blob: 63d4f2a81385e2dda49753155cfbeffba3fbacb3 [file] [log] [blame]
Benjamin Walsh456c6da2016-09-02 18:55:39 -04001/*
2 * Copyright (c) 2016, Wind River Systems, Inc.
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17/**
18 * @file
19 *
20 * @brief Public kernel APIs.
21 */
22
23#ifndef _kernel__h_
24#define _kernel__h_
25
26#include <stddef.h>
27#include <stdint.h>
28#include <toolchain.h>
29#include <sections.h>
30#include <atomic.h>
31#include <errno.h>
32#include <misc/__assert.h>
33#include <misc/dlist.h>
34#include <misc/slist.h>
35
36#ifdef __cplusplus
37extern "C" {
38#endif
39
40#ifdef CONFIG_KERNEL_V2_DEBUG
41#define K_DEBUG(fmt, ...) printk("[%s] " fmt, __func__, ##__VA_ARGS__)
42#else
43#define K_DEBUG(fmt, ...)
44#endif
45
46#define K_PRIO_COOP(x) (-(CONFIG_NUM_COOP_PRIORITIES - (x)))
47#define K_PRIO_PREEMPT(x) (x)
48
49#define K_FOREVER (-1)
50#define K_NO_WAIT 0
51
52#define K_ANY NULL
53#define K_END NULL
54
55#define K_OBJ(name, size) char name[size] __aligned(4)
56
57#if CONFIG_NUM_COOP_PRIORITIES > 0
58#define K_HIGHEST_THREAD_PRIO (-CONFIG_NUM_COOP_PRIORITIES)
59#else
60#define K_HIGHEST_THREAD_PRIO 0
61#endif
62
63#if CONFIG_NUM_PREEMPT_PRIORITIES > 0
64#define K_LOWEST_THREAD_PRIO CONFIG_NUM_PREEMPT_PRIORITIES
65#else
66#define K_LOWEST_THREAD_PRIO -1
67#endif
68
69#define K_HIGHEST_APPLICATION_THREAD_PRIO (K_HIGHEST_THREAD_PRIO)
70#define K_LOWEST_APPLICATION_THREAD_PRIO (K_LOWEST_THREAD_PRIO - 1)
71
72typedef sys_dlist_t _wait_q_t;
73
74#ifdef CONFIG_DEBUG_TRACING_KERNEL_OBJECTS
75#define _DEBUG_TRACING_KERNEL_OBJECTS_NEXT_PTR(type) struct type *__next
76#define _DEBUG_TRACING_KERNEL_OBJECTS_INIT .__next = NULL,
77#else
78#define _DEBUG_TRACING_KERNEL_OBJECTS_INIT
79#define _DEBUG_TRACING_KERNEL_OBJECTS_NEXT_PTR(type)
80#endif
81
82#define k_thread tcs
83struct tcs;
84struct k_mutex;
85struct k_sem;
86struct k_event;
87struct k_msgq;
88struct k_mbox;
89struct k_pipe;
90struct k_fifo;
91struct k_lifo;
92struct k_stack;
93struct k_mem_map;
94struct k_mem_pool;
95struct k_timer;
96
97typedef struct tcs *k_tid_t;
98typedef struct k_mem_pool *k_mem_pool_t;
99
100/* threads/scheduler/execution contexts */
101
102enum execution_context_types {
103 K_ISR = 0,
104 K_COOP_THREAD,
105 K_PREEMPT_THREAD,
106};
107
108struct k_thread_config {
109 char *stack;
110 unsigned stack_size;
111 unsigned prio;
112};
113
114typedef void (*k_thread_entry_t)(void *p1, void *p2, void *p3);
115extern k_tid_t k_thread_spawn(char *stack, unsigned stack_size,
116 void (*entry)(void *, void *, void*),
117 void *p1, void *p2, void *p3,
118 int32_t prio, uint32_t options, int32_t delay);
119
120extern void k_sleep(int32_t duration);
121extern void k_busy_wait(uint32_t usec_to_wait);
122extern void k_yield(void);
123extern void k_wakeup(k_tid_t thread);
124extern k_tid_t k_current_get(void);
125extern k_tid_t k_current_get(void);
126extern int k_current_priority_get(void);
127extern int k_thread_cancel(k_tid_t thread);
128
129extern void k_thread_abort(k_tid_t thread);
130
131#define K_THREAD_GROUP_EXE 0x1
132#define K_THREAD_GROUP_SYS 0x2
133#define K_THREAD_GROUP_FPU 0x4
134
135/* XXX - doesn't work because CONFIG_ARCH is a string */
136#if 0
137/* arch-specific groups */
138#if CONFIG_ARCH == "x86"
139#define K_THREAD_GROUP_SSE 0x4
140#endif
141#endif
142
143#ifdef CONFIG_NANO_TIMEOUTS
144#define _THREAD_TIMEOUT_INIT(obj) \
145 (obj).nano_timeout = { \
146 .node = { {0}, {0} }, \
147 .tcs = NULL, \
148 .wait_q = NULL, \
149 .delta_ticks_from_prev = -1, \
150 },
151#else
152#define _THREAD_TIMEOUT_INIT(obj)
153#endif
154
155#ifdef CONFIG_ERRNO
156#define _THREAD_ERRNO_INIT(obj) (obj).errno_var = 0,
157#else
158#define _THREAD_ERRNO_INIT(obj)
159#endif
160
161struct k_thread_static_init {
162 uint32_t init_groups;
163 int init_prio;
164 void (*init_entry)(void *, void *, void *);
165 void *init_p1;
166 void *init_p2;
167 void *init_p3;
168 void (*init_abort)(void);
169 union {
170 char *init_stack;
171 struct k_thread *thread;
172 };
173 unsigned int init_stack_size;
174};
175
176#define K_THREAD_INITIALIZER(stack, stack_size, \
177 entry, p1, p2, p3, \
178 abort, prio, groups) \
179 { \
180 .init_groups = (groups), \
181 .init_prio = (prio), \
182 .init_entry = entry, \
183 .init_p1 = (void *)p1, \
184 .init_p2 = (void *)p2, \
185 .init_p3 = (void *)p3, \
186 .init_abort = abort, \
187 .init_stack = (stack), \
188 .init_stack_size = (stack_size), \
189 }
190
191/*
192 * Define thread initializer object and initialize it
193 * NOTE: For thread group functions thread initializers must be organized
194 * in array and thus should not have gaps between them.
195 * On x86 by default compiler aligns them by 32 byte boundary. To prevent
196 * this 32-bit alignment in specified here.
197 * k_thread_static_init structure sise needs to be kept 32-bit aligned as well
198 */
199#define K_THREAD_OBJ_DEFINE(name, stack_size, \
200 entry, p1, p2, p3, \
201 abort, prio, groups) \
202 extern void entry(void *, void *, void *); \
203 char __noinit __stack _k_thread_obj_##name[stack_size]; \
204 struct k_thread_static_init _k_thread_init_##name __aligned(4) \
205 __in_section(_k_task_list, private, task) = \
206 K_THREAD_INITIALIZER(_k_thread_obj_##name, stack_size, \
207 entry, p1, p2, p3, abort, prio, groups)
208
209#define K_THREAD_DEFINE(name, stack_size, entry, p1, p2, p3, \
210 abort, prio, groups) \
211 K_THREAD_OBJ_DEFINE(name, stack_size, entry, p1, p2, p3, \
212 abort, prio, groups); \
213 k_tid_t const name = (k_tid_t)_k_thread_obj_##name
214
215/* extern int k_thread_prio_get(k_tid_t thread); in sched.h */
216extern void k_thread_priority_set(k_tid_t thread, int prio);
217
218#if 0
219extern int k_thread_suspend(k_tid_t thread);
220extern int k_thread_resume(k_tid_t thread);
221extern int k_thread_entry_set(k_tid_t thread,
222 void (*entry)(void*, void*, void*);
223extern int k_thread_abort_handler_set(k_tid_t thread,
224 void (*handler)(void));
225#endif
226
227extern void k_sched_time_slice_set(int32_t slice, int prio);
228extern int k_workload_get(void);
229extern void k_workload_time_slice_set(int32_t slice);
230
231extern int k_am_in_isr(void);
232
233extern void k_thread_custom_data_set(void *value);
234extern void *k_thread_custom_data_get(void);
235
236/**
237 * kernel timing
238 */
239
240/* timeouts */
241
242struct _timeout;
243typedef void (*_timeout_func_t)(struct _timeout *t);
244
245struct _timeout {
246 sys_dlist_t node;
247 struct tcs *tcs;
248 sys_dlist_t *wait_q;
249 int32_t delta_ticks_from_prev;
250 _timeout_func_t func;
251};
252
253/* timers */
254
255struct k_timer {
256 /*
257 * _timeout structure must be first here if we want to use
258 * dynamic timer allocation. timeout.node is used in the double-linked
259 * list of free timers
260 */
261 struct _timeout timeout;
262
263 /* wait queue for the threads waiting on this timer */
264 _wait_q_t wait_q;
265
266 /* runs in ISR context */
267 void (*handler)(void *);
268 void *handler_arg;
269
270 /* runs in the context of the thread that calls k_timer_stop() */
271 void (*stop_handler)(void *);
272 void *stop_handler_arg;
273
274 /* timer period */
275 int32_t period;
276
277 /* user supplied data pointer returned to the thread*/
278 void *user_data;
279
280 /* user supplied data pointer */
281 void *user_data_internal;
282
283 _DEBUG_TRACING_KERNEL_OBJECTS_NEXT_PTR(k_timer);
284};
285
286#define K_TIMER_INITIALIZER(obj) \
287 { \
288 .wait_q = SYS_DLIST_STATIC_INIT(&obj.wait_q), \
289 _DEBUG_TRACING_KERNEL_OBJECTS_INIT \
290 }
291
292#define K_TIMER_DEFINE(name) \
293 struct k_timer name = K_TIMER_INITIALIZER(name)
294
295extern void k_timer_init(struct k_timer *timer, void *data);
296extern struct k_timer *k_timer_alloc(void);
297extern void k_timer_free(struct k_timer *timer);
298extern void k_timer_start(struct k_timer *timer,
299 int32_t duration, int32_t period,
300 void (*handler)(void *), void *handler_arg,
301 void (*stop_handler)(void *), void *stop_handler_arg);
302extern void k_timer_restart(struct k_timer *timer, int32_t duration,
303 int32_t period);
304extern void k_timer_stop(struct k_timer *timer);
305extern int k_timer_test(struct k_timer *timer, void **data, int wait);
306extern int32_t k_timer_remaining_get(struct k_timer *timer);
307extern int64_t k_uptime_get(void);
308extern int64_t k_uptime_delta(int64_t *reftime);
309extern bool k_timer_pool_is_empty(void);
310
311extern uint32_t k_cycle_get_32(void);
312
313#if (CONFIG_NUM_DYNAMIC_TIMERS > 0)
314extern void _k_dyamic_timer_init(void);
315#else
316#define _k_dyamic_timer_init()
317#endif
318
319/**
320 * data transfers (basic)
321 */
322
323/* fifos */
324
325struct k_fifo {
326 _wait_q_t wait_q;
327 sys_slist_t data_q;
328
329 _DEBUG_TRACING_KERNEL_OBJECTS_NEXT_PTR(k_fifo);
330};
331
332extern void k_fifo_init(struct k_fifo *fifo);
333extern void k_fifo_put(struct k_fifo *fifo, void *data);
334extern void k_fifo_put_list(struct k_fifo *fifo, void *head, void *tail);
335extern void k_fifo_put_slist(struct k_fifo *fifo, sys_slist_t *list);
336extern void *k_fifo_get(struct k_fifo *fifo, int32_t timeout);
337
338#define K_FIFO_INITIALIZER(obj) \
339 { \
340 .wait_q = SYS_DLIST_STATIC_INIT(&obj.wait_q), \
341 .data_q = SYS_DLIST_STATIC_INIT(&obj.data_q), \
342 _DEBUG_TRACING_KERNEL_OBJECTS_INIT \
343 }
344
345#define K_FIFO_DEFINE(name) \
346 struct k_fifo _k_fifo_obj_##name = \
347 K_FIFO_INITIALIZER(_k_fifo_obj_##name); \
348 struct k_fifo * const name = &_k_fifo_obj_##name
349
350/* lifos */
351
352struct k_lifo {
353 _wait_q_t wait_q;
354 void *list;
355
356 _DEBUG_TRACING_KERNEL_OBJECTS_NEXT_PTR(k_lifo);
357};
358
359extern void k_lifo_init(struct k_lifo *lifo);
360extern void k_lifo_put(struct k_lifo *lifo, void *data);
361extern void *k_lifo_get(struct k_lifo *lifo, int32_t timeout);
362
363#define K_LIFO_INITIALIZER(obj) \
364 { \
365 .wait_q = SYS_DLIST_STATIC_INIT(&obj.wait_q), \
366 .list = NULL, \
367 _DEBUG_TRACING_KERNEL_OBJECTS_INIT \
368 }
369
370#define K_LIFO_DEFINE(name) \
371 struct k_lifo _k_lifo_obj_##name = \
372 K_LIFO_INITIALIZER(_k_lifo_obj_##name); \
373 struct k_lifo * const name = &_k_lifo_obj_##name
374
375/* stacks */
376
377struct k_stack {
378 _wait_q_t wait_q;
379 uint32_t *base, *next, *top;
380
381 _DEBUG_TRACING_KERNEL_OBJECTS_NEXT_PTR(k_stack);
382};
383
384extern void k_stack_init(struct k_stack *stack, int num_entries);
385extern void k_stack_init_with_buffer(struct k_stack *stack, int num_entries,
386 uint32_t *buffer);
387extern void k_stack_push(struct k_stack *stack, uint32_t data);
388extern int k_stack_pop(struct k_stack *stack, uint32_t *data, int32_t timeout);
389
390#define K_STACK_INITIALIZER(obj, stack_num_entries, stack_buffer) \
391 { \
392 .wait_q = SYS_DLIST_STATIC_INIT(&obj.wait_q), \
393 .base = stack_buffer, \
394 .next = stack_buffer, \
395 .top = stack_buffer + stack_num_entries, \
396 _DEBUG_TRACING_KERNEL_OBJECTS_INIT \
397 }
398
399#define K_STACK_DEFINE(name, stack_num_entries) \
400 uint32_t __noinit _k_stack_buf_##name[stack_num_entries]; \
401 struct k_stack _k_stack_obj_##name = \
402 K_STACK_INITIALIZER(_k_stack_obj_##name, stack_num_entries, \
403 _k_stack_buf_##name); \
404 struct k_stack * const name = &_k_stack_obj_##name
405
406#define K_STACK_SIZE(stack_num_entries) \
407 (sizeof(struct k_stack) + (stack_num_entries * sizeof(uint32_t)))
408
409/**
410 * workqueues
411 */
412
413struct k_work;
414
415typedef void (*k_work_handler_t)(struct k_work *);
416
417/**
418 * A workqueue is a fiber that executes @ref k_work items that are
419 * queued to it. This is useful for drivers which need to schedule
420 * execution of code which might sleep from ISR context. The actual
421 * fiber identifier is not stored in the structure in order to save
422 * space.
423 */
424struct k_work_q {
425 struct k_fifo fifo;
426};
427
428/**
429 * @brief Work flags.
430 */
431enum {
432 K_WORK_STATE_IDLE, /* Work item idle state */
433};
434
435/**
436 * @brief An item which can be scheduled on a @ref k_work_q.
437 */
438struct k_work {
439 void *_reserved; /* Used by k_fifo implementation. */
440 k_work_handler_t handler;
441 atomic_t flags[1];
442};
443
444/**
445 * @brief Statically initialize work item
446 */
447#define K_WORK_INITIALIZER(work_handler) \
448 { \
449 ._reserved = NULL, \
450 .handler = work_handler, \
451 .flags = { 1 } \
452 }
453
454/**
455 * @brief Dynamically initialize work item
456 */
457static inline void k_work_init(struct k_work *work, k_work_handler_t handler)
458{
459 atomic_set_bit(work->flags, K_WORK_STATE_IDLE);
460 work->handler = handler;
461}
462
463/**
464 * @brief Submit a work item to a workqueue.
465 */
466static inline void k_work_submit_to_queue(struct k_work_q *work_q,
467 struct k_work *work)
468{
469 if (!atomic_test_and_clear_bit(work->flags, K_WORK_STATE_IDLE)) {
470 __ASSERT_NO_MSG(0);
471 } else {
472 k_fifo_put(&work_q->fifo, work);
473 }
474}
475
476/**
477 * @brief Start a new workqueue. This routine can be called from either
478 * fiber or task context.
479 */
480extern void k_work_q_start(struct k_work_q *work_q,
481 const struct k_thread_config *config);
482
483#if defined(CONFIG_NANO_TIMEOUTS)
484
485 /*
486 * @brief An item which can be scheduled on a @ref k_work_q with a
487 * delay.
488 */
489struct k_delayed_work {
490 struct k_work work;
491 struct _timeout timeout;
492 struct k_work_q *work_q;
493};
494
495/**
496 * @brief Initialize delayed work
497 */
498void k_delayed_work_init(struct k_delayed_work *work,
499 k_work_handler_t handler);
500
501/**
502 * @brief Submit a delayed work item to a workqueue.
503 *
504 * This procedure schedules a work item to be processed after a delay.
505 * Once the delay has passed, the work item is submitted to the work queue:
506 * at this point, it is no longer possible to cancel it. Once the work item's
507 * handler is about to be executed, the work is considered complete and can be
508 * resubmitted.
509 *
510 * Care must be taken if the handler blocks or yield as there is no implicit
511 * mutual exclusion mechanism. Such usage is not recommended and if necessary,
512 * it should be explicitly done between the submitter and the handler.
513 *
514 * @param work_q to schedule the work item
515 * @param work Delayed work item
516 * @param ticks Ticks to wait before scheduling the work item
517 *
518 * @return 0 in case of success or negative value in case of error.
519 */
520int k_delayed_work_submit_to_queue(struct k_work_q *work_q,
521 struct k_delayed_work *work,
522 int32_t ticks);
523
524/**
525 * @brief Cancel a delayed work item
526 *
527 * This procedure cancels a scheduled work item. If the work has been completed
528 * or is idle, this will do nothing. The only case where this can fail is when
529 * the work has been submitted to the work queue, but the handler has not run
530 * yet.
531 *
532 * @param work Delayed work item to be canceled
533 *
534 * @return 0 in case of success or negative value in case of error.
535 */
536int k_delayed_work_cancel(struct k_delayed_work *work);
537
538#endif /* CONFIG_NANO_TIMEOUTS */
539
540#if defined(CONFIG_SYSTEM_WORKQUEUE)
541
542extern struct k_work_q k_sys_work_q;
543
544/*
545 * @brief Submit a work item to the system workqueue.
546 *
547 * @ref k_work_submit_to_queue
548 *
549 * When using the system workqueue it is not recommended to block or yield
550 * on the handler since its fiber is shared system wide it may cause
551 * unexpected behavior.
552 */
553static inline void k_work_submit(struct k_work *work)
554{
555 k_work_submit_to_queue(&k_sys_work_q, work);
556}
557
558#if defined(CONFIG_NANO_TIMEOUTS)
559/*
560 * @brief Submit a delayed work item to the system workqueue.
561 *
562 * @ref k_delayed_work_submit_to_queue
563 *
564 * When using the system workqueue it is not recommended to block or yield
565 * on the handler since its fiber is shared system wide it may cause
566 * unexpected behavior.
567 */
568static inline int k_delayed_work_submit(struct k_delayed_work *work,
569 int ticks)
570{
571 return k_delayed_work_submit_to_queue(&k_sys_work_q, work, ticks);
572}
573
574#endif /* CONFIG_NANO_TIMEOUTS */
575#endif /* CONFIG_SYSTEM_WORKQUEUE */
576
577/**
578 * synchronization
579 */
580
581/* mutexes */
582
583struct k_mutex {
584 _wait_q_t wait_q;
585 struct tcs *owner;
586 uint32_t lock_count;
587 int owner_orig_prio;
588#ifdef CONFIG_OBJECT_MONITOR
589 int num_lock_state_changes;
590 int num_conflicts;
591#endif
592
593 _DEBUG_TRACING_KERNEL_OBJECTS_NEXT_PTR(k_mutex);
594};
595
596#ifdef CONFIG_OBJECT_MONITOR
597#define _MUTEX_INIT_OBJECT_MONITOR \
598 .num_lock_state_changes = 0, .num_conflicts = 0,
599#else
600#define _MUTEX_INIT_OBJECT_MONITOR
601#endif
602
603#define K_MUTEX_INITIALIZER(obj) \
604 { \
605 .wait_q = SYS_DLIST_STATIC_INIT(&obj.wait_q), \
606 .owner = NULL, \
607 .lock_count = 0, \
608 .owner_orig_prio = K_LOWEST_THREAD_PRIO, \
609 _MUTEX_INIT_OBJECT_MONITOR \
610 _DEBUG_TRACING_KERNEL_OBJECTS_INIT \
611 }
612
613#define K_MUTEX_DEFINE(name) \
614 struct k_mutex name = K_MUTEX_INITIALIZER(name)
615
616extern void k_mutex_init(struct k_mutex *mutex);
617extern int k_mutex_lock(struct k_mutex *mutex, int32_t timeout);
618extern void k_mutex_unlock(struct k_mutex *mutex);
619
620/* semaphores */
621
622struct k_sem {
623 _wait_q_t wait_q;
624 unsigned int count;
625 unsigned int limit;
626
627 _DEBUG_TRACING_KERNEL_OBJECTS_NEXT_PTR(k_sem);
628};
629
630extern void k_sem_init(struct k_sem *sem, unsigned int initial_count,
631 unsigned int limit);
632extern int k_sem_take(struct k_sem *sem, int32_t timeout);
633extern void k_sem_give(struct k_sem *sem);
634
635static inline int k_sem_reset(struct k_sem *sem)
636{
637 sem->count = 0;
638
639 return 0;
640}
641
Tomasz Bursztyka276086d2016-09-21 16:03:21 +0200642static inline unsigned int k_sem_count_get(struct k_sem *sem)
Benjamin Walsh456c6da2016-09-02 18:55:39 -0400643{
644 return sem->count;
645}
646
Peter Mitsis45403672016-09-09 14:24:06 -0400647#ifdef CONFIG_SEMAPHORE_GROUPS
648/**
649 * @brief Take the first available semaphore
650 *
651 * Given a list of semaphore pointers, this routine will attempt to take one
652 * of them, waiting up to a maximum of @a timeout ms to do so. The taken
653 * semaphore is identified by @a sem (set to NULL on error).
654 *
655 * Be aware that the more semaphores specified in the group, the more stack
656 * space is required by the waiting thread.
657 *
658 * @param sem_array Array of semaphore pointers terminated by a K_END entry
659 * @param sem Identifies the semaphore that was taken
660 * @param timeout Maximum number of milliseconds to wait
661 *
662 * @retval 0 A semaphore was successfully taken
663 * @retval -EBUSY No semaphore was available (@a timeout = K_NO_WAIT)
664 * @retval -EAGAIN Time out occurred while waiting for semaphore
665 */
666
667extern int k_sem_group_take(struct k_sem *sem_array[], struct k_sem **sem,
668 int32_t timeout);
669
670/**
671 * @brief Give all the semaphores in the group
672 *
673 * This routine will give each semaphore in the array of semaphore pointers.
674 *
675 * @param sem_array Array of semaphore pointers terminated by a K_END entry
676 *
677 * @return N/A
678 */
679extern void k_sem_group_give(struct k_sem *sem_array[]);
680
681/**
682 * @brief Reset the count to zero on each semaphore in the array
683 *
684 * This routine resets the count of each semaphore in the group to zero.
685 * Note that it does NOT have any impact on any thread that might have
686 * been previously pending on any of the semaphores.
687 *
688 * @param sem_array Array of semaphore pointers terminated by a K_END entry
689 *
690 * @return N/A
691 */
692extern void k_sem_group_reset(struct k_sem *sem_array[]);
693#endif
Benjamin Walsh456c6da2016-09-02 18:55:39 -0400694
695#define K_SEM_INITIALIZER(obj, initial_count, count_limit) \
696 { \
697 .wait_q = SYS_DLIST_STATIC_INIT(&obj.wait_q), \
698 .count = initial_count, \
699 .limit = count_limit, \
700 _DEBUG_TRACING_KERNEL_OBJECTS_INIT \
701 }
702
703#define K_SEM_DEFINE(name, initial_count, count_limit) \
704 struct k_sem name = \
705 K_SEM_INITIALIZER(name, initial_count, count_limit)
706
707/* events */
708
709#define K_EVT_DEFAULT NULL
710#define K_EVT_IGNORE ((void *)(-1))
711
712typedef int (*k_event_handler_t)(struct k_event *);
713
714struct k_event {
715 k_event_handler_t handler;
716 atomic_t send_count;
717 struct k_work work_item;
718 struct k_sem sem;
719
720 _DEBUG_TRACING_KERNEL_OBJECTS_NEXT_PTR(k_event);
721};
722
723extern void _k_event_deliver(struct k_work *work);
724
725#define K_EVENT_INITIALIZER(obj, event_handler) \
726 { \
727 .handler = (k_event_handler_t)event_handler, \
728 .send_count = ATOMIC_INIT(0), \
729 .work_item = K_WORK_INITIALIZER(_k_event_deliver), \
730 .sem = K_SEM_INITIALIZER(obj.sem, 0, 1), \
731 _DEBUG_TRACING_KERNEL_OBJECTS_INIT \
732 }
733
734#define K_EVENT_DEFINE(name, event_handler) \
735 struct k_event name \
736 __in_section(_k_event_list, event, name) = \
737 K_EVENT_INITIALIZER(name, event_handler)
738
739extern void k_event_init(struct k_event *event, k_event_handler_t handler);
740extern int k_event_recv(struct k_event *event, int32_t timeout);
741extern void k_event_send(struct k_event *event);
742
743/**
744 * data transfers (complex)
745 */
746
747/* message queues */
748
749struct k_msgq {
750 _wait_q_t wait_q;
751 uint32_t msg_size;
752 uint32_t max_msgs;
753 char *buffer_start;
754 char *buffer_end;
755 char *read_ptr;
756 char *write_ptr;
757 uint32_t used_msgs;
758
759 _DEBUG_TRACING_KERNEL_OBJECTS_NEXT_PTR(k_msgq);
760};
761
762#define K_MSGQ_INITIALIZER(obj, q_depth, q_width, q_buffer) \
763 { \
764 .wait_q = SYS_DLIST_STATIC_INIT(&obj.wait_q), \
765 .max_msgs = q_depth, \
766 .msg_size = q_width, \
767 .buffer_start = q_buffer, \
768 .buffer_end = q_buffer + (q_depth * q_width), \
769 .read_ptr = q_buffer, \
770 .write_ptr = q_buffer, \
771 .used_msgs = 0, \
772 _DEBUG_TRACING_KERNEL_OBJECTS_INIT \
773 }
774
775#define K_MSGQ_DEFINE(name, q_depth, q_width) \
776 static char __noinit _k_fifo_buf_##name[(q_depth) * (q_width)]; \
777 struct k_msgq name = \
778 K_MSGQ_INITIALIZER(name, q_depth, q_width, _k_fifo_buf_##name)
779
780#define K_MSGQ_SIZE(q_depth, q_width) \
781 ((sizeof(struct k_msgq)) + ((q_width) * (q_depth)))
782
783void k_msgq_init(struct k_msgq *q, uint32_t msg_size, uint32_t max_msgs,
784 char *buffer);
785extern int k_msgq_put(struct k_msgq *q, void *data, int32_t timeout);
786extern int k_msgq_get(struct k_msgq *q, void *data, int32_t timeout);
787extern void k_msgq_purge(struct k_msgq *q);
788
789static inline int k_msgq_num_used_get(struct k_msgq *q)
790{
791 return q->used_msgs;
792}
793
794struct k_mem_block {
795 k_mem_pool_t pool_id;
796 void *addr_in_pool;
797 void *data;
798 uint32_t req_size;
799};
800
801/* mailboxes */
802
803struct k_mbox_msg {
804 /** internal use only - needed for legacy API support */
805 uint32_t _mailbox;
806 /** size of message (in bytes) */
807 uint32_t size;
808 /** application-defined information value */
809 uint32_t info;
810 /** sender's message data buffer */
811 void *tx_data;
812 /** internal use only - needed for legacy API support */
813 void *_rx_data;
814 /** message data block descriptor */
815 struct k_mem_block tx_block;
816 /** source thread id */
817 k_tid_t rx_source_thread;
818 /** target thread id */
819 k_tid_t tx_target_thread;
820 /** internal use only - thread waiting on send (may be a dummy) */
821 k_tid_t _syncing_thread;
822#if (CONFIG_NUM_MBOX_ASYNC_MSGS > 0)
823 /** internal use only - semaphore used during asynchronous send */
824 struct k_sem *_async_sem;
825#endif
826};
827
828struct k_mbox {
829 _wait_q_t tx_msg_queue;
830 _wait_q_t rx_msg_queue;
831
832 _DEBUG_TRACING_KERNEL_OBJECTS_NEXT_PTR(k_mbox);
833};
834
835#define K_MBOX_INITIALIZER(obj) \
836 { \
837 .tx_msg_queue = SYS_DLIST_STATIC_INIT(&obj.tx_msg_queue), \
838 .rx_msg_queue = SYS_DLIST_STATIC_INIT(&obj.rx_msg_queue), \
839 _DEBUG_TRACING_KERNEL_OBJECTS_INIT \
840 }
841
842#define K_MBOX_DEFINE(name) \
843 struct k_mbox name = \
844 K_MBOX_INITIALIZER(name) \
845
846#if (CONFIG_NUM_MBOX_ASYNC_MSGS > 0)
847extern void _k_mbox_init(void);
848#else
849#define _k_mbox_init()
850#endif
851
852extern void k_mbox_init(struct k_mbox *mbox);
853
854extern int k_mbox_put(struct k_mbox *mbox, struct k_mbox_msg *msg,
855 int32_t timeout);
856extern void k_mbox_async_put(struct k_mbox *mbox, struct k_mbox_msg *msg,
857 struct k_sem *sem);
858
859extern int k_mbox_get(struct k_mbox *mbox, struct k_mbox_msg *msg,
860 void *buffer, int32_t timeout);
861extern void k_mbox_data_get(struct k_mbox_msg *msg, void *buffer);
862extern int k_mbox_data_block_get(struct k_mbox_msg *msg, k_mem_pool_t pool,
863 struct k_mem_block *block, int32_t timeout);
864
865/* pipes */
866
867struct k_pipe {
868 unsigned char *buffer; /* Pipe buffer: may be NULL */
869 size_t size; /* Buffer size */
870 size_t bytes_used; /* # bytes used in buffer */
871 size_t read_index; /* Where in buffer to read from */
872 size_t write_index; /* Where in buffer to write */
873
874 struct {
875 _wait_q_t readers; /* Reader wait queue */
876 _wait_q_t writers; /* Writer wait queue */
877 } wait_q;
878
879 _DEBUG_TRACING_KERNEL_OBJECTS_NEXT_PTR(k_pipe);
880};
881
882#define K_PIPE_INITIALIZER(obj, pipe_buffer_size, pipe_buffer) \
883 { \
884 .buffer = pipe_buffer, \
885 .size = pipe_buffer_size, \
886 .bytes_used = 0, \
887 .read_index = 0, \
888 .write_index = 0, \
889 .wait_q.writers = SYS_DLIST_STATIC_INIT(&obj.wait_q.writers), \
890 .wait_q.readers = SYS_DLIST_STATIC_INIT(&obj.wait_q.readers), \
891 _DEBUG_TRACING_KERNEL_OBJECTS_INIT \
892 }
893
894#define K_PIPE_DEFINE(name, pipe_buffer_size) \
895 static unsigned char __noinit _k_pipe_buf_##name[pipe_buffer_size]; \
896 struct k_pipe name = \
897 K_PIPE_INITIALIZER(name, pipe_buffer_size, _k_pipe_buf_##name)
898
899#define K_PIPE_SIZE(buffer_size) (sizeof(struct k_pipe) + buffer_size)
900
901#if (CONFIG_NUM_PIPE_ASYNC_MSGS > 0)
902extern void _k_pipes_init(void);
903#else
904#define _k_pipes_init() do { } while (0)
905#endif
906
907/**
908 * @brief Runtime initialization of a pipe
909 *
910 * @param pipe Pointer to pipe to initialize
911 * @param buffer Pointer to buffer to use for pipe's ring buffer
912 * @param size Size of the pipe's ring buffer
913 *
914 * @return N/A
915 */
916extern void k_pipe_init(struct k_pipe *pipe, unsigned char *buffer,
917 size_t size);
918
919/**
920 * @brief Put a message into the specified pipe
921 *
922 * This routine synchronously adds a message into the pipe specified by
923 * @a pipe. It will wait up to @a timeout for the pipe to accept
924 * @a num_bytes_to_write bytes of data. If by @a timeout, the pipe could not
925 * accept @a min_bytes bytes of data, it fails. Fewer than @a min_bytes will
926 * only ever be written to the pipe if K_NO_WAIT < @a timeout < K_FOREVER.
927 *
928 * @param pipe Pointer to the pipe
929 * @param buffer Data to put into the pipe
930 * @param num_bytes_to_write Desired number of bytes to put into the pipe
931 * @param num_bytes_written Number of bytes the pipe accepted
932 * @param min_bytes Minimum number of bytes accepted for success
933 * @param timeout Maximum number of milliseconds to wait
934 *
935 * @retval 0 At least @a min_bytes were sent
936 * @retval -EIO Request can not be satisfied (@a timeout is K_NO_WAIT)
937 * @retval -EAGAIN Fewer than @a min_bytes were sent
938 */
939extern int k_pipe_put(struct k_pipe *pipe, void *buffer,
940 size_t num_bytes_to_write, size_t *num_bytes_written,
941 size_t min_bytes, int32_t timeout);
942
943/**
944 * @brief Get a message from the specified pipe
945 *
946 * This routine synchronously retrieves a message from the pipe specified by
947 * @a pipe. It will wait up to @a timeout to retrieve @a num_bytes_to_read
948 * bytes of data from the pipe. If by @a timeout, the pipe could not retrieve
949 * @a min_bytes bytes of data, it fails. Fewer than @a min_bytes will
950 * only ever be retrieved from the pipe if K_NO_WAIT < @a timeout < K_FOREVER.
951 *
952 * @param pipe Pointer to the pipe
953 * @param buffer Location to place retrieved data
954 * @param num_bytes_to_read Desired number of bytes to retrieve from the pipe
955 * @param num_bytes_read Number of bytes retrieved from the pipe
956 * @param min_bytes Minimum number of bytes retrieved for success
957 * @param timeout Maximum number of milliseconds to wait
958 *
959 * @retval 0 At least @a min_bytes were transferred
960 * @retval -EIO Request can not be satisfied (@a timeout is K_NO_WAIT)
961 * @retval -EAGAIN Fewer than @a min_bytes were retrieved
962 */
963extern int k_pipe_get(struct k_pipe *pipe, void *buffer,
964 size_t num_bytes_to_read, size_t *num_bytes_read,
965 size_t min_bytes, int32_t timeout);
966
967/**
968 * @brief Send a message to the specified pipe
969 *
970 * This routine asynchronously sends a message from the pipe specified by
971 * @a pipe. Once all @a size bytes have been accepted by the pipe, it will
972 * free the memory block @a block and give the semaphore @a sem (if specified).
973 * Up to CONFIG_NUM_PIPE_ASYNC_MSGS asynchronous pipe messages can be in-flight
974 * at any given time.
975 *
976 * @param pipe Pointer to the pipe
977 * @param block Memory block containing data to send
978 * @param size Number of data bytes in memory block to send
979 * @param sem Semaphore to signal upon completion (else NULL)
980 *
981 * @retval N/A
982 */
983extern void k_pipe_block_put(struct k_pipe *pipe, struct k_mem_block *block,
984 size_t size, struct k_sem *sem);
985
986/**
987 * memory management
988 */
989
990/* memory maps */
991
992struct k_mem_map {
993 _wait_q_t wait_q;
994 int num_blocks;
995 int block_size;
996 char *buffer;
997 char *free_list;
998 int num_used;
999
1000 _DEBUG_TRACING_KERNEL_OBJECTS_NEXT_PTR(k_mem_map);
1001};
1002
1003#define K_MEM_MAP_INITIALIZER(obj, map_num_blocks, map_block_size, \
1004 map_buffer) \
1005 { \
1006 .wait_q = SYS_DLIST_STATIC_INIT(&obj.wait_q), \
1007 .num_blocks = map_num_blocks, \
1008 .block_size = map_block_size, \
1009 .buffer = map_buffer, \
1010 .free_list = NULL, \
1011 .num_used = 0, \
1012 _DEBUG_TRACING_KERNEL_OBJECTS_INIT \
1013 }
1014
1015#define K_MEM_MAP_DEFINE(name, map_num_blocks, map_block_size) \
1016 char _k_mem_map_buf_##name[(map_num_blocks) * (map_block_size)]; \
1017 struct k_mem_map name \
1018 __in_section(_k_mem_map_ptr, private, mem_map) = \
1019 K_MEM_MAP_INITIALIZER(name, map_num_blocks, \
1020 map_block_size, _k_mem_map_buf_##name)
1021
1022#define K_MEM_MAP_SIZE(map_num_blocks, map_block_size) \
1023 (sizeof(struct k_mem_map) + ((map_num_blocks) * (map_block_size)))
1024
1025extern void _k_mem_map_init(void);
1026
1027extern void k_mem_map_init(struct k_mem_map *map, int num_blocks,
1028 int block_size, void *buffer);
1029extern int k_mem_map_alloc(struct k_mem_map *map, void **mem, int32_t timeout);
1030extern void k_mem_map_free(struct k_mem_map *map, void **mem);
1031
1032static inline int k_mem_map_num_used_get(struct k_mem_map *map)
1033{
1034 return map->num_used;
1035}
1036
1037/* memory pools */
1038
Dmitriy Korovkin3c426882016-09-01 18:14:17 -04001039/*
1040 * Memory pool requires a buffer and two arrays of structures for the
1041 * memory block accounting:
1042 * A set of arrays of k_mem_pool_quad_block structures where each keeps a
1043 * status of four blocks of memory.
1044 */
1045struct k_mem_pool_quad_block {
1046 char *mem_blocks; /* pointer to the first of four memory blocks */
1047 uint32_t mem_status; /* four bits. If bit is set, memory block is
1048 allocated */
1049};
1050/*
1051 * Memory pool mechanism uses one array of k_mem_pool_quad_block for accounting
1052 * blocks of one size. Block sizes go from maximal to minimal. Next memory
1053 * block size is 4 times less than the previous one and thus requires 4 times
1054 * bigger array of k_mem_pool_quad_block structures to keep track of the
1055 * memory blocks.
1056 */
Benjamin Walsh456c6da2016-09-02 18:55:39 -04001057
Dmitriy Korovkin3c426882016-09-01 18:14:17 -04001058/*
1059 * The array of k_mem_pool_block_set keeps the information of each array of
1060 * k_mem_pool_quad_block structures
1061 */
1062struct k_mem_pool_block_set {
1063 int block_size; /* memory block size */
1064 int nr_of_entries; /* nr of quad block structures in the array */
1065 struct k_mem_pool_quad_block *quad_block;
1066 int count;
1067};
1068
1069/* Memory pool descriptor */
1070struct k_mem_pool {
1071 int max_block_size;
1072 int min_block_size;
1073 int nr_of_maxblocks;
1074 int nr_of_block_sets;
1075 struct k_mem_pool_block_set *block_set;
1076 char *bufblock;
1077 _wait_q_t wait_q;
Benjamin Walsh456c6da2016-09-02 18:55:39 -04001078 _DEBUG_TRACING_KERNEL_OBJECTS_NEXT_PTR(k_mem_pool);
1079};
1080
Dmitriy Korovkin3c426882016-09-01 18:14:17 -04001081#ifdef CONFIG_ARM
1082#define _SECTION_TYPE_SIGN "%"
1083#else
1084#define _SECTION_TYPE_SIGN "@"
1085#endif
Benjamin Walsh456c6da2016-09-02 18:55:39 -04001086
Dmitriy Korovkin3c426882016-09-01 18:14:17 -04001087/*
1088 * Static memory pool initialization
1089 */
1090/*
1091 * Use .altmacro to be able to recalculate values and pass them as string
1092 * arguments when calling assembler macros resursively
1093 */
1094__asm__(".altmacro\n\t");
1095
1096/*
1097 * Recursively calls a macro
1098 * The followig global symbols need to be initialized:
1099 * __memory_pool_max_block_size - maximal size of the memory block
1100 * __memory_pool_min_block_size - minimal size of the memory block
1101 * Notes:
1102 * Global symbols are used due the fact that assembler macro allows only
1103 * one argument be passed with the % conversion
1104 * Some assemblers do not get division operation ("/"). To avoid it >> 2
1105 * is used instead of / 4.
1106 * n_max argument needs to go first in the invoked macro, as some
1107 * assemblers concatenate \name and %(\n_max * 4) arguments
1108 * if \name goes first
1109 */
1110__asm__(".macro __do_recurse macro_name, name, n_max\n\t"
1111 ".ifge __memory_pool_max_block_size >> 2 -"
1112 " __memory_pool_min_block_size\n\t\t"
1113 "__memory_pool_max_block_size = __memory_pool_max_block_size >> 2\n\t\t"
1114 "\\macro_name %(\\n_max * 4) \\name\n\t"
1115 ".endif\n\t"
1116 ".endm\n");
1117
1118/*
1119 * Build quad blocks
1120 * Macro allocates space in memory for the array of k_mem_pool_quad_block
1121 * structures and recursively calls itself for the next array, 4 times
1122 * larger.
1123 * The followig global symbols need to be initialized:
1124 * __memory_pool_max_block_size - maximal size of the memory block
1125 * __memory_pool_min_block_size - minimal size of the memory block
1126 * __memory_pool_quad_block_size - sizeof(struct k_mem_pool_quad_block)
1127 */
1128__asm__(".macro _build_quad_blocks n_max, name\n\t"
1129 "_mem_pool_quad_blocks_\\name\\()_\\n_max:\n\t"
1130 ".skip __memory_pool_quad_block_size * \\n_max >> 2\n\t"
1131 ".if \\n_max % 4\n\t\t"
1132 ".skip __memory_pool_quad_block_size\n\t"
1133 ".endif\n\t"
1134 "__do_recurse _build_quad_blocks \\name \\n_max\n\t"
1135 ".endm\n");
1136
1137/*
1138 * Build block sets and initialize them
1139 * Macro initializes the k_mem_pool_block_set structure and
1140 * recursively calls itself for the next one.
1141 * The followig global symbols need to be initialized:
1142 * __memory_pool_max_block_size - maximal size of the memory block
1143 * __memory_pool_min_block_size - minimal size of the memory block
1144 * __memory_pool_block_set_count, the number of the elements in the
1145 * block set array must be set to 0. Macro calculates it's real
1146 * value.
1147 * Since the macro initializes pointers to an array of k_mem_pool_quad_block
1148 * structures, _build_quad_blocks must be called prior it.
1149 */
1150__asm__(".macro _build_block_set n_max, name\n\t"
1151 ".int __memory_pool_max_block_size\n\t" /* block_size */
1152 ".if \\n_max % 4\n\t\t"
1153 ".int \\n_max >> 2 + 1\n\t" /* nr_of_entries */
1154 ".else\n\t\t"
1155 ".int \\n_max >> 2\n\t"
1156 ".endif\n\t"
1157 ".int _mem_pool_quad_blocks_\\name\\()_\\n_max\n\t" /* quad_block */
1158 ".int 0\n\t" /* count */
1159 "__memory_pool_block_set_count = __memory_pool_block_set_count + 1\n\t"
1160 "__do_recurse _build_block_set \\name \\n_max\n\t"
1161 ".endm\n");
1162
1163/*
1164 * Build a memory pool structure and initialize it
1165 * Macro uses __memory_pool_block_set_count global symbol,
1166 * block set addresses and buffer address, it may be called only after
1167 * _build_block_set
1168 */
1169__asm__(".macro _build_mem_pool name, min_size, max_size, n_max\n\t"
1170 ".pushsection ._k_memory_pool,\"aw\","
1171 _SECTION_TYPE_SIGN "progbits\n\t"
1172 ".globl \\name\n\t"
1173 "\\name:\n\t"
1174 ".int \\max_size\n\t" /* max_block_size */
1175 ".int \\min_size\n\t" /* min_block_size */
1176 ".int \\n_max\n\t" /* nr_of_maxblocks */
1177 ".int __memory_pool_block_set_count\n\t" /* nr_of_block_sets */
1178 ".int _mem_pool_block_sets_\\name\n\t" /* block_set */
1179 ".int _mem_pool_buffer_\\name\n\t" /* bufblock */
1180 ".int 0\n\t" /* wait_q->head */
1181 ".int 0\n\t" /* wait_q->next */
1182 ".popsection\n\t"
1183 ".endm\n");
1184
1185#define _MEMORY_POOL_QUAD_BLOCK_DEFINE(name, min_size, max_size, n_max) \
1186 __asm__(".pushsection ._k_memory_pool.struct,\"aw\"," \
1187 _SECTION_TYPE_SIGN "progbits\n\t"); \
1188 __asm__("__memory_pool_min_block_size = " STRINGIFY(min_size) "\n\t"); \
1189 __asm__("__memory_pool_max_block_size = " STRINGIFY(max_size) "\n\t"); \
1190 __asm__("_build_quad_blocks " STRINGIFY(n_max) " " \
1191 STRINGIFY(name) "\n\t"); \
1192 __asm__(".popsection\n\t")
1193
1194#define _MEMORY_POOL_BLOCK_SETS_DEFINE(name, min_size, max_size, n_max) \
1195 __asm__("__memory_pool_block_set_count = 0\n\t"); \
1196 __asm__("__memory_pool_max_block_size = " STRINGIFY(max_size) "\n\t"); \
1197 __asm__(".pushsection ._k_memory_pool.struct,\"aw\"," \
1198 _SECTION_TYPE_SIGN "progbits\n\t"); \
1199 __asm__("_mem_pool_block_sets_" STRINGIFY(name) ":\n\t"); \
1200 __asm__("_build_block_set " STRINGIFY(n_max) " " \
1201 STRINGIFY(name) "\n\t"); \
1202 __asm__("_mem_pool_block_set_count_" STRINGIFY(name) ":\n\t"); \
1203 __asm__(".int __memory_pool_block_set_count\n\t"); \
1204 __asm__(".popsection\n\t"); \
1205 extern uint32_t _mem_pool_block_set_count_##name; \
1206 extern struct k_mem_pool_block_set _mem_pool_block_sets_##name[]
1207
1208#define _MEMORY_POOL_BUFFER_DEFINE(name, max_size, n_max) \
1209 char __noinit _mem_pool_buffer_##name[(max_size) * (n_max)]
1210
1211#define K_MEMORY_POOL_DEFINE(name, min_size, max_size, n_max) \
1212 _MEMORY_POOL_QUAD_BLOCK_DEFINE(name, min_size, max_size, n_max); \
1213 _MEMORY_POOL_BLOCK_SETS_DEFINE(name, min_size, max_size, n_max); \
1214 _MEMORY_POOL_BUFFER_DEFINE(name, max_size, n_max); \
1215 __asm__("_build_mem_pool " STRINGIFY(name) " " STRINGIFY(min_size) " " \
1216 STRINGIFY(max_size) " " STRINGIFY(n_max) "\n\t"); \
1217 extern struct k_mem_pool name
1218
1219/*
1220 * Dummy function that assigns the value of sizeof(struct k_mem_pool_quad_block)
1221 * to __memory_pool_quad_block_size absolute symbol.
1222 * This function does not get called, but compiler calculates the value and
1223 * assigns it to the absolute symbol, that, in turn is used by assembler macros.
1224 */
1225static void __attribute__ ((used)) __k_mem_pool_quad_block_size_define(void)
1226{
1227 __asm__(".globl __memory_pool_quad_block_size\n\t"
1228 "__memory_pool_quad_block_size = %c0\n\t"
1229 :
1230 : "n"(sizeof(struct k_mem_pool_quad_block)));
1231}
1232
Benjamin Walsh456c6da2016-09-02 18:55:39 -04001233#define K_MEM_POOL_SIZE(max_block_size, num_max_blocks) \
1234 (sizeof(struct k_mem_pool) + ((max_block_size) * (num_max_blocks)))
1235
Dmitriy Korovkin3c426882016-09-01 18:14:17 -04001236extern int k_mem_pool_alloc(struct k_mem_pool *pool, struct k_mem_block *block,
Benjamin Walsh456c6da2016-09-02 18:55:39 -04001237 int size, int32_t timeout);
1238extern void k_mem_pool_free(struct k_mem_block *block);
Dmitriy Korovkin3c426882016-09-01 18:14:17 -04001239extern void k_mem_pool_defrag(struct k_mem_pool *pool);
Benjamin Walsh456c6da2016-09-02 18:55:39 -04001240extern void *k_malloc(uint32_t size);
1241extern void k_free(void *p);
1242
1243/*
1244 * legacy.h must be before arch/cpu.h to allow the ioapic/loapic drivers to
1245 * hook into the device subsystem, which itself uses nanokernel semaphores,
1246 * and thus currently requires the definition of nano_sem.
1247 */
1248#include <legacy.h>
1249#include <arch/cpu.h>
1250
1251/*
1252 * private APIs that are utilized by one or more public APIs
1253 */
1254
1255extern struct k_thread_static_init _k_task_list_start[];
1256extern struct k_thread_static_init _k_task_list_end[];
1257
1258#define _FOREACH_STATIC_THREAD(thread_init) \
1259 for (struct k_thread_static_init *thread_init = _k_task_list_start; \
1260 thread_init < _k_task_list_end; thread_init++)
1261
1262extern int _is_thread_essential(void);
1263static inline int is_in_any_group(struct k_thread_static_init *thread_init,
1264 uint32_t groups)
1265{
1266 return !!(thread_init->init_groups & groups);
1267}
1268extern void _init_static_threads(void);
1269
1270#ifdef __cplusplus
1271}
1272#endif
1273
1274#endif /* _kernel__h_ */