| // SPDX-License-Identifier: MIT |
| /* |
| * Copyright © 2021 Intel Corporation |
| */ |
| |
| #include <sys/types.h> |
| #include <sys/stat.h> |
| #include <sys/ipc.h> |
| #include <sys/msg.h> |
| #include <fcntl.h> |
| #include <pthread.h> |
| #include <signal.h> |
| #include <stdlib.h> |
| #include <unistd.h> |
| #include "igt.h" |
| #include "igt_map.h" |
| #include "intel_allocator.h" |
| #include "intel_allocator_msgchannel.h" |
| |
| //#define ALLOCDBG |
| #ifdef ALLOCDBG |
| #define alloc_info igt_info |
| #define alloc_debug igt_debug |
| static const char *reqtype_str[] = { |
| [REQ_STOP] = "stop", |
| [REQ_OPEN] = "open", |
| [REQ_OPEN_AS] = "open as", |
| [REQ_CLOSE] = "close", |
| [REQ_ADDRESS_RANGE] = "address range", |
| [REQ_ALLOC] = "alloc", |
| [REQ_FREE] = "free", |
| [REQ_IS_ALLOCATED] = "is allocated", |
| [REQ_RESERVE] = "reserve", |
| [REQ_UNRESERVE] = "unreserve", |
| [REQ_RESERVE_IF_NOT_ALLOCATED] = "reserve-ina", |
| [REQ_IS_RESERVED] = "is reserved", |
| }; |
| static inline const char *reqstr(enum reqtype request_type) |
| { |
| igt_assert(request_type >= REQ_STOP && request_type <= REQ_IS_RESERVED); |
| return reqtype_str[request_type]; |
| } |
| #else |
| #define alloc_info(...) {} |
| #define alloc_debug(...) {} |
| #endif |
| |
| struct allocator { |
| int fd; |
| uint32_t ctx; |
| uint32_t vm; |
| _Atomic(int32_t) refcount; |
| struct intel_allocator *ial; |
| }; |
| |
| struct handle_entry { |
| uint64_t handle; |
| struct allocator *al; |
| }; |
| |
| struct intel_allocator *intel_allocator_reloc_create(int fd); |
| struct intel_allocator *intel_allocator_random_create(int fd); |
| struct intel_allocator *intel_allocator_simple_create(int fd); |
| struct intel_allocator * |
| intel_allocator_simple_create_full(int fd, uint64_t start, uint64_t end, |
| enum allocator_strategy strategy); |
| |
| /* |
| * Instead of trying to find first empty handle just get new one. Assuming |
| * our counter is incremented 2^32 times per second (4GHz clock and handle |
| * assignment takes single clock) 64-bit counter would wrap around after |
| * ~68 years. |
| * |
| * allocator |
| * handles <fd, ctx> intel allocator |
| * +-----+ +--------+ +-------------+ |
| * | 1 +---------->+ fd: 3 +--------->+ data: ... | |
| * +-----+ +---->+ ctx: 1 | | refcount: 2 | |
| * | 2 +-----+ | ref: 2 | +-------------+ |
| * +-----+ +--------+ |
| * | 3 +--+ +--------+ intel allocator |
| * +-----+ | | fd: 3 | +-------------+ |
| * | ... | +------->| ctx: 2 +--------->+ data: ... | |
| * +-----+ | ref: 1 | | refcount: 1 | |
| * | n +--------+ +--------+ +-------------+ |
| * +-----+ | |
| * | ... +-----+ | allocator |
| * +-----+ | | <fd, vm> intel allocator |
| * | ... +--+ | | +--------+ +-------------+ |
| * + + | | +->+ fd: 3 +-----+--->+ data: ... | |
| * | +---->+ vm: 1 | | | refcount: 3 | |
| * | | ref: 2 | | +-------------+ |
| * | +--------+ | |
| * | +--------+ | |
| * | | fd: 3 | | |
| * +------->+ vm: 2 +-----+ |
| * | ref: 1 | |
| * +--------+ |
| */ |
| static _Atomic(uint64_t) next_handle; |
| static struct igt_map *handles; |
| static struct igt_map *ctx_map; |
| static struct igt_map *vm_map; |
| static pthread_mutex_t map_mutex = PTHREAD_MUTEX_INITIALIZER; |
| #define GET_MAP(vm) ((vm) ? vm_map : ctx_map) |
| |
| static bool multiprocess; |
| static pthread_t allocator_thread; |
| static bool allocator_thread_running; |
| |
| static bool warn_if_not_empty; |
| |
| /* For allocator purposes we need to track pid/tid */ |
| static pid_t allocator_pid = -1; |
| extern pid_t child_pid; |
| extern __thread pid_t child_tid; |
| |
| /* |
| * - for parent process we have child_pid == -1 |
| * - for child which calls intel_allocator_init() allocator_pid == child_pid |
| */ |
| static inline bool is_same_process(void) |
| { |
| return child_pid == -1 || allocator_pid == child_pid; |
| } |
| |
| static struct msg_channel *channel; |
| |
| static int send_alloc_stop(struct msg_channel *msgchan) |
| { |
| struct alloc_req req = {0}; |
| |
| req.request_type = REQ_STOP; |
| |
| return msgchan->send_req(msgchan, &req); |
| } |
| |
| static int send_req(struct msg_channel *msgchan, pid_t tid, |
| struct alloc_req *request) |
| { |
| request->tid = tid; |
| return msgchan->send_req(msgchan, request); |
| } |
| |
| static int recv_req(struct msg_channel *msgchan, struct alloc_req *request) |
| { |
| return msgchan->recv_req(msgchan, request); |
| } |
| |
| static int send_resp(struct msg_channel *msgchan, |
| pid_t tid, struct alloc_resp *response) |
| { |
| response->tid = tid; |
| return msgchan->send_resp(msgchan, response); |
| } |
| |
| static int recv_resp(struct msg_channel *msgchan, |
| pid_t tid, struct alloc_resp *response) |
| { |
| response->tid = tid; |
| return msgchan->recv_resp(msgchan, response); |
| } |
| |
| static inline void map_entry_free_func(struct igt_map_entry *entry) |
| { |
| free(entry->data); |
| } |
| |
| static uint64_t __handle_create(struct allocator *al) |
| { |
| struct handle_entry *h = malloc(sizeof(*h)); |
| |
| igt_assert(h); |
| h->handle = atomic_fetch_add(&next_handle, 1); |
| h->al = al; |
| igt_map_insert(handles, h, h); |
| |
| return h->handle; |
| } |
| |
| static void __handle_destroy(uint64_t handle) |
| { |
| struct handle_entry he = { .handle = handle }; |
| |
| igt_map_remove(handles, &he, map_entry_free_func); |
| } |
| |
| static struct allocator *__allocator_find(int fd, uint32_t ctx, uint32_t vm) |
| { |
| struct allocator al = { .fd = fd, .ctx = ctx, .vm = vm }; |
| struct igt_map *map = GET_MAP(vm); |
| |
| return igt_map_search(map, &al); |
| } |
| |
| static struct allocator *__allocator_find_by_handle(uint64_t handle) |
| { |
| struct handle_entry *h, he = { .handle = handle }; |
| |
| h = igt_map_search(handles, &he); |
| if (!h) |
| return NULL; |
| |
| return h->al; |
| } |
| |
| static struct allocator *__allocator_create(int fd, uint32_t ctx, uint32_t vm, |
| struct intel_allocator *ial) |
| { |
| struct igt_map *map = GET_MAP(vm); |
| struct allocator *al = malloc(sizeof(*al)); |
| |
| igt_assert(al); |
| igt_assert(fd == ial->fd); |
| al->fd = fd; |
| al->ctx = ctx; |
| al->vm = vm; |
| atomic_init(&al->refcount, 0); |
| al->ial = ial; |
| |
| igt_map_insert(map, al, al); |
| |
| return al; |
| } |
| |
| static void __allocator_destroy(struct allocator *al) |
| { |
| struct igt_map *map = GET_MAP(al->vm); |
| |
| igt_map_remove(map, al, map_entry_free_func); |
| } |
| |
| static int __allocator_get(struct allocator *al) |
| { |
| struct intel_allocator *ial = al->ial; |
| int refcount; |
| |
| atomic_fetch_add(&al->refcount, 1); |
| refcount = atomic_fetch_add(&ial->refcount, 1); |
| igt_assert(refcount >= 0); |
| |
| return refcount; |
| } |
| |
| static bool __allocator_put(struct allocator *al) |
| { |
| struct intel_allocator *ial = al->ial; |
| bool released = false; |
| int refcount, al_refcount; |
| |
| al_refcount = atomic_fetch_sub(&al->refcount, 1); |
| refcount = atomic_fetch_sub(&ial->refcount, 1); |
| igt_assert(refcount >= 1); |
| if (refcount == 1) { |
| if (!ial->is_empty(ial) && warn_if_not_empty) |
| igt_warn("Allocator not clear before destroy!\n"); |
| |
| /* Check allocator has also refcount == 1 */ |
| igt_assert_eq(al_refcount, 1); |
| |
| released = true; |
| } |
| |
| return released; |
| } |
| |
| static struct intel_allocator *intel_allocator_create(int fd, |
| uint64_t start, uint64_t end, |
| uint8_t allocator_type, |
| uint8_t allocator_strategy) |
| { |
| struct intel_allocator *ial = NULL; |
| |
| switch (allocator_type) { |
| /* |
| * Few words of explanation is required here. |
| * |
| * INTEL_ALLOCATOR_NONE allows keeping information in the code (intel-bb |
| * is an example) we're not using IGT allocator itself and likely |
| * we rely on relocations. |
| * So trying to create NONE allocator doesn't makes sense and below |
| * assertion catches such invalid usage. |
| */ |
| case INTEL_ALLOCATOR_NONE: |
| igt_assert_f(allocator_type != INTEL_ALLOCATOR_NONE, |
| "We cannot use NONE allocator\n"); |
| break; |
| case INTEL_ALLOCATOR_RELOC: |
| ial = intel_allocator_reloc_create(fd); |
| break; |
| case INTEL_ALLOCATOR_RANDOM: |
| ial = intel_allocator_random_create(fd); |
| break; |
| case INTEL_ALLOCATOR_SIMPLE: |
| if (!start && !end) |
| ial = intel_allocator_simple_create(fd); |
| else |
| ial = intel_allocator_simple_create_full(fd, start, end, |
| allocator_strategy); |
| break; |
| default: |
| igt_assert_f(ial, "Allocator type %d not implemented\n", |
| allocator_type); |
| break; |
| } |
| |
| igt_assert(ial); |
| |
| ial->type = allocator_type; |
| ial->strategy = allocator_strategy; |
| pthread_mutex_init(&ial->mutex, NULL); |
| |
| return ial; |
| } |
| |
| static void intel_allocator_destroy(struct intel_allocator *ial) |
| { |
| alloc_info("Destroying allocator (empty: %d)\n", ial->is_empty(ial)); |
| |
| ial->destroy(ial); |
| } |
| |
| static struct allocator *allocator_open(int fd, uint32_t ctx, uint32_t vm, |
| uint64_t start, uint64_t end, |
| uint8_t allocator_type, |
| uint8_t allocator_strategy, |
| uint64_t *ahndp) |
| { |
| struct intel_allocator *ial; |
| struct allocator *al; |
| const char *idstr = vm ? "vm" : "ctx"; |
| |
| igt_assert(ahndp); |
| |
| al = __allocator_find(fd, ctx, vm); |
| if (!al) { |
| alloc_info("Allocator fd: %d, ctx: %u, vm: %u, <0x%llx : 0x%llx> " |
| "not found, creating one\n", |
| fd, ctx, vm, (long long) start, (long long) end); |
| ial = intel_allocator_create(fd, start, end, allocator_type, |
| allocator_strategy); |
| al = __allocator_create(fd, ctx, vm, ial); |
| } |
| |
| ial = al->ial; |
| |
| igt_assert_f(ial->type == allocator_type, |
| "Allocator type must be same for fd/%s\n", idstr); |
| |
| igt_assert_f(ial->strategy == allocator_strategy, |
| "Allocator strategy must be same or fd/%s\n", idstr); |
| |
| __allocator_get(al); |
| *ahndp = __handle_create(al); |
| |
| return al; |
| } |
| |
| static struct allocator *allocator_open_as(struct allocator *base, |
| uint32_t new_vm, uint64_t *ahndp) |
| { |
| struct allocator *al; |
| |
| igt_assert(ahndp); |
| al = __allocator_create(base->fd, base->ctx, new_vm, base->ial); |
| __allocator_get(al); |
| *ahndp = __handle_create(al); |
| |
| return al; |
| } |
| |
| static bool allocator_close(uint64_t ahnd) |
| { |
| struct allocator *al; |
| bool released, is_empty = false; |
| |
| al = __allocator_find_by_handle(ahnd); |
| if (!al) { |
| igt_warn("Cannot find handle: %llx\n", (long long) ahnd); |
| return false; |
| } |
| |
| released = __allocator_put(al); |
| if (released) { |
| is_empty = al->ial->is_empty(al->ial); |
| intel_allocator_destroy(al->ial); |
| } |
| |
| if (!atomic_load(&al->refcount)) |
| __allocator_destroy(al); |
| |
| __handle_destroy(ahnd); |
| |
| return is_empty; |
| } |
| |
| static int send_req_recv_resp(struct msg_channel *msgchan, |
| struct alloc_req *request, |
| struct alloc_resp *response) |
| { |
| int ret; |
| |
| ret = send_req(msgchan, child_tid, request); |
| if (ret < 0) { |
| igt_warn("Error sending request [type: %d]: err = %d [%s]\n", |
| request->request_type, errno, strerror(errno)); |
| |
| return ret; |
| } |
| |
| ret = recv_resp(msgchan, child_tid, response); |
| if (ret < 0) |
| igt_warn("Error receiving response [type: %d]: err = %d [%s]\n", |
| request->request_type, errno, strerror(errno)); |
| |
| /* |
| * This is main assumption - we receive message which size must be > 0. |
| * If this is fulfilled we return 0 as a success. |
| */ |
| if (ret > 0) |
| ret = 0; |
| |
| return ret; |
| } |
| |
| static int handle_request(struct alloc_req *req, struct alloc_resp *resp) |
| { |
| int ret; |
| long refcnt; |
| |
| memset(resp, 0, sizeof(*resp)); |
| |
| if (is_same_process()) { |
| struct intel_allocator *ial; |
| struct allocator *al; |
| uint64_t start, end, size, ahnd; |
| uint32_t ctx, vm; |
| bool allocated, reserved, unreserved; |
| /* Used when debug is on, so avoid compilation warnings */ |
| (void) ctx; |
| (void) vm; |
| (void) refcnt; |
| |
| /* |
| * Mutex only work on allocator instance, not stop/open/close |
| */ |
| if (req->request_type > REQ_CLOSE) { |
| /* |
| * We have to lock map mutex because concurrent open |
| * can lead to resizing the map. |
| */ |
| pthread_mutex_lock(&map_mutex); |
| al = __allocator_find_by_handle(req->allocator_handle); |
| pthread_mutex_unlock(&map_mutex); |
| igt_assert(al); |
| |
| ial = al->ial; |
| igt_assert(ial); |
| pthread_mutex_lock(&ial->mutex); |
| } |
| |
| switch (req->request_type) { |
| case REQ_STOP: |
| alloc_info("<stop>\n"); |
| break; |
| |
| case REQ_OPEN: |
| pthread_mutex_lock(&map_mutex); |
| al = allocator_open(req->open.fd, |
| req->open.ctx, req->open.vm, |
| req->open.start, req->open.end, |
| req->open.allocator_type, |
| req->open.allocator_strategy, |
| &ahnd); |
| refcnt = atomic_load(&al->refcount); |
| ret = atomic_load(&al->ial->refcount); |
| pthread_mutex_unlock(&map_mutex); |
| |
| resp->response_type = RESP_OPEN; |
| resp->open.allocator_handle = ahnd; |
| |
| alloc_info("<open> [tid: %ld] fd: %d, ahnd: %" PRIx64 |
| ", ctx: %u, vm: %u" |
| ", alloc_type: %u, al->refcnt: %ld->%ld" |
| ", refcnt: %d->%d\n", |
| (long) req->tid, req->open.fd, ahnd, |
| req->open.ctx, |
| req->open.vm, req->open.allocator_type, |
| refcnt - 1, refcnt, ret - 1, ret); |
| break; |
| |
| case REQ_OPEN_AS: |
| /* lock first to avoid concurrent close */ |
| pthread_mutex_lock(&map_mutex); |
| |
| al = __allocator_find_by_handle(req->allocator_handle); |
| resp->response_type = RESP_OPEN_AS; |
| |
| if (!al) { |
| alloc_info("<open as> [tid: %ld] ahnd: %" PRIx64 |
| " -> no handle\n", |
| (long) req->tid, req->allocator_handle); |
| pthread_mutex_unlock(&map_mutex); |
| break; |
| } |
| |
| if (!al->vm) { |
| alloc_info("<open as> [tid: %ld] ahnd: %" PRIx64 |
| " -> only open as for <fd, vm> is possible\n", |
| (long) req->tid, req->allocator_handle); |
| pthread_mutex_unlock(&map_mutex); |
| break; |
| } |
| |
| |
| al = allocator_open_as(al, req->open_as.new_vm, &ahnd); |
| refcnt = atomic_load(&al->refcount); |
| ret = atomic_load(&al->ial->refcount); |
| pthread_mutex_unlock(&map_mutex); |
| |
| resp->response_type = RESP_OPEN_AS; |
| resp->open.allocator_handle = ahnd; |
| |
| alloc_info("<open as> [tid: %ld] fd: %d, ahnd: %" PRIx64 |
| ", ctx: %u, vm: %u" |
| ", alloc_type: %u, al->refcnt: %ld->%ld" |
| ", refcnt: %d->%d\n", |
| (long) req->tid, al->fd, ahnd, |
| al->ctx, al->vm, al->ial->type, |
| refcnt - 1, refcnt, ret - 1, ret); |
| break; |
| |
| case REQ_CLOSE: |
| pthread_mutex_lock(&map_mutex); |
| al = __allocator_find_by_handle(req->allocator_handle); |
| resp->response_type = RESP_CLOSE; |
| |
| if (!al) { |
| alloc_info("<close> [tid: %ld] ahnd: %" PRIx64 |
| " -> no handle\n", |
| (long) req->tid, req->allocator_handle); |
| pthread_mutex_unlock(&map_mutex); |
| break; |
| } |
| |
| resp->response_type = RESP_CLOSE; |
| ctx = al->ctx; |
| vm = al->vm; |
| |
| refcnt = atomic_load(&al->refcount); |
| ret = atomic_load(&al->ial->refcount); |
| resp->close.is_empty = allocator_close(req->allocator_handle); |
| pthread_mutex_unlock(&map_mutex); |
| |
| alloc_info("<close> [tid: %ld] ahnd: %" PRIx64 |
| ", ctx: %u, vm: %u" |
| ", is_empty: %d, al->refcount: %ld->%ld" |
| ", refcnt: %d->%d\n", |
| (long) req->tid, req->allocator_handle, |
| ctx, vm, resp->close.is_empty, |
| refcnt, refcnt - 1, ret, ret - 1); |
| |
| break; |
| |
| case REQ_ADDRESS_RANGE: |
| resp->response_type = RESP_ADDRESS_RANGE; |
| ial->get_address_range(ial, &start, &end); |
| resp->address_range.start = start; |
| resp->address_range.end = end; |
| alloc_info("<address range> [tid: %ld] ahnd: %" PRIx64 |
| ", ctx: %u, vm: %u" |
| ", start: 0x%" PRIx64 ", end: 0x%" PRId64 "\n", |
| (long) req->tid, req->allocator_handle, |
| al->ctx, al->vm, start, end); |
| break; |
| |
| case REQ_ALLOC: |
| resp->response_type = RESP_ALLOC; |
| resp->alloc.offset = ial->alloc(ial, |
| req->alloc.handle, |
| req->alloc.size, |
| req->alloc.alignment, |
| req->alloc.strategy); |
| alloc_info("<alloc> [tid: %ld] ahnd: %" PRIx64 |
| ", ctx: %u, vm: %u, handle: %u" |
| ", size: 0x%" PRIx64 ", offset: 0x%" PRIx64 |
| ", alignment: 0x%" PRIx64 ", strategy: %u\n", |
| (long) req->tid, req->allocator_handle, |
| al->ctx, al->vm, |
| req->alloc.handle, req->alloc.size, |
| resp->alloc.offset, req->alloc.alignment, |
| req->alloc.strategy); |
| break; |
| |
| case REQ_FREE: |
| resp->response_type = RESP_FREE; |
| resp->free.freed = ial->free(ial, req->free.handle); |
| alloc_info("<free> [tid: %ld] ahnd: %" PRIx64 |
| ", ctx: %u, vm: %u" |
| ", handle: %u, freed: %d\n", |
| (long) req->tid, req->allocator_handle, |
| al->ctx, al->vm, |
| req->free.handle, resp->free.freed); |
| break; |
| |
| case REQ_IS_ALLOCATED: |
| resp->response_type = RESP_IS_ALLOCATED; |
| allocated = ial->is_allocated(ial, |
| req->is_allocated.handle, |
| req->is_allocated.size, |
| req->is_allocated.offset); |
| resp->is_allocated.allocated = allocated; |
| alloc_info("<is allocated> [tid: %ld] ahnd: %" PRIx64 |
| ", ctx: %u, vm: %u" |
| ", offset: 0x%" PRIx64 |
| ", allocated: %d\n", (long) req->tid, |
| req->allocator_handle, al->ctx, al->vm, |
| req->is_allocated.offset, allocated); |
| break; |
| |
| case REQ_RESERVE: |
| resp->response_type = RESP_RESERVE; |
| reserved = ial->reserve(ial, |
| req->reserve.handle, |
| req->reserve.start, |
| req->reserve.end); |
| resp->reserve.reserved = reserved; |
| alloc_info("<reserve> [tid: %ld] ahnd: %" PRIx64 |
| ", ctx: %u, vm: %u, handle: %u" |
| ", start: 0x%" PRIx64 ", end: 0x%" PRIx64 |
| ", reserved: %d\n", |
| (long) req->tid, req->allocator_handle, |
| al->ctx, al->vm, req->reserve.handle, |
| req->reserve.start, req->reserve.end, reserved); |
| break; |
| |
| case REQ_UNRESERVE: |
| resp->response_type = RESP_UNRESERVE; |
| unreserved = ial->unreserve(ial, |
| req->unreserve.handle, |
| req->unreserve.start, |
| req->unreserve.end); |
| resp->unreserve.unreserved = unreserved; |
| alloc_info("<unreserve> [tid: %ld] ahnd: %" PRIx64 |
| ", ctx: %u, vm: %u, handle: %u" |
| ", start: 0x%" PRIx64 ", end: 0x%" PRIx64 |
| ", unreserved: %d\n", |
| (long) req->tid, req->allocator_handle, |
| al->ctx, al->vm, req->unreserve.handle, |
| req->unreserve.start, req->unreserve.end, |
| unreserved); |
| break; |
| |
| case REQ_IS_RESERVED: |
| resp->response_type = RESP_IS_RESERVED; |
| reserved = ial->is_reserved(ial, |
| req->is_reserved.start, |
| req->is_reserved.end); |
| resp->is_reserved.reserved = reserved; |
| alloc_info("<is reserved> [tid: %ld] ahnd: %" PRIx64 |
| ", ctx: %u, vm: %u" |
| ", start: 0x%" PRIx64 ", end: 0x%" PRIx64 |
| ", reserved: %d\n", |
| (long) req->tid, req->allocator_handle, |
| al->ctx, al->vm, req->is_reserved.start, |
| req->is_reserved.end, reserved); |
| break; |
| |
| case REQ_RESERVE_IF_NOT_ALLOCATED: |
| resp->response_type = RESP_RESERVE_IF_NOT_ALLOCATED; |
| size = req->reserve.end - req->reserve.start; |
| |
| allocated = ial->is_allocated(ial, req->reserve.handle, |
| size, req->reserve.start); |
| if (allocated) { |
| resp->reserve_if_not_allocated.allocated = allocated; |
| alloc_info("<reserve if not allocated> [tid: %ld] " |
| "ahnd: %" PRIx64 ", ctx: %u, vm: %u" |
| ", handle: %u, size: 0x%lx" |
| ", start: 0x%" PRIx64 ", end: 0x%" PRIx64 |
| ", allocated: %d, reserved: %d\n", |
| (long) req->tid, req->allocator_handle, |
| al->ctx, al->vm, req->reserve.handle, |
| (long) size, req->reserve.start, |
| req->reserve.end, allocated, false); |
| break; |
| } |
| |
| reserved = ial->reserve(ial, |
| req->reserve.handle, |
| req->reserve.start, |
| req->reserve.end); |
| resp->reserve_if_not_allocated.reserved = reserved; |
| alloc_info("<reserve if not allocated> [tid: %ld] " |
| "ahnd: %" PRIx64 ", ctx: %u, vm: %u" |
| ", handle: %u, start: 0x%" PRIx64 ", end: 0x%" PRIx64 |
| ", allocated: %d, reserved: %d\n", |
| (long) req->tid, req->allocator_handle, |
| al->ctx, al->vm, |
| req->reserve.handle, |
| req->reserve.start, req->reserve.end, |
| false, reserved); |
| break; |
| } |
| |
| if (req->request_type > REQ_CLOSE) |
| pthread_mutex_unlock(&ial->mutex); |
| |
| return 0; |
| } |
| |
| ret = send_req_recv_resp(channel, req, resp); |
| |
| if (ret < 0) |
| exit(0); |
| |
| return ret; |
| } |
| |
| static void *allocator_thread_loop(void *data) |
| { |
| struct alloc_req req; |
| struct alloc_resp resp; |
| int ret; |
| (void) data; |
| |
| alloc_info("Allocator pid: %ld, tid: %ld\n", |
| (long) allocator_pid, (long) gettid()); |
| alloc_info("Entering allocator loop\n"); |
| |
| WRITE_ONCE(allocator_thread_running, true); |
| |
| while (1) { |
| ret = recv_req(channel, &req); |
| |
| if (ret == -1) { |
| igt_warn("Error receiving request in thread, ret = %d [%s]\n", |
| ret, strerror(errno)); |
| igt_waitchildren_timeout(1, "Stopping children, error receiving request\n"); |
| return (void *) -1; |
| } |
| |
| /* Fake message to stop the thread */ |
| if (req.request_type == REQ_STOP) { |
| alloc_info("<stop request>\n"); |
| break; |
| } |
| |
| ret = handle_request(&req, &resp); |
| if (ret) { |
| igt_warn("Error handling request in thread, ret = %d [%s]\n", |
| ret, strerror(errno)); |
| break; |
| } |
| |
| ret = send_resp(channel, req.tid, &resp); |
| if (ret) { |
| igt_warn("Error sending response in thread, ret = %d [%s]\n", |
| ret, strerror(errno)); |
| |
| igt_waitchildren_timeout(1, "Stopping children, error sending response\n"); |
| return (void *) -1; |
| } |
| } |
| |
| WRITE_ONCE(allocator_thread_running, false); |
| |
| return NULL; |
| } |
| |
| |
| /** |
| * __intel_allocator_multiprocess_prepare: |
| * |
| * Prepares allocator infrastructure to work in multiprocess mode. |
| * |
| * Some description is required why prepare/start steps are separated. |
| * When we write the code and we don't use address sanitizer simple |
| * intel_allocator_multiprocess_start() call is enough. With address |
| * sanitizer and using forking we can encounter situation where one |
| * forked child called allocator alloc() (so parent has some poisoned |
| * memory in shadow map), then second fork occurs. Second child will |
| * get poisoned shadow map from parent (there allocator thread reside). |
| * Checking shadow map in this child will report memory leak. |
| * |
| * How to separate initialization steps take a look into api_intel_allocator.c |
| * fork_simple_stress() function. |
| */ |
| void __intel_allocator_multiprocess_prepare(void) |
| { |
| intel_allocator_init(); |
| |
| multiprocess = true; |
| channel->init(channel); |
| } |
| |
| #define START_TIMEOUT_MS 100 |
| void __intel_allocator_multiprocess_start(void) |
| { |
| int time_left = START_TIMEOUT_MS; |
| |
| pthread_create(&allocator_thread, NULL, |
| allocator_thread_loop, NULL); |
| |
| /* Wait unless allocator thread get started */ |
| while (time_left-- > 0 && !READ_ONCE(allocator_thread_running)) |
| usleep(1000); |
| } |
| |
| /** |
| * intel_allocator_multiprocess_start: |
| * |
| * Function turns on intel_allocator multiprocess mode what means |
| * all allocations from children processes are performed in a separate thread |
| * within main igt process. Children are aware of the situation and use |
| * some interprocess communication channel to send/receive messages |
| * (open, close, alloc, free, ...) to/from allocator thread. |
| * |
| * Must be used when you want to use an allocator in non single-process code. |
| * All allocations in threads spawned in main igt process are handled by |
| * mutexing, not by sending/receiving messages to/from allocator thread. |
| * |
| * Note. This destroys all previously created allocators and theirs content. |
| */ |
| void intel_allocator_multiprocess_start(void) |
| { |
| alloc_info("allocator multiprocess start\n"); |
| |
| igt_assert_f(child_pid == -1, |
| "Allocator thread can be spawned only in main IGT process\n"); |
| __intel_allocator_multiprocess_prepare(); |
| __intel_allocator_multiprocess_start(); |
| } |
| |
| /** |
| * intel_allocator_multiprocess_stop: |
| * |
| * Function turns off intel_allocator multiprocess mode what means |
| * stopping allocator thread and deinitializing its data. |
| */ |
| #define STOP_TIMEOUT_MS 100 |
| void intel_allocator_multiprocess_stop(void) |
| { |
| int time_left = STOP_TIMEOUT_MS; |
| |
| alloc_info("allocator multiprocess stop\n"); |
| |
| if (multiprocess) { |
| send_alloc_stop(channel); |
| |
| /* Give allocator thread time to complete */ |
| while (time_left-- > 0 && READ_ONCE(allocator_thread_running)) |
| usleep(1000); /* coarse calculation */ |
| |
| /* Deinit, this should stop all blocked syscalls, if any */ |
| channel->deinit(channel); |
| pthread_join(allocator_thread, NULL); |
| |
| /* But we're not sure does child will stuck */ |
| igt_waitchildren_timeout(5, "Stopping children"); |
| multiprocess = false; |
| } |
| } |
| |
| static uint64_t __intel_allocator_open_full(int fd, uint32_t ctx, |
| uint32_t vm, |
| uint64_t start, uint64_t end, |
| uint8_t allocator_type, |
| enum allocator_strategy strategy) |
| { |
| struct alloc_req req = { .request_type = REQ_OPEN, |
| .open.fd = fd, |
| .open.ctx = ctx, |
| .open.vm = vm, |
| .open.start = start, |
| .open.end = end, |
| .open.allocator_type = allocator_type, |
| .open.allocator_strategy = strategy }; |
| struct alloc_resp resp; |
| |
| /* Get child_tid only once at open() */ |
| if (child_tid == -1) |
| child_tid = gettid(); |
| |
| igt_assert(handle_request(&req, &resp) == 0); |
| igt_assert(resp.open.allocator_handle); |
| igt_assert(resp.response_type == RESP_OPEN); |
| |
| return resp.open.allocator_handle; |
| } |
| |
| /** |
| * intel_allocator_open_full: |
| * @fd: i915 descriptor |
| * @ctx: context |
| * @start: address of the beginning |
| * @end: address of the end |
| * @allocator_type: one of INTEL_ALLOCATOR_* define |
| * @strategy: passed to the allocator to define the strategy (like order |
| * of allocation, see notes below). |
| * |
| * Function opens an allocator instance within <@start, @end) vm for given |
| * @fd and @ctx and returns its handle. If the allocator for such pair |
| * doesn't exist it is created with refcount = 1. |
| * Parallel opens returns same handle bumping its refcount. |
| * |
| * Returns: unique handle to the currently opened allocator. |
| * |
| * Notes: |
| * Strategy is generally used internally by the underlying allocator: |
| * |
| * For SIMPLE allocator: |
| * - ALLOC_STRATEGY_HIGH_TO_LOW means topmost addresses are allocated first, |
| * - ALLOC_STRATEGY_LOW_TO_HIGH opposite, allocation starts from lowest |
| * addresses. |
| * |
| * For RANDOM allocator: |
| * - none of strategy is currently implemented. |
| */ |
| uint64_t intel_allocator_open_full(int fd, uint32_t ctx, |
| uint64_t start, uint64_t end, |
| uint8_t allocator_type, |
| enum allocator_strategy strategy) |
| { |
| return __intel_allocator_open_full(fd, ctx, 0, start, end, |
| allocator_type, strategy); |
| } |
| |
| uint64_t intel_allocator_open_vm_full(int fd, uint32_t vm, |
| uint64_t start, uint64_t end, |
| uint8_t allocator_type, |
| enum allocator_strategy strategy) |
| { |
| igt_assert(vm != 0); |
| return __intel_allocator_open_full(fd, 0, vm, start, end, |
| allocator_type, strategy); |
| } |
| |
| /** |
| * intel_allocator_open: |
| * @fd: i915 descriptor |
| * @ctx: context |
| * @allocator_type: one of INTEL_ALLOCATOR_* define |
| * |
| * Function opens an allocator instance for given @fd and @ctx and returns |
| * its handle. If the allocator for such pair doesn't exist it is created |
| * with refcount = 1. Parallel opens returns same handle bumping its refcount. |
| * |
| * Returns: unique handle to the currently opened allocator. |
| * |
| * Notes: we pass ALLOC_STRATEGY_HIGH_TO_LOW as default, playing with higher |
| * addresses makes easier to find addressing issues (like passing non-canonical |
| * offsets, which won't be catched unless 47-bit is set). |
| */ |
| uint64_t intel_allocator_open(int fd, uint32_t ctx, uint8_t allocator_type) |
| { |
| return intel_allocator_open_full(fd, ctx, 0, 0, allocator_type, |
| ALLOC_STRATEGY_HIGH_TO_LOW); |
| } |
| |
| uint64_t intel_allocator_open_vm(int fd, uint32_t vm, uint8_t allocator_type) |
| { |
| return intel_allocator_open_vm_full(fd, vm, 0, 0, allocator_type, |
| ALLOC_STRATEGY_HIGH_TO_LOW); |
| } |
| |
| uint64_t intel_allocator_open_vm_as(uint64_t allocator_handle, uint32_t new_vm) |
| { |
| struct alloc_req req = { .request_type = REQ_OPEN_AS, |
| .allocator_handle = allocator_handle, |
| .open_as.new_vm = new_vm }; |
| struct alloc_resp resp; |
| |
| /* Get child_tid only once at open() */ |
| if (child_tid == -1) |
| child_tid = gettid(); |
| |
| igt_assert(handle_request(&req, &resp) == 0); |
| igt_assert(resp.open_as.allocator_handle); |
| igt_assert(resp.response_type == RESP_OPEN_AS); |
| |
| return resp.open.allocator_handle; |
| } |
| |
| /** |
| * intel_allocator_close: |
| * @allocator_handle: handle to the allocator that will be closed |
| * |
| * Function decreases an allocator refcount for the given @handle. |
| * When refcount reaches zero allocator is closed (destroyed) and all |
| * allocated / reserved areas are freed. |
| * |
| * Returns: true if closed allocator was empty, false otherwise. |
| */ |
| bool intel_allocator_close(uint64_t allocator_handle) |
| { |
| struct alloc_req req = { .request_type = REQ_CLOSE, |
| .allocator_handle = allocator_handle }; |
| struct alloc_resp resp; |
| |
| igt_assert(handle_request(&req, &resp) == 0); |
| igt_assert(resp.response_type == RESP_CLOSE); |
| |
| return resp.close.is_empty; |
| } |
| |
| /** |
| * intel_allocator_get_address_range: |
| * @allocator_handle: handle to an allocator |
| * @startp: pointer to the variable where function writes starting offset |
| * @endp: pointer to the variable where function writes ending offset |
| * |
| * Function fills @startp, @endp with respectively, starting and ending offset |
| * of the allocator working virtual address space range. |
| * |
| * Note. Allocators working ranges can differ depending on the device or |
| * the allocator type so before reserving a specific offset a good practise |
| * is to ensure that address is between accepted range. |
| */ |
| void intel_allocator_get_address_range(uint64_t allocator_handle, |
| uint64_t *startp, uint64_t *endp) |
| { |
| struct alloc_req req = { .request_type = REQ_ADDRESS_RANGE, |
| .allocator_handle = allocator_handle }; |
| struct alloc_resp resp; |
| |
| igt_assert(handle_request(&req, &resp) == 0); |
| igt_assert(resp.response_type == RESP_ADDRESS_RANGE); |
| |
| if (startp) |
| *startp = resp.address_range.start; |
| |
| if (endp) |
| *endp = resp.address_range.end; |
| } |
| |
| /** |
| * __intel_allocator_alloc: |
| * @allocator_handle: handle to an allocator |
| * @handle: handle to an object |
| * @size: size of an object |
| * @alignment: determines object alignment |
| * |
| * Function finds and returns the most suitable offset with given @alignment |
| * for an object with @size identified by the @handle. |
| * |
| * Returns: currently assigned address for a given object. If an object was |
| * already allocated returns same address. If allocator can't find suitable |
| * range returns ALLOC_INVALID_ADDRESS. |
| */ |
| uint64_t __intel_allocator_alloc(uint64_t allocator_handle, uint32_t handle, |
| uint64_t size, uint64_t alignment, |
| enum allocator_strategy strategy) |
| { |
| struct alloc_req req = { .request_type = REQ_ALLOC, |
| .allocator_handle = allocator_handle, |
| .alloc.handle = handle, |
| .alloc.size = size, |
| .alloc.alignment = alignment, |
| .alloc.strategy = strategy }; |
| struct alloc_resp resp; |
| |
| igt_assert(handle_request(&req, &resp) == 0); |
| igt_assert(resp.response_type == RESP_ALLOC); |
| |
| return resp.alloc.offset; |
| } |
| |
| /** |
| * intel_allocator_alloc: |
| * @allocator_handle: handle to an allocator |
| * @handle: handle to an object |
| * @size: size of an object |
| * @alignment: determines object alignment |
| * |
| * Same as __intel_allocator_alloc() but asserts if allocator can't return |
| * valid address. Uses default allocation strategy chosen during opening |
| * the allocator. |
| */ |
| uint64_t intel_allocator_alloc(uint64_t allocator_handle, uint32_t handle, |
| uint64_t size, uint64_t alignment) |
| { |
| uint64_t offset; |
| |
| offset = __intel_allocator_alloc(allocator_handle, handle, |
| size, alignment, |
| ALLOC_STRATEGY_NONE); |
| igt_assert(offset != ALLOC_INVALID_ADDRESS); |
| |
| return offset; |
| } |
| |
| /** |
| * intel_allocator_alloc_with_strategy: |
| * @allocator_handle: handle to an allocator |
| * @handle: handle to an object |
| * @size: size of an object |
| * @alignment: determines object alignment |
| * @strategy: strategy of allocation |
| * |
| * Same as __intel_allocator_alloc() but asserts if allocator can't return |
| * valid address. Use @strategy instead of default chosen during opening |
| * the allocator. |
| */ |
| uint64_t intel_allocator_alloc_with_strategy(uint64_t allocator_handle, |
| uint32_t handle, |
| uint64_t size, uint64_t alignment, |
| enum allocator_strategy strategy) |
| { |
| uint64_t offset; |
| |
| offset = __intel_allocator_alloc(allocator_handle, handle, |
| size, alignment, strategy); |
| igt_assert(offset != ALLOC_INVALID_ADDRESS); |
| |
| return offset; |
| } |
| |
| |
| /** |
| * intel_allocator_free: |
| * @allocator_handle: handle to an allocator |
| * @handle: handle to an object to be freed |
| * |
| * Function free object identified by the @handle in allocator what makes it |
| * offset again allocable. |
| * |
| * Note. Reserved objects can only be freed by an #intel_allocator_unreserve |
| * function. |
| * |
| * Returns: true if the object was successfully freed, otherwise false. |
| */ |
| bool intel_allocator_free(uint64_t allocator_handle, uint32_t handle) |
| { |
| struct alloc_req req = { .request_type = REQ_FREE, |
| .allocator_handle = allocator_handle, |
| .free.handle = handle }; |
| struct alloc_resp resp; |
| |
| igt_assert(handle_request(&req, &resp) == 0); |
| igt_assert(resp.response_type == RESP_FREE); |
| |
| return resp.free.freed; |
| } |
| |
| /** |
| * intel_allocator_is_allocated: |
| * @allocator_handle: handle to an allocator |
| * @handle: handle to an object |
| * @size: size of an object |
| * @offset: address of an object |
| * |
| * Function checks whether the object identified by the @handle and @size |
| * is allocated at the @offset. |
| * |
| * Returns: true if the object is currently allocated at the @offset, |
| * otherwise false. |
| */ |
| bool intel_allocator_is_allocated(uint64_t allocator_handle, uint32_t handle, |
| uint64_t size, uint64_t offset) |
| { |
| struct alloc_req req = { .request_type = REQ_IS_ALLOCATED, |
| .allocator_handle = allocator_handle, |
| .is_allocated.handle = handle, |
| .is_allocated.size = size, |
| .is_allocated.offset = offset }; |
| struct alloc_resp resp; |
| |
| igt_assert(handle_request(&req, &resp) == 0); |
| igt_assert(resp.response_type == RESP_IS_ALLOCATED); |
| |
| return resp.is_allocated.allocated; |
| } |
| |
| /** |
| * intel_allocator_reserve: |
| * @allocator_handle: handle to an allocator |
| * @handle: handle to an object |
| * @size: size of an object |
| * @offset: address of an object |
| * |
| * Function reserves space that starts at the @offset and has @size. |
| * Optionally we can pass @handle to mark that space is for a specific |
| * object, otherwise pass -1. |
| * |
| * Note. Reserved space is identified by offset and size, not a handle. |
| * So an object can have multiple reserved spaces with its handle. |
| * |
| * Returns: true if space is successfully reserved, otherwise false. |
| */ |
| bool intel_allocator_reserve(uint64_t allocator_handle, uint32_t handle, |
| uint64_t size, uint64_t offset) |
| { |
| struct alloc_req req = { .request_type = REQ_RESERVE, |
| .allocator_handle = allocator_handle, |
| .reserve.handle = handle, |
| .reserve.start = offset, |
| .reserve.end = offset + size }; |
| struct alloc_resp resp; |
| |
| igt_assert(handle_request(&req, &resp) == 0); |
| igt_assert(resp.response_type == RESP_RESERVE); |
| |
| return resp.reserve.reserved; |
| } |
| |
| /** |
| * intel_allocator_unreserve: |
| * @allocator_handle: handle to an allocator |
| * @handle: handle to an object |
| * @size: size of an object |
| * @offset: address of an object |
| * |
| * Function unreserves space that starts at the @offset, @size and @handle. |
| * |
| * Note. @handle, @size and @offset have to match those used in reservation. |
| * i.e. check with the same offset but even smaller size will fail. |
| * |
| * Returns: true if the space is successfully unreserved, otherwise false. |
| */ |
| bool intel_allocator_unreserve(uint64_t allocator_handle, uint32_t handle, |
| uint64_t size, uint64_t offset) |
| { |
| struct alloc_req req = { .request_type = REQ_UNRESERVE, |
| .allocator_handle = allocator_handle, |
| .unreserve.handle = handle, |
| .unreserve.start = offset, |
| .unreserve.end = offset + size }; |
| struct alloc_resp resp; |
| |
| igt_assert(handle_request(&req, &resp) == 0); |
| igt_assert(resp.response_type == RESP_UNRESERVE); |
| |
| return resp.unreserve.unreserved; |
| } |
| |
| /** |
| * intel_allocator_is_reserved: |
| * @allocator_handle: handle to an allocator |
| * @size: size of an object |
| * @offset: address of an object |
| * |
| * Function checks whether space starting at the @offset and @size is |
| * currently under reservation. |
| * |
| * Note. @size and @offset have to match those used in reservation, |
| * i.e. check with the same offset but even smaller size will fail. |
| * |
| * Returns: true if space is reserved, othwerise false. |
| */ |
| bool intel_allocator_is_reserved(uint64_t allocator_handle, |
| uint64_t size, uint64_t offset) |
| { |
| struct alloc_req req = { .request_type = REQ_IS_RESERVED, |
| .allocator_handle = allocator_handle, |
| .is_reserved.start = offset, |
| .is_reserved.end = offset + size }; |
| struct alloc_resp resp; |
| |
| igt_assert(handle_request(&req, &resp) == 0); |
| igt_assert(resp.response_type == RESP_IS_RESERVED); |
| |
| return resp.is_reserved.reserved; |
| } |
| |
| /** |
| * intel_allocator_reserve_if_not_allocated: |
| * @allocator_handle: handle to an allocator |
| * @handle: handle to an object |
| * @size: size of an object |
| * @offset: address of an object |
| * @is_allocatedp: if not NULL function writes there object allocation status |
| * (true/false) |
| * |
| * Function checks whether the object identified by the @handle and @size |
| * is allocated at the @offset and writes the result to @is_allocatedp. |
| * If it's not it reserves it at the given @offset. |
| * |
| * Returns: true if the space for an object was reserved, otherwise false. |
| */ |
| bool intel_allocator_reserve_if_not_allocated(uint64_t allocator_handle, |
| uint32_t handle, |
| uint64_t size, uint64_t offset, |
| bool *is_allocatedp) |
| { |
| struct alloc_req req = { .request_type = REQ_RESERVE_IF_NOT_ALLOCATED, |
| .allocator_handle = allocator_handle, |
| .reserve.handle = handle, |
| .reserve.start = offset, |
| .reserve.end = offset + size }; |
| struct alloc_resp resp; |
| |
| igt_assert(handle_request(&req, &resp) == 0); |
| igt_assert(resp.response_type == RESP_RESERVE_IF_NOT_ALLOCATED); |
| |
| if (is_allocatedp) |
| *is_allocatedp = resp.reserve_if_not_allocated.allocated; |
| |
| return resp.reserve_if_not_allocated.reserved; |
| } |
| |
| /** |
| * intel_allocator_print: |
| * @allocator_handle: handle to an allocator |
| * |
| * Function prints statistics and content of the allocator. |
| * Mainly for debugging purposes. |
| * |
| * Note. Printing possible only in the main process. |
| **/ |
| void intel_allocator_print(uint64_t allocator_handle) |
| { |
| igt_assert(allocator_handle); |
| |
| if (!multiprocess || is_same_process()) { |
| struct allocator *al; |
| |
| al = __allocator_find_by_handle(allocator_handle); |
| pthread_mutex_lock(&map_mutex); |
| al->ial->print(al->ial, true); |
| pthread_mutex_unlock(&map_mutex); |
| } else { |
| igt_warn("Print stats is in main process only\n"); |
| } |
| } |
| |
| static int equal_handles(const void *key1, const void *key2) |
| { |
| const struct handle_entry *h1 = key1, *h2 = key2; |
| |
| alloc_debug("h1: %llx, h2: %llx\n", |
| (long long) h1->handle, (long long) h2->handle); |
| |
| return h1->handle == h2->handle; |
| } |
| |
| static int equal_ctx(const void *key1, const void *key2) |
| { |
| const struct allocator *a1 = key1, *a2 = key2; |
| |
| alloc_debug("a1: <fd: %d, ctx: %u>, a2 <fd: %d, ctx: %u>\n", |
| a1->fd, a1->ctx, a2->fd, a2->ctx); |
| |
| return a1->fd == a2->fd && a1->ctx == a2->ctx; |
| } |
| |
| static int equal_vm(const void *key1, const void *key2) |
| { |
| const struct allocator *a1 = key1, *a2 = key2; |
| |
| alloc_debug("a1: <fd: %d, vm: %u>, a2 <fd: %d, vm: %u>\n", |
| a1->fd, a1->vm, a2->fd, a2->vm); |
| |
| return a1->fd == a2->fd && a1->vm == a2->vm; |
| } |
| |
| /* 2^31 + 2^29 - 2^25 + 2^22 - 2^19 - 2^16 + 1 */ |
| #define GOLDEN_RATIO_PRIME_32 0x9e370001UL |
| |
| static inline uint32_t hash_handles(const void *val) |
| { |
| uint32_t hash = ((struct handle_entry *) val)->handle; |
| |
| hash = hash * GOLDEN_RATIO_PRIME_32; |
| return hash; |
| } |
| |
| static inline uint32_t hash_instance(const void *val) |
| { |
| uint64_t hash = ((struct allocator *) val)->fd; |
| |
| hash = hash * GOLDEN_RATIO_PRIME_32; |
| return hash; |
| } |
| |
| static void __free_maps(struct igt_map *map, bool close_allocators) |
| { |
| struct igt_map_entry *pos; |
| const struct handle_entry *h; |
| |
| if (!map) |
| return; |
| |
| if (close_allocators) |
| igt_map_foreach(map, pos) { |
| h = pos->key; |
| allocator_close(h->handle); |
| } |
| |
| igt_map_destroy(map, map_entry_free_func); |
| } |
| |
| /** |
| * intel_allocator_init: |
| * |
| * Function initializes the allocators infrastructure. The second call will |
| * override current infra and destroy existing there allocators. It is called |
| * in igt_constructor. |
| **/ |
| void intel_allocator_init(void) |
| { |
| alloc_info("Prepare an allocator infrastructure\n"); |
| |
| allocator_pid = getpid(); |
| alloc_info("Allocator pid: %ld\n", (long) allocator_pid); |
| |
| __free_maps(handles, true); |
| __free_maps(ctx_map, false); |
| __free_maps(vm_map, false); |
| |
| atomic_init(&next_handle, 1); |
| handles = igt_map_create(hash_handles, equal_handles); |
| ctx_map = igt_map_create(hash_instance, equal_ctx); |
| vm_map = igt_map_create(hash_instance, equal_vm); |
| igt_assert(handles && ctx_map && vm_map); |
| |
| channel = intel_allocator_get_msgchannel(CHANNEL_SYSVIPC_MSGQUEUE); |
| } |
| |
| igt_constructor { |
| intel_allocator_init(); |
| } |