Liam Girdwood | c0dfb4e | 2016-09-21 15:57:22 +0100 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (c) 2016, Intel Corporation |
| 3 | * All rights reserved. |
| 4 | * |
| 5 | * Redistribution and use in source and binary forms, with or without |
| 6 | * modification, are permitted provided that the following conditions are met: |
| 7 | * * Redistributions of source code must retain the above copyright |
| 8 | * notice, this list of conditions and the following disclaimer. |
| 9 | * * Redistributions in binary form must reproduce the above copyright |
| 10 | * notice, this list of conditions and the following disclaimer in the |
| 11 | * documentation and/or other materials provided with the distribution. |
| 12 | * * Neither the name of the Intel Corporation nor the |
| 13 | * names of its contributors may be used to endorse or promote products |
| 14 | * derived from this software without specific prior written permission. |
| 15 | * |
| 16 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 17 | * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 18 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 19 | * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 20 | * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 21 | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 22 | * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 23 | * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 24 | * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 25 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 26 | * POSSIBILITY OF SUCH DAMAGE. |
| 27 | * |
| 28 | * Author: Liam Girdwood <liam.r.girdwood@linux.intel.com> |
| 29 | * Keyon Jie <yang.jie@linux.intel.com> |
| 30 | */ |
| 31 | |
| 32 | #include <reef/work.h> |
| 33 | #include <reef/timer.h> |
| 34 | #include <reef/list.h> |
| 35 | #include <reef/clock.h> |
| 36 | #include <reef/alloc.h> |
| 37 | #include <reef/reef.h> |
| 38 | #include <reef/lock.h> |
| 39 | #include <reef/notifier.h> |
| 40 | #include <reef/debug.h> |
| 41 | #include <platform/clk.h> |
| 42 | #include <platform/platform.h> |
| 43 | |
| 44 | /* |
| 45 | * Generic delayed work queue support. |
| 46 | * |
| 47 | * Work can be queued to run after a microsecond timeout on either the system |
| 48 | * work queue or a private work queue. It's expected most users will use the |
| 49 | * system work queue as private work queues depend on available architecture |
| 50 | * timers. |
| 51 | * |
| 52 | * The work on the system work queue should be short duration and not delay |
| 53 | * any other work on this queue. If you have longer duration work (like audio |
| 54 | * processing) then use a private work queue. |
| 55 | * |
| 56 | * The generic work queues are intended to stay in time synchronisation with |
| 57 | * any CPU clock changes. i.e. timeouts will remain constant regardless of CPU |
| 58 | * frequency changes. |
| 59 | */ |
| 60 | |
| 61 | struct work_queue { |
| 62 | struct list_item work; /* list of work */ |
| 63 | uint32_t timeout; /* timeout for next queue run */ |
| 64 | uint32_t window_size; /* window size for pending work */ |
| 65 | spinlock_t lock; |
| 66 | struct notifier notifier; /* notify CPU freq changes */ |
| 67 | struct work_queue_timesource *ts; /* time source for work queue */ |
| 68 | uint32_t ticks_per_usec; /* ticks per msec */ |
| 69 | uint32_t run_ticks; /* ticks when last run */ |
| 70 | }; |
| 71 | |
| 72 | /* generic system work queue */ |
| 73 | static struct work_queue *queue_; |
| 74 | |
| 75 | static inline void work_set_timer(struct work_queue *queue, uint32_t ticks) |
| 76 | { |
| 77 | queue->ts->timer_set(&queue->ts->timer, ticks); |
| 78 | } |
| 79 | |
| 80 | static inline void work_clear_timer(struct work_queue *queue) |
| 81 | { |
| 82 | queue->ts->timer_clear(&queue->ts->timer); |
| 83 | } |
| 84 | |
| 85 | static inline uint32_t work_get_timer(struct work_queue *queue) |
| 86 | { |
| 87 | return queue->ts->timer_get(&queue->ts->timer); |
| 88 | } |
| 89 | |
| 90 | /* is there any work pending in the current time window ? */ |
| 91 | static int is_work_pending(struct work_queue *queue) |
| 92 | { |
| 93 | struct list_item *wlist; |
| 94 | struct work *work; |
| 95 | uint32_t win_end, win_start; |
| 96 | int pending_count = 0; |
| 97 | |
| 98 | /* get the current valid window of work */ |
| 99 | win_end = work_get_timer(queue); |
| 100 | win_start = win_end - queue->window_size; |
| 101 | |
| 102 | /* correct the pending flag window for overflow */ |
| 103 | if (win_end > win_start) { |
| 104 | |
| 105 | /* mark each valid work item in this time period as pending */ |
| 106 | list_for_item(wlist, &queue->work) { |
| 107 | |
| 108 | work = container_of(wlist, struct work, list); |
| 109 | |
| 110 | /* if work has timed out then mark it as pending to run */ |
| 111 | if (work->timeout >= win_start && work->timeout <= win_end) { |
| 112 | work->pending = 1; |
| 113 | pending_count++; |
| 114 | } else { |
| 115 | work->pending = 0; |
| 116 | } |
| 117 | } |
| 118 | } else { |
| 119 | |
| 120 | /* mark each valid work item in this time period as pending */ |
| 121 | list_for_item(wlist, &queue->work) { |
| 122 | |
| 123 | work = container_of(wlist, struct work, list); |
| 124 | |
| 125 | /* if work has timed out then mark it as pending to run */ |
| 126 | if (work->timeout <= win_end || |
| 127 | (work->timeout >= win_start && work->timeout < MAX_INT)) { |
| 128 | work->pending = 1; |
| 129 | pending_count++; |
| 130 | } else { |
| 131 | work->pending = 0; |
| 132 | } |
| 133 | } |
| 134 | } |
| 135 | |
| 136 | return pending_count; |
| 137 | } |
| 138 | |
| 139 | static inline void work_next_timeout(struct work_queue *queue, |
| 140 | struct work *work, uint32_t reschedule_usecs) |
| 141 | { |
| 142 | /* reschedule work */ |
| 143 | if (work->flags & WORK_SYNC) { |
| 144 | work->timeout += queue->ticks_per_usec * reschedule_usecs; |
| 145 | } else { |
| 146 | /* calc next run based on work request */ |
| 147 | work->timeout = queue->ticks_per_usec * |
| 148 | reschedule_usecs + queue->run_ticks; |
| 149 | } |
| 150 | } |
| 151 | |
| 152 | /* run all pending work */ |
| 153 | static void run_work(struct work_queue *queue, uint32_t *flags) |
| 154 | { |
| 155 | struct list_item *wlist, *tlist; |
| 156 | struct work *work; |
| 157 | uint32_t reschedule_usecs, udelay; |
| 158 | |
| 159 | /* check each work item in queue for pending */ |
| 160 | list_for_item_safe(wlist, tlist, &queue->work) { |
| 161 | |
| 162 | work = container_of(wlist, struct work, list); |
| 163 | |
| 164 | /* run work if its pending and remove from the queue */ |
| 165 | if (work->pending) { |
| 166 | |
| 167 | udelay = (work_get_timer(queue) - work->timeout) / |
| 168 | queue->ticks_per_usec; |
| 169 | |
| 170 | /* work can run in non atomic context */ |
| 171 | spin_unlock_irq(&queue->lock, *flags); |
| 172 | reschedule_usecs = work->cb(work->cb_data, udelay); |
| 173 | spin_lock_irq(&queue->lock, *flags); |
| 174 | |
| 175 | /* do we need reschedule this work ? */ |
| 176 | if (reschedule_usecs == 0) |
| 177 | list_item_del(&work->list); |
| 178 | else { |
| 179 | /* get next work timeout */ |
| 180 | work_next_timeout(queue, work, reschedule_usecs); |
| 181 | } |
| 182 | } |
| 183 | } |
| 184 | } |
| 185 | |
| 186 | static inline uint32_t calc_delta_ticks(uint32_t current, uint32_t work) |
| 187 | { |
| 188 | uint32_t max = MAX_INT; |
| 189 | |
| 190 | /* does work run in next cycle ? */ |
| 191 | if (work < current) { |
| 192 | max -= current; |
| 193 | max += work; |
| 194 | return max; |
| 195 | } else |
| 196 | return work - current; |
| 197 | } |
| 198 | |
| 199 | /* calculate next timeout */ |
| 200 | static void queue_get_next_timeout(struct work_queue *queue) |
| 201 | { |
| 202 | struct list_item *wlist; |
| 203 | struct work *work; |
| 204 | uint32_t delta = MAX_INT, current, d, ticks; |
| 205 | |
| 206 | /* only recalc if work list not empty */ |
| 207 | if (list_is_empty(&queue->work)) { |
| 208 | queue->timeout = 0; |
| 209 | return; |
| 210 | } |
| 211 | |
| 212 | ticks = current = work_get_timer(queue); |
| 213 | |
| 214 | /* find time for next work */ |
| 215 | list_for_item(wlist, &queue->work) { |
| 216 | |
| 217 | work = container_of(wlist, struct work, list); |
| 218 | |
| 219 | d = calc_delta_ticks(current, work->timeout); |
| 220 | |
| 221 | /* is work next ? */ |
| 222 | if (d < delta) { |
| 223 | ticks = work->timeout; |
| 224 | delta = d; |
| 225 | } |
| 226 | } |
| 227 | |
| 228 | queue->timeout = ticks; |
| 229 | } |
| 230 | |
| 231 | /* re calculate timers for queue after CPU frequency change */ |
| 232 | static void queue_recalc_timers(struct work_queue *queue, |
| 233 | struct clock_notify_data *clk_data) |
| 234 | { |
| 235 | struct list_item *wlist; |
| 236 | struct work *work; |
| 237 | uint32_t delta_ticks, delta_usecs, current; |
| 238 | |
| 239 | /* get current time */ |
| 240 | current = work_get_timer(queue); |
| 241 | |
| 242 | /* re calculate timers for each work item */ |
| 243 | list_for_item(wlist, &queue->work) { |
| 244 | |
| 245 | work = container_of(wlist, struct work, list); |
| 246 | |
| 247 | delta_ticks = calc_delta_ticks(current, work->timeout); |
| 248 | delta_usecs = delta_ticks / clk_data->old_ticks_per_usec; |
| 249 | |
| 250 | /* is work within next msec, then schedule it now */ |
| 251 | if (delta_usecs > 0) |
| 252 | work->timeout = current + queue->ticks_per_usec * delta_usecs; |
| 253 | else |
| 254 | work->timeout = current + (queue->ticks_per_usec >> 3); |
| 255 | } |
| 256 | } |
| 257 | |
| 258 | static void queue_reschedule(struct work_queue *queue) |
| 259 | { |
| 260 | queue_get_next_timeout(queue); |
| 261 | |
| 262 | if (queue->timeout) |
| 263 | work_set_timer(queue, queue->timeout); |
| 264 | } |
| 265 | |
| 266 | /* run the work queue */ |
| 267 | static void queue_run(void *data) |
| 268 | { |
| 269 | struct work_queue *queue = (struct work_queue *)data; |
| 270 | uint32_t flags; |
| 271 | |
| 272 | /* clear interrupt */ |
| 273 | work_clear_timer(queue); |
| 274 | |
| 275 | spin_lock_irq(&queue->lock, flags); |
| 276 | |
| 277 | queue->run_ticks = work_get_timer(queue); |
| 278 | |
| 279 | /* work can take variable time to complete so we re-check the |
| 280 | queue after running all the pending work to make sure no new work |
| 281 | is pending */ |
| 282 | while (is_work_pending(queue)) |
| 283 | run_work(queue, &flags); |
| 284 | |
| 285 | /* re-calc timer and re-arm */ |
| 286 | queue_reschedule(queue); |
| 287 | |
| 288 | spin_unlock_irq(&queue->lock, flags); |
| 289 | } |
| 290 | |
| 291 | /* notification of CPU frequency changes - atomic PRE and POST sequence */ |
| 292 | static void work_notify(int message, void *data, void *event_data) |
| 293 | { |
| 294 | struct work_queue *queue = (struct work_queue *)data; |
| 295 | struct clock_notify_data *clk_data = |
| 296 | (struct clock_notify_data *)event_data; |
| 297 | uint32_t flags; |
| 298 | |
| 299 | spin_lock_irq(&queue->lock, flags); |
| 300 | |
Keyon Jie | d8dd757 | 2017-03-09 14:09:20 +0800 | [diff] [blame^] | 301 | /* we need to re-caclulate timer when CPU frequency changes */ |
Liam Girdwood | c0dfb4e | 2016-09-21 15:57:22 +0100 | [diff] [blame] | 302 | if (message == CLOCK_NOTIFY_POST) { |
| 303 | |
| 304 | /* CPU frequency update complete */ |
| 305 | /* scale the window size to clock speed */ |
| 306 | queue->ticks_per_usec = clock_us_to_ticks(queue->ts->clk, 1); |
| 307 | queue->window_size = |
| 308 | queue->ticks_per_usec * PLATFORM_WORKQ_WINDOW; |
| 309 | queue_recalc_timers(queue, clk_data); |
| 310 | queue_reschedule(queue); |
| 311 | timer_enable(&queue->ts->timer); |
| 312 | } else if (message == CLOCK_NOTIFY_PRE) { |
| 313 | /* CPU frequency update pending */ |
| 314 | timer_disable(&queue->ts->timer); |
| 315 | } |
| 316 | |
| 317 | spin_unlock_irq(&queue->lock, flags); |
| 318 | } |
| 319 | |
| 320 | void work_schedule(struct work_queue *queue, struct work *w, uint32_t timeout) |
| 321 | { |
| 322 | struct work *work; |
| 323 | struct list_item *wlist; |
| 324 | uint32_t flags; |
| 325 | |
| 326 | spin_lock_irq(&queue->lock, flags); |
| 327 | |
| 328 | /* check to see if we are already scheduled ? */ |
| 329 | list_for_item(wlist, &queue->work) { |
| 330 | work = container_of(wlist, struct work, list); |
| 331 | |
| 332 | /* keep original timeout */ |
| 333 | if (work == w) |
| 334 | goto out; |
| 335 | } |
| 336 | |
Keyon Jie | d8dd757 | 2017-03-09 14:09:20 +0800 | [diff] [blame^] | 337 | /* convert timeout micro seconds to CPU clock ticks */ |
Liam Girdwood | c0dfb4e | 2016-09-21 15:57:22 +0100 | [diff] [blame] | 338 | w->timeout = queue->ticks_per_usec * timeout + work_get_timer(queue); |
| 339 | |
| 340 | /* insert work into list */ |
| 341 | list_item_prepend(&w->list, &queue->work); |
| 342 | |
| 343 | /* re-calc timer and re-arm */ |
| 344 | queue_reschedule(queue); |
| 345 | |
| 346 | out: |
| 347 | spin_unlock_irq(&queue->lock, flags); |
| 348 | } |
| 349 | |
| 350 | void work_cancel(struct work_queue *queue, struct work *w) |
| 351 | { |
| 352 | uint32_t flags; |
| 353 | |
| 354 | spin_lock_irq(&queue->lock, flags); |
| 355 | |
| 356 | /* remove work from list */ |
| 357 | list_item_del(&w->list); |
| 358 | |
| 359 | /* re-calc timer and re-arm */ |
| 360 | queue_reschedule(queue); |
| 361 | |
| 362 | spin_unlock_irq(&queue->lock, flags); |
| 363 | } |
| 364 | |
| 365 | void work_schedule_default(struct work *w, uint32_t timeout) |
| 366 | { |
| 367 | struct work *work; |
| 368 | struct list_item *wlist; |
| 369 | uint32_t flags; |
| 370 | |
| 371 | spin_lock_irq(&queue_->lock, flags); |
| 372 | |
| 373 | /* check to see if we are already scheduled ? */ |
| 374 | list_for_item(wlist, &queue_->work) { |
| 375 | work = container_of(wlist, struct work, list); |
| 376 | |
| 377 | /* keep original timeout */ |
| 378 | if (work == w) |
| 379 | goto out; |
| 380 | } |
| 381 | |
| 382 | /* convert timeout microsecs to CPU clock ticks */ |
| 383 | w->timeout = queue_->ticks_per_usec * timeout + work_get_timer(queue_); |
| 384 | |
| 385 | /* insert work into list */ |
| 386 | list_item_prepend(&w->list, &queue_->work); |
| 387 | |
| 388 | /* re-calc timer and re-arm */ |
| 389 | queue_reschedule(queue_); |
| 390 | |
| 391 | out: |
| 392 | spin_unlock_irq(&queue_->lock, flags); |
| 393 | } |
| 394 | |
| 395 | void work_cancel_default(struct work *w) |
| 396 | { |
| 397 | uint32_t flags; |
| 398 | |
| 399 | spin_lock_irq(&queue_->lock, flags); |
| 400 | |
| 401 | /* remove work from list */ |
| 402 | list_item_del(&w->list); |
| 403 | |
| 404 | /* re-calc timer and re-arm */ |
| 405 | queue_reschedule(queue_); |
| 406 | |
| 407 | spin_unlock_irq(&queue_->lock, flags); |
| 408 | } |
| 409 | |
| 410 | struct work_queue *work_new_queue(struct work_queue_timesource *ts) |
| 411 | { |
| 412 | struct work_queue *queue; |
| 413 | |
| 414 | /* init work queue */ |
| 415 | queue = rmalloc(RZONE_DEV, RMOD_SYS, sizeof(*queue_)); |
| 416 | |
| 417 | list_init(&queue->work); |
| 418 | spinlock_init(&queue->lock); |
| 419 | queue->ts = ts; |
| 420 | queue->ticks_per_usec = clock_us_to_ticks(queue->ts->clk, 1); |
| 421 | queue->window_size = queue->ticks_per_usec * PLATFORM_WORKQ_WINDOW; |
| 422 | |
| 423 | /* notification of clk changes */ |
| 424 | queue->notifier.cb = work_notify; |
| 425 | queue->notifier.cb_data = queue; |
| 426 | queue->notifier.id = ts->notifier; |
| 427 | notifier_register(&queue->notifier); |
| 428 | |
| 429 | /* register system timer */ |
| 430 | timer_register(&queue->ts->timer, queue_run, queue); |
| 431 | |
| 432 | return queue; |
| 433 | } |
| 434 | |
| 435 | void init_system_workq(struct work_queue_timesource *ts) |
| 436 | { |
| 437 | queue_ = work_new_queue(ts); |
| 438 | } |