130 | }
|
| 3131 | }
|
| 3132 | else if(mode == MODE::DONT_MAP)
|
| 3133 | {
|
| 3134 | assert(allocInfo.pMappedData == nullptr);
|
| 3135 | }
|
| 3136 | else
|
| 3137 | assert(0);
|
| 3138 |
|
| 3139 | // Test if reading and writing from the beginning and end of mapped memory doesn't crash.
|
| 3140 | if(data)
|
| 3141 | data[0xFFFF] = data[0];
|
| 3142 |
|
| 3143 | if(mode == MODE::MAP_FOR_MOMENT || mode == MODE::MAP_TWO_TIMES)
|
| 3144 | {
|
| 3145 | vmaUnmapMemory(g_hAllocator, bufInfo.Allocation);
|
| 3146 |
|
| 3147 | VmaAllocationInfo allocInfo;
|
| 3148 | vmaGetAllocationInfo(g_hAllocator, bufInfo.Allocation, &allocInfo);
|
| 3149 | if(mode == MODE::MAP_FOR_MOMENT)
|
| 3150 | assert(allocInfo.pMappedData == nullptr);
|
| 3151 | else
|
| 3152 | assert(allocInfo.pMappedData == data);
|
| 3153 | }
|
| 3154 |
|
| 3155 | switch(rand.Generate() % 3)
|
| 3156 | {
|
| 3157 | case 0: Sleep(0); break; // Yield.
|
| 3158 | case 1: Sleep(10); break; // 10 ms
|
| 3159 | // default: No sleep.
|
| 3160 | }
|
| 3161 |
|
| 3162 | // Test if reading and writing from the beginning and end of mapped memory doesn't crash.
|
| 3163 | if(data)
|
| 3164 | data[0xFFFF] = data[0];
|
| 3165 | }
|
| 3166 |
|
| 3167 | for(size_t bufferIndex = threadBufferCount; bufferIndex--; )
|
| 3168 | {
|
| 3169 | if(bufModes[bufferIndex] == MODE::MAP_FOR_LONGER ||
|
| 3170 | bufModes[bufferIndex] == MODE::MAP_TWO_TIMES)
|
| 3171 | {
|
| 3172 | vmaUnmapMemory(g_hAllocator, bufInfos[bufferIndex].Allocation);
|
| 3173 |
|
| 3174 | VmaAllocationInfo allocInfo;
|
| 3175 | vmaGetAllocationInfo(g_hAllocator, bufInfos[bufferIndex].Allocation, &allocInfo);
|
| 3176 | assert(allocInfo.pMappedData == nullptr);
|
| 3177 | }
|
| 3178 |
|
| 3179 | vmaDestroyBuffer(g_hAllocator, bufInfos[bufferIndex].Buffer, bufInfos[bufferIndex].Allocation);
|
| 3180 | }
|
| 3181 | });
|
| 3182 | }
|
| 3183 |
|
| 3184 | for(uint32_t threadIndex = 0; threadIndex < threadCount; ++threadIndex)
|
| 3185 | threads[threadIndex].join();
|
| 3186 |
|
| 3187 | vmaDestroyPool(g_hAllocator, pool);
|
| 3188 | }
|
| 3189 | }
|
| 3190 |
|
| 3191 | static void WriteMainTestResultHeader(FILE* file)
|
| 3192 | {
|
| 3193 | fprintf(file,
|
| 3194 | "Code,Test,Time,"
|
| 3195 | "Config,"
|
| 3196 | "Total Time (us),"
|
| 3197 | "Allocation Time Min (us),"
|
| 3198 | "Allocation Time Avg (us),"
|
| 3199 | "Allocation Time Max (us),"
|
| 3200 | "Deallocation Time Min (us),"
|
| 3201 | "Deallocation Time Avg (us),"
|
| 3202 | "Deallocation Time Max (us),"
|
| 3203 | "Total Memory Allocated (B),"
|
| 3204 | "Free Range Size Avg (B),"
|
| 3205 | "Free Range Size Max (B)\n");
|
| 3206 | }
|
| 3207 |
|
| 3208 | static void WriteMainTestResult(
|
| 3209 | FILE* file,
|
| 3210 | const char* codeDescription,
|
| 3211 | const char* testDescription,
|
| 3212 | const Config& config, const Result& result)
|
| 3213 | {
|
| 3214 | float totalTimeSeconds = ToFloatSeconds(result.TotalTime);
|
| 3215 | float allocationTimeMinSeconds = ToFloatSeconds(result.AllocationTimeMin);
|
| 3216 | float allocationTimeAvgSeconds = ToFloatSeconds(result.AllocationTimeAvg);
|
| 3217 | float allocationTimeMaxSeconds = ToFloatSeconds(result.AllocationTimeMax);
|
| 3218 | float deallocationTimeMinSeconds = ToFloatSeconds(result.DeallocationTimeMin);
|
| 3219 | float deallocationTimeAvgSeconds = ToFloatSeconds(result.DeallocationTimeAvg);
|
| 3220 | float deallocationTimeMaxSeconds = ToFloatSeconds(result.DeallocationTimeMax);
|
| 3221 |
|
| 3222 | time_t rawTime; time(&rawTime);
|
| 3223 | struct tm timeInfo; localtime_s(&timeInfo, &rawTime);
|
| 3224 | char timeStr[128];
|
| 3225 | strftime(timeStr, _countof(timeStr), "%c", &timeInfo);
|
| 3226 |
|
| 3227 | fprintf(file,
|
| 3228 | "%s,%s,%s,"
|
| 3229 | "BeginBytesToAllocate=%I64u MaxBytesToAllocate=%I64u AdditionalOperationCount=%u ThreadCount=%u FreeOrder=%d,"
|
| 3230 | "%.2f,%.2f,%.2f,%.2f,%.2f,%.2f,%.2f,%I64u,%I64u,%I64u\n",
|
| 3231 | codeDescription,
|
| 3232 | testDescription,
|
| 3233 | timeStr,
|
| 3234 | config.BeginBytesToAllocate, config.MaxBytesToAllocate, config.AdditionalOperationCount, config.ThreadCount, (uint32_t)config.FreeOrder,
|
| 3235 | totalTimeSeconds * 1e6f,
|
| 3236 | allocationTimeMinSeconds * 1e6f,
|
| 3237 | allocationTimeAvgSeconds * 1e6f,
|
| 3238 | allocationTimeMaxSeconds * 1e6f,
|
| 3239 | deallocationTimeMinSeconds * 1e6f,
|
| 3240 | deallocationTimeAvgSeconds * 1e6f,
|
| 3241 | deallocationTimeMaxSeconds * 1e6f,
|
| 3242 | result.TotalMemoryAllocated,
|
| 3243 | result.FreeRangeSizeAvg,
|
| 3244 | result.FreeRangeSizeMax);
|
| 3245 | }
|
| 3246 |
|
| 3247 | static void WritePoolTestResultHeader(FILE* file)
|
| 3248 | {
|
| 3249 | fprintf(file,
|
| 3250 | "Code,Test,Time,"
|
| 3251 | "Config,"
|
| 3252 | "Total Time (us),"
|
| 3253 | "Allocation Time Min (us),"
|
| 3254 | "Allocation Time Avg (us),"
|
| 3255 | "Allocation Time Max (us),"
|
| 3256 | "Deallocation Time Min (us),"
|
| 3257 | "Deallocation Time Avg (us),"
|
| 3258 | "Deallocation Time Max (us),"
|
| 3259 | "Lost Allocation Count,"
|
| 3260 | "Lost Allocation Total Size (B),"
|
| 3261 | "Failed Allocation Count,"
|
| 3262 | "Failed Allocation Total Size (B)\n");
|
| 3263 | }
|
| 3264 |
|
| 3265 | static void WritePoolTestResult(
|
| 3266 | FILE* file,
|
| 3267 | const char* codeDescription,
|
| 3268 | const char* testDescription,
|
| 3269 | const PoolTestConfig& config,
|
| 3270 | const PoolTestResult& result)
|
| 3271 | {
|
| 3272 | float totalTimeSeconds = ToFloatSeconds(result.TotalTime);
|
| 3273 | float allocationTimeMinSeconds = ToFloatSeconds(result.AllocationTimeMin);
|
| 3274 | float allocationTimeAvgSeconds = ToFloatSeconds(result.AllocationTimeAvg);
|
| 3275 | float allocationTimeMaxSeconds = ToFloatSeconds(result.AllocationTimeMax);
|
| 3276 | float deallocationTimeMinSeconds = ToFloatSeconds(result.DeallocationTimeMin);
|
| 3277 | float deallocationTimeAvgSeconds = ToFloatSeconds(result.DeallocationTimeAvg);
|
| 3278 | float deallocationTimeMaxSeconds = ToFloatSeconds(result.DeallocationTimeMax);
|
| 3279 |
|
| 3280 | time_t rawTime; time(&rawTime);
|
| 3281 | struct tm timeInfo; localtime_s(&timeInfo, &rawTime);
|
| 3282 | char timeStr[128];
|
| 3283 | strftime(timeStr, _countof(timeStr), "%c", &timeInfo);
|
| 3284 |
|
| 3285 | fprintf(file,
|
| 3286 | "%s,%s,%s,"
|
| 3287 | "ThreadCount=%u PoolSize=%llu FrameCount=%u TotalItemCount=%u UsedItemCount=%u...%u ItemsToMakeUnusedPercent=%u,"
|
| 3288 | "%.2f,%.2f,%.2f,%.2f,%.2f,%.2f,%.2f,%I64u,%I64u,%I64u,%I64u\n",
|
| 3289 | // General
|
| 3290 | codeDescription,
|
| 3291 | testDescription,
|
| 3292 | timeStr,
|
| 3293 | // Config
|
| 3294 | config.ThreadCount,
|
| 3295 | (unsigned long long)config.PoolSize,
|
| 3296 | config.FrameCount,
|
| 3297 | config.TotalItemCount,
|
| 3298 | config.UsedItemCountMin,
|
| 3299 | config.UsedItemCountMax,
|
| 3300 | config.ItemsToMakeUnusedPercent,
|
| 3301 | // Results
|
| 3302 | totalTimeSeconds * 1e6f,
|
| 3303 | allocationTimeMinSeconds * 1e6f,
|
| 3304 | allocationTimeAvgSeconds * 1e6f,
|
| 3305 | allocationTimeMaxSeconds * 1e6f,
|
| 3306 | deallocationTimeMinSeconds * 1e6f,
|
| 3307 | deallocationTimeAvgSeconds * 1e6f,
|
| 3308 | deallocationTimeMaxSeconds * 1e6f,
|
| 3309 | result.LostAllocationCount,
|
| 3310 | result.LostAllocationTotalSize,
|
| 3311 | result.FailedAllocationCount,
|
| 3312 | result.FailedAllocationTotalSize);
|
| 3313 | }
|
| 3314 |
|
| 3315 | static void PerformCustomMainTest(FILE* file)
|
| 3316 | {
|
| 3317 | Config config{};
|
| 3318 | config.RandSeed = 65735476;
|
| 3319 | //config.MaxBytesToAllocate = 4ull * 1024 * 1024; // 4 MB
|
| 3320 | config.MaxBytesToAllocate = 4ull * 1024 * 1024 * 1024; // 4 GB
|
| 3321 | config.MemUsageProbability[0] = 1; // VMA_MEMORY_USAGE_GPU_ONLY
|
| 3322 | config.FreeOrder = FREE_ORDER::FORWARD;
|
| 3323 | config.ThreadCount = 16;
|
| 3324 | config.ThreadsUsingCommonAllocationsProbabilityPercent = 50;
|
| 3325 |
|
| 3326 | // Buffers
|
| 3327 | //config.AllocationSizes.push_back({4, 16, 1024});
|
| 3328 | config.AllocationSizes.push_back({4, 0x10000, 0xA00000}); // 64 KB ... 10 MB
|
| 3329 |
|
| 3330 | // Images
|
| 3331 | //config.AllocationSizes.push_back({4, 0, 0, 4, 32});
|
| 3332 | //config.AllocationSizes.push_back({4, 0, 0, 256, 2048});
|
| 3333 |
|
| 3334 | config.BeginBytesToAllocate = config.MaxBytesToAllocate * 5 / 100;
|
| 3335 | config.AdditionalOperationCount = 1024;
|
| 3336 |
|
| 3337 | Result result{};
|
| 3338 | VkResult res = MainTest(result, config);
|
| 3339 | assert(res == VK_SUCCESS);
|
| 3340 | WriteMainTestResult(file, "Foo", "CustomTest", config, result);
|
| 3341 | }
|
| 3342 |
|
| 3343 | static void PerformCustomPoolTest(FILE* file)
|
| 3344 | {
|
| 3345 | PoolTestConfig config;
|
| 3346 | config.PoolSize = 100 * 1024 * 1024;
|
| 3347 | config.RandSeed = 2345764;
|
| 3348 | config.ThreadCount = 1;
|
| 3349 | config.FrameCount = 200;
|
| 3350 | config.ItemsToMakeUnusedPercent = 2;
|
| 3351 |
|
| 3352 | AllocationSize allocSize = {};
|
| 3353 | allocSize.BufferSizeMin = 1024;
|
| 3354 | allocSize.BufferSizeMax = 1024 * 1024;
|
| 3355 | allocSize.Probability = 1;
|
| 3356 | config.AllocationSizes.push_back(allocSize);
|
| 3357 |
|
| 3358 | allocSize.BufferSizeMin = 0;
|
| 3359 | allocSize.BufferSizeMax = 0;
|
| 3360 | allocSize.ImageSizeMin = 128;
|
| 3361 | allocSize.ImageSizeMax = 1024;
|
| 3362 | allocSize.Probability = 1;
|
| 3363 | config.AllocationSizes.push_back(allocSize);
|
| 3364 |
|
| 3365 | config.PoolSize = config.CalcAvgResourceSize() * 200;
|
| 3366 | config.UsedItemCountMax = 160;
|
| 3367 | config.TotalItemCount = config.UsedItemCountMax * 10;
|
| 3368 | config.UsedItemCountMin = config.UsedItemCountMax * 80 / 100;
|
| 3369 |
|
| 3370 | g_MemoryAliasingWarningEnabled = false;
|
| 3371 | PoolTestResult result = {};
|
| 3372 | TestPool_Benchmark(result, config);
|
| 3373 | g_MemoryAliasingWarningEnabled = true;
|
| 3374 |
|
| 3375 | WritePoolTestResult(file, "Code desc", "Test desc", config, result);
|
| 3376 | }
|
| 3377 |
|
Adam Sawicki | b8333fb | 2018-03-13 16:15:53 +0100 | [diff] [blame] | 3378 | static const char* CODE_DESCRIPTION = "Foo";
|
| 3379 |
|
| 3380 | static void PerformMainTests(FILE* file)
|
| 3381 | {
|
| 3382 | uint32_t repeatCount = 1;
|
| 3383 | if(ConfigType >= CONFIG_TYPE_MAXIMUM) repeatCount = 3;
|
| 3384 |
|
| 3385 | Config config{};
|
| 3386 | config.RandSeed = 65735476;
|
| 3387 | config.MemUsageProbability[0] = 1; // VMA_MEMORY_USAGE_GPU_ONLY
|
| 3388 | config.FreeOrder = FREE_ORDER::FORWARD;
|
| 3389 |
|
| 3390 | size_t threadCountCount = 1;
|
| 3391 | switch(ConfigType)
|
| 3392 | {
|
| 3393 | case CONFIG_TYPE_MINIMUM: threadCountCount = 1; break;
|
| 3394 | case CONFIG_TYPE_SMALL: threadCountCount = 2; break;
|
| 3395 | case CONFIG_TYPE_AVERAGE: threadCountCount = 3; break;
|
| 3396 | case CONFIG_TYPE_LARGE: threadCountCount = 5; break;
|
| 3397 | case CONFIG_TYPE_MAXIMUM: threadCountCount = 7; break;
|
| 3398 | default: assert(0);
|
| 3399 | }
|
| 3400 | for(size_t threadCountIndex = 0; threadCountIndex < threadCountCount; ++threadCountIndex)
|
| 3401 | {
|
| 3402 | std::string desc1;
|
| 3403 |
|
| 3404 | switch(threadCountIndex)
|
| 3405 | {
|
| 3406 | case 0:
|
| 3407 | desc1 += "1_thread";
|
| 3408 | config.ThreadCount = 1;
|
| 3409 | config.ThreadsUsingCommonAllocationsProbabilityPercent = 0;
|
| 3410 | break;
|
| 3411 | case 1:
|
| 3412 | desc1 += "16_threads+0%_common";
|
| 3413 | config.ThreadCount = 16;
|
| 3414 | config.ThreadsUsingCommonAllocationsProbabilityPercent = 0;
|
| 3415 | break;
|
| 3416 | case 2:
|
| 3417 | desc1 += "16_threads+50%_common";
|
| 3418 | config.ThreadCount = 16;
|
| 3419 | config.ThreadsUsingCommonAllocationsProbabilityPercent = 50;
|
| 3420 | break;
|
| 3421 | case 3:
|
| 3422 | desc1 += "16_threads+100%_common";
|
| 3423 | config.ThreadCount = 16;
|
| 3424 | config.ThreadsUsingCommonAllocationsProbabilityPercent = 100;
|
| 3425 | break;
|
| 3426 | case 4:
|
| 3427 | desc1 += "2_threads+0%_common";
|
| 3428 | config.ThreadCount = 2;
|
| 3429 | config.ThreadsUsingCommonAllocationsProbabilityPercent = 0;
|
| 3430 | break;
|
| 3431 | case 5:
|
| 3432 | desc1 += "2_threads+50%_common";
|
| 3433 | config.ThreadCount = 2;
|
| 3434 | config.ThreadsUsingCommonAllocationsProbabilityPercent = 50;
|
| 3435 | break;
|
| 3436 | case 6:
|
| 3437 | desc1 += "2_threads+100%_common";
|
| 3438 | config.ThreadCount = 2;
|
| 3439 | config.ThreadsUsingCommonAllocationsProbabilityPercent = 100;
|
| 3440 | break;
|
| 3441 | default:
|
| 3442 | assert(0);
|
| 3443 | }
|
| 3444 |
|
| 3445 | // 0 = buffers, 1 = images, 2 = buffers and images
|
| 3446 | size_t buffersVsImagesCount = 2;
|
| 3447 | if(ConfigType >= CONFIG_TYPE_LARGE) ++buffersVsImagesCount;
|
| 3448 | for(size_t buffersVsImagesIndex = 0; buffersVsImagesIndex < buffersVsImagesCount; ++buffersVsImagesIndex)
|
| 3449 | {
|
| 3450 | std::string desc2 = desc1;
|
| 3451 | switch(buffersVsImagesIndex)
|
| 3452 | {
|
| 3453 | case 0: desc2 += " Buffers"; break;
|
| 3454 | case 1: desc2 += " Images"; break;
|
| 3455 | case 2: desc2 += " Buffers+Images"; break;
|
| 3456 | default: assert(0);
|
| 3457 | }
|
| 3458 |
|
| 3459 | // 0 = small, 1 = large, 2 = small and large
|
| 3460 | size_t smallVsLargeCount = 2;
|
| 3461 | if(ConfigType >= CONFIG_TYPE_LARGE) ++smallVsLargeCount;
|
| 3462 | for(size_t smallVsLargeIndex = 0; smallVsLargeIndex < smallVsLargeCount; ++smallVsLargeIndex)
|
| 3463 | {
|
| 3464 | std::string desc3 = desc2;
|
| 3465 | switch(smallVsLargeIndex)
|
| 3466 | {
|
| 3467 | case 0: desc3 += " Small"; break;
|
| 3468 | case 1: desc3 += " Large"; break;
|
| 3469 | case 2: desc3 += " Small+Large"; break;
|
| 3470 | default: assert(0);
|
| 3471 | }
|
| 3472 |
|
| 3473 | if(smallVsLargeIndex == 1 || smallVsLargeIndex == 2)
|
| 3474 | config.MaxBytesToAllocate = 4ull * 1024 * 1024 * 1024; // 4 GB
|
| 3475 | else
|
| 3476 | config.MaxBytesToAllocate = 4ull * 1024 * 1024;
|
| 3477 |
|
| 3478 | // 0 = varying sizes min...max, 1 = set of constant sizes
|
| 3479 | size_t constantSizesCount = 1;
|
| 3480 | if(ConfigType >= CONFIG_TYPE_SMALL) ++constantSizesCount;
|
| 3481 | for(size_t constantSizesIndex = 0; constantSizesIndex < constantSizesCount; ++constantSizesIndex)
|
| 3482 | {
|
| 3483 | std::string desc4 = desc3;
|
| 3484 | switch(constantSizesIndex)
|
| 3485 | {
|
| 3486 | case 0: desc4 += " Varying_sizes"; break;
|
| 3487 | case 1: desc4 += " Constant_sizes"; break;
|
| 3488 | default: assert(0);
|
| 3489 | }
|
| 3490 |
|
| 3491 | config.AllocationSizes.clear();
|
| 3492 | // Buffers present
|
| 3493 | if(buffersVsImagesIndex == 0 || buffersVsImagesIndex == 2)
|
| 3494 | {
|
| 3495 | // Small
|
| 3496 | if(smallVsLargeIndex == 0 || smallVsLargeIndex == 2)
|
| 3497 | {
|
| 3498 | // Varying size
|
| 3499 | if(constantSizesIndex == 0)
|
| 3500 | config.AllocationSizes.push_back({4, 16, 1024});
|
| 3501 | // Constant sizes
|
| 3502 | else
|
| 3503 | {
|
| 3504 | config.AllocationSizes.push_back({1, 16, 16});
|
| 3505 | config.AllocationSizes.push_back({1, 64, 64});
|
| 3506 | config.AllocationSizes.push_back({1, 256, 256});
|
| 3507 | config.AllocationSizes.push_back({1, 1024, 1024});
|
| 3508 | }
|
| 3509 | }
|
| 3510 | // Large
|
| 3511 | if(smallVsLargeIndex == 1 || smallVsLargeIndex == 2)
|
| 3512 | {
|
| 3513 | // Varying size
|
| 3514 | if(constantSizesIndex == 0)
|
| 3515 | config.AllocationSizes.push_back({4, 0x10000, 0xA00000}); // 64 KB ... 10 MB
|
| 3516 | // Constant sizes
|
| 3517 | else
|
| 3518 | {
|
| 3519 | config.AllocationSizes.push_back({1, 0x10000, 0x10000});
|
| 3520 | config.AllocationSizes.push_back({1, 0x80000, 0x80000});
|
| 3521 | config.AllocationSizes.push_back({1, 0x200000, 0x200000});
|
| 3522 | config.AllocationSizes.push_back({1, 0xA00000, 0xA00000});
|
| 3523 | }
|
| 3524 | }
|
| 3525 | }
|
| 3526 | // Images present
|
| 3527 | if(buffersVsImagesIndex == 1 || buffersVsImagesIndex == 2)
|
| 3528 | {
|
| 3529 | // Small
|
| 3530 | if(smallVsLargeIndex == 0 || smallVsLargeIndex == 2)
|
| 3531 | {
|
| 3532 | // Varying size
|
| 3533 | if(constantSizesIndex == 0)
|
| 3534 | config.AllocationSizes.push_back({4, 0, 0, 4, 32});
|
| 3535 | // Constant sizes
|
| 3536 | else
|
| 3537 | {
|
| 3538 | config.AllocationSizes.push_back({1, 0, 0, 4, 4});
|
| 3539 | config.AllocationSizes.push_back({1, 0, 0, 8, 8});
|
| 3540 | config.AllocationSizes.push_back({1, 0, 0, 16, 16});
|
| 3541 | config.AllocationSizes.push_back({1, 0, 0, 32, 32});
|
| 3542 | }
|
| 3543 | }
|
| 3544 | // Large
|
| 3545 | if(smallVsLargeIndex == 1 || smallVsLargeIndex == 2)
|
| 3546 | {
|
| 3547 | // Varying size
|
| 3548 | if(constantSizesIndex == 0)
|
| 3549 | config.AllocationSizes.push_back({4, 0, 0, 256, 2048});
|
| 3550 | // Constant sizes
|
| 3551 | else
|
| 3552 | {
|
| 3553 | config.AllocationSizes.push_back({1, 0, 0, 256, 256});
|
| 3554 | config.AllocationSizes.push_back({1, 0, 0, 512, 512});
|
| 3555 | config.AllocationSizes.push_back({1, 0, 0, 1024, 1024});
|
| 3556 | config.AllocationSizes.push_back({1, 0, 0, 2048, 2048});
|
| 3557 | }
|
| 3558 | }
|
| 3559 | }
|
| 3560 |
|
| 3561 | // 0 = 100%, additional_operations = 0, 1 = 50%, 2 = 5%, 3 = 95% additional_operations = a lot
|
| 3562 | size_t beginBytesToAllocateCount = 1;
|
| 3563 | if(ConfigType >= CONFIG_TYPE_SMALL) ++beginBytesToAllocateCount;
|
| 3564 | if(ConfigType >= CONFIG_TYPE_AVERAGE) ++beginBytesToAllocateCount;
|
| 3565 | if(ConfigType >= CONFIG_TYPE_LARGE) ++beginBytesToAllocateCount;
|
| 3566 | for(size_t beginBytesToAllocateIndex = 0; beginBytesToAllocateIndex < beginBytesToAllocateCount; ++beginBytesToAllocateIndex)
|
| 3567 | {
|
| 3568 | std::string desc5 = desc4;
|
| 3569 |
|
| 3570 | switch(beginBytesToAllocateIndex)
|
| 3571 | {
|
| 3572 | case 0:
|
| 3573 | desc5 += " Allocate_100%";
|
| 3574 | config.BeginBytesToAllocate = config.MaxBytesToAllocate;
|
| 3575 | config.AdditionalOperationCount = 0;
|
| 3576 | break;
|
| 3577 | case 1:
|
| 3578 | desc5 += " Allocate_50%+Operations";
|
| 3579 | config.BeginBytesToAllocate = config.MaxBytesToAllocate * 50 / 100;
|
| 3580 | config.AdditionalOperationCount = 1024;
|
| 3581 | break;
|
| 3582 | case 2:
|
| 3583 | desc5 += " Allocate_5%+Operations";
|
| 3584 | config.BeginBytesToAllocate = config.MaxBytesToAllocate * 5 / 100;
|
| 3585 | config.AdditionalOperationCount = 1024;
|
| 3586 | break;
|
| 3587 | case 3:
|
| 3588 | desc5 += " Allocate_95%+Operations";
|
| 3589 | config.BeginBytesToAllocate = config.MaxBytesToAllocate * 95 / 100;
|
| 3590 | config.AdditionalOperationCount = 1024;
|
| 3591 | break;
|
| 3592 | default:
|
| 3593 | assert(0);
|
| 3594 | }
|
| 3595 |
|
| 3596 | const char* testDescription = desc5.c_str();
|
| 3597 |
|
| 3598 | for(size_t repeat = 0; repeat < repeatCount; ++repeat)
|
| 3599 | {
|
| 3600 | printf("%s Repeat %u\n", testDescription, (uint32_t)repeat);
|
| 3601 |
|
| 3602 | Result result{};
|
| 3603 | VkResult res = MainTest(result, config);
|
| 3604 | assert(res == VK_SUCCESS);
|
| 3605 | WriteMainTestResult(file, CODE_DESCRIPTION, testDescription, config, result);
|
| 3606 | }
|
| 3607 | }
|
| 3608 | }
|
| 3609 | }
|
| 3610 | }
|
| 3611 | }
|
| 3612 | }
|
| 3613 |
|
| 3614 | static void PerformPoolTests(FILE* file)
|
| 3615 | {
|
| 3616 | const size_t AVG_RESOURCES_PER_POOL = 300;
|
| 3617 |
|
| 3618 | uint32_t repeatCount = 1;
|
| 3619 | if(ConfigType >= CONFIG_TYPE_MAXIMUM) repeatCount = 3;
|
| 3620 |
|
| 3621 | PoolTestConfig config{};
|
| 3622 | config.RandSeed = 2346343;
|
| 3623 | config.FrameCount = 200;
|
| 3624 | config.ItemsToMakeUnusedPercent = 2;
|
| 3625 |
|
| 3626 | size_t threadCountCount = 1;
|
| 3627 | switch(ConfigType)
|
| 3628 | {
|
| 3629 | case CONFIG_TYPE_MINIMUM: threadCountCount = 1; break;
|
| 3630 | case CONFIG_TYPE_SMALL: threadCountCount = 2; break;
|
| 3631 | case CONFIG_TYPE_AVERAGE: threadCountCount = 2; break;
|
| 3632 | case CONFIG_TYPE_LARGE: threadCountCount = 3; break;
|
| 3633 | case CONFIG_TYPE_MAXIMUM: threadCountCount = 3; break;
|
| 3634 | default: assert(0);
|
| 3635 | }
|
| 3636 | for(size_t threadCountIndex = 0; threadCountIndex < threadCountCount; ++threadCountIndex)
|
| 3637 | {
|
| 3638 | std::string desc1;
|
| 3639 |
|
| 3640 | switch(threadCountIndex)
|
| 3641 | {
|
| 3642 | case 0:
|
| 3643 | desc1 += "1_thread";
|
| 3644 | config.ThreadCount = 1;
|
| 3645 | break;
|
| 3646 | case 1:
|
| 3647 | desc1 += "16_threads";
|
| 3648 | config.ThreadCount = 16;
|
| 3649 | break;
|
| 3650 | case 2:
|
| 3651 | desc1 += "2_threads";
|
| 3652 | config.ThreadCount = 2;
|
| 3653 | break;
|
| 3654 | default:
|
| 3655 | assert(0);
|
| 3656 | }
|
| 3657 |
|
| 3658 | // 0 = buffers, 1 = images, 2 = buffers and images
|
| 3659 | size_t buffersVsImagesCount = 2;
|
| 3660 | if(ConfigType >= CONFIG_TYPE_LARGE) ++buffersVsImagesCount;
|
| 3661 | for(size_t buffersVsImagesIndex = 0; buffersVsImagesIndex < buffersVsImagesCount; ++buffersVsImagesIndex)
|
| 3662 | {
|
| 3663 | std::string desc2 = desc1;
|
| 3664 | switch(buffersVsImagesIndex)
|
| 3665 | {
|
| 3666 | case 0: desc2 += " Buffers"; break;
|
| 3667 | case 1: desc2 += " Images"; break;
|
| 3668 | case 2: desc2 += " Buffers+Images"; break;
|
| 3669 | default: assert(0);
|
| 3670 | }
|
| 3671 |
|
| 3672 | // 0 = small, 1 = large, 2 = small and large
|
| 3673 | size_t smallVsLargeCount = 2;
|
| 3674 | if(ConfigType >= CONFIG_TYPE_LARGE) ++smallVsLargeCount;
|
| 3675 | for(size_t smallVsLargeIndex = 0; smallVsLargeIndex < smallVsLargeCount; ++smallVsLargeIndex)
|
| 3676 | {
|
| 3677 | std::string desc3 = desc2;
|
| 3678 | switch(smallVsLargeIndex)
|
| 3679 | {
|
| 3680 | case 0: desc3 += " Small"; break;
|
| 3681 | case 1: desc3 += " Large"; break;
|
| 3682 | case 2: desc3 += " Small+Large"; break;
|
| 3683 | default: assert(0);
|
| 3684 | }
|
| 3685 |
|
| 3686 | if(smallVsLargeIndex == 1 || smallVsLargeIndex == 2)
|
| 3687 | config.PoolSize = 6ull * 1024 * 1024 * 1024; // 6 GB
|
| 3688 | else
|
| 3689 | config.PoolSize = 4ull * 1024 * 1024;
|
| 3690 |
|
| 3691 | // 0 = varying sizes min...max, 1 = set of constant sizes
|
| 3692 | size_t constantSizesCount = 1;
|
| 3693 | if(ConfigType >= CONFIG_TYPE_SMALL) ++constantSizesCount;
|
| 3694 | for(size_t constantSizesIndex = 0; constantSizesIndex < constantSizesCount; ++constantSizesIndex)
|
| 3695 | {
|
| 3696 | std::string desc4 = desc3;
|
| 3697 | switch(constantSizesIndex)
|
| 3698 | {
|
| 3699 | case 0: desc4 += " Varying_sizes"; break;
|
| 3700 | case 1: desc4 += " Constant_sizes"; break;
|
| 3701 | default: assert(0);
|
| 3702 | }
|
| 3703 |
|
| 3704 | config.AllocationSizes.clear();
|
| 3705 | // Buffers present
|
| 3706 | if(buffersVsImagesIndex == 0 || buffersVsImagesIndex == 2)
|
| 3707 | {
|
| 3708 | // Small
|
| 3709 | if(smallVsLargeIndex == 0 || smallVsLargeIndex == 2)
|
| 3710 | {
|
| 3711 | // Varying size
|
| 3712 | if(constantSizesIndex == 0)
|
| 3713 | config.AllocationSizes.push_back({4, 16, 1024});
|
| 3714 | // Constant sizes
|
| 3715 | else
|
| 3716 | {
|
| 3717 | config.AllocationSizes.push_back({1, 16, 16});
|
| 3718 | config.AllocationSizes.push_back({1, 64, 64});
|
| 3719 | config.AllocationSizes.push_back({1, 256, 256});
|
| 3720 | config.AllocationSizes.push_back({1, 1024, 1024});
|
| 3721 | }
|
| 3722 | }
|
| 3723 | // Large
|
| 3724 | if(smallVsLargeIndex == 1 || smallVsLargeIndex == 2)
|
| 3725 | {
|
| 3726 | // Varying size
|
| 3727 | if(constantSizesIndex == 0)
|
| 3728 | config.AllocationSizes.push_back({4, 0x10000, 0xA00000}); // 64 KB ... 10 MB
|
| 3729 | // Constant sizes
|
| 3730 | else
|
| 3731 | {
|
| 3732 | config.AllocationSizes.push_back({1, 0x10000, 0x10000});
|
| 3733 | config.AllocationSizes.push_back({1, 0x80000, 0x80000});
|
| 3734 | config.AllocationSizes.push_back({1, 0x200000, 0x200000});
|
| 3735 | config.AllocationSizes.push_back({1, 0xA00000, 0xA00000});
|
| 3736 | }
|
| 3737 | }
|
| 3738 | }
|
| 3739 | // Images present
|
| 3740 | if(buffersVsImagesIndex == 1 || buffersVsImagesIndex == 2)
|
| 3741 | {
|
| 3742 | // Small
|
| 3743 | if(smallVsLargeIndex == 0 || smallVsLargeIndex == 2)
|
| 3744 | {
|
| 3745 | // Varying size
|
| 3746 | if(constantSizesIndex == 0)
|
| 3747 | config.AllocationSizes.push_back({4, 0, 0, 4, 32});
|
| 3748 | // Constant sizes
|
| 3749 | else
|
| 3750 | {
|
| 3751 | config.AllocationSizes.push_back({1, 0, 0, 4, 4});
|
| 3752 | config.AllocationSizes.push_back({1, 0, 0, 8, 8});
|
| 3753 | config.AllocationSizes.push_back({1, 0, 0, 16, 16});
|
| 3754 | config.AllocationSizes.push_back({1, 0, 0, 32, 32});
|
| 3755 | }
|
| 3756 | }
|
| 3757 | // Large
|
| 3758 | if(smallVsLargeIndex == 1 || smallVsLargeIndex == 2)
|
| 3759 | {
|
| 3760 | // Varying size
|
| 3761 | if(constantSizesIndex == 0)
|
| 3762 | config.AllocationSizes.push_back({4, 0, 0, 256, 2048});
|
| 3763 | // Constant sizes
|
| 3764 | else
|
| 3765 | {
|
| 3766 | config.AllocationSizes.push_back({1, 0, 0, 256, 256});
|
| 3767 | config.AllocationSizes.push_back({1, 0, 0, 512, 512});
|
| 3768 | config.AllocationSizes.push_back({1, 0, 0, 1024, 1024});
|
| 3769 | config.AllocationSizes.push_back({1, 0, 0, 2048, 2048});
|
| 3770 | }
|
| 3771 | }
|
| 3772 | }
|
| 3773 |
|
| 3774 | const VkDeviceSize avgResourceSize = config.CalcAvgResourceSize();
|
| 3775 | config.PoolSize = avgResourceSize * AVG_RESOURCES_PER_POOL;
|
| 3776 |
|
| 3777 | // 0 = 66%, 1 = 133%, 2 = 100%, 3 = 33%, 4 = 166%
|
| 3778 | size_t subscriptionModeCount;
|
| 3779 | switch(ConfigType)
|
| 3780 | {
|
| 3781 | case CONFIG_TYPE_MINIMUM: subscriptionModeCount = 2; break;
|
| 3782 | case CONFIG_TYPE_SMALL: subscriptionModeCount = 2; break;
|
| 3783 | case CONFIG_TYPE_AVERAGE: subscriptionModeCount = 3; break;
|
| 3784 | case CONFIG_TYPE_LARGE: subscriptionModeCount = 5; break;
|
| 3785 | case CONFIG_TYPE_MAXIMUM: subscriptionModeCount = 5; break;
|
| 3786 | default: assert(0);
|
| 3787 | }
|
| 3788 | for(size_t subscriptionModeIndex = 0; subscriptionModeIndex < subscriptionModeCount; ++subscriptionModeIndex)
|
| 3789 | {
|
| 3790 | std::string desc5 = desc4;
|
| 3791 |
|
| 3792 | switch(subscriptionModeIndex)
|
| 3793 | {
|
| 3794 | case 0:
|
| 3795 | desc5 += " Subscription_66%";
|
| 3796 | config.UsedItemCountMax = AVG_RESOURCES_PER_POOL * 66 / 100;
|
| 3797 | break;
|
| 3798 | case 1:
|
| 3799 | desc5 += " Subscription_133%";
|
| 3800 | config.UsedItemCountMax = AVG_RESOURCES_PER_POOL * 133 / 100;
|
| 3801 | break;
|
| 3802 | case 2:
|
| 3803 | desc5 += " Subscription_100%";
|
| 3804 | config.UsedItemCountMax = AVG_RESOURCES_PER_POOL;
|
| 3805 | break;
|
| 3806 | case 3:
|
| 3807 | desc5 += " Subscription_33%";
|
| 3808 | config.UsedItemCountMax = AVG_RESOURCES_PER_POOL * 33 / 100;
|
| 3809 | break;
|
| 3810 | case 4:
|
| 3811 | desc5 += " Subscription_166%";
|
| 3812 | config.UsedItemCountMax = AVG_RESOURCES_PER_POOL * 166 / 100;
|
| 3813 | break;
|
| 3814 | default:
|
| 3815 | assert(0);
|
| 3816 | }
|
| 3817 |
|
| 3818 | config.TotalItemCount = config.UsedItemCountMax * 5;
|
| 3819 | config.UsedItemCountMin = config.UsedItemCountMax * 80 / 100;
|
| 3820 |
|
| 3821 | const char* testDescription = desc5.c_str();
|
| 3822 |
|
| 3823 | for(size_t repeat = 0; repeat < repeatCount; ++repeat)
|
| 3824 | {
|
| 3825 | printf("%s Repeat %u\n", testDescription, (uint32_t)repeat);
|
| 3826 |
|
| 3827 | PoolTestResult result{};
|
| 3828 | g_MemoryAliasingWarningEnabled = false;
|
| 3829 | TestPool_Benchmark(result, config);
|
| 3830 | g_MemoryAliasingWarningEnabled = true;
|
| 3831 | WritePoolTestResult(file, CODE_DESCRIPTION, testDescription, config, result);
|
| 3832 | }
|
| 3833 | }
|
| 3834 | }
|
| 3835 | }
|
| 3836 | }
|
| 3837 | }
|
| 3838 | }
|
| 3839 |
|
| 3840 | void Test()
|
| 3841 | {
|
| 3842 | wprintf(L"TESTING:\n");
|
| 3843 |
|
| 3844 | // # Simple tests
|
| 3845 |
|
| 3846 | TestBasics();
|
Adam Sawicki | 212a4a6 | 2018-06-14 15:44:45 +0200 | [diff] [blame] | 3847 | #if VMA_DEBUG_MARGIN
|
| 3848 | TestDebugMargin();
|
| 3849 | #else
|
| 3850 | TestPool_SameSize();
|
| 3851 | TestHeapSizeLimit();
|
| 3852 | #endif
|
Adam Sawicki | e44c626 | 2018-06-15 14:30:39 +0200 | [diff] [blame] | 3853 | #if VMA_DEBUG_INITIALIZE_ALLOCATIONS
|
| 3854 | TestAllocationsInitialization();
|
| 3855 | #endif
|
Adam Sawicki | b8333fb | 2018-03-13 16:15:53 +0100 | [diff] [blame] | 3856 | TestMapping();
|
| 3857 | TestMappingMultithreaded();
|
Adam Sawicki | 0876c0d | 2018-06-20 15:18:11 +0200 | [diff] [blame] | 3858 | TestLinearAllocator();
|
Adam Sawicki | 8cfe05f | 2018-08-22 16:48:17 +0200 | [diff] [blame] | 3859 | ManuallyTestLinearAllocator();
|
Adam Sawicki | 0a60713 | 2018-08-24 11:18:41 +0200 | [diff] [blame] | 3860 | BenchmarkLinearAllocator();
|
Adam Sawicki | b8333fb | 2018-03-13 16:15:53 +0100 | [diff] [blame] | 3861 | TestDefragmentationSimple();
|
| 3862 | TestDefragmentationFull();
|
| 3863 |
|
| 3864 | // # Detailed tests
|
| 3865 | FILE* file;
|
| 3866 | fopen_s(&file, "Results.csv", "w");
|
| 3867 | assert(file != NULL);
|
| 3868 |
|
| 3869 | WriteMainTestResultHeader(file);
|
| 3870 | PerformMainTests(file);
|
| 3871 | //PerformCustomMainTest(file);
|
| 3872 |
|
| 3873 | WritePoolTestResultHeader(file);
|
| 3874 | PerformPoolTests(file);
|
| 3875 | //PerformCustomPoolTest(file);
|
| 3876 |
|
| 3877 | fclose(file);
|
| 3878 |
|
| 3879 | wprintf(L"Done.\n");
|
| 3880 | }
|
| 3881 |
|
Adam Sawicki | f1a793c | 2018-03-13 15:42:22 +0100 | [diff] [blame] | 3882 | #endif // #ifdef _WIN32
|