nagendra modadugu | 4fae542 | 2016-05-10 16:11:54 -0700 | [diff] [blame] | 1 | // Copyright 2016 Google Inc. |
| 2 | // |
| 3 | // Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | // you may not use this file except in compliance with the License. |
| 5 | // You may obtain a copy of the License at |
| 6 | // |
| 7 | // http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | // |
| 9 | // Unless required by applicable law or agreed to in writing, software |
| 10 | // distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | // See the License for the specific language governing permissions and |
| 13 | // limitations under the License. |
| 14 | #include <assert.h> |
| 15 | #include <stdint.h> |
| 16 | #include <string.h> |
| 17 | |
| 18 | #include "cryptoc/p256.h" |
| 19 | |
| 20 | const p256_int SECP256r1_n = // curve order |
| 21 | {{0xfc632551, 0xf3b9cac2, 0xa7179e84, 0xbce6faad, -1, -1, 0, -1}}; |
| 22 | |
| 23 | const p256_int SECP256r1_nMin2 = // curve order - 2 |
| 24 | {{0xfc632551 - 2, 0xf3b9cac2, 0xa7179e84, 0xbce6faad, -1, -1, 0, -1}}; |
| 25 | |
| 26 | const p256_int SECP256r1_p = // curve field size |
| 27 | {{-1, -1, -1, 0, 0, 0, 1, -1 }}; |
| 28 | |
| 29 | const p256_int SECP256r1_b = // curve b |
| 30 | {{0x27d2604b, 0x3bce3c3e, 0xcc53b0f6, 0x651d06b0, |
| 31 | 0x769886bc, 0xb3ebbd55, 0xaa3a93e7, 0x5ac635d8}}; |
| 32 | |
| 33 | static const p256_int p256_one = P256_ONE; |
| 34 | |
| 35 | |
| 36 | void p256_init(p256_int* a) { |
| 37 | memset(a, 0, sizeof(*a)); |
| 38 | } |
| 39 | |
| 40 | void p256_clear(p256_int* a) { p256_init(a); } |
| 41 | |
| 42 | int p256_get_bit(const p256_int* scalar, int bit) { |
| 43 | return (P256_DIGIT(scalar, bit / P256_BITSPERDIGIT) |
| 44 | >> (bit & (P256_BITSPERDIGIT - 1))) & 1; |
| 45 | } |
| 46 | |
| 47 | int p256_is_zero(const p256_int* a) { |
| 48 | int i, result = 0; |
| 49 | for (i = 0; i < P256_NDIGITS; ++i) result |= P256_DIGIT(a, i); |
| 50 | return !result; |
| 51 | } |
| 52 | |
| 53 | // top, c[] += a[] * b |
| 54 | // Returns new top |
| 55 | static p256_digit mulAdd(const p256_int* a, |
| 56 | p256_digit b, |
| 57 | p256_digit top, |
| 58 | p256_digit* c) { |
| 59 | int i; |
| 60 | p256_ddigit carry = 0; |
| 61 | |
| 62 | for (i = 0; i < P256_NDIGITS; ++i) { |
| 63 | carry += *c; |
| 64 | carry += (p256_ddigit)P256_DIGIT(a, i) * b; |
| 65 | *c++ = (p256_digit)carry; |
| 66 | carry >>= P256_BITSPERDIGIT; |
| 67 | } |
| 68 | return top + (p256_digit)carry; |
| 69 | } |
| 70 | |
| 71 | // top, c[] -= top_a, a[] |
| 72 | static p256_digit subTop(p256_digit top_a, |
| 73 | const p256_digit* a, |
| 74 | p256_digit top_c, |
| 75 | p256_digit* c) { |
| 76 | int i; |
| 77 | p256_sddigit borrow = 0; |
| 78 | |
| 79 | for (i = 0; i < P256_NDIGITS; ++i) { |
| 80 | borrow += *c; |
| 81 | borrow -= *a++; |
| 82 | *c++ = (p256_digit)borrow; |
| 83 | borrow >>= P256_BITSPERDIGIT; |
| 84 | } |
| 85 | borrow += top_c; |
| 86 | borrow -= top_a; |
| 87 | top_c = (p256_digit)borrow; |
| 88 | assert((borrow >> P256_BITSPERDIGIT) == 0); |
| 89 | return top_c; |
| 90 | } |
| 91 | |
| 92 | // top, c[] -= MOD[] & mask (0 or -1) |
| 93 | // returns new top. |
| 94 | static p256_digit subM(const p256_int* MOD, |
| 95 | p256_digit top, |
| 96 | p256_digit* c, |
| 97 | p256_digit mask) { |
| 98 | int i; |
| 99 | p256_sddigit borrow = 0; |
| 100 | for (i = 0; i < P256_NDIGITS; ++i) { |
| 101 | borrow += *c; |
| 102 | borrow -= P256_DIGIT(MOD, i) & mask; |
| 103 | *c++ = (p256_digit)borrow; |
| 104 | borrow >>= P256_BITSPERDIGIT; |
| 105 | } |
| 106 | return top + (p256_digit)borrow; |
| 107 | } |
| 108 | |
| 109 | // top, c[] += MOD[] & mask (0 or -1) |
| 110 | // returns new top. |
| 111 | static p256_digit addM(const p256_int* MOD, |
| 112 | p256_digit top, |
| 113 | p256_digit* c, |
| 114 | p256_digit mask) { |
| 115 | int i; |
| 116 | p256_ddigit carry = 0; |
| 117 | for (i = 0; i < P256_NDIGITS; ++i) { |
| 118 | carry += *c; |
| 119 | carry += P256_DIGIT(MOD, i) & mask; |
| 120 | *c++ = (p256_digit)carry; |
| 121 | carry >>= P256_BITSPERDIGIT; |
| 122 | } |
| 123 | return top + (p256_digit)carry; |
| 124 | } |
| 125 | |
| 126 | // c = a * b mod MOD. c can be a and/or b. |
| 127 | void p256_modmul(const p256_int* MOD, |
| 128 | const p256_int* a, |
| 129 | const p256_digit top_b, |
| 130 | const p256_int* b, |
| 131 | p256_int* c) { |
| 132 | p256_digit tmp[P256_NDIGITS * 2 + 1] = { 0 }; |
| 133 | p256_digit top = 0; |
| 134 | int i; |
| 135 | |
| 136 | // Multiply/add into tmp. |
| 137 | for (i = 0; i < P256_NDIGITS; ++i) { |
| 138 | if (i) tmp[i + P256_NDIGITS - 1] = top; |
| 139 | top = mulAdd(a, P256_DIGIT(b, i), 0, tmp + i); |
| 140 | } |
| 141 | |
| 142 | // Multiply/add top digit |
| 143 | tmp[i + P256_NDIGITS - 1] = top; |
| 144 | top = mulAdd(a, top_b, 0, tmp + i); |
| 145 | |
| 146 | // Reduce tmp, digit by digit. |
| 147 | for (; i >= 0; --i) { |
| 148 | p256_digit reducer[P256_NDIGITS] = { 0 }; |
| 149 | p256_digit top_reducer; |
| 150 | |
| 151 | // top can be any value at this point. |
| 152 | // Guestimate reducer as top * MOD, since msw of MOD is -1. |
| 153 | top_reducer = mulAdd(MOD, top, 0, reducer); |
| 154 | |
| 155 | // Subtract reducer from top | tmp. |
| 156 | top = subTop(top_reducer, reducer, top, tmp + i); |
| 157 | |
| 158 | // top is now either 0 or 1. Make it 0, fixed-timing. |
| 159 | assert(top <= 1); |
| 160 | |
| 161 | top = subM(MOD, top, tmp + i, ~(top - 1)); |
| 162 | |
| 163 | assert(top == 0); |
| 164 | |
| 165 | // We have now reduced the top digit off tmp. Fetch new top digit. |
| 166 | top = tmp[i + P256_NDIGITS - 1]; |
| 167 | } |
| 168 | |
| 169 | // tmp might still be larger than MOD, yet same bit length. |
| 170 | // Make sure it is less, fixed-timing. |
| 171 | addM(MOD, 0, tmp, subM(MOD, 0, tmp, -1)); |
| 172 | |
| 173 | memcpy(c, tmp, P256_NBYTES); |
| 174 | } |
| 175 | |
| 176 | int p256_is_odd(const p256_int* a) { return P256_DIGIT(a, 0) & 1; } |
| 177 | int p256_is_even(const p256_int* a) { return !(P256_DIGIT(a, 0) & 1); } |
| 178 | |
| 179 | p256_digit p256_shl(const p256_int* a, int n, p256_int* b) { |
| 180 | int i; |
| 181 | p256_digit top = P256_DIGIT(a, P256_NDIGITS - 1); |
| 182 | |
| 183 | n %= P256_BITSPERDIGIT; |
| 184 | for (i = P256_NDIGITS - 1; i > 0; --i) { |
| 185 | p256_digit accu = (P256_DIGIT(a, i) << n); |
| 186 | accu |= (P256_DIGIT(a, i - 1) >> (P256_BITSPERDIGIT - n)); |
| 187 | P256_DIGIT(b, i) = accu; |
| 188 | } |
| 189 | P256_DIGIT(b, i) = (P256_DIGIT(a, i) << n); |
| 190 | |
| 191 | top >>= (P256_BITSPERDIGIT - n); |
| 192 | |
| 193 | return top; |
| 194 | } |
| 195 | |
| 196 | void p256_shr(const p256_int* a, int n, p256_int* b) { |
| 197 | int i; |
| 198 | |
| 199 | n %= P256_BITSPERDIGIT; |
| 200 | for (i = 0; i < P256_NDIGITS - 1; ++i) { |
| 201 | p256_digit accu = (P256_DIGIT(a, i) >> n); |
| 202 | accu |= (P256_DIGIT(a, i + 1) << (P256_BITSPERDIGIT - n)); |
| 203 | P256_DIGIT(b, i) = accu; |
| 204 | } |
| 205 | P256_DIGIT(b, i) = (P256_DIGIT(a, i) >> n); |
| 206 | } |
| 207 | |
| 208 | static void p256_shr1(const p256_int* a, int highbit, p256_int* b) { |
| 209 | int i; |
| 210 | |
| 211 | for (i = 0; i < P256_NDIGITS - 1; ++i) { |
| 212 | p256_digit accu = (P256_DIGIT(a, i) >> 1); |
| 213 | accu |= (P256_DIGIT(a, i + 1) << (P256_BITSPERDIGIT - 1)); |
| 214 | P256_DIGIT(b, i) = accu; |
| 215 | } |
| 216 | P256_DIGIT(b, i) = (P256_DIGIT(a, i) >> 1) | |
| 217 | (highbit << (P256_BITSPERDIGIT - 1)); |
| 218 | } |
| 219 | |
| 220 | // Return -1, 0, 1 for a < b, a == b or a > b respectively. |
| 221 | int p256_cmp(const p256_int* a, const p256_int* b) { |
| 222 | int i; |
| 223 | p256_sddigit borrow = 0; |
| 224 | p256_digit notzero = 0; |
| 225 | |
| 226 | for (i = 0; i < P256_NDIGITS; ++i) { |
| 227 | borrow += (p256_sddigit)P256_DIGIT(a, i) - P256_DIGIT(b, i); |
| 228 | // Track whether any result digit is ever not zero. |
| 229 | // Relies on !!(non-zero) evaluating to 1, e.g., !!(-1) evaluating to 1. |
| 230 | notzero |= !!((p256_digit)borrow); |
| 231 | borrow >>= P256_BITSPERDIGIT; |
| 232 | } |
| 233 | return (int)borrow | notzero; |
| 234 | } |
| 235 | |
| 236 | // c = a - b. Returns borrow: 0 or -1. |
| 237 | int p256_sub(const p256_int* a, const p256_int* b, p256_int* c) { |
| 238 | int i; |
| 239 | p256_sddigit borrow = 0; |
| 240 | |
| 241 | for (i = 0; i < P256_NDIGITS; ++i) { |
| 242 | borrow += (p256_sddigit)P256_DIGIT(a, i) - P256_DIGIT(b, i); |
| 243 | if (c) P256_DIGIT(c, i) = (p256_digit)borrow; |
| 244 | borrow >>= P256_BITSPERDIGIT; |
| 245 | } |
| 246 | return (int)borrow; |
| 247 | } |
| 248 | |
| 249 | // c = a + b. Returns carry: 0 or 1. |
| 250 | int p256_add(const p256_int* a, const p256_int* b, p256_int* c) { |
| 251 | int i; |
| 252 | p256_ddigit carry = 0; |
| 253 | |
| 254 | for (i = 0; i < P256_NDIGITS; ++i) { |
| 255 | carry += (p256_ddigit)P256_DIGIT(a, i) + P256_DIGIT(b, i); |
| 256 | if (c) P256_DIGIT(c, i) = (p256_digit)carry; |
| 257 | carry >>= P256_BITSPERDIGIT; |
| 258 | } |
| 259 | return (int)carry; |
| 260 | } |
| 261 | |
| 262 | // b = a + d. Returns carry, 0 or 1. |
| 263 | int p256_add_d(const p256_int* a, p256_digit d, p256_int* b) { |
| 264 | int i; |
| 265 | p256_ddigit carry = d; |
| 266 | |
| 267 | for (i = 0; i < P256_NDIGITS; ++i) { |
| 268 | carry += (p256_ddigit)P256_DIGIT(a, i); |
| 269 | if (b) P256_DIGIT(b, i) = (p256_digit)carry; |
| 270 | carry >>= P256_BITSPERDIGIT; |
| 271 | } |
| 272 | return (int)carry; |
| 273 | } |
| 274 | |
| 275 | // if (mask) dst = src, fixed-timing style. |
| 276 | static void copyConditional(const p256_int* src, |
| 277 | p256_int* dst, |
| 278 | int mask) { |
| 279 | int i; |
| 280 | for (i = 0; i < P256_NDIGITS; ++i) { |
| 281 | p256_digit b = P256_DIGIT(src, i) & mask; // 0 or src[i] |
| 282 | b |= P256_DIGIT(dst, i) & ~mask; // dst[i] or 0 |
| 283 | P256_DIGIT(dst, i) = b; |
| 284 | } |
| 285 | } |
| 286 | |
| 287 | // -1 iff (x&15) == 0, 0 otherwise. |
| 288 | // Relies on arithmetic shift right behavior. |
| 289 | #define ZEROtoONES(x) (((int32_t)(((x)&15)-1))>>31) |
| 290 | |
| 291 | // tbl[0] = tbl[idx], fixed-timing style. |
| 292 | static void set0ToIdx(p256_int tbl[16], int idx) { |
| 293 | int32_t i; |
| 294 | tbl[0] = p256_one; |
| 295 | for (i = 1; i < 16; ++i) { |
| 296 | copyConditional(&tbl[i], &tbl[0], ZEROtoONES(i-idx)); |
| 297 | } |
| 298 | } |
| 299 | |
| 300 | // b = 1/a mod MOD, fixed timing, Fermat's little theorem. |
| 301 | void p256_modinv(const p256_int* MOD, |
| 302 | const p256_int* a, |
| 303 | p256_int* b) { |
| 304 | p256_int tbl[16]; |
| 305 | int i; |
| 306 | |
| 307 | // tbl[i] = a**i, tbl[0] unused. |
| 308 | tbl[1] = *a; |
| 309 | for (i = 2; i < 16; ++i) { |
| 310 | p256_modmul(MOD, &tbl[i-1], 0, a, &tbl[i]); |
| 311 | } |
| 312 | |
| 313 | *b = p256_one; |
| 314 | for (i = 256; i > 0; i -= 4) { |
| 315 | int32_t idx = 0; |
| 316 | p256_modmul(MOD, b, 0, b, b); |
| 317 | p256_modmul(MOD, b, 0, b, b); |
| 318 | p256_modmul(MOD, b, 0, b, b); |
| 319 | p256_modmul(MOD, b, 0, b, b); |
| 320 | idx |= p256_get_bit(&SECP256r1_nMin2, i - 1) << 3; |
| 321 | idx |= p256_get_bit(&SECP256r1_nMin2, i - 2) << 2; |
| 322 | idx |= p256_get_bit(&SECP256r1_nMin2, i - 3) << 1; |
| 323 | idx |= p256_get_bit(&SECP256r1_nMin2, i - 4) << 0; |
| 324 | set0ToIdx(tbl, idx); // tbl[0] = tbl[idx] |
| 325 | p256_modmul(MOD, b, 0, &tbl[0], &tbl[0]); |
| 326 | copyConditional(&tbl[0], b, ~ZEROtoONES(idx)); |
| 327 | } |
| 328 | } |
| 329 | |
| 330 | // b = 1/a mod MOD, binary euclid. |
| 331 | void p256_modinv_vartime(const p256_int* MOD, |
| 332 | const p256_int* a, |
| 333 | p256_int* b) { |
| 334 | p256_int R = P256_ZERO; |
| 335 | p256_int S = P256_ONE; |
| 336 | p256_int U = *MOD; |
| 337 | p256_int V = *a; |
| 338 | |
| 339 | for (;;) { |
| 340 | if (p256_is_even(&U)) { |
| 341 | p256_shr1(&U, 0, &U); |
| 342 | if (p256_is_even(&R)) { |
| 343 | p256_shr1(&R, 0, &R); |
| 344 | } else { |
| 345 | // R = (R+MOD)/2 |
| 346 | p256_shr1(&R, p256_add(&R, MOD, &R), &R); |
| 347 | } |
| 348 | } else if (p256_is_even(&V)) { |
| 349 | p256_shr1(&V, 0, &V); |
| 350 | if (p256_is_even(&S)) { |
| 351 | p256_shr1(&S, 0, &S); |
| 352 | } else { |
| 353 | // S = (S+MOD)/2 |
| 354 | p256_shr1(&S, p256_add(&S, MOD, &S) , &S); |
| 355 | } |
| 356 | } else { // U,V both odd. |
| 357 | if (!p256_sub(&V, &U, NULL)) { |
| 358 | p256_sub(&V, &U, &V); |
| 359 | if (p256_sub(&S, &R, &S)) p256_add(&S, MOD, &S); |
| 360 | if (p256_is_zero(&V)) break; // done. |
| 361 | } else { |
| 362 | p256_sub(&U, &V, &U); |
| 363 | if (p256_sub(&R, &S, &R)) p256_add(&R, MOD, &R); |
| 364 | } |
| 365 | } |
| 366 | } |
| 367 | |
| 368 | p256_mod(MOD, &R, b); |
| 369 | } |
| 370 | |
| 371 | void p256_mod(const p256_int* MOD, |
| 372 | const p256_int* in, |
| 373 | p256_int* out) { |
| 374 | if (out != in) *out = *in; |
| 375 | addM(MOD, 0, P256_DIGITS(out), subM(MOD, 0, P256_DIGITS(out), -1)); |
| 376 | } |
| 377 | |
| 378 | // Verify y^2 == x^3 - 3x + b mod p |
| 379 | // and 0 < x < p and 0 < y < p |
| 380 | int p256_is_valid_point(const p256_int* x, const p256_int* y) { |
| 381 | p256_int y2, x3; |
| 382 | |
| 383 | if (p256_cmp(&SECP256r1_p, x) <= 0 || |
| 384 | p256_cmp(&SECP256r1_p, y) <= 0 || |
| 385 | p256_is_zero(x) || |
| 386 | p256_is_zero(y)) return 0; |
| 387 | |
| 388 | p256_modmul(&SECP256r1_p, y, 0, y, &y2); // y^2 |
| 389 | |
| 390 | p256_modmul(&SECP256r1_p, x, 0, x, &x3); // x^2 |
| 391 | p256_modmul(&SECP256r1_p, x, 0, &x3, &x3); // x^3 |
| 392 | if (p256_sub(&x3, x, &x3)) p256_add(&x3, &SECP256r1_p, &x3); // x^3 - x |
| 393 | if (p256_sub(&x3, x, &x3)) p256_add(&x3, &SECP256r1_p, &x3); // x^3 - 2x |
| 394 | if (p256_sub(&x3, x, &x3)) p256_add(&x3, &SECP256r1_p, &x3); // x^3 - 3x |
| 395 | if (p256_add(&x3, &SECP256r1_b, &x3)) // x^3 - 3x + b |
| 396 | p256_sub(&x3, &SECP256r1_p, &x3); |
| 397 | if (p256_sub(&x3, &SECP256r1_p, &x3)) // make sure 0 <= x3 < p |
| 398 | p256_add(&x3, &SECP256r1_p, &x3); |
| 399 | |
| 400 | return p256_cmp(&y2, &x3) == 0; |
| 401 | } |
| 402 | |
nagendra modadugu | 793cf59 | 2019-10-09 14:07:05 -0700 | [diff] [blame] | 403 | void p256_to_bin(const p256_int* src, uint8_t dst[P256_NBYTES]) { |
| 404 | int i; |
| 405 | uint8_t* p = &dst[0]; |
| 406 | |
| 407 | for (i = P256_NDIGITS - 1; i >= 0; --i) { |
| 408 | p256_digit digit = P256_DIGIT(src, i); |
| 409 | p[0] = (uint8_t)(digit >> 24); |
| 410 | p[1] = (uint8_t)(digit >> 16); |
| 411 | p[2] = (uint8_t)(digit >> 8); |
| 412 | p[3] = (uint8_t)(digit); |
| 413 | p += 4; |
| 414 | } |
| 415 | } |
| 416 | |
| 417 | void p256_to_le_bin(const p256_int* src, uint8_t dst[P256_NBYTES]) { |
| 418 | int i; |
| 419 | uint8_t* p = &dst[0]; |
| 420 | |
| 421 | for (i = 0; i < P256_NDIGITS; ++i) { |
| 422 | p256_digit digit = P256_DIGIT(src, i); |
| 423 | p[0] = (uint8_t)(digit); |
| 424 | p[1] = (uint8_t)(digit >> 8); |
| 425 | p[2] = (uint8_t)(digit >> 16); |
| 426 | p[3] = (uint8_t)(digit >> 24); |
| 427 | p += 4; |
| 428 | } |
| 429 | } |
| 430 | |
nagendra modadugu | 4fae542 | 2016-05-10 16:11:54 -0700 | [diff] [blame] | 431 | void p256_from_bin(const uint8_t src[P256_NBYTES], p256_int* dst) { |
| 432 | int i; |
| 433 | const uint8_t* p = &src[0]; |
| 434 | |
| 435 | for (i = P256_NDIGITS - 1; i >= 0; --i) { |
| 436 | P256_DIGIT(dst, i) = |
| 437 | (p[0] << 24) | |
| 438 | (p[1] << 16) | |
| 439 | (p[2] << 8) | |
| 440 | p[3]; |
| 441 | p += 4; |
| 442 | } |
| 443 | } |
| 444 | |
nagendra modadugu | 793cf59 | 2019-10-09 14:07:05 -0700 | [diff] [blame] | 445 | void p256_from_le_bin(const uint8_t src[P256_NBYTES], p256_int* dst) { |
nagendra modadugu | 4fae542 | 2016-05-10 16:11:54 -0700 | [diff] [blame] | 446 | int i; |
nagendra modadugu | 793cf59 | 2019-10-09 14:07:05 -0700 | [diff] [blame] | 447 | const uint8_t* p = &src[0]; |
nagendra modadugu | 4fae542 | 2016-05-10 16:11:54 -0700 | [diff] [blame] | 448 | |
nagendra modadugu | 793cf59 | 2019-10-09 14:07:05 -0700 | [diff] [blame] | 449 | for (i = 0; i < P256_NDIGITS; ++i) { |
| 450 | P256_DIGIT(dst, i) = |
| 451 | (uint32_t)p[0] | |
| 452 | ((uint32_t)p[1] << 8) | |
| 453 | ((uint32_t)p[2] << 16) | |
| 454 | ((uint32_t)p[3] << 24); |
nagendra modadugu | 4fae542 | 2016-05-10 16:11:54 -0700 | [diff] [blame] | 455 | p += 4; |
| 456 | } |
| 457 | } |