| // Copyright 2017 The Clspv Authors. All rights reserved. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| #include <math.h> |
| #include <string> |
| #include <tuple> |
| |
| #include "llvm/ADT/StringSwitch.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/IRBuilder.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/IR/Operator.h" |
| #include "llvm/IR/ValueSymbolTable.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| #include "llvm/Transforms/Utils/Cloning.h" |
| |
| #include "spirv/unified1/spirv.hpp" |
| |
| #include "clspv/AddressSpace.h" |
| #include "clspv/Option.h" |
| |
| #include "Builtins.h" |
| #include "Constants.h" |
| #include "ReplaceOpenCLBuiltinPass.h" |
| #include "SPIRVOp.h" |
| #include "Types.h" |
| |
| using namespace clspv; |
| using namespace llvm; |
| |
| namespace { |
| |
| uint32_t clz(uint32_t v) { |
| uint32_t r; |
| uint32_t shift; |
| |
| r = (v > 0xFFFF) << 4; |
| v >>= r; |
| shift = (v > 0xFF) << 3; |
| v >>= shift; |
| r |= shift; |
| shift = (v > 0xF) << 2; |
| v >>= shift; |
| r |= shift; |
| shift = (v > 0x3) << 1; |
| v >>= shift; |
| r |= shift; |
| r |= (v >> 1); |
| |
| return r; |
| } |
| |
| Type *getIntOrIntVectorTyForCast(LLVMContext &C, Type *Ty) { |
| Type *IntTy = Type::getIntNTy(C, Ty->getScalarSizeInBits()); |
| if (auto vec_ty = dyn_cast<VectorType>(Ty)) { |
| IntTy = FixedVectorType::get(IntTy, |
| vec_ty->getElementCount().getKnownMinValue()); |
| } |
| return IntTy; |
| } |
| |
| Value *MemoryOrderSemantics(Value *order, bool is_global, |
| Instruction *InsertBefore, |
| spv::MemorySemanticsMask base_semantics, |
| bool include_storage = true) { |
| enum AtomicMemoryOrder : uint32_t { |
| kMemoryOrderRelaxed = 0, |
| kMemoryOrderAcquire = 2, |
| kMemoryOrderRelease = 3, |
| kMemoryOrderAcqRel = 4, |
| kMemoryOrderSeqCst = 5 |
| }; |
| |
| IRBuilder<> builder(InsertBefore); |
| |
| // Constants for OpenCL C 2.0 memory_order. |
| const auto relaxed = builder.getInt32(AtomicMemoryOrder::kMemoryOrderRelaxed); |
| const auto acquire = builder.getInt32(AtomicMemoryOrder::kMemoryOrderAcquire); |
| const auto release = builder.getInt32(AtomicMemoryOrder::kMemoryOrderRelease); |
| const auto acq_rel = builder.getInt32(AtomicMemoryOrder::kMemoryOrderAcqRel); |
| |
| // Constants for SPIR-V ordering memory semantics. |
| const auto RelaxedSemantics = builder.getInt32(spv::MemorySemanticsMaskNone); |
| const auto AcquireSemantics = |
| builder.getInt32(spv::MemorySemanticsAcquireMask); |
| const auto ReleaseSemantics = |
| builder.getInt32(spv::MemorySemanticsReleaseMask); |
| const auto AcqRelSemantics = |
| builder.getInt32(spv::MemorySemanticsAcquireReleaseMask); |
| |
| // Constants for SPIR-V storage class semantics. |
| const auto UniformSemantics = |
| builder.getInt32(spv::MemorySemanticsUniformMemoryMask); |
| const auto WorkgroupSemantics = |
| builder.getInt32(spv::MemorySemanticsWorkgroupMemoryMask); |
| |
| // Instead of sequentially consistent, use acquire, release or acquire |
| // release semantics. |
| Value *base_order = nullptr; |
| switch (base_semantics) { |
| case spv::MemorySemanticsAcquireMask: |
| base_order = AcquireSemantics; |
| break; |
| case spv::MemorySemanticsReleaseMask: |
| base_order = ReleaseSemantics; |
| break; |
| default: |
| base_order = AcqRelSemantics; |
| break; |
| } |
| |
| Value *storage = is_global ? UniformSemantics : WorkgroupSemantics; |
| if (order == nullptr) { |
| if (include_storage) |
| return builder.CreateOr({storage, base_order}); |
| else |
| return base_order; |
| } |
| |
| auto is_relaxed = builder.CreateICmpEQ(order, relaxed); |
| auto is_acquire = builder.CreateICmpEQ(order, acquire); |
| auto is_release = builder.CreateICmpEQ(order, release); |
| auto is_acq_rel = builder.CreateICmpEQ(order, acq_rel); |
| auto semantics = |
| builder.CreateSelect(is_relaxed, RelaxedSemantics, base_order); |
| semantics = builder.CreateSelect(is_acquire, AcquireSemantics, semantics); |
| semantics = builder.CreateSelect(is_release, ReleaseSemantics, semantics); |
| semantics = builder.CreateSelect(is_acq_rel, AcqRelSemantics, semantics); |
| if (include_storage) |
| return builder.CreateOr({storage, semantics}); |
| else |
| return semantics; |
| } |
| |
| Value *MemoryScope(Value *scope, bool is_global, Instruction *InsertBefore) { |
| enum AtomicMemoryScope : uint32_t { |
| kMemoryScopeWorkItem = 0, |
| kMemoryScopeWorkGroup = 1, |
| kMemoryScopeDevice = 2, |
| kMemoryScopeAllSVMDevices = 3, // not supported |
| kMemoryScopeSubGroup = 4 |
| }; |
| |
| IRBuilder<> builder(InsertBefore); |
| |
| // Constants for OpenCL C 2.0 memory_scope. |
| const auto work_item = |
| builder.getInt32(AtomicMemoryScope::kMemoryScopeWorkItem); |
| const auto work_group = |
| builder.getInt32(AtomicMemoryScope::kMemoryScopeWorkGroup); |
| const auto sub_group = |
| builder.getInt32(AtomicMemoryScope::kMemoryScopeSubGroup); |
| const auto device = builder.getInt32(AtomicMemoryScope::kMemoryScopeDevice); |
| |
| // Constants for SPIR-V memory scopes. |
| const auto InvocationScope = builder.getInt32(spv::ScopeInvocation); |
| const auto WorkgroupScope = builder.getInt32(spv::ScopeWorkgroup); |
| const auto DeviceScope = builder.getInt32(spv::ScopeDevice); |
| const auto SubgroupScope = builder.getInt32(spv::ScopeSubgroup); |
| |
| auto base_scope = is_global ? DeviceScope : WorkgroupScope; |
| if (scope == nullptr) |
| return base_scope; |
| |
| auto is_work_item = builder.CreateICmpEQ(scope, work_item); |
| auto is_work_group = builder.CreateICmpEQ(scope, work_group); |
| auto is_sub_group = builder.CreateICmpEQ(scope, sub_group); |
| auto is_device = builder.CreateICmpEQ(scope, device); |
| |
| scope = builder.CreateSelect(is_work_item, InvocationScope, base_scope); |
| scope = builder.CreateSelect(is_work_group, WorkgroupScope, scope); |
| scope = builder.CreateSelect(is_sub_group, SubgroupScope, scope); |
| scope = builder.CreateSelect(is_device, DeviceScope, scope); |
| |
| return scope; |
| } |
| |
| bool replaceCallsWithValue(Function &F, |
| std::function<Value *(CallInst *)> Replacer) { |
| |
| bool Changed = false; |
| |
| SmallVector<Instruction *, 4> ToRemoves; |
| |
| // Walk the users of the function. |
| for (auto &U : F.uses()) { |
| if (auto CI = dyn_cast<CallInst>(U.getUser())) { |
| |
| auto NewValue = Replacer(CI); |
| |
| if (NewValue != nullptr) { |
| CI->replaceAllUsesWith(NewValue); |
| |
| // Lastly, remember to remove the user. |
| ToRemoves.push_back(CI); |
| } |
| } |
| } |
| |
| Changed = !ToRemoves.empty(); |
| |
| // And cleanup the calls we don't use anymore. |
| for (auto V : ToRemoves) { |
| V->eraseFromParent(); |
| } |
| |
| return Changed; |
| } |
| |
| } // namespace |
| |
| PreservedAnalyses ReplaceOpenCLBuiltinPass::run(Module &M, |
| ModuleAnalysisManager &MPM) { |
| PreservedAnalyses PA; |
| std::list<Function *> func_list; |
| for (auto &F : M.getFunctionList()) { |
| // process only function declarations |
| if (F.isDeclaration() && runOnFunction(F)) { |
| func_list.push_front(&F); |
| } |
| } |
| if (func_list.size() != 0) { |
| // recursively convert functions, but first remove dead |
| for (auto *F : func_list) { |
| if (F->use_empty()) { |
| F->eraseFromParent(); |
| } |
| } |
| PA = run(M, MPM); |
| return PA; |
| } |
| return PA; |
| } |
| |
| bool ReplaceOpenCLBuiltinPass::runOnFunction(Function &F) { |
| auto &FI = Builtins::Lookup(&F); |
| switch (FI.getType()) { |
| case Builtins::kAbs: |
| if (!FI.getParameter(0).is_signed) { |
| return replaceAbs(F); |
| } |
| break; |
| case Builtins::kAbsDiff: |
| return replaceAbsDiff(F, FI.getParameter(0).is_signed); |
| |
| case Builtins::kAddSat: |
| return replaceAddSubSat(F, FI.getParameter(0).is_signed, true); |
| |
| case Builtins::kClz: |
| return replaceCountZeroes(F, true); |
| |
| case Builtins::kCtz: |
| return replaceCountZeroes(F, false); |
| |
| case Builtins::kHadd: |
| return replaceHadd(F, FI.getParameter(0).is_signed, Instruction::And); |
| case Builtins::kRhadd: |
| return replaceHadd(F, FI.getParameter(0).is_signed, Instruction::Or); |
| |
| case Builtins::kCopysign: |
| return replaceCopysign(F); |
| |
| case Builtins::kNativeRecip: |
| return replaceNativeRecip(F); |
| |
| case Builtins::kDot: |
| return replaceDot(F); |
| |
| case Builtins::kExp10: |
| case Builtins::kHalfExp10: |
| case Builtins::kNativeExp10: |
| return replaceExp10(F, FI.getName()); |
| |
| case Builtins::kExpm1: |
| return replaceExpm1(F); |
| |
| case Builtins::kLog10: |
| case Builtins::kHalfLog10: |
| case Builtins::kNativeLog10: |
| return replaceLog10(F, FI.getName()); |
| |
| case Builtins::kLog1p: |
| return replaceLog1p(F); |
| |
| case Builtins::kFdim: |
| return replaceFDim(F); |
| |
| case Builtins::kFmod: |
| return replaceFmod(F); |
| |
| case Builtins::kPown: |
| return replacePown(F); |
| |
| case Builtins::kRound: |
| return replaceRound(F); |
| |
| case Builtins::kCospi: |
| case Builtins::kSinpi: |
| case Builtins::kTanpi: |
| return replaceTrigPi(F, FI.getType()); |
| |
| case Builtins::kSincos: |
| return replaceSincos(F); |
| |
| case Builtins::kBarrier: |
| case Builtins::kWorkGroupBarrier: |
| return replaceBarrier(F); |
| |
| case Builtins::kSubGroupBarrier: |
| return replaceBarrier(F, true); |
| |
| case Builtins::kAtomicWorkItemFence: |
| return replaceMemFence(F, spv::MemorySemanticsMaskNone); |
| case Builtins::kMemFence: |
| return replaceMemFence(F, spv::MemorySemanticsAcquireReleaseMask); |
| case Builtins::kReadMemFence: |
| return replaceMemFence(F, spv::MemorySemanticsAcquireMask); |
| case Builtins::kWriteMemFence: |
| return replaceMemFence(F, spv::MemorySemanticsReleaseMask); |
| |
| // Relational |
| case Builtins::kIsequal: |
| return replaceRelational(F, CmpInst::FCMP_OEQ); |
| case Builtins::kIsgreater: |
| return replaceRelational(F, CmpInst::FCMP_OGT); |
| case Builtins::kIsgreaterequal: |
| return replaceRelational(F, CmpInst::FCMP_OGE); |
| case Builtins::kIsless: |
| return replaceRelational(F, CmpInst::FCMP_OLT); |
| case Builtins::kIslessequal: |
| return replaceRelational(F, CmpInst::FCMP_OLE); |
| case Builtins::kIsnotequal: |
| return replaceRelational(F, CmpInst::FCMP_UNE); |
| case Builtins::kIslessgreater: |
| return replaceRelational(F, CmpInst::FCMP_ONE); |
| |
| case Builtins::kIsordered: |
| return replaceOrdered(F, true); |
| |
| case Builtins::kIsunordered: |
| return replaceOrdered(F, false); |
| |
| case Builtins::kIsinf: { |
| bool is_vec = FI.getParameter(0).vector_size != 0; |
| return replaceIsInfAndIsNan(F, spv::OpIsInf, is_vec ? -1 : 1); |
| } |
| case Builtins::kIsnan: { |
| bool is_vec = FI.getParameter(0).vector_size != 0; |
| return replaceIsInfAndIsNan(F, spv::OpIsNan, is_vec ? -1 : 1); |
| } |
| |
| case Builtins::kIsfinite: |
| return replaceIsFinite(F); |
| |
| case Builtins::kAll: { |
| bool is_vec = FI.getParameter(0).vector_size != 0; |
| return replaceAllAndAny(F, !is_vec ? spv::OpNop : spv::OpAll); |
| } |
| case Builtins::kAny: { |
| bool is_vec = FI.getParameter(0).vector_size != 0; |
| return replaceAllAndAny(F, !is_vec ? spv::OpNop : spv::OpAny); |
| } |
| |
| case Builtins::kIsnormal: |
| return replaceIsNormal(F); |
| |
| case Builtins::kUpsample: |
| return replaceUpsample(F); |
| |
| case Builtins::kRotate: |
| return replaceRotate(F); |
| |
| case Builtins::kConvert: |
| return replaceConvert(F, FI.getParameter(0).is_signed, |
| FI.getReturnType().is_signed); |
| |
| // OpenCL 2.0 explicit atomics have different default scopes and semantics |
| // than legacy atomic functions. |
| case Builtins::kAtomicLoad: |
| case Builtins::kAtomicLoadExplicit: |
| return replaceAtomicLoad(F); |
| case Builtins::kAtomicStore: |
| case Builtins::kAtomicStoreExplicit: |
| return replaceExplicitAtomics(F, spv::OpAtomicStore, |
| spv::MemorySemanticsReleaseMask); |
| case Builtins::kAtomicExchange: |
| case Builtins::kAtomicExchangeExplicit: |
| return replaceExplicitAtomics(F, spv::OpAtomicExchange); |
| case Builtins::kAtomicFetchAdd: |
| case Builtins::kAtomicFetchAddExplicit: |
| return replaceExplicitAtomics(F, spv::OpAtomicIAdd); |
| case Builtins::kAtomicFetchSub: |
| case Builtins::kAtomicFetchSubExplicit: |
| return replaceExplicitAtomics(F, spv::OpAtomicISub); |
| case Builtins::kAtomicFetchOr: |
| case Builtins::kAtomicFetchOrExplicit: |
| return replaceExplicitAtomics(F, spv::OpAtomicOr); |
| case Builtins::kAtomicFetchXor: |
| case Builtins::kAtomicFetchXorExplicit: |
| return replaceExplicitAtomics(F, spv::OpAtomicXor); |
| case Builtins::kAtomicFetchAnd: |
| case Builtins::kAtomicFetchAndExplicit: |
| return replaceExplicitAtomics(F, spv::OpAtomicAnd); |
| case Builtins::kAtomicFetchMin: |
| case Builtins::kAtomicFetchMinExplicit: |
| return replaceExplicitAtomics(F, FI.getParameter(1).is_signed |
| ? spv::OpAtomicSMin |
| : spv::OpAtomicUMin); |
| case Builtins::kAtomicFetchMax: |
| case Builtins::kAtomicFetchMaxExplicit: |
| return replaceExplicitAtomics(F, FI.getParameter(1).is_signed |
| ? spv::OpAtomicSMax |
| : spv::OpAtomicUMax); |
| // Weak compare exchange is generated as strong compare exchange. |
| case Builtins::kAtomicCompareExchangeWeak: |
| case Builtins::kAtomicCompareExchangeWeakExplicit: |
| case Builtins::kAtomicCompareExchangeStrong: |
| case Builtins::kAtomicCompareExchangeStrongExplicit: |
| return replaceAtomicCompareExchange(F); |
| |
| // Legacy atomic functions. |
| case Builtins::kAtomicInc: |
| return replaceAtomics(F, spv::OpAtomicIIncrement); |
| case Builtins::kAtomicDec: |
| return replaceAtomics(F, spv::OpAtomicIDecrement); |
| case Builtins::kAtomicCmpxchg: |
| return replaceAtomics(F, spv::OpAtomicCompareExchange); |
| case Builtins::kAtomicAdd: |
| return replaceAtomics(F, llvm::AtomicRMWInst::Add); |
| case Builtins::kAtomicSub: |
| return replaceAtomics(F, llvm::AtomicRMWInst::Sub); |
| case Builtins::kAtomicXchg: |
| return replaceAtomics(F, llvm::AtomicRMWInst::Xchg); |
| case Builtins::kAtomicMin: |
| return replaceAtomics(F, FI.getParameter(0).is_signed |
| ? llvm::AtomicRMWInst::Min |
| : llvm::AtomicRMWInst::UMin); |
| case Builtins::kAtomicMax: |
| return replaceAtomics(F, FI.getParameter(0).is_signed |
| ? llvm::AtomicRMWInst::Max |
| : llvm::AtomicRMWInst::UMax); |
| case Builtins::kAtomicAnd: |
| return replaceAtomics(F, llvm::AtomicRMWInst::And); |
| case Builtins::kAtomicOr: |
| return replaceAtomics(F, llvm::AtomicRMWInst::Or); |
| case Builtins::kAtomicXor: |
| return replaceAtomics(F, llvm::AtomicRMWInst::Xor); |
| |
| case Builtins::kCross: |
| if (FI.getParameter(0).vector_size == 4) { |
| return replaceCross(F); |
| } |
| break; |
| |
| case Builtins::kFract: |
| if (FI.getParameterCount()) { |
| return replaceFract(F, FI.getParameter(0).vector_size); |
| } |
| break; |
| |
| case Builtins::kMadHi: |
| return replaceMulHi(F, FI.getParameter(0).is_signed, true); |
| case Builtins::kMulHi: |
| return replaceMulHi(F, FI.getParameter(0).is_signed, false); |
| |
| case Builtins::kMadSat: |
| return replaceMadSat(F, FI.getParameter(0).is_signed); |
| |
| case Builtins::kMad: |
| case Builtins::kMad24: |
| return replaceMul(F, FI.getParameter(0).type_id == llvm::Type::FloatTyID, |
| true); |
| case Builtins::kMul24: |
| return replaceMul(F, FI.getParameter(0).type_id == llvm::Type::FloatTyID, |
| false); |
| |
| case Builtins::kSelect: |
| return replaceSelect(F); |
| |
| case Builtins::kBitselect: |
| return replaceBitSelect(F); |
| |
| case Builtins::kVload: |
| return replaceVload(F); |
| |
| case Builtins::kVloadaHalf: |
| return replaceVloadHalf(F, FI.getName(), FI.getParameter(0).vector_size, |
| true); |
| case Builtins::kVloadHalf: |
| return replaceVloadHalf(F, FI.getName(), FI.getParameter(0).vector_size, |
| false); |
| |
| case Builtins::kVstore: |
| return replaceVstore(F); |
| |
| case Builtins::kVstoreaHalf: |
| return replaceVstoreHalf(F, FI.getParameter(0).vector_size, true); |
| case Builtins::kVstoreHalf: |
| return replaceVstoreHalf(F, FI.getParameter(0).vector_size, false); |
| |
| case Builtins::kSmoothstep: { |
| int vec_size = FI.getLastParameter().vector_size; |
| if (FI.getParameter(0).vector_size == 0 && vec_size != 0) { |
| return replaceStep(F, true); |
| } |
| break; |
| } |
| case Builtins::kStep: { |
| int vec_size = FI.getLastParameter().vector_size; |
| if (FI.getParameter(0).vector_size == 0 && vec_size != 0) { |
| return replaceStep(F, false); |
| } |
| break; |
| } |
| |
| case Builtins::kSignbit: |
| return replaceSignbit(F, FI.getParameter(0).vector_size != 0); |
| |
| case Builtins::kSubSat: |
| return replaceAddSubSat(F, FI.getParameter(0).is_signed, false); |
| |
| case Builtins::kReadImageh: |
| return replaceHalfReadImage(F); |
| case Builtins::kReadImagef: |
| case Builtins::kReadImagei: |
| case Builtins::kReadImageui: { |
| if (FI.getParameter(1).isSampler() && |
| FI.getParameter(2).type_id == llvm::Type::IntegerTyID) { |
| return replaceSampledReadImageWithIntCoords(F); |
| } |
| break; |
| } |
| |
| case Builtins::kWriteImageh: |
| return replaceHalfWriteImage(F); |
| |
| case Builtins::kPrefetch: |
| return replacePrefetch(F); |
| |
| // Asynchronous copies |
| case Builtins::kAsyncWorkGroupCopy: |
| return replaceAsyncWorkGroupCopy( |
| F, FI.getParameter(0).DataType(F.getParent()->getContext())); |
| case Builtins::kAsyncWorkGroupStridedCopy: |
| return replaceAsyncWorkGroupStridedCopy( |
| F, FI.getParameter(0).DataType(F.getParent()->getContext())); |
| case Builtins::kWaitGroupEvents: |
| return replaceWaitGroupEvents(F); |
| |
| default: |
| break; |
| } |
| |
| return false; |
| } |
| |
| Type *ReplaceOpenCLBuiltinPass::GetPairStruct(Type *type) { |
| auto iter = PairStructMap.find(type); |
| if (iter != PairStructMap.end()) |
| return iter->second; |
| |
| auto new_struct = StructType::get(type->getContext(), {type, type}); |
| PairStructMap[type] = new_struct; |
| return new_struct; |
| } |
| |
| Value *ReplaceOpenCLBuiltinPass::InsertOpMulExtended(Instruction *InsertPoint, |
| Value *a, Value *b, |
| bool IsSigned, |
| bool Int64) { |
| |
| Type *Ty = a->getType(); |
| Type *RetTy = GetPairStruct(a->getType()); |
| assert(Ty == b->getType()); |
| |
| if (!Option::HackMulExtended()) { |
| spv::Op opcode = IsSigned ? spv::OpSMulExtended : spv::OpUMulExtended; |
| |
| return clspv::InsertSPIRVOp(InsertPoint, opcode, {Attribute::ReadNone}, |
| RetTy, {a, b}); |
| } |
| |
| unsigned int ScalarSizeInBits = Ty->getScalarSizeInBits(); |
| bool IsVector = Ty->isVectorTy(); |
| |
| IRBuilder<> Builder(InsertPoint); |
| |
| if (ScalarSizeInBits < 32 || (ScalarSizeInBits == 32 && Int64)) { |
| /* |
| * {mul_lo, mul_hi} = OpMulExtended(a, b, IsSigned) { |
| * S = SizeInBits(a) |
| * a_ext = ext2S(a, IsSigned) |
| * b_ext = ext2S(b, IsSigned) |
| * mul = a_ext * b_ext |
| * mul_lo = truncS(mul) |
| * mul_hi = truncS(mul >> S) |
| * return {mul_lo, mul_hi} |
| * } |
| */ |
| Type *TyTimes2 = |
| Ty->getIntNTy(InsertPoint->getContext(), ScalarSizeInBits * 2); |
| if (IsVector) { |
| TyTimes2 = VectorType::get(TyTimes2, dyn_cast<VectorType>(Ty)); |
| } |
| Value *aExtended, *bExtended; |
| if (IsSigned) { |
| aExtended = Builder.CreateSExt(a, TyTimes2); |
| bExtended = Builder.CreateSExt(b, TyTimes2); |
| } else { |
| aExtended = Builder.CreateZExt(a, TyTimes2); |
| bExtended = Builder.CreateZExt(b, TyTimes2); |
| } |
| auto mul = Builder.CreateMul(aExtended, bExtended); |
| auto mul_lo = Builder.CreateTrunc(mul, Ty); |
| auto mul_hi = |
| Builder.CreateTrunc(Builder.CreateLShr(mul, ScalarSizeInBits), Ty); |
| |
| return Builder.CreateInsertValue( |
| Builder.CreateInsertValue(UndefValue::get(RetTy), mul_lo, {0}), mul_hi, |
| {1}); |
| } else if (ScalarSizeInBits == 64 || (ScalarSizeInBits == 32 && !Int64)) { |
| /* |
| * {mul_lo, mul_hi} = OpMulExtended(a, b, IsSigned) { |
| * S = SizeInBits(a) |
| * hS = S / 2 |
| * if (IsSigned) { |
| * res_neg = (a > 0) ^ (b > 0) = (a ^ b) < 0 |
| * a = abs(a) |
| * b = abs(b) |
| * } |
| * a0 = trunchS(a) |
| * a1 = trunchS(a >> hS) |
| * b0 = trunchS(b) |
| * b1 = trunchS(b >> hS) |
| * {a0b0_0, a0b0_1} = zextS(OpUMulExtended(a0, b0)) |
| * {a1b0_0, a1b0_1} = zextS(OpUMulExtended(a1, b0)) |
| * {a0b1_0, a0b1_1} = zextS(OpUMulExtended(a0, b1)) |
| * {a1b1_0, a1b1_1} = zextS(OpUMulExtended(a1, b1)) |
| * |
| * mul_lo_hi = a0b0_1 + a1b0_0 + a0b1_0 |
| * carry_mul_lo_hi = mul_lo_hi >> hS |
| * mul_hi_lo = a1b1_0 + a1b0_1 + a0b1_1 + carry_mul_lo_hi |
| * mul_lo = a0b0_0 + mul_lo_hi << hS |
| * mul_hi = mul_hi_lo + a1b1_1 << hS |
| * |
| * if (IsSigned) { |
| * mul_lo_xor = mul_lo ^ -1 |
| * {mul_lo_inv, carry} = OpIAddCarry(mul_lo_xor, 1) |
| * mul_hi_inv = mul_hi ^ -1 + carry |
| * mul_lo = res_neg ? mul_lo_inv : mul_lo |
| * mul_hi = res_neg ? mul_hi_inv : mul_hi |
| * } |
| * return {mul_lo, mul_hi} |
| * } |
| */ |
| Type *TyDiv2 = |
| Ty->getIntNTy(InsertPoint->getContext(), ScalarSizeInBits / 2); |
| if (IsVector) { |
| TyDiv2 = VectorType::get(TyDiv2, dyn_cast<VectorType>(Ty)); |
| } |
| |
| Value *res_neg; |
| if (IsSigned) { |
| // We want to work with unsigned value. |
| // Convert everything to unsigned and remember the signed of the end |
| // result. |
| auto a_b_xor = Builder.CreateXor(a, b); |
| res_neg = Builder.CreateICmpSLT(a_b_xor, ConstantInt::get(Ty, 0, true)); |
| |
| auto F = InsertPoint->getFunction(); |
| auto abs = Intrinsic::getDeclaration(F->getParent(), Intrinsic::abs, Ty); |
| a = Builder.CreateCall(abs, {a, Builder.getInt1(false)}); |
| b = Builder.CreateCall(abs, {b, Builder.getInt1(false)}); |
| } |
| |
| auto a0 = Builder.CreateTrunc(a, TyDiv2); |
| auto a1 = Builder.CreateTrunc(Builder.CreateLShr(a, ScalarSizeInBits / 2), |
| TyDiv2); |
| auto b0 = Builder.CreateTrunc(b, TyDiv2); |
| auto b1 = Builder.CreateTrunc(Builder.CreateLShr(b, ScalarSizeInBits / 2), |
| TyDiv2); |
| |
| auto a0b0 = InsertOpMulExtended(InsertPoint, a0, b0, false, true); |
| auto a1b0 = InsertOpMulExtended(InsertPoint, a1, b0, false, true); |
| auto a0b1 = InsertOpMulExtended(InsertPoint, a0, b1, false, true); |
| auto a1b1 = InsertOpMulExtended(InsertPoint, a1, b1, false, true); |
| auto a0b0_0 = Builder.CreateZExt(Builder.CreateExtractValue(a0b0, {0}), Ty); |
| auto a0b0_1 = Builder.CreateZExt(Builder.CreateExtractValue(a0b0, {1}), Ty); |
| auto a1b0_0 = Builder.CreateZExt(Builder.CreateExtractValue(a1b0, {0}), Ty); |
| auto a1b0_1 = Builder.CreateZExt(Builder.CreateExtractValue(a1b0, {1}), Ty); |
| auto a0b1_0 = Builder.CreateZExt(Builder.CreateExtractValue(a0b1, {0}), Ty); |
| auto a0b1_1 = Builder.CreateZExt(Builder.CreateExtractValue(a0b1, {1}), Ty); |
| auto a1b1_0 = Builder.CreateZExt(Builder.CreateExtractValue(a1b1, {0}), Ty); |
| auto a1b1_1 = Builder.CreateZExt(Builder.CreateExtractValue(a1b1, {1}), Ty); |
| |
| auto mul_lo_hi = |
| Builder.CreateAdd(Builder.CreateAdd(a0b0_1, a1b0_0), a0b1_0); |
| auto carry_mul_lo_hi = Builder.CreateLShr(mul_lo_hi, ScalarSizeInBits / 2); |
| auto mul_hi_lo = Builder.CreateAdd( |
| Builder.CreateAdd(Builder.CreateAdd(a1b1_0, a1b0_1), a0b1_1), |
| carry_mul_lo_hi); |
| auto mul_lo = Builder.CreateAdd( |
| a0b0_0, Builder.CreateShl(mul_lo_hi, ScalarSizeInBits / 2)); |
| auto mul_hi = Builder.CreateAdd( |
| mul_hi_lo, Builder.CreateShl(a1b1_1, ScalarSizeInBits / 2)); |
| |
| if (IsSigned) { |
| // Apply the sign that we got from the previous if statement setting |
| // res_neg. |
| auto mul_lo_xor = |
| Builder.CreateXor(mul_lo, Constant::getAllOnesValue(Ty)); |
| auto mul_lo_xor_add = |
| InsertSPIRVOp(InsertPoint, spv::OpIAddCarry, {Attribute::ReadNone}, |
| RetTy, {mul_lo_xor, ConstantInt::get(Ty, 1)}); |
| auto mul_lo_inv = Builder.CreateExtractValue(mul_lo_xor_add, {0}); |
| auto carry = Builder.CreateExtractValue(mul_lo_xor_add, {1}); |
| auto mul_hi_inv = Builder.CreateAdd( |
| carry, Builder.CreateXor(mul_hi, Constant::getAllOnesValue(Ty))); |
| mul_lo = Builder.CreateSelect(res_neg, mul_lo_inv, mul_lo); |
| mul_hi = Builder.CreateSelect(res_neg, mul_hi_inv, mul_hi); |
| } |
| |
| return Builder.CreateInsertValue( |
| Builder.CreateInsertValue(UndefValue::get(RetTy), mul_lo, {0}), mul_hi, |
| {1}); |
| } else { |
| llvm_unreachable("Unexpected type for InsertOpMulExtended"); |
| } |
| } |
| |
| bool ReplaceOpenCLBuiltinPass::replaceWaitGroupEvents(Function &F) { |
| /* Simple implementation for wait_group_events to avoid dealing with the event |
| * list: |
| * |
| * void wait_group_events(int num_events, event_t *event_list) { |
| * barrier(CLK_LOCAL_MEM_FENCE); |
| * } |
| * |
| */ |
| |
| enum { |
| CLK_LOCAL_MEM_FENCE = 0x01, |
| CLK_GLOBAL_MEM_FENCE = 0x02, |
| CLK_IMAGE_MEM_FENCE = 0x04 |
| }; |
| |
| return replaceCallsWithValue(F, [](CallInst *CI) { |
| IRBuilder<> Builder(CI); |
| |
| const auto ConstantScopeWorkgroup = Builder.getInt32(spv::ScopeWorkgroup); |
| const auto MemorySemanticsWorkgroup = BinaryOperator::Create( |
| Instruction::Shl, Builder.getInt32(CLK_LOCAL_MEM_FENCE), |
| Builder.getInt32(clz(spv::MemorySemanticsWorkgroupMemoryMask) - |
| clz(CLK_LOCAL_MEM_FENCE)), |
| "", CI); |
| auto MemorySemantics = BinaryOperator::Create( |
| Instruction::Or, MemorySemanticsWorkgroup, |
| ConstantInt::get(Builder.getInt32Ty(), |
| spv::MemorySemanticsAcquireReleaseMask), |
| "", CI); |
| |
| return clspv::InsertSPIRVOp( |
| CI, spv::OpControlBarrier, |
| {Attribute::NoDuplicate, Attribute::Convergent}, Builder.getVoidTy(), |
| {ConstantScopeWorkgroup, ConstantScopeWorkgroup, MemorySemantics}); |
| }); |
| } |
| |
| GlobalVariable *ReplaceOpenCLBuiltinPass::getOrCreateGlobalVariable( |
| Module &M, std::string VariableName, |
| AddressSpace::Type VariableAddressSpace) { |
| GlobalVariable *GV = M.getGlobalVariable(VariableName); |
| if (GV == nullptr) { |
| IntegerType *IT = IntegerType::get(M.getContext(), 32); |
| VectorType *VT = FixedVectorType::get(IT, 3); |
| |
| GV = new GlobalVariable(M, VT, false, GlobalValue::ExternalLinkage, nullptr, |
| VariableName, nullptr, |
| GlobalValue::ThreadLocalMode::NotThreadLocal, |
| VariableAddressSpace); |
| GV->setInitializer(Constant::getNullValue(VT)); |
| } |
| return GV; |
| } |
| |
| Value *ReplaceOpenCLBuiltinPass::replaceAsyncWorkGroupCopies( |
| Module &M, CallInst *CI, Value *Dst, Value *Src, Type *GenType, |
| Value *NumGentypes, Value *Stride, Value *Event) { |
| /* |
| * event_t *async_work_group_strided_copy(T *dst, T *src, size_t num_gentypes, |
| * size_t stride, event_t event) { |
| * size_t start_id = ((get_local_id(2) * get_local_size(1)) |
| * + get_local_id(1)) * get_local_size(0) |
| * + get_local_id(0); |
| * size_t incr = get_local_size(0) * get_local_size(1) * get_local_size(2); |
| * for (size_t it = start_id; it < num_gentypes; it += incr) { |
| * dst[it] = src[it * stride]; |
| * } |
| * return event; |
| * } |
| */ |
| |
| /* BB: |
| * before |
| * async_work_group_strided_copy |
| * after |
| * |
| * ================================ |
| * |
| * BB: |
| * before |
| * start_id = f(get_local_ids, get_local_sizes) |
| * incr = g(get_local_sizes) |
| * br CmpBB |
| * |
| * CmpBB: |
| * it = PHI(start_id, it) |
| * cmp = it < NumGentypes |
| * condBr cmp, LoopBB, ExitBB |
| * |
| * LoopBB: |
| * dstI = dst[it] |
| * srcI = src[it * stride] |
| * OpCopyMemory dstI, srcI |
| * it += incr |
| * br CmpBB |
| * |
| * ExitBB: |
| * after |
| */ |
| |
| IRBuilder<> Builder(CI); |
| |
| auto Cst0 = Builder.getInt32(0); |
| auto Cst1 = Builder.getInt32(1); |
| auto Cst2 = Builder.getInt32(2); |
| |
| auto *IT = IntegerType::get(M.getContext(), 32); |
| auto *VT = FixedVectorType::get(IT, 3); |
| |
| // get_local_id({0, 1, 2}); |
| GlobalVariable *GVId = |
| getOrCreateGlobalVariable(M, clspv::LocalInvocationIdVariableName(), |
| clspv::LocalInvocationIdAddressSpace()); |
| Value *GEP0 = Builder.CreateGEP(VT, GVId, {Cst0, Cst0}); |
| Value *LocalId0 = Builder.CreateLoad(IT, GEP0); |
| Value *GEP1 = Builder.CreateGEP(VT, GVId, {Cst0, Cst1}); |
| Value *LocalId1 = Builder.CreateLoad(IT, GEP1); |
| Value *GEP2 = Builder.CreateGEP(VT, GVId, {Cst0, Cst2}); |
| Value *LocalId2 = Builder.CreateLoad(IT, GEP2); |
| |
| // get_local_size({0, 1, 2}); |
| GlobalVariable *GVSize = |
| getOrCreateGlobalVariable(M, clspv::WorkgroupSizeVariableName(), |
| clspv::WorkgroupSizeAddressSpace()); |
| auto LocalSize = Builder.CreateLoad(VT, GVSize); |
| auto LocalSize0 = Builder.CreateExtractElement(LocalSize, Cst0); |
| auto LocalSize1 = Builder.CreateExtractElement(LocalSize, Cst1); |
| auto LocalSize2 = Builder.CreateExtractElement(LocalSize, Cst2); |
| |
| // size_t start_id = ((get_local_id(2) * get_local_size(1)) |
| // + get_local_id(1)) * get_local_size(0) |
| // + get_local_id(0); |
| auto tmp0 = Builder.CreateMul(LocalId2, LocalSize1); |
| auto tmp1 = Builder.CreateAdd(tmp0, LocalId1); |
| auto tmp2 = Builder.CreateMul(tmp1, LocalSize0); |
| auto StartId = Builder.CreateAdd(tmp2, LocalId0); |
| |
| // size_t incr = get_local_size(0) * get_local_size(1) * get_local_size(2); |
| auto tmp3 = Builder.CreateMul(LocalSize0, LocalSize1); |
| auto Incr = Builder.CreateMul(tmp3, LocalSize2); |
| |
| // Create BasicBlocks |
| auto BB = CI->getParent(); |
| auto CmpBB = BasicBlock::Create(BB->getContext(), "", BB->getParent()); |
| auto LoopBB = BasicBlock::Create(BB->getContext(), "", BB->getParent()); |
| auto ExitBB = SplitBlock(BB, CI); |
| |
| // BB |
| auto BrCmpBB = BranchInst::Create(CmpBB); |
| ReplaceInstWithInst(BB->getTerminator(), BrCmpBB); |
| |
| // CmpBB |
| Builder.SetInsertPoint(CmpBB); |
| auto PHIIterator = Builder.CreatePHI(Builder.getInt32Ty(), 2); |
| auto Cmp = Builder.CreateCmp(CmpInst::ICMP_ULT, PHIIterator, NumGentypes); |
| Builder.CreateCondBr(Cmp, LoopBB, ExitBB); |
| |
| // LoopBB |
| Builder.SetInsertPoint(LoopBB); |
| |
| // default values for non-strided copies |
| Value *SrcIterator = PHIIterator; |
| Value *DstIterator = PHIIterator; |
| if (Stride != nullptr && (Dst->getType()->getPointerAddressSpace() == |
| clspv::AddressSpace::Global)) { |
| // async_work_group_strided_copy local to global case |
| DstIterator = Builder.CreateMul(PHIIterator, Stride); |
| } else if (Stride != nullptr && (Dst->getType()->getPointerAddressSpace() == |
| clspv::AddressSpace::Local)) { |
| // async_work_group_strided_copy global to local case |
| SrcIterator = Builder.CreateMul(PHIIterator, Stride); |
| } |
| auto DstI = Builder.CreateGEP(GenType, Dst, DstIterator); |
| auto SrcI = Builder.CreateGEP(GenType, Src, SrcIterator); |
| auto NewIterator = Builder.CreateAdd(PHIIterator, Incr); |
| auto Br = Builder.CreateBr(CmpBB); |
| clspv::InsertSPIRVOp(Br, spv::OpCopyMemory, {}, Builder.getVoidTy(), |
| {DstI, SrcI}); |
| |
| // Set PHIIterator for CmpBB now that we have NewIterator |
| PHIIterator->addIncoming(StartId, BB); |
| PHIIterator->addIncoming(NewIterator, LoopBB); |
| |
| return Event; |
| } |
| |
| bool ReplaceOpenCLBuiltinPass::replaceAsyncWorkGroupCopy(Function &F, Type *ty) { |
| return replaceCallsWithValue(F, [&F, ty, this](CallInst *CI) { |
| Module &M = *F.getParent(); |
| |
| auto Dst = CI->getOperand(0); |
| auto Src = CI->getOperand(1); |
| auto NumGentypes = CI->getOperand(2); |
| auto Event = CI->getOperand(3); |
| |
| return replaceAsyncWorkGroupCopies(M, CI, Dst, Src, ty, NumGentypes, |
| nullptr, Event); |
| }); |
| } |
| |
| bool ReplaceOpenCLBuiltinPass::replaceAsyncWorkGroupStridedCopy(Function &F, Type *ty) { |
| return replaceCallsWithValue(F, [&F, ty, this](CallInst *CI) { |
| Module &M = *F.getParent(); |
| |
| auto Dst = CI->getOperand(0); |
| auto Src = CI->getOperand(1); |
| auto NumGentypes = CI->getOperand(2); |
| auto Stride = CI->getOperand(3); |
| auto Event = CI->getOperand(4); |
| |
| return replaceAsyncWorkGroupCopies(M, CI, Dst, Src, ty, NumGentypes, Stride, |
| Event); |
| }); |
| } |
| |
| bool ReplaceOpenCLBuiltinPass::replaceAbs(Function &F) { |
| return replaceCallsWithValue(F, |
| [](CallInst *CI) { return CI->getOperand(0); }); |
| } |
| |
| bool ReplaceOpenCLBuiltinPass::replaceAbsDiff(Function &F, bool is_signed) { |
| return replaceCallsWithValue(F, [&](CallInst *CI) { |
| auto XValue = CI->getOperand(0); |
| auto YValue = CI->getOperand(1); |
| |
| IRBuilder<> Builder(CI); |
| auto XmY = Builder.CreateSub(XValue, YValue); |
| auto YmX = Builder.CreateSub(YValue, XValue); |
| |
| Value *Cmp = nullptr; |
| if (is_signed) { |
| Cmp = Builder.CreateICmpSGT(YValue, XValue); |
| } else { |
| Cmp = Builder.CreateICmpUGT(YValue, XValue); |
| } |
| |
| return Builder.CreateSelect(Cmp, YmX, XmY); |
| }); |
| } |
| |
| bool ReplaceOpenCLBuiltinPass::replaceCopysign(Function &F) { |
| return replaceCallsWithValue(F, [&F](CallInst *Call) { |
| const auto x = Call->getArgOperand(0); |
| const auto y = Call->getArgOperand(1); |
| auto intrinsic = Intrinsic::getDeclaration( |
| F.getParent(), Intrinsic::copysign, Call->getType()); |
| return CallInst::Create(intrinsic->getFunctionType(), intrinsic, {x, y}, "", |
| Call); |
| }); |
| } |
| |
| bool ReplaceOpenCLBuiltinPass::replaceNativeRecip(Function &F) { |
| Module &M = *F.getParent(); |
| return replaceCallsWithValue(F, [&](CallInst *CI) { |
| // Recip has one arg. |
| auto Arg = CI->getOperand(0); |
| auto Cst1 = ConstantFP::get(Arg->getType(), 1.0); |
| |
| Type *Ty = CI->getType(); |
| SmallVector<Type *, 2> NativeDivideArgsTypes = {Ty, Ty}; |
| const auto NativeDivideType = |
| FunctionType::get(Ty, NativeDivideArgsTypes, false); |
| auto NativeDivideName = |
| Builtins::GetMangledFunctionName("native_divide", NativeDivideType); |
| auto NativeDivide = |
| M.getOrInsertFunction(NativeDivideName, NativeDivideType); |
| return CallInst::Create(NativeDivide, {Cst1, Arg}, "", CI); |
| }); |
| } |
| |
| bool ReplaceOpenCLBuiltinPass::replaceDot(Function &F) { |
| return replaceCallsWithValue(F, [](CallInst *CI) { |
| auto Op0 = CI->getOperand(0); |
| auto Op1 = CI->getOperand(1); |
| |
| Value *V = nullptr; |
| if (Op0->getType()->isVectorTy()) { |
| V = clspv::InsertSPIRVOp(CI, spv::OpDot, {Attribute::ReadNone}, |
| CI->getType(), {Op0, Op1}); |
| } else { |
| V = BinaryOperator::Create(Instruction::FMul, Op0, Op1, "", CI); |
| } |
| |
| return V; |
| }); |
| } |
| |
| bool ReplaceOpenCLBuiltinPass::replaceExp10(Function &F, |
| const std::string &basename) { |
| // convert to natural |
| auto slen = basename.length() - 2; |
| std::string NewFName = basename.substr(0, slen); |
| NewFName = |
| Builtins::GetMangledFunctionName(NewFName.c_str(), F.getFunctionType()); |
| |
| Module &M = *F.getParent(); |
| return replaceCallsWithValue(F, [&](CallInst *CI) { |
| auto NewF = M.getOrInsertFunction(NewFName, F.getFunctionType()); |
| |
| auto Arg = CI->getOperand(0); |
| |
| // Constant of the natural log of 10 (ln(10)). |
| const double Ln10 = |
| 2.302585092994045684017991454684364207601101488628772976033; |
| |
| auto Mul = BinaryOperator::Create( |
| Instruction::FMul, ConstantFP::get(Arg->getType(), Ln10), Arg, "", CI); |
| |
| return CallInst::Create(NewF, Mul, "", CI); |
| }); |
| } |
| |
| bool ReplaceOpenCLBuiltinPass::replaceFmod(Function &F) { |
| // OpenCL fmod(x,y) is x - y * trunc(x/y) |
| // The sign for a non-zero result is taken from x. |
| // (Try an example.) |
| // So translate to FRem |
| return replaceCallsWithValue(F, [](CallInst *CI) { |
| auto Op0 = CI->getOperand(0); |
| auto Op1 = CI->getOperand(1); |
| return BinaryOperator::Create(Instruction::FRem, Op0, Op1, "", CI); |
| }); |
| } |
| |
| bool ReplaceOpenCLBuiltinPass::replaceLog10(Function &F, |
| const std::string &basename) { |
| // convert to natural |
| auto slen = basename.length() - 2; |
| std::string NewFName = basename.substr(0, slen); |
| NewFName = |
| Builtins::GetMangledFunctionName(NewFName.c_str(), F.getFunctionType()); |
| |
| Module &M = *F.getParent(); |
| return replaceCallsWithValue(F, [&](CallInst *CI) { |
| auto NewF = M.getOrInsertFunction(NewFName, F.getFunctionType()); |
| |
| auto Arg = CI->getOperand(0); |
| |
| // Constant of the reciprocal of the natural log of 10 (ln(10)). |
| const double Ln10 = |
| 0.434294481903251827651128918916605082294397005803666566114; |
| |
| auto NewCI = CallInst::Create(NewF, Arg, "", CI); |
| |
| return BinaryOperator::Create(Instruction::FMul, |
| ConstantFP::get(Arg->getType(), Ln10), NewCI, |
| "", CI); |
| }); |
| } |
| |
| bool ReplaceOpenCLBuiltinPass::replaceLog1p(Function &F) { |
| // convert to natural |
| return replaceCallsWithValue(F, [&F](CallInst *CI) { |
| auto Arg = CI->getOperand(0); |
| |
| auto ArgP1 = BinaryOperator::Create( |
| Instruction::FAdd, ConstantFP::get(Arg->getType(), 1.0), Arg, "", CI); |
| |
| auto log = |
| Intrinsic::getDeclaration(F.getParent(), Intrinsic::log, CI->getType()); |
| return CallInst::Create(log, ArgP1, "", CI); |
| }); |
| } |
| |
| bool ReplaceOpenCLBuiltinPass::replaceBarrier(Function &F, bool subgroup) { |
| |
| enum { |
| CLK_LOCAL_MEM_FENCE = 0x01, |
| CLK_GLOBAL_MEM_FENCE = 0x02, |
| CLK_IMAGE_MEM_FENCE = 0x04 |
| }; |
| |
| return replaceCallsWithValue(F, [subgroup](CallInst *CI) { |
| auto Arg = CI->getOperand(0); |
| |
| // We need to map the OpenCL constants to the SPIR-V equivalents. |
| const auto LocalMemFence = |
| ConstantInt::get(Arg->getType(), CLK_LOCAL_MEM_FENCE); |
| const auto GlobalMemFence = |
| ConstantInt::get(Arg->getType(), CLK_GLOBAL_MEM_FENCE); |
| const auto ImageMemFence = |
| ConstantInt::get(Arg->getType(), CLK_IMAGE_MEM_FENCE); |
| const auto ConstantAcquireRelease = ConstantInt::get( |
| Arg->getType(), spv::MemorySemanticsAcquireReleaseMask); |
| const auto ConstantScopeDevice = |
| ConstantInt::get(Arg->getType(), spv::ScopeDevice); |
| const auto ConstantScopeWorkgroup = |
| ConstantInt::get(Arg->getType(), spv::ScopeWorkgroup); |
| const auto ConstantScopeSubgroup = |
| ConstantInt::get(Arg->getType(), spv::ScopeSubgroup); |
| |
| // Map CLK_LOCAL_MEM_FENCE to MemorySemanticsWorkgroupMemoryMask. |
| const auto LocalMemFenceMask = |
| BinaryOperator::Create(Instruction::And, LocalMemFence, Arg, "", CI); |
| const auto WorkgroupShiftAmount = |
| clz(spv::MemorySemanticsWorkgroupMemoryMask) - clz(CLK_LOCAL_MEM_FENCE); |
| const auto MemorySemanticsWorkgroup = BinaryOperator::Create( |
| Instruction::Shl, LocalMemFenceMask, |
| ConstantInt::get(Arg->getType(), WorkgroupShiftAmount), "", CI); |
| |
| // Map CLK_GLOBAL_MEM_FENCE to MemorySemanticsUniformMemoryMask. |
| const auto GlobalMemFenceMask = |
| BinaryOperator::Create(Instruction::And, GlobalMemFence, Arg, "", CI); |
| const auto UniformShiftAmount = |
| clz(spv::MemorySemanticsUniformMemoryMask) - clz(CLK_GLOBAL_MEM_FENCE); |
| const auto MemorySemanticsUniform = BinaryOperator::Create( |
| Instruction::Shl, GlobalMemFenceMask, |
| ConstantInt::get(Arg->getType(), UniformShiftAmount), "", CI); |
| |
| // OpenCL 2.0 |
| // Map CLK_IMAGE_MEM_FENCE to MemorySemanticsImageMemoryMask. |
| const auto ImageMemFenceMask = |
| BinaryOperator::Create(Instruction::And, ImageMemFence, Arg, "", CI); |
| const auto ImageShiftAmount = |
| clz(spv::MemorySemanticsImageMemoryMask) - clz(CLK_IMAGE_MEM_FENCE); |
| const auto MemorySemanticsImage = BinaryOperator::Create( |
| Instruction::Shl, ImageMemFenceMask, |
| ConstantInt::get(Arg->getType(), ImageShiftAmount), "", CI); |
| |
| // And combine the above together, also adding in |
| // MemorySemanticsSequentiallyConsistentMask. |
| auto MemorySemantics1 = |
| BinaryOperator::Create(Instruction::Or, MemorySemanticsWorkgroup, |
| ConstantAcquireRelease, "", CI); |
| auto MemorySemantics2 = BinaryOperator::Create( |
| Instruction::Or, MemorySemanticsUniform, MemorySemanticsImage, "", CI); |
| auto MemorySemantics = BinaryOperator::Create( |
| Instruction::Or, MemorySemantics1, MemorySemantics2, "", CI); |
| |
| // If the memory scope is not specified explicitly, it is either Subgroup |
| // or Workgroup depending on the type of barrier. |
| Value *MemoryScope = |
| subgroup ? ConstantScopeSubgroup : ConstantScopeWorkgroup; |
| if (CI->data_operands_size() > 1) { |
| enum { |
| CL_MEMORY_SCOPE_WORKGROUP = 0x1, |
| CL_MEMORY_SCOPE_DEVICE = 0x2, |
| CL_MEMORY_SCOPE_SUBGROUP = 0x4 |
| }; |
| // The call was given an explicit memory scope. |
| const auto MemoryScopeSubgroup = |
| ConstantInt::get(Arg->getType(), CL_MEMORY_SCOPE_SUBGROUP); |
| const auto MemoryScopeDevice = |
| ConstantInt::get(Arg->getType(), CL_MEMORY_SCOPE_DEVICE); |
| |
| auto Cmp = |
| CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, |
| MemoryScopeSubgroup, CI->getOperand(1), "", CI); |
| MemoryScope = SelectInst::Create(Cmp, ConstantScopeSubgroup, |
| ConstantScopeWorkgroup, "", CI); |
| Cmp = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, |
| MemoryScopeDevice, CI->getOperand(1), "", CI); |
| MemoryScope = |
| SelectInst::Create(Cmp, ConstantScopeDevice, MemoryScope, "", CI); |
| } |
| |
| // Lastly, the Execution Scope is either Workgroup or Subgroup depending on |
| // the type of barrier; |
| const auto ExecutionScope = |
| subgroup ? ConstantScopeSubgroup : ConstantScopeWorkgroup; |
| |
| return clspv::InsertSPIRVOp(CI, spv::OpControlBarrier, |
| {Attribute::NoDuplicate, Attribute::Convergent}, |
| CI->getType(), |
| {ExecutionScope, MemoryScope, MemorySemantics}); |
| }); |
| } |
| |
| bool ReplaceOpenCLBuiltinPass::replaceMemFence( |
| Function &F, spv::MemorySemanticsMask semantics) { |
| |
| return replaceCallsWithValue(F, [&](CallInst *CI) { |
| enum { |
| CLK_LOCAL_MEM_FENCE = 0x01, |
| CLK_GLOBAL_MEM_FENCE = 0x02, |
| CLK_IMAGE_MEM_FENCE = 0x04, |
| }; |
| |
| auto Arg = CI->getOperand(0); |
| |
| // We need to map the OpenCL constants to the SPIR-V equivalents. |
| const auto LocalMemFence = |
| ConstantInt::get(Arg->getType(), CLK_LOCAL_MEM_FENCE); |
| const auto GlobalMemFence = |
| ConstantInt::get(Arg->getType(), CLK_GLOBAL_MEM_FENCE); |
| const auto ImageMemFence = |
| ConstantInt::get(Arg->getType(), CLK_IMAGE_MEM_FENCE); |
| const auto ConstantMemorySemantics = |
| ConstantInt::get(Arg->getType(), semantics); |
| const auto ConstantScopeWorkgroup = |
| ConstantInt::get(Arg->getType(), spv::ScopeWorkgroup); |
| |
| // Map CLK_LOCAL_MEM_FENCE to MemorySemanticsWorkgroupMemoryMask. |
| const auto LocalMemFenceMask = |
| BinaryOperator::Create(Instruction::And, LocalMemFence, Arg, "", CI); |
| const auto WorkgroupShiftAmount = |
| clz(spv::MemorySemanticsWorkgroupMemoryMask) - clz(CLK_LOCAL_MEM_FENCE); |
| const auto MemorySemanticsWorkgroup = BinaryOperator::Create( |
| Instruction::Shl, LocalMemFenceMask, |
| ConstantInt::get(Arg->getType(), WorkgroupShiftAmount), "", CI); |
| |
| // Map CLK_GLOBAL_MEM_FENCE to MemorySemanticsUniformMemoryMask. |
| const auto GlobalMemFenceMask = |
| BinaryOperator::Create(Instruction::And, GlobalMemFence, Arg, "", CI); |
| const auto UniformShiftAmount = |
| clz(spv::MemorySemanticsUniformMemoryMask) - clz(CLK_GLOBAL_MEM_FENCE); |
| const auto MemorySemanticsUniform = BinaryOperator::Create( |
| Instruction::Shl, GlobalMemFenceMask, |
| ConstantInt::get(Arg->getType(), UniformShiftAmount), "", CI); |
| |
| // OpenCL 2.0 |
| // Map CLK_IMAGE_MEM_FENCE to MemorySemanticsImageMemoryMask. |
| const auto ImageMemFenceMask = |
| BinaryOperator::Create(Instruction::And, ImageMemFence, Arg, "", CI); |
| const auto ImageShiftAmount = |
| clz(spv::MemorySemanticsImageMemoryMask) - clz(CLK_IMAGE_MEM_FENCE); |
| const auto MemorySemanticsImage = BinaryOperator::Create( |
| Instruction::Shl, ImageMemFenceMask, |
| ConstantInt::get(Arg->getType(), ImageShiftAmount), "", CI); |
| |
| Value *MemOrder = ConstantMemorySemantics; |
| Value *MemScope = ConstantScopeWorkgroup; |
| IRBuilder<> builder(CI); |
| if (CI->arg_size() > 1) { |
| MemOrder = MemoryOrderSemantics(CI->getArgOperand(1), false, CI, |
| semantics, false); |
| MemScope = MemoryScope(CI->getArgOperand(2), false, CI); |
| } |
| // Join the storage semantics and the order semantics. |
| auto MemorySemantics1 = |
| builder.CreateOr({MemorySemanticsWorkgroup, MemorySemanticsUniform}); |
| auto MemorySemantics2 = builder.CreateOr({MemorySemanticsImage, MemOrder}); |
| auto MemorySemantics = |
| builder.CreateOr({MemorySemantics1, MemorySemantics2}); |
| |
| return clspv::InsertSPIRVOp(CI, spv::OpMemoryBarrier, |
| {Attribute::Convergent}, CI->getType(), |
| {MemScope, MemorySemantics}); |
| }); |
| } |
| |
| bool ReplaceOpenCLBuiltinPass::replacePrefetch(Function &F) { |
| bool Changed = false; |
| |
| SmallVector<Instruction *, 4> ToRemoves; |
| |
| // Find all calls to the function |
| for (auto &U : F.uses()) { |
| if (auto CI = dyn_cast<CallInst>(U.getUser())) { |
| ToRemoves.push_back(CI); |
| } |
| } |
| |
| Changed = !ToRemoves.empty(); |
| |
| // Delete them |
| for (auto V : ToRemoves) { |
| V->eraseFromParent(); |
| } |
| |
| return Changed; |
| } |
| |
| bool ReplaceOpenCLBuiltinPass::replaceRelational(Function &F, |
| CmpInst::Predicate P) { |
| return replaceCallsWithValue(F, [&](CallInst *CI) { |
| // The predicate to use in the CmpInst. |
| auto Predicate = P; |
| |
| auto Arg1 = CI->getOperand(0); |
| auto Arg2 = CI->getOperand(1); |
| |
| const auto Cmp = |
| CmpInst::Create(Instruction::FCmp, Predicate, Arg1, Arg2, "", CI); |
| if (isa<VectorType>(F.getReturnType())) |
| return CastInst::Create(Instruction::SExt, Cmp, CI->getType(), "", CI); |
| return CastInst::Create(Instruction::ZExt, Cmp, CI->getType(), "", CI); |
| }); |
| } |
| |
| bool ReplaceOpenCLBuiltinPass::replaceIsInfAndIsNan(Function &F, |
| spv::Op SPIRVOp, |
| int32_t C) { |
| Module &M = *F.getParent(); |
| return replaceCallsWithValue(F, [&](CallInst *CI) { |
| const auto CITy = CI->getType(); |
| |
| // The value to return for true. |
| auto TrueValue = ConstantInt::getSigned(CITy, C); |
| |
| // The value to return for false. |
| auto FalseValue = Constant::getNullValue(CITy); |
| |
| Type *CorrespondingBoolTy = Type::getInt1Ty(M.getContext()); |
| if (auto CIVecTy = dyn_cast<VectorType>(CITy)) { |
| CorrespondingBoolTy = |
| FixedVectorType::get(Type::getInt1Ty(M.getContext()), |
| CIVecTy->getElementCount().getKnownMinValue()); |
| } |
| |
| auto NewCI = clspv::InsertSPIRVOp(CI, SPIRVOp, {Attribute::ReadNone}, |
| CorrespondingBoolTy, {CI->getOperand(0)}); |
| |
| return SelectInst::Create(NewCI, TrueValue, FalseValue, "", CI); |
| }); |
| } |
| |
| bool ReplaceOpenCLBuiltinPass::replaceIsFinite(Function &F) { |
| Module &M = *F.getParent(); |
| return replaceCallsWithValue(F, [&](CallInst *CI) { |
| auto &C = M.getContext(); |
| auto Val = CI->getOperand(0); |
| auto ValTy = Val->getType(); |
| auto RetTy = CI->getType(); |
| |
| // Get a suitable integer type to represent the number |
| auto IntTy = getIntOrIntVectorTyForCast(C, ValTy); |
| |
| // Create Mask |
| auto ScalarSize = ValTy->getScalarSizeInBits(); |
| Value *InfMask = nullptr; |
| switch (ScalarSize) { |
| case 16: |
| InfMask = ConstantInt::get(IntTy, 0x7C00U); |
| break; |
| case 32: |
| InfMask = ConstantInt::get(IntTy, 0x7F800000U); |
| break; |
| case 64: |
| InfMask = ConstantInt::get(IntTy, 0x7FF0000000000000ULL); |
| break; |
| default: |
| llvm_unreachable("Unsupported floating-point type"); |
| } |
| |
| IRBuilder<> Builder(CI); |
| |
| // Bitcast to int |
| auto ValInt = Builder.CreateBitCast(Val, IntTy); |
| |
| // Mask and compare |
| auto InfBits = Builder.CreateAnd(InfMask, ValInt); |
| auto Cmp = Builder.CreateICmp(CmpInst::ICMP_EQ, InfBits, InfMask); |
| |
| auto RetFalse = ConstantInt::get(RetTy, 0); |
| Value *RetTrue = nullptr; |
| if (ValTy->isVectorTy()) { |
| RetTrue = ConstantInt::getSigned(RetTy, -1); |
| } else { |
| RetTrue = ConstantInt::get(RetTy, 1); |
| } |
| return Builder.CreateSelect(Cmp, RetFalse, RetTrue); |
| }); |
| } |
| |
| bool ReplaceOpenCLBuiltinPass::replaceAllAndAny(Function &F, spv::Op SPIRVOp) { |
| Module &M = *F.getParent(); |
| return replaceCallsWithValue(F, [&](CallInst *CI) { |
| auto Arg = CI->getOperand(0); |
| |
| Value *V = nullptr; |
| |
| // If the argument is a 32-bit int, just use a shift |
| if (Arg->getType() == Type::getInt32Ty(M.getContext())) { |
| V = BinaryOperator::Create(Instruction::LShr, Arg, |
| ConstantInt::get(Arg->getType(), 31), "", CI); |
| } else { |
| // The value for zero to compare against. |
| const auto ZeroValue = Constant::getNullValue(Arg->getType()); |
| |
| // The value to return for true. |
| const auto TrueValue = ConstantInt::get(CI->getType(), 1); |
| |
| // The value to return for false. |
| const auto FalseValue = Constant::getNullValue(CI->getType()); |
| |
| const auto Cmp = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_SLT, |
| Arg, ZeroValue, "", CI); |
| |
| Value *SelectSource = nullptr; |
| |
| // If we have a function to call, call it! |
| if (SPIRVOp != spv::OpNop) { |
| |
| const auto BoolTy = Type::getInt1Ty(M.getContext()); |
| |
| const auto NewCI = clspv::InsertSPIRVOp( |
| CI, SPIRVOp, {Attribute::ReadNone}, BoolTy, {Cmp}); |
| SelectSource = NewCI; |
| |
| } else { |
| SelectSource = Cmp; |
| } |
| |
| V = SelectInst::Create(SelectSource, TrueValue, FalseValue, "", CI); |
| } |
| return V; |
| }); |
| } |
| |
| bool ReplaceOpenCLBuiltinPass::replaceUpsample(Function &F) { |
| return replaceCallsWithValue(F, [&](CallInst *CI) -> llvm::Value * { |
| // Get arguments |
| auto HiValue = CI->getOperand(0); |
| auto LoValue = CI->getOperand(1); |
| |
| // Don't touch overloads that aren't in OpenCL C |
| auto HiType = HiValue->getType(); |
| auto LoType = LoValue->getType(); |
| |
| if (HiType != LoType) { |
| return nullptr; |
| } |
| |
| if (!HiType->isIntOrIntVectorTy()) { |
| return nullptr; |
| } |
| |
| if (HiType->getScalarSizeInBits() * 2 != |
| CI->getType()->getScalarSizeInBits()) { |
| return nullptr; |
| } |
| |
| if ((HiType->getScalarSizeInBits() != 8) && |
| (HiType->getScalarSizeInBits() != 16) && |
| (HiType->getScalarSizeInBits() != 32)) { |
| return nullptr; |
| } |
| |
| if (auto HiVecType = dyn_cast<VectorType>(HiType)) { |
| unsigned NumElements = HiVecType->getElementCount().getKnownMinValue(); |
| if ((NumElements != 2) && (NumElements != 3) && (NumElements != 4) && |
| (NumElements != 8) && (NumElements != 16)) { |
| return nullptr; |
| } |
| } |
| |
| // Convert both operands to the result type |
| auto HiCast = CastInst::CreateZExtOrBitCast(HiValue, CI->getType(), "", CI); |
| auto LoCast = CastInst::CreateZExtOrBitCast(LoValue, CI->getType(), "", CI); |
| |
| // Shift high operand |
| auto ShiftAmount = |
| ConstantInt::get(CI->getType(), HiType->getScalarSizeInBits()); |
| auto HiShifted = |
| BinaryOperator::Create(Instruction::Shl, HiCast, ShiftAmount, "", CI); |
| |
| // OR both results |
| return BinaryOperator::Create(Instruction::Or, HiShifted, LoCast, "", CI); |
| }); |
| } |
| |
| bool ReplaceOpenCLBuiltinPass::replaceRotate(Function &F) { |
| return replaceCallsWithValue(F, [&](CallInst *CI) -> llvm::Value * { |
| // Get arguments |
| auto SrcValue = CI->getOperand(0); |
| auto RotAmount = CI->getOperand(1); |
| |
| // Don't touch overloads that aren't in OpenCL C |
| auto SrcType = SrcValue->getType(); |
| auto RotType = RotAmount->getType(); |
| |
| if ((SrcType != RotType) || (CI->getType() != SrcType)) { |
| return nullptr; |
| } |
| |
| if (!SrcType->isIntOrIntVectorTy()) { |
| return nullptr; |
| } |
| |
| if ((SrcType->getScalarSizeInBits() != 8) && |
| (SrcType->getScalarSizeInBits() != 16) && |
| (SrcType->getScalarSizeInBits() != 32) && |
| (SrcType->getScalarSizeInBits() != 64)) { |
| return nullptr; |
| } |
| |
| if (auto SrcVecType = dyn_cast<VectorType>(SrcType)) { |
| unsigned NumElements = SrcVecType->getElementCount().getKnownMinValue(); |
| if ((NumElements != 2) && (NumElements != 3) && (NumElements != 4) && |
| (NumElements != 8) && (NumElements != 16)) { |
| return nullptr; |
| } |
| } |
| |
| // Replace with LLVM's funnel shift left intrinsic because it is more |
| // generic than rotate. |
| Function *intrinsic = |
| Intrinsic::getDeclaration(F.getParent(), Intrinsic::fshl, SrcType); |
| return CallInst::Create(intrinsic->getFunctionType(), intrinsic, |
| {SrcValue, SrcValue, RotAmount}, "", CI); |
| }); |
| } |
| |
| bool ReplaceOpenCLBuiltinPass::replaceConvert(Function &F, bool SrcIsSigned, |
| bool DstIsSigned) { |
| return replaceCallsWithValue(F, [&](CallInst *CI) -> llvm::Value * { |
| Value *V = nullptr; |
| // Get arguments |
| auto SrcValue = CI->getOperand(0); |
| |
| // Don't touch overloads that aren't in OpenCL C |
| auto SrcType = SrcValue->getType(); |
| auto DstType = CI->getType(); |
| |
| if ((SrcType->isVectorTy() && !DstType->isVectorTy()) || |
| (!SrcType->isVectorTy() && DstType->isVectorTy())) { |
| return V; |
| } |
| |
| if (auto SrcVecType = dyn_cast<VectorType>(SrcType)) { |
| unsigned SrcNumElements = |
| SrcVecType->getElementCount().getKnownMinValue(); |
| unsigned DstNumElements = |
| cast<VectorType>(DstType)->getElementCount().getKnownMinValue(); |
| if (SrcNumElements != DstNumElements) { |
| return V; |
| } |
| |
| if ((SrcNumElements != 2) && (SrcNumElements != 3) && |
| (SrcNumElements != 4) && (SrcNumElements != 8) && |
| (SrcNumElements != 16)) { |
| return V; |
| } |
| } |
| |
| bool SrcIsFloat = SrcType->getScalarType()->isFloatingPointTy(); |
| bool DstIsFloat = DstType->getScalarType()->isFloatingPointTy(); |
| |
| bool SrcIsInt = SrcType->isIntOrIntVectorTy(); |
| bool DstIsInt = DstType->isIntOrIntVectorTy(); |
| |
| if (SrcType == DstType && DstIsSigned == SrcIsSigned) { |
| // Unnecessary cast operation. |
| V = SrcValue; |
| } else if (SrcIsFloat && DstIsFloat) { |
| V = CastInst::CreateFPCast(SrcValue, DstType, "", CI); |
| } else if (SrcIsFloat && DstIsInt) { |
| if (DstIsSigned) { |
| V = CastInst::Create(Instruction::FPToSI, SrcValue, DstType, "", CI); |
| } else { |
| V = CastInst::Create(Instruction::FPToUI, SrcValue, DstType, "", CI); |
| } |
| } else if (SrcIsInt && DstIsFloat) { |
| if (SrcIsSigned) { |
| V = CastInst::Create(Instruction::SIToFP, SrcValue, DstType, "", CI); |
| } else { |
| V = CastInst::Create(Instruction::UIToFP, SrcValue, DstType, "", CI); |
| } |
| } else if (SrcIsInt && DstIsInt) { |
| V = CastInst::CreateIntegerCast(SrcValue, DstType, SrcIsSigned, "", CI); |
| } else { |
| // Not something we're supposed to handle, just move on |
| } |
| |
| return V; |
| }); |
| } |
| |
| bool ReplaceOpenCLBuiltinPass::replaceMulHi(Function &F, bool is_signed, |
| bool is_mad) { |
| return replaceCallsWithValue(F, [&](CallInst *CI) -> llvm::Value * { |
| Value *V = nullptr; |
| // Get arguments |
| auto AValue = CI->getOperand(0); |
| auto BValue = CI->getOperand(1); |
| auto CValue = CI->getOperand(2); |
| |
| // Don't touch overloads that aren't in OpenCL C |
| auto AType = AValue->getType(); |
| auto BType = BValue->getType(); |
| auto CType = CValue->getType(); |
| |
| if ((AType != BType) || (CI->getType() != AType) || |
| (is_mad && (AType != CType))) { |
| return V; |
| } |
| |
| if (!AType->isIntOrIntVectorTy()) { |
| return V; |
| } |
| |
| if ((AType->getScalarSizeInBits() != 8) && |
| (AType->getScalarSizeInBits() != 16) && |
| (AType->getScalarSizeInBits() != 32) && |
| (AType->getScalarSizeInBits() != 64)) { |
| return V; |
| } |
| |
| if (auto AVecType = dyn_cast<VectorType>(AType)) { |
| unsigned NumElements = AVecType->getElementCount().getKnownMinValue(); |
| if ((NumElements != 2) && (NumElements != 3) && (NumElements != 4) && |
| (NumElements != 8) && (NumElements != 16)) { |
| return V; |
| } |
| } |
| |
| auto Call = InsertOpMulExtended(CI, AValue, BValue, is_signed); |
| |
| // Get the high part of the result |
| unsigned Idxs[] = {1}; |
| V = ExtractValueInst::Create(Call, Idxs, "", CI); |
| |
| // If we're handling a mad_hi, add the third argument to the result |
| if (is_mad) { |
| V = BinaryOperator::Create(Instruction::Add, V, CValue, "", CI); |
| } |
| |
| return V; |
| }); |
| } |
| |
| bool ReplaceOpenCLBuiltinPass::replaceSelect(Function &F) { |
| return replaceCallsWithValue(F, [&](CallInst *CI) -> llvm::Value * { |
| // Get arguments |
| auto FalseValue = CI->getOperand(0); |
| auto TrueValue = CI->getOperand(1); |
| auto PredicateValue = CI->getOperand(2); |
| |
| // Don't touch overloads that aren't in OpenCL C |
| auto FalseType = FalseValue->getType(); |
| auto TrueType = TrueValue->getType(); |
| auto PredicateType = PredicateValue->getType(); |
| |
| if (FalseType != TrueType) { |
| return nullptr; |
| } |
| |
| if (!PredicateType->isIntOrIntVectorTy()) { |
| return nullptr; |
| } |
| |
| if (!FalseType->isIntOrIntVectorTy() && |
| !FalseType->getScalarType()->isFloatingPointTy()) { |
| return nullptr; |
| } |
| |
| if (FalseType->isVectorTy() && !PredicateType->isVectorTy()) { |
| return nullptr; |
| } |
| |
| if (FalseType->getScalarSizeInBits() != |
| PredicateType->getScalarSizeInBits()) { |
| return nullptr; |
| } |
| |
| if (auto FalseVecType = dyn_cast<VectorType>(FalseType)) { |
| unsigned NumElements = FalseVecType->getElementCount().getKnownMinValue(); |
| if (NumElements != cast<VectorType>(PredicateType) |
| ->getElementCount() |
| .getKnownMinValue()) { |
| return nullptr; |
| } |
| |
| if ((NumElements != 2) && (NumElements != 3) && (NumElements != 4) && |
| (NumElements != 8) && (NumElements != 16)) { |
| return nullptr; |
| } |
| } |
| |
| // Create constant |
| const auto ZeroValue = Constant::getNullValue(PredicateType); |
| |
| // Scalar and vector are to be treated differently |
| CmpInst::Predicate Pred; |
| if (PredicateType->isVectorTy()) { |
| Pred = CmpInst::ICMP_SLT; |
| } else { |
| Pred = CmpInst::ICMP_NE; |
| } |
| |
| // Create comparison instruction |
| auto Cmp = CmpInst::Create(Instruction::ICmp, Pred, PredicateValue, |
| ZeroValue, "", CI); |
| |
| // Create select |
| return SelectInst::Create(Cmp, TrueValue, FalseValue, "", CI); |
| }); |
| } |
| |
| bool ReplaceOpenCLBuiltinPass::replaceBitSelect(Function &F) { |
| return replaceCallsWithValue(F, [&](CallInst *CI) -> llvm::Value * { |
| Value *V = nullptr; |
| if (CI->getNumOperands() != 4) { |
| return V; |
| } |
| |
| // Get arguments |
| auto FalseValue = CI->getOperand(0); |
| auto TrueValue = CI->getOperand(1); |
| auto PredicateValue = CI->getOperand(2); |
| |
| // Don't touch overloads that aren't in OpenCL C |
| auto FalseType = FalseValue->getType(); |
| auto TrueType = TrueValue->getType(); |
| auto PredicateType = PredicateValue->getType(); |
| |
| if ((FalseType != TrueType) || (PredicateType != TrueType)) { |
| return V; |
| } |
| |
| if (auto TrueVecType = dyn_cast<VectorType>(TrueType)) { |
| if (!TrueType->getScalarType()->isFloatingPointTy() && |
| !TrueType->getScalarType()->isIntegerTy()) { |
| return V; |
| } |
| unsigned NumElements = TrueVecType->getElementCount().getKnownMinValue(); |
| if ((NumElements != 2) && (NumElements != 3) && (NumElements != 4) && |
| (NumElements != 8) && (NumElements != 16)) { |
| return V; |
| } |
| } |
| |
| // Remember the type of the operands |
| auto OpType = TrueType; |
| |
| // The actual bit selection will always be done on an integer type, |
| // declare it here |
| Type *BitType; |
| |
| // If the operands are float, then bitcast them to int |
| if (OpType->getScalarType()->isFloatingPointTy()) { |
| |
| // First create the new type |
| BitType = getIntOrIntVectorTyForCast(F.getContext(), OpType); |
| |
| // Then bitcast all operands |
| PredicateValue = |
| CastInst::CreateZExtOrBitCast(PredicateValue, BitType, "", CI); |
| FalseValue = CastInst::CreateZExtOrBitCast(FalseValue, BitType, "", CI); |
| TrueValue = CastInst::CreateZExtOrBitCast(TrueValue, BitType, "", CI); |
| |
| } else { |
| // The operands have an integer type, use it directly |
| BitType = OpType; |
| } |
| |
| // All the operands are now always integers |
| // implement as (c & b) | (~c & a) |
| |
| // Create our negated predicate value |
| auto AllOnes = Constant::getAllOnesValue(BitType); |
| auto NotPredicateValue = BinaryOperator::Create( |
| Instruction::Xor, PredicateValue, AllOnes, "", CI); |
| |
| // Then put everything together |
| auto BitsFalse = BinaryOperator::Create(Instruction::And, NotPredicateValue, |
| FalseValue, "", CI); |
| auto BitsTrue = BinaryOperator::Create(Instruction::And, PredicateValue, |
| TrueValue, "", CI); |
| |
| V = BinaryOperator::Create(Instruction::Or, BitsFalse, BitsTrue, "", CI); |
| |
| // If we were dealing with a floating point type, we must bitcast |
| // the result back to that |
| if (OpType->getScalarType()->isFloatingPointTy()) { |
| V = CastInst::CreateZExtOrBitCast(V, OpType, "", CI); |
| } |
| |
| return V; |
| }); |
| } |
| |
| bool ReplaceOpenCLBuiltinPass::replaceStep(Function &F, bool is_smooth) { |
| // convert to vector versions |
| Module &M = *F.getParent(); |
| return replaceCallsWithValue(F, [&](CallInst *CI) -> llvm::Value * { |
| SmallVector<Value *, 2> ArgsToSplat = {CI->getOperand(0)}; |
| Value *VectorArg = nullptr; |
| |
| // First figure out which function we're dealing with |
| if (is_smooth) { |
| ArgsToSplat.push_back(CI->getOperand(1)); |
| VectorArg = CI->getOperand(2); |
| } else { |
| VectorArg = CI->getOperand(1); |
| } |
| |
| // Splat arguments that need to be |
| SmallVector<Value *, 2> SplatArgs; |
| auto VecType = cast<VectorType>(VectorArg->getType()); |
| |
| for (auto arg : ArgsToSplat) { |
| Value *NewVectorArg = UndefValue::get(VecType); |
| for (size_t i = 0; i < VecType->getElementCount().getKnownMinValue(); |
| i++) { |
| auto index = ConstantInt::get(Type::getInt32Ty(M.getContext()), i); |
| NewVectorArg = |
| InsertElementInst::Create(NewVectorArg, arg, index, "", CI); |
| } |
| SplatArgs.push_back(NewVectorArg); |
| } |
| |
| // Replace the call with the vector/vector flavour |
| SmallVector<Type *, 3> NewArgTypes(ArgsToSplat.size() + 1, VecType); |
| const auto NewFType = FunctionType::get(CI->getType(), NewArgTypes, false); |
| |
| std::string NewFName = Builtins::GetMangledFunctionName( |
| is_smooth ? "smoothstep" : "step", NewFType); |
| |
| const auto NewF = M.getOrInsertFunction(NewFName, NewFType); |
| |
| SmallVector<Value *, 3> NewArgs; |
| for (auto arg : SplatArgs) { |
| NewArgs.push_back(arg); |
| } |
| NewArgs.push_back(VectorArg); |
| |
| return CallInst::Create(NewF, NewArgs, "", CI); |
| }); |
| } |
| |
| bool ReplaceOpenCLBuiltinPass::replaceSignbit(Function &F, bool is_vec) { |
| return replaceCallsWithValue(F, [&](CallInst *CI) -> llvm::Value * { |
| auto Arg = CI->getOperand(0); |
| auto Op = is_vec ? Instruction::AShr : Instruction::LShr; |
| |
| auto Bitcast = CastInst::CreateZExtOrBitCast(Arg, CI->getType(), "", CI); |
| |
| return BinaryOperator::Create(Op, Bitcast, |
| ConstantInt::get(CI->getType(), 31), "", CI); |
| }); |
| } |
| |
| bool ReplaceOpenCLBuiltinPass::replaceMul(Function &F, bool is_float, |
| bool is_mad) { |
| return replaceCallsWithValue(F, [&](CallInst *CI) -> llvm::Value * { |
| // The multiply instruction to use. |
| auto MulInst = is_float ? Instruction::FMul : Instruction::Mul; |
| |
| SmallVector<Value *, 8> Args(CI->arg_begin(), CI->arg_end()); |
| |
| Value *V = BinaryOperator::Create(MulInst, CI->getArgOperand(0), |
| CI->getArgOperand(1), "", CI); |
| |
| if (is_mad) { |
| // The add instruction to use. |
| auto AddInst = is_float ? Instruction::FAdd : Instruction::Add; |
| |
| V = BinaryOperator::Create(AddInst, V, CI->getArgOperand(2), "", CI); |
| } |
| |
| return V; |
| }); |
| } |
| |
| bool ReplaceOpenCLBuiltinPass::replaceVstore(Function &F) { |
| return replaceCallsWithValue(F, [&](CallInst *CI) -> llvm::Value * { |
| Value *V = nullptr; |
| auto data = CI->getOperand(0); |
| |
| auto data_type = data->getType(); |
| if (!data_type->isVectorTy()) |
| return V; |
| |
| auto vec_data_type = cast<VectorType>(data_type); |
| |
| auto elems = vec_data_type->getElementCount().getKnownMinValue(); |
| if (elems != 2 && elems != 3 && elems != 4 && elems != 8 && elems != 16) |
| return V; |
| |
| auto offset = CI->getOperand(1); |
| auto ptr = CI->getOperand(2); |
| |
| // Avoid pointer casts. Instead generate the correct number of stores |
| // and rely on drivers to coalesce appropriately. |
| IRBuilder<> builder(CI); |
| auto elems_const = builder.getInt32(elems); |
| auto adjust = builder.CreateMul(offset, elems_const); |
| for (size_t i = 0; i < elems; ++i) { |
| auto idx = builder.getInt32(i); |
| auto add = builder.CreateAdd(adjust, idx); |
| auto gep = builder.CreateGEP(vec_data_type->getScalarType(), ptr, add); |
| auto extract = builder.CreateExtractElement(data, i); |
| V = builder.CreateStore(extract, gep); |
| } |
| return V; |
| }); |
| } |
| |
| bool ReplaceOpenCLBuiltinPass::replaceVload(Function &F) { |
| return replaceCallsWithValue(F, [&](CallInst *CI) -> llvm::Value * { |
| Value *V = nullptr; |
| auto ret_type = F.getReturnType(); |
| if (!ret_type->isVectorTy()) |
| return V; |
| |
| auto vec_ret_type = cast<VectorType>(ret_type); |
| |
| auto elems = vec_ret_type->getElementCount().getKnownMinValue(); |
| if (elems != 2 && elems != 3 && elems != 4 && elems != 8 && elems != 16) |
| return V; |
| |
| auto offset = CI->getOperand(0); |
| auto ptr = CI->getOperand(1); |
| |
| // Avoid pointer casts. Instead generate the correct number of loads |
| // and rely on drivers to coalesce appropriately. |
| IRBuilder<> builder(CI); |
| auto elems_const = builder.getInt32(elems); |
| V = UndefValue::get(ret_type); |
| auto adjust = builder.CreateMul(offset, elems_const); |
| for (unsigned i = 0; i < elems; ++i) { |
| auto idx = builder.getInt32(i); |
| auto add = builder.CreateAdd(adjust, idx); |
| auto gep = builder.CreateGEP(vec_ret_type->getScalarType(), ptr, add); |
| auto load = builder.CreateLoad(vec_ret_type->getScalarType(), gep); |
| V = builder.CreateInsertElement(V, load, i); |
| } |
| return V; |
| }); |
| } |
| |
| bool ReplaceOpenCLBuiltinPass::replaceVloadHalf(Function &F, |
| const std::string &name, |
| int vec_size, bool aligned) { |
| bool is_clspv_version = !name.compare(0, 8, "__clspv_"); |
| if (!vec_size) { |
| // deduce vec_size from last characters of name (e.g. vload_half4) |
| std::string half = "half"; |
| vec_size = std::atoi( |
| name.substr(name.find(half) + half.size(), std::string::npos).c_str()); |
| } |
| switch (vec_size) { |
| case 2: |
| return is_clspv_version ? replaceClspvVloadaHalf2(F) : replaceVloadHalf2(F); |
| case 3: |
| if (!is_clspv_version) { |
| return aligned ? replaceVloadaHalf3(F) : replaceVloadHalf3(F); |
| } |
| break; |
| case 4: |
| return is_clspv_version ? replaceClspvVloadaHalf4(F) : replaceVloadHalf4(F); |
| case 8: |
| if (!is_clspv_version) { |
| return replaceVloadHalf8(F); |
| } |
| break; |
| case 16: |
| if (!is_clspv_version) { |
| return replaceVloadHalf16(F); |
| } |
| break; |
| case 0: |
| if (!is_clspv_version) { |
| return replaceVloadHalf(F); |
| } |
| break; |
| } |
| llvm_unreachable("Unsupported vload_half vector size"); |
| } |
| |
| bool ReplaceOpenCLBuiltinPass::replaceVloadHalf(Function &F) { |
| Module &M = *F.getParent(); |
| return replaceCallsWithValue(F, [&](CallInst *CI) { |
| // The index argument from vload_half. |
| auto Arg0 = CI->getOperand(0); |
| |
| // The pointer argument from vload_half. |
| auto Arg1 = CI->getOperand(1); |
| |
| auto IntTy = Type::getInt32Ty(M.getContext()); |
| auto Float2Ty = FixedVectorType::get(Type::getFloatTy(M.getContext()), 2); |
| auto NewFType = FunctionType::get(Float2Ty, IntTy, false); |
| |
| // Our intrinsic to unpack a float2 from an int. |
| auto SPIRVIntrinsic = clspv::UnpackFunction(); |
| |
| auto NewF = M.getOrInsertFunction(SPIRVIntrinsic, NewFType); |
| |
| Value *V = nullptr; |
| |
| bool supports_16bit_storage = true; |
| switch (Arg1->getType()->getPointerAddressSpace()) { |
| case clspv::AddressSpace::Global: |
| supports_16bit_storage = clspv::Option::Supports16BitStorageClass( |
| clspv::Option::StorageClass::kSSBO); |
| break; |
| case clspv::AddressSpace::Constant: |
| if (clspv::Option::ConstantArgsInUniformBuffer()) |
| supports_16bit_storage = clspv::Option::Supports16BitStorageClass( |
| clspv::Option::StorageClass::kUBO); |
| else |
| supports_16bit_storage = clspv::Option::Supports16BitStorageClass( |
| clspv::Option::StorageClass::kSSBO); |
| break; |
| default: |
| // Clspv will emit the Float16 capability if the half type is |
| // encountered. That capability covers private and local addressspaces. |
| break; |
| } |
| |
| if (supports_16bit_storage) { |
| auto ShortTy = Type::getInt16Ty(M.getContext()); |
| auto ShortPointerTy = |
| PointerType::get(ShortTy, Arg1->getType()->getPointerAddressSpace()); |
| |
| // Cast the half* pointer to short*. |
| // TODO(#816): remove after final transition. |
| Value *Cast = Arg1; |
| if (Arg1->getType() != ShortPointerTy) { |
| Cast = CastInst::CreatePointerCast(Arg1, ShortPointerTy, "", CI); |
| } |
| |
| // Index into the correct address of the casted pointer. |
| auto Index = GetElementPtrInst::Create(ShortTy, Cast, Arg0, "", CI); |
| |
| // Load from the short* we casted to. |
| auto Load = new LoadInst(ShortTy, Index, "", CI); |
| |
| // ZExt the short -> int. |
| auto ZExt = CastInst::CreateZExtOrBitCast(Load, IntTy, "", CI); |
| |
| // Get our float2. |
| auto Call = CallInst::Create(NewF, ZExt, "", CI); |
| |
| // Extract out the bottom element which is our float result. |
| V = ExtractElementInst::Create(Call, ConstantInt::get(IntTy, 0), "", CI); |
| } else { |
| // Assume the pointer argument points to storage aligned to 32bits |
| // or more. |
| // TODO(dneto): Do more analysis to make sure this is true? |
| // |
| // Replace call vstore_half(i32 %index, half addrspace(1) %base) |
| // with: |
| // |
| // %base_i32_ptr = bitcast half addrspace(1)* %base to i32 |
| // addrspace(1)* %index_is_odd32 = and i32 %index, 1 %index_i32 = |
| // lshr i32 %index, 1 %in_ptr = getlementptr i32, i32 |
| // addrspace(1)* %base_i32_ptr, %index_i32 %value_i32 = load i32, |
| // i32 addrspace(1)* %in_ptr %converted = call <2 x float> |
| // @spirv.unpack.v2f16(i32 %value_i32) %value = extractelement <2 |
| // x float> %converted, %index_is_odd32 |
| |
| auto IntPointerTy = |
| PointerType::get(IntTy, Arg1->getType()->getPointerAddressSpace()); |
| |
| // Cast the base pointer to int*. |
| // In a valid call (according to assumptions), this should get |
| // optimized away in the simplify GEP pass. |
| // TODO(#816): remove after final transition. |
| Value *Cast = Arg1; |
| if (Arg1->getType() != IntPointerTy) { |
| Cast = CastInst::CreatePointerCast(Arg1, IntPointerTy, "", CI); |
| } |
| |
| auto One = ConstantInt::get(IntTy, 1); |
| auto IndexIsOdd = BinaryOperator::CreateAnd(Arg0, One, "", CI); |
| auto IndexIntoI32 = BinaryOperator::CreateLShr(Arg0, One, "", CI); |
| |
| // Index into the correct address of the casted pointer. |
| auto Ptr = GetElementPtrInst::Create(IntTy, Cast, IndexIntoI32, "", CI); |
| |
| // Load from the int* we casted to. |
| auto Load = new LoadInst(IntTy, Ptr, "", CI); |
| |
| // Get our float2. |
| auto Call = CallInst::Create(NewF, Load, "", CI); |
| |
| // Extract out the float result, where the element number is |
| // determined by whether the original index was even or odd. |
| V = ExtractElementInst::Create(Call, IndexIsOdd, "", CI); |
| } |
| return V; |
| }); |
| } |
| |
| bool ReplaceOpenCLBuiltinPass::replaceVloadHalf2(Function &F) { |
| Module &M = *F.getParent(); |
| return replaceCallsWithValue(F, [&](CallInst *CI) { |
| // The index argument from vload_half. |
| auto Arg0 = CI->getOperand(0); |
| |
| // The pointer argument from vload_half. |
| auto Arg1 = CI->getOperand(1); |
| |
| auto IntTy = Type::getInt32Ty(M.getContext()); |
| auto Float2Ty = FixedVectorType::get(Type::getFloatTy(M.getContext()), 2); |
| auto NewPointerTy = |
| PointerType::get(IntTy, Arg1->getType()->getPointerAddressSpace()); |
| auto NewFType = FunctionType::get(Float2Ty, IntTy, false); |
| |
| // Cast the half* pointer to int*. |
| // TODO(#816): remove after final transition. |
| Value *Cast = Arg1; |
| if (Arg1->getType() != NewPointerTy) { |
| Cast = CastInst::CreatePointerCast(Arg1, NewPointerTy, "", CI); |
| } |
| |
| // Index into the correct address of the casted pointer. |
| auto Index = GetElementPtrInst::Create(IntTy, Cast, Arg0, "", CI); |
| |
| // Load from the int* we casted to. |
| auto Load = new LoadInst(IntTy, Index, "", CI); |
| |
| // Our intrinsic to unpack a float2 from an int. |
| auto SPIRVIntrinsic = clspv::UnpackFunction(); |
| |
| auto NewF = M.getOrInsertFunction(SPIRVIntrinsic, NewFType); |
| |
| // Get our float2. |
| return CallInst::Create(NewF, Load, "", CI); |
| }); |
| } |
| |
| bool ReplaceOpenCLBuiltinPass::replaceVloadHalf3(Function &F) { |
| Module &M = *F.getParent(); |
| return replaceCallsWithValue(F, [&](CallInst *CI) { |
| // The index argument from vload_half. |
| auto Arg0 = CI->getOperand(0); |
| |
| // The pointer argument from vload_half. |
| auto Arg1 = CI->getOperand(1); |
| |
| auto IntTy = Type::getInt32Ty(M.getContext()); |
| auto ShortTy = Type::getInt16Ty(M.getContext()); |
| auto FloatTy = Type::getFloatTy(M.getContext()); |
| auto Float2Ty = FixedVectorType::get(FloatTy, 2); |
| auto Float3Ty = FixedVectorType::get(FloatTy, 3); |
| auto NewPointerTy = |
| PointerType::get(ShortTy, Arg1->getType()->getPointerAddressSpace()); |
| auto NewFType = FunctionType::get(Float2Ty, IntTy, false); |
| |
| auto Int0 = ConstantInt::get(IntTy, 0); |
| auto Int1 = ConstantInt::get(IntTy, 1); |
| auto Int2 = ConstantInt::get(IntTy, 2); |
| |
| // Cast the half* pointer to short*. |
| // TODO(#816): remove after final transition. |
| Value *Cast = Arg1; |
| if (Arg1->getType() != NewPointerTy) { |
| Cast = CastInst::CreatePointerCast(Arg1, NewPointerTy, "", CI); |
| } |
| |
| // Load the first element |
| auto Index0 = BinaryOperator::Create( |
| Instruction::Add, |
| BinaryOperator::Create(Instruction::Shl, Arg0, Int1, "", CI), Arg0, "", |
| CI); |
| auto GEP0 = GetElementPtrInst::Create(ShortTy, Cast, Index0, "", CI); |
| auto Load0 = new LoadInst(ShortTy, GEP0, "", CI); |
| |
| // Load the second element |
| auto Index1 = |
| BinaryOperator::Create(Instruction::Add, Index0, Int1, "", CI); |
| auto GEP1 = GetElementPtrInst::Create(ShortTy, Cast, Index1, "", CI); |
| auto Load1 = new LoadInst(ShortTy, GEP1, "", CI); |
| |
| // Load the third element |
| auto Index2 = |
| BinaryOperator::Create(Instruction::Add, Index1, Int1, "", CI); |
| auto GEP2 = GetElementPtrInst::Create(ShortTy, Cast, Index2, "", CI); |
| auto Load2 = new LoadInst(ShortTy, GEP2, "", CI); |
| |
| // Extend each short to int. |
| auto X0 = CastInst::Create(Instruction::ZExt, Load0, IntTy, "", CI); |
| auto X1 = CastInst::Create(Instruction::ZExt, Load1, IntTy, "", CI); |
| auto X2 = CastInst::Create(Instruction::ZExt, Load2, IntTy, "", CI); |
| |
| // Our intrinsic to unpack a float2 from an int. |
| auto SPIRVIntrinsic = clspv::UnpackFunction(); |
| |
| auto NewF = M.getOrInsertFunction(SPIRVIntrinsic, NewFType); |
| |
| // Convert int to float2 and extract the uniq meaningful float |
| auto Y0 = ExtractElementInst::Create(CallInst::Create(NewF, X0, "", CI), |
| Int0, "", CI); |
| auto Y1 = ExtractElementInst::Create(CallInst::Create(NewF, X1, "", CI), |
| Int0, "", CI); |
| auto Y2 = ExtractElementInst::Create(CallInst::Create(NewF, X2, "", CI), |
| Int0, "", CI); |
| |
| // Create the final float3 to be returned |
| auto Combine = |
| InsertElementInst::Create(UndefValue::get(Float3Ty), Y0, Int0, "", CI); |
| Combine = InsertElementInst::Create(Combine, Y1, Int1, "", CI); |
| Combine = InsertElementInst::Create(Combine, Y2, Int2, "", CI); |
| |
| return Combine; |
| }); |
| } |
| |
| bool ReplaceOpenCLBuiltinPass::replaceVloadaHalf3(Function &F) { |
| Module &M = *F.getParent(); |
| return replaceCallsWithValue(F, [&](CallInst *CI) { |
| // The index argument from vload_half. |
| auto Arg0 = CI->getOperand(0); |
| |
| // The pointer argument from vload_half. |
| auto Arg1 = CI->getOperand(1); |
| |
| auto IntTy = Type::getInt32Ty(M.getContext()); |
| auto Int2Ty = FixedVectorType::get(IntTy, 2); |
| auto Float2Ty = FixedVectorType::get(Type::getFloatTy(M.getContext()), 2); |
| auto NewPointerTy = |
| PointerType::get(Int2Ty, Arg1->getType()->getPointerAddressSpace()); |
| auto NewFType = FunctionType::get(Float2Ty, IntTy, false); |
| |
| // Cast the half* pointer to int2*. |
| // TODO(#816): remove after final transition. |
| Value *Cast = Arg1; |
| if (Arg1->getType() != NewPointerTy) { |
| Cast = CastInst::CreatePointerCast(Arg1, NewPointerTy, "", CI); |
| } |
| |
| // Index into the correct address of the casted pointer. |
| auto Index = GetElementPtrInst::Create(Int2Ty, Cast, Arg0, "", CI); |
| |
| // Load from the int2* we casted to. |
| auto Load = new LoadInst(Int2Ty, Index, "", CI); |
| |
| // Extract each element from the loaded int2. |
| auto X = |
| ExtractElementInst::Create(Load, ConstantInt::get(IntTy, 0), "", CI); |
| auto Y = |
| ExtractElementInst::Create(Load, ConstantInt::get(IntTy, 1), "", CI); |
| |
| // Our intrinsic to unpack a float2 from an int. |
| auto SPIRVIntrinsic = clspv::UnpackFunction(); |
| |
| auto NewF = M.getOrInsertFunction(SPIRVIntrinsic, NewFType); |
| |
| // Get the lower (x & y) components of our final float4. |
| auto Lo = CallInst::Create(NewF, X, "", CI); |
| |
| // Get the higher (z & w) components of our final float4. |
| auto Hi = CallInst::Create(NewF, Y, "", CI); |
| |
| Constant *ShuffleMask[3] = {ConstantInt::get(IntTy, 0), |
| ConstantInt::get(IntTy, 1), |
| ConstantInt::get(IntTy, 2)}; |
| |
| // Combine our two float2's into one float4. |
| return new ShuffleVectorInst(Lo, Hi, ConstantVector::get(ShuffleMask), "", |
| CI); |
| }); |
| } |
| |
| bool ReplaceOpenCLBuiltinPass::replaceVloadHalf4(Function &F) { |
| Module &M = *F.getParent(); |
| return replaceCallsWithValue(F, [&](CallInst *CI) { |
| // The index argument from vload_half. |
| auto Arg0 = CI->getOperand(0); |
| |
| // The pointer argument from vload_half. |
| auto Arg1 = CI->getOperand(1); |
| |
| auto IntTy = Type::getInt32Ty(M.getContext()); |
| auto Int2Ty = FixedVectorType::get(IntTy, 2); |
| auto Float2Ty = FixedVectorType::get(Type::getFloatTy(M.getContext()), 2); |
| auto NewPointerTy = |
| PointerType::get(Int2Ty, Arg1->getType()->getPointerAddressSpace()); |
| auto NewFType = FunctionType::get(Float2Ty, IntTy, false); |
| |
| // Cast the half* pointer to int2*. |
| // TODO(#816): remove after final transition. |
| Value *Cast = Arg1; |
| if (Arg1->getType() != NewPointerTy) { |
| Cast = CastInst::CreatePointerCast(Arg1, NewPointerTy, "", CI); |
| } |
| |
| // Index into the correct address of the casted pointer. |
| auto Index = GetElementPtrInst::Create(Int2Ty, Cast, Arg0, "", CI); |
| |
| // Load from the int2* we casted to. |
| auto Load = new LoadInst(Int2Ty, Index, "", CI); |
| |
| // Extract each element from the loaded int2. |
| auto X = |
| ExtractElementInst::Create(Load, ConstantInt::get(IntTy, 0), "", CI); |
| auto Y = |
| ExtractElementInst::Create(Load, ConstantInt::get(IntTy, 1), "", CI); |
| |
| // Our intrinsic to unpack a float2 from an int. |
| auto SPIRVIntrinsic = clspv::UnpackFunction(); |
| |
| auto NewF = M.getOrInsertFunction(SPIRVIntrinsic, NewFType); |
| |
| // Get the lower (x & y) components of our final float4. |
| auto Lo = CallInst::Create(NewF, X, "", CI); |
| |
| // Get the higher (z & w) components of our final float4. |
| auto Hi = CallInst::Create(NewF, Y, "", CI); |
| |
| Constant *ShuffleMask[4] = { |
| ConstantInt::get(IntTy, 0), ConstantInt::get(IntTy, 1), |
| ConstantInt::get(IntTy, 2), ConstantInt::get(IntTy, 3)}; |
| |
| // Combine our two float2's into one float4. |
| return new ShuffleVectorInst(Lo, Hi, ConstantVector::get(ShuffleMask), "", |
| CI); |
| }); |
| } |
| |
| bool ReplaceOpenCLBuiltinPass::replaceVloadHalf8(Function &F) { |
| Module &M = *F.getParent(); |
| return replaceCallsWithValue(F, [&](CallInst *CI) { |
| // The index argument from vload_half. |
| auto Arg0 = CI->getOperand(0); |
| |
| // The pointer argument from vload_half. |
| auto Arg1 = CI->getOperand(1); |
| |
| auto IntTy = Type::getInt32Ty(M.getContext()); |
| auto Int4Ty = FixedVectorType::get(IntTy, 4); |
| auto Float2Ty = FixedVectorType::get(Type::getFloatTy(M.getContext()), 2); |
| auto NewPointerTy = |
| PointerType::get(Int4Ty, Arg1->getType()->getPointerAddressSpace()); |
| auto NewFType = FunctionType::get(Float2Ty, IntTy, false); |
| |
| // Cast the half* pointer to int4*. |
| // TODO(#816): remove after final transition. |
| Value *Cast = Arg1; |
| if (Arg1->getType() != NewPointerTy) { |
| Cast = CastInst::CreatePointerCast(Arg1, NewPointerTy, "", CI); |
| } |
| |
| // Index into the correct address of the casted pointer. |
| auto Index = GetElementPtrInst::Create(Int4Ty, Cast, Arg0, "", CI); |
| |
| // Load from the int4* we casted to. |
| auto Load = new LoadInst(Int4Ty, Index, "", CI); |
| |
| // Extract each element from the loaded int4. |
| auto X1 = |
| ExtractElementInst::Create(Load, ConstantInt::get(IntTy, 0), "", CI); |
| auto X2 = |
| ExtractElementInst::Create(Load, ConstantInt::get(IntTy, 1), "", CI); |
| auto X3 = |
| ExtractElementInst::Create(Load, ConstantInt::get(IntTy, 2), "", CI); |
| auto X4 = |
| ExtractElementInst::Create(Load, ConstantInt::get(IntTy, 3), "", CI); |
| |
| // Our intrinsic to unpack a float2 from an int. |
| auto SPIRVIntrinsic = clspv::UnpackFunction(); |
| |
| auto NewF = M.getOrInsertFunction(SPIRVIntrinsic, NewFType); |
| |
| // Convert the 4 int into 4 float2 |
| auto Y1 = CallInst::Create(NewF, X1, "", CI); |
| auto Y2 = CallInst::Create(NewF, X2, "", CI); |
| auto Y3 = CallInst::Create(NewF, X3, "", CI); |
| auto Y4 = CallInst::Create(NewF, X4, "", CI); |
| |
| Constant *ShuffleMask4[4] = { |
| ConstantInt::get(IntTy, 0), ConstantInt::get(IntTy, 1), |
| ConstantInt::get(IntTy, 2), ConstantInt::get(IntTy, 3)}; |
| |
| // Combine our two float2's into one float4. |
| auto Z1 = new ShuffleVectorInst(Y1, Y2, ConstantVector::get(ShuffleMask4), |
| "", CI); |
| auto Z2 = new ShuffleVectorInst(Y3, Y4, ConstantVector::get(ShuffleMask4), |
| "", CI); |
| |
| Constant *ShuffleMask8[8] = { |
| ConstantInt::get(IntTy, 0), ConstantInt::get(IntTy, 1), |
| ConstantInt::get(IntTy, 2), ConstantInt::get(IntTy, 3), |
| ConstantInt::get(IntTy, 4), ConstantInt::get(IntTy, 5), |
| ConstantInt::get(IntTy, 6), ConstantInt::get(IntTy, 7)}; |
| |
| // Combine our two float4's into one float8. |
| return new ShuffleVectorInst(Z1, Z2, ConstantVector::get(ShuffleMask8), "", |
| CI); |
| }); |
| } |
| |
| bool ReplaceOpenCLBuiltinPass::replaceVloadHalf16(Function &F) { |
| Module &M = *F.getParent(); |
| return replaceCallsWithValue(F, [&](CallInst *CI) { |
| // The index argument from vload_half. |
| auto Arg0 = CI->getOperand(0); |
| |
| // The pointer argument from vload_half. |
| auto Arg1 = CI->getOperand(1); |
| |
| auto IntTy = Type::getInt32Ty(M.getContext()); |
| auto Int4Ty = FixedVectorType::get(IntTy, 4); |
| auto Float2Ty = FixedVectorType::get(Type::getFloatTy(M.getContext()), 2); |
| auto NewPointerTy = |
| PointerType::get(Int4Ty, Arg1->getType()->getPointerAddressSpace()); |
| auto NewFType = FunctionType::get(Float2Ty, IntTy, false); |
| |
| // Cast the half* pointer to int4*. |
| // TODO(#816): remove after final transition. |
| Value *Cast = Arg1; |
| if (Arg1->getType() != NewPointerTy) { |
| Cast = CastInst::CreatePointerCast(Arg1, NewPointerTy, "", CI); |
| } |
| |
| // Index into the correct address of the casted pointer. |
| auto Arg0x2 = BinaryOperator::Create(Instruction::Shl, Arg0, ConstantInt::get(IntTy, 1), "", CI); |
| auto Index1 = GetElementPtrInst::Create(Int4Ty, Cast, Arg0x2, "", CI); |
| auto Arg0x2p1 = BinaryOperator::Create(Instruction::Add, Arg0x2, ConstantInt::get(IntTy, 1), "", CI); |
| auto Index2 = GetElementPtrInst::Create(Int4Ty, Cast, Arg0x2p1, "", CI); |
| |
| // Load from the int4* we casted to. |
| auto Load1 = new LoadInst(Int4Ty, Index1, "", CI); |
| auto Load2 = new LoadInst(Int4Ty, Index2, "", CI); |
| |
| // Extract each element from the two loaded int4. |
| auto X1 = |
| ExtractElementInst::Create(Load1, ConstantInt::get(IntTy, 0), "", CI); |
| auto X2 = |
| ExtractElementInst::Create(Load1, ConstantInt::get(IntTy, 1), "", CI); |
| auto X3 = |
| ExtractElementInst::Create(Load1, ConstantInt::get(IntTy, 2), "", CI); |
| auto X4 = |
| ExtractElementInst::Create(Load1, ConstantInt::get(IntTy, 3), "", CI); |
| auto X5 = |
| ExtractElementInst::Create(Load2, ConstantInt::get(IntTy, 0), "", CI); |
| auto X6 = |
| ExtractElementInst::Create(Load2, ConstantInt::get(IntTy, 1), "", CI); |
| auto X7 = |
| ExtractElementInst::Create(Load2, ConstantInt::get(IntTy, 2), "", CI); |
| auto X8 = |
| ExtractElementInst::Create(Load2, ConstantInt::get(IntTy, 3), "", CI); |
| |
| // Our intrinsic to unpack a float2 from an int. |
| auto SPIRVIntrinsic = clspv::UnpackFunction(); |
| |
| auto NewF = M.getOrInsertFunction(SPIRVIntrinsic, NewFType); |
| |
| // Convert the eight int into float2 |
| auto Y1 = CallInst::Create(NewF, X1, "", CI); |
| auto Y2 = CallInst::Create(NewF, X2, "", CI); |
| auto Y3 = CallInst::Create(NewF, X3, "", CI); |
| auto Y4 = CallInst::Create(NewF, X4, "", CI); |
| auto Y5 = CallInst::Create(NewF, X5, "", CI); |
| auto Y6 = CallInst::Create(NewF, X6, "", CI); |
| auto Y7 = CallInst::Create(NewF, X7, "", CI); |
| auto Y8 = CallInst::Create(NewF, X8, "", CI); |
| |
| Constant *ShuffleMask4[4] = { |
| ConstantInt::get(IntTy, 0), ConstantInt::get(IntTy, 1), |
| ConstantInt::get(IntTy, 2), ConstantInt::get(IntTy, 3)}; |
| |
| // Combine our two float2's into one float4. |
| auto Z1 = new ShuffleVectorInst(Y1, Y2, ConstantVector::get(ShuffleMask4), |
| "", CI); |
| auto Z2 = new ShuffleVectorInst(Y3, Y4, ConstantVector::get(ShuffleMask4), |
| "", CI); |
| auto Z3 = new ShuffleVectorInst(Y5, Y6, ConstantVector::get(ShuffleMask4), |
| "", CI); |
| auto Z4 = new ShuffleVectorInst(Y7, Y8, ConstantVector::get(ShuffleMask4), |
| "", CI); |
| |
| Constant *ShuffleMask8[8] = { |
| ConstantInt::get(IntTy, 0), ConstantInt::get(IntTy, 1), |
| ConstantInt::get(IntTy, 2), ConstantInt::get(IntTy, 3), |
| ConstantInt::get(IntTy, 4), ConstantInt::get(IntTy, 5), |
| ConstantInt::get(IntTy, 6), ConstantInt::get(IntTy, 7)}; |
| |
| // Combine our two float4's into one float8. |
| auto Z5 = new ShuffleVectorInst(Z1, Z2, ConstantVector::get(ShuffleMask8), |
| "", CI); |
| auto Z6 = new ShuffleVectorInst(Z3, Z4, ConstantVector::get(ShuffleMask8), |
| "", CI); |
| Constant *ShuffleMask16[16] = { |
| ConstantInt::get(IntTy, 0), ConstantInt::get(IntTy, 1), |
| ConstantInt::get(IntTy, 2), ConstantInt::get(IntTy, 3), |
| ConstantInt::get(IntTy, 4), ConstantInt::get(IntTy, 5), |
| ConstantInt::get(IntTy, 6), ConstantInt::get(IntTy, 7), |
| ConstantInt::get(IntTy, 8), ConstantInt::get(IntTy, 9), |
| ConstantInt::get(IntTy, 10), ConstantInt::get(IntTy, 11), |
| ConstantInt::get(IntTy, 12), ConstantInt::get(IntTy, 13), |
| ConstantInt::get(IntTy, 14), ConstantInt::get(IntTy, 15)}; |
| // Combine our two float8's into one float16. |
| return new ShuffleVectorInst(Z5, Z6, ConstantVector::get(ShuffleMask16), "", |
| CI); |
| }); |
| } |
| |
| bool ReplaceOpenCLBuiltinPass::replaceClspvVloadaHalf2(Function &F) { |
| |
| // Replace __clspv_vloada_half2(uint Index, global uint* Ptr) with: |
| // |
| // %u = load i32 %ptr |
| // %result = call <2 x float> Unpack2xHalf(u) |
| Module &M = *F.getParent(); |
| return replaceCallsWithValue(F, [&](CallInst *CI) { |
| auto Index = CI->getOperand(0); |
| auto Ptr = CI->getOperand(1); |
| |
| auto IntTy = Type::getInt32Ty(M.getContext()); |
| auto Float2Ty = FixedVectorType::get(Type::getFloatTy(M.getContext()), 2); |
| auto NewFType = FunctionType::get(Float2Ty, IntTy, false); |
| |
| auto IndexedPtr = GetElementPtrInst::Create(IntTy, Ptr, Index, "", CI); |
| auto Load = new LoadInst(IntTy, IndexedPtr, "", CI); |
| |
| // Our intrinsic to unpack a float2 from an int. |
| auto SPIRVIntrinsic = clspv::UnpackFunction(); |
| |
| auto NewF = M.getOrInsertFunction(SPIRVIntrinsic, NewFType); |
| |
| // Get our final float2. |
| return CallInst::Create(NewF, Load, "", CI); |
| }); |
| } |
| |
| bool ReplaceOpenCLBuiltinPass::replaceClspvVloadaHalf4(Function &F) { |
| |
| // Replace __clspv_vloada_half4(uint Index, global uint2* Ptr) with: |
| // |
| // %u2 = load <2 x i32> %ptr |
| // %u2xy = extractelement %u2, 0 |
| // %u2zw = extractelement %u2, 1 |
| // %fxy = call <2 x float> Unpack2xHalf(uint) |
| // %fzw = call <2 x float> Unpack2xHalf(uint) |
| // %result = shufflevector %fxy %fzw <4 x float> <0, 1, 2, 3> |
| Module &M = *F.getParent(); |
| return replaceCallsWithValue(F, [&](CallInst *CI) { |
| auto Index = CI->getOperand(0); |
| auto Ptr = CI->getOperand(1); |
| |
| auto IntTy = Type::getInt32Ty(M.getContext()); |
| auto Int2Ty = FixedVectorType::get(IntTy, 2); |
| auto Float2Ty = FixedVectorType::get(Type::getFloatTy(M.getContext()), 2); |
| auto NewFType = FunctionType::get(Float2Ty, IntTy, false); |
| |
| auto IndexedPtr = GetElementPtrInst::Create(Int2Ty, Ptr, Index, "", CI); |
| auto Load = new LoadInst(Int2Ty, IndexedPtr, "", CI); |
| |
| // Extract each element from the loaded int2. |
| auto X = |
| ExtractElementInst::Create(Load, ConstantInt::get(IntTy, 0), "", CI); |
| auto Y = |
| ExtractElementInst::Create(Load, ConstantInt::get(IntTy, 1), "", CI); |
| |
| // Our intrinsic to unpack a float2 from an int. |
| auto SPIRVIntrinsic = clspv::UnpackFunction(); |
| |
| auto NewF = M.getOrInsertFunction(SPIRVIntrinsic, NewFType); |
| |
| // Get the lower (x & y) components of our final float4. |
| auto Lo = CallInst::Create(NewF, X, "", CI); |
| |
| // Get the higher (z & w) components of our final float4. |
| auto Hi = CallInst::Create(NewF, Y, "", CI); |
| |
| Constant *ShuffleMask[4] = { |
| ConstantInt::get(IntTy, 0), ConstantInt::get(IntTy, 1), |
| ConstantInt::get(IntTy, 2), ConstantInt::get(IntTy, 3)}; |
| |
| // Combine our two float2's into one float4. |
| return new ShuffleVectorInst(Lo, Hi, ConstantVector::get(ShuffleMask), "", |
| CI); |
| }); |
| } |
| |
| bool ReplaceOpenCLBuiltinPass::replaceVstoreHalf(Function &F, int vec_size, bool aligned) { |
| switch (vec_size) { |
| case 0: |
| return replaceVstoreHalf(F); |
| case 2: |
| return replaceVstoreHalf2(F); |
| case 3: |
| return aligned ? replaceVstoreaHalf3(F) : replaceVstoreHalf3(F); |
| case 4: |
| return replaceVstoreHalf4(F); |
| case 8: |
| return replaceVstoreHalf8(F); |
| case 16: |
| return replaceVstoreHalf16(F); |
| default: |
| llvm_unreachable("Unsupported vstore_half vector size"); |
| break; |
| } |
| return false; |
| } |
| |
| bool ReplaceOpenCLBuiltinPass::replaceVstoreHalf(Function &F) { |
| Module &M = *F.getParent(); |
| return replaceCallsWithValue(F, [&](CallInst *CI) { |
| // The value to store. |
| auto Arg0 = CI->getOperand(0); |
| |
| // The index argument from vstore_half. |
| auto Arg1 = CI->getOperand(1); |
| |
| // The pointer argument from vstore_half. |
| auto Arg2 = CI->getOperand(2); |
| |
| auto IntTy = Type::getInt32Ty(M.getContext()); |
| auto Float2Ty = FixedVectorType::get(Type::getFloatTy(M.getContext()), 2); |
| auto NewFType = FunctionType::get(IntTy, Float2Ty, false); |
| auto One = ConstantInt::get(IntTy, 1); |
| |
| // Our intrinsic to pack a float2 to an int. |
| auto SPIRVIntrinsic = clspv::PackFunction(); |
| |
| auto NewF = M.getOrInsertFunction(SPIRVIntrinsic, NewFType); |
| |
| // Insert our value into a float2 so that we can pack it. |
| auto TempVec = InsertElementInst::Create( |
| UndefValue::get(Float2Ty), Arg0, ConstantInt::get(IntTy, 0), "", CI); |
| |
| // Pack the float2 -> half2 (in an int). |
| auto X = CallInst::Create(NewF, TempVec, "", CI); |
| |
| bool supports_16bit_storage = true; |
| switch (Arg2->getType()->getPointerAddressSpace()) { |
| case clspv::AddressSpace::Global: |
| supports_16bit_storage = clspv::Option::Supports16BitStorageClass( |
| clspv::Option::StorageClass::kSSBO); |
| break; |
| case clspv::AddressSpace::Constant: |
| if (clspv::Option::ConstantArgsInUniformBuffer()) |
| supports_16bit_storage = clspv::Option::Supports16BitStorageClass( |
| clspv::Option::StorageClass::kUBO); |
| else |
| supports_16bit_storage = clspv::Option::Supports16BitStorageClass( |
| clspv::Option::StorageClass::kSSBO); |
| break; |
| default: |
| // Clspv will emit the Float16 capability if the half type is |
| // encountered. That capability covers private and local addressspaces. |
| break; |
| } |
| |
| Value *V = nullptr; |
| if (supports_16bit_storage) { |
| auto ShortTy = Type::getInt16Ty(M.getContext()); |
| auto ShortPointerTy = |
| PointerType::get(ShortTy, Arg2->getType()->getPointerAddressSpace()); |
| |
| // Truncate our i32 to an i16. |
| auto Trunc = CastInst::CreateTruncOrBitCast(X, ShortTy, "", CI); |
| |
| // Cast the half* pointer to short*. |
| // TODO(#816): remove after final transition. |
| Value *Cast = Arg2; |
| if (Arg2->getType() != ShortPointerTy) { |
| Cast = CastInst::CreatePointerCast(Arg2, ShortPointerTy, "", CI); |
| } |
| |
| // Index into the correct address of the casted pointer. |
| auto Index = GetElementPtrInst::Create(ShortTy, Cast, Arg1, "", CI); |
| |
| // Store to the int* we casted to. |
| V = new StoreInst(Trunc, Index, CI); |
| } else { |
| // We can only write to 32-bit aligned words. |
| // |
| // Assuming base is aligned to 32-bits, replace the equivalent of |
| // vstore_half(value, index, base) |
| // with: |
| // uint32_t* target_ptr = (uint32_t*)(base) + index / 2; |
| // uint32_t write_to_upper_half = index & 1u; |
| // uint32_t shift = write_to_upper_half << 4; |
| // |
| // // Pack the float value as a half number in bottom 16 bits |
| // // of an i32. |
| // uint32_t packed = spirv.pack.v2f16((float2)(value, undef)); |
| // |
| // uint32_t xor_value = (*target_ptr & (0xffff << shift)) |
| // ^ ((packed & 0xffff) << shift) |
| // // We only need relaxed consistency, but OpenCL 1.2 only has |
| // // sequentially consistent atomics. |
| // // TODO(dneto): Use relaxed consistency. |
| // atomic_xor(target_ptr, xor_value) |
| auto IntPointerTy = |
| PointerType::get(IntTy, Arg2->getType()->getPointerAddressSpace()); |
| |
| auto Four = ConstantInt::get(IntTy, 4); |
| auto FFFF = ConstantInt::get(IntTy, 0xffff); |
| |
| auto IndexIsOdd = |
| BinaryOperator::CreateAnd(Arg1, One, "index_is_odd_i32", CI); |
| // Compute index / 2 |
| auto IndexIntoI32 = |
| BinaryOperator::CreateLShr(Arg1, One, "index_into_i32", CI); |
| // TODO(#816): remove after final transition. |
| Value *BaseI32Ptr = Arg2; |
| if (Arg2->getType() != IntPointerTy) { |
| BaseI32Ptr = |
| CastInst::CreatePointerCast(Arg2, IntPointerTy, "base_i32_ptr", CI); |
| } |
| auto OutPtr = GetElementPtrInst::Create(IntTy, BaseI32Ptr, IndexIntoI32, |
| "base_i32_ptr", CI); |
| auto CurrentValue = new LoadInst(IntTy, OutPtr, "current_value", CI); |
| auto Shift = BinaryOperator::CreateShl(IndexIsOdd, Four, "shift", CI); |
| auto MaskBitsToWrite = |
| BinaryOperator::CreateShl(FFFF, Shift, "mask_bits_to_write", CI); |
| auto MaskedCurrent = BinaryOperator::CreateAnd( |
| MaskBitsToWrite, CurrentValue, "masked_current", CI); |
| |
| auto XLowerBits = |
| BinaryOperator::CreateAnd(X, FFFF, "lower_bits_of_packed", CI); |
| auto NewBitsToWrite = |
| BinaryOperator::CreateShl(XLowerBits, Shift, "new_bits_to_write", CI); |
| auto ValueToXor = BinaryOperator::CreateXor(MaskedCurrent, NewBitsToWrite, |
| "value_to_xor", CI); |
| |
| // Generate the call to atomi_xor. |
| SmallVector<Type *, 5> ParamTypes; |
| // The pointer type. |
| ParamTypes.push_back(IntPointerTy); |
| // The Types for memory scope, semantics, and value. |
| ParamTypes.push_back(IntTy); |
| ParamTypes.push_back(IntTy); |
| ParamTypes.push_back(IntTy); |
| auto NewFType = FunctionType::get(IntTy, ParamTypes, false); |
| auto NewF = M.getOrInsertFunction("spirv.atomic_xor", NewFType); |
| |
| const auto ConstantScopeDevice = |
| ConstantInt::get(IntTy, spv::ScopeDevice); |
| // Assume the pointee is in OpenCL global (SPIR-V Uniform) or local |
| // (SPIR-V Workgroup). |
| const auto AddrSpaceSemanticsBits = |
| IntPointerTy->getPointerAddressSpace() == 1 |
| ? spv::MemorySemanticsUniformMemoryMask |
| : spv::MemorySemanticsWorkgroupMemoryMask; |
| |
| // We're using relaxed consistency here. |
| const auto ConstantMemorySemantics = |
| ConstantInt::get(IntTy, spv::MemorySemanticsUniformMemoryMask | |
| AddrSpaceSemanticsBits); |
| |
| SmallVector<Value *, 5> Params{OutPtr, ConstantScopeDevice, |
| ConstantMemorySemantics, ValueToXor}; |
| CallInst::Create(NewF, Params, "store_halfword_xor_trick", CI); |
| |
| // Return a Nop so the old Call is removed |
| Function *donothing = Intrinsic::getDeclaration(&M, Intrinsic::donothing); |
| V = CallInst::Create(donothing, {}, "", CI); |
| } |
| |
| return V; |
| }); |
| } |
| |
| bool ReplaceOpenCLBuiltinPass::replaceVstoreHalf2(Function &F) { |
| Module &M = *F.getParent(); |
| return replaceCallsWithValue(F, [&](CallInst *CI) { |
| // The value to store. |
| auto Arg0 = CI->getOperand(0); |
| |
| // The index argument from vstore_half. |
| auto Arg1 = CI->getOperand(1); |
| |
| // The pointer argument from vstore_half. |
| auto Arg2 = CI->getOperand(2); |
| |
| auto IntTy = Type::getInt32Ty(M.getContext()); |
| auto Float2Ty = FixedVectorType::get(Type::getFloatTy(M.getContext()), 2); |
| auto NewPointerTy = |
| PointerType::get(IntTy, Arg2->getType()->getPointerAddressSpace()); |
| auto NewFType = FunctionType::get(IntTy, Float2Ty, false); |
| |
| // Our intrinsic to pack a float2 to an int. |
| auto SPIRVIntrinsic = clspv::PackFunction(); |
| |
| auto NewF = M.getOrInsertFunction(SPIRVIntrinsic, NewFType); |
| |
| // Turn the packed x & y into the final packing. |
| auto X = CallInst::Create(NewF, Arg0, "", CI); |
| |
| // Cast the half* pointer to int*. |
| // TODO(#816): remove after final transition. |
| Value *Cast = Arg2; |
| if (Arg2->getType() != NewPointerTy) { |
| Cast = CastInst::CreatePointerCast(Arg2, NewPointerTy, "", CI); |
| } |
| |
| // Index into the correct address of the casted pointer. |
| auto Index = GetElementPtrInst::Create(IntTy, Cast, Arg1, "", CI); |
| |
| // Store to the int* we casted to. |
| return new StoreInst(X, Index, CI); |
| }); |
| } |
| |
| bool ReplaceOpenCLBuiltinPass::replaceVstoreHalf3(Function &F) { |
| Module &M = *F.getParent(); |
| return replaceCallsWithValue(F, [&](CallInst *CI) { |
| // The value to store. |
| auto Arg0 = CI->getOperand(0); |
| |
| // The index argument from vstore_half. |
| auto Arg1 = CI->getOperand(1); |
| |
| // The pointer argument from vstore_half. |
| auto Arg2 = CI->getOperand(2); |
| |
| auto IntTy = Type::getInt32Ty(M.getContext()); |
| auto ShortTy = Type::getInt16Ty(M.getContext()); |
| auto FloatTy = Type::getFloatTy(M.getContext()); |
| auto Float2Ty = FixedVectorType::get(FloatTy, 2); |
| auto NewPointerTy = |
| PointerType::get(ShortTy, Arg2->getType()->getPointerAddressSpace()); |
| auto NewFType = FunctionType::get(IntTy, Float2Ty, false); |
| |
| auto Int0 = ConstantInt::get(IntTy, 0); |
| auto Int1 = ConstantInt::get(IntTy, 1); |
| auto Int2 = ConstantInt::get(IntTy, 2); |
| |
| auto X0 = InsertElementInst::Create( |
| UndefValue::get(Float2Ty), |
| ExtractElementInst::Create(Arg0, Int0, "", CI), Int0, "", CI); |
| auto X1 = InsertElementInst::Create( |
| UndefValue::get(Float2Ty), |
| ExtractElementInst::Create(Arg0, Int1, "", CI), Int0, "", CI); |
| auto X2 = InsertElementInst::Create( |
| UndefValue::get(Float2Ty), |
| ExtractElementInst::Create(Arg0, Int2, "", CI), Int0, "", CI); |
| |
| // Our intrinsic to pack a float2 to an int. |
| auto SPIRVIntrinsic = clspv::PackFunction(); |
| |
| auto NewF = M.getOrInsertFunction(SPIRVIntrinsic, NewFType); |
| |
| // Convert float2 into int and trunc to short to keep only the meaningful |
| // part of it |
| auto Y0 = |
| CastInst::Create(Instruction::Trunc, CallInst::Create(NewF, X0, "", CI), |
| ShortTy, "", CI); |
| auto Y1 = |
| CastInst::Create(Instruction::Trunc, CallInst::Create(NewF, X1, "", CI), |
| ShortTy, "", CI); |
| auto Y2 = |
| CastInst::Create(Instruction::Trunc, CallInst::Create(NewF, X2, "", CI), |
| ShortTy, "", CI); |
| |
| // Cast the half* pointer to short*. |
| // TODO(#816): remove after final transition. |
| Value *Cast = Arg2; |
| if (Arg2->getType() != NewPointerTy) { |
| Cast = CastInst::CreatePointerCast(Arg2, NewPointerTy, "", CI); |
| } |
| |
| auto Index0 = BinaryOperator::Create( |
| Instruction::Add, |
| BinaryOperator::Create(Instruction::Shl, Arg1, Int1, "", CI), Arg1, "", |
| CI); |
| auto GEP0 = GetElementPtrInst::Create(ShortTy, Cast, Index0, "", CI); |
| new StoreInst(Y0, GEP0, CI); |
| |
| auto Index1 = |
| BinaryOperator::Create(Instruction::Add, Index0, Int1, "", CI); |
| auto GEP1 = GetElementPtrInst::Create(ShortTy, Cast, Index1, "", CI); |
| new StoreInst(Y1, GEP1, CI); |
| |
| auto Index2 = |
| BinaryOperator::Create(Instruction::Add, Index1, Int1, "", CI); |
| auto GEP2 = GetElementPtrInst::Create(ShortTy, Cast, Index2, "", CI); |
| return new StoreInst(Y2, GEP2, CI); |
| }); |
| } |
| |
| bool ReplaceOpenCLBuiltinPass::replaceVstoreaHalf3(Function &F) { |
| Module &M = *F.getParent(); |
| return replaceCallsWithValue(F, [&](CallInst *CI) { |
| // The value to store. |
| auto Arg0 = CI->getOperand(0); |
| |
| // The index argument from vstore_half. |
| auto Arg1 = CI->getOperand(1); |
| |
| // The pointer argument from vstore_half. |
| auto Arg2 = CI->getOperand(2); |
| |
| auto IntTy = Type::getInt32Ty(M.getContext()); |
| auto ShortTy = Type::getInt16Ty(M.getContext()); |
| auto FloatTy = Type::getFloatTy(M.getContext()); |
| auto Float2Ty = FixedVectorType::get(FloatTy, 2); |
| auto NewPointerTy = |
| PointerType::get(ShortTy, Arg2->getType()->getPointerAddressSpace()); |
| auto NewFType = FunctionType::get(IntTy, Float2Ty, false); |
| |
| auto Int0 = ConstantInt::get(IntTy, 0); |
| auto Int1 = ConstantInt::get(IntTy, 1); |
| auto Int2 = ConstantInt::get(IntTy, 2); |
| |
| auto X0 = InsertElementInst::Create( |
| UndefValue::get(Float2Ty), |
| ExtractElementInst::Create(Arg0, Int0, "", CI), Int0, "", CI); |
| auto X1 = InsertElementInst::Create( |
| UndefValue::get(Float2Ty), |
| ExtractElementInst::Create(Arg0, Int1, "", CI), Int0, "", CI); |
| auto X2 = InsertElementInst::Create( |
| UndefValue::get(Float2Ty), |
| ExtractElementInst::Create(Arg0, Int2, "", CI), Int0, "", CI); |
| |
| // Our intrinsic to pack a float2 to an int. |
| auto SPIRVIntrinsic = clspv::PackFunction(); |
| |
| auto NewF = M.getOrInsertFunction(SPIRVIntrinsic, NewFType); |
| |
| // Convert float2 into int and trunc to short to keep only the meaningful |
| // part of it |
| auto Y0 = |
| CastInst::Create(Instruction::Trunc, CallInst::Create(NewF, X0, "", CI), |
| ShortTy, "", CI); |
| auto Y1 = |
| CastInst::Create(Instruction::Trunc, CallInst::Create(NewF, X1, "", CI), |
| ShortTy, "", CI); |
| auto Y2 = |
| CastInst::Create(Instruction::Trunc, CallInst::Create(NewF, X2, "", CI), |
| ShortTy, "", CI); |
| |
| // Cast the half* pointer to short*. |
| // TODO(#816): remove after final transition. |
| Value *Cast = Arg2; |
| if (Arg2->getType() != NewPointerTy) { |
| Cast = CastInst::CreatePointerCast(Arg2, NewPointerTy, "", CI); |
| } |
| |
| auto Index0 = BinaryOperator::Create(Instruction::Shl, Arg1, Int2, "", CI); |
| auto GEP0 = GetElementPtrInst::Create(ShortTy, Cast, Index0, "", CI); |
| new StoreInst(Y0, GEP0, CI); |
| |
| auto Index1 = |
| BinaryOperator::Create(Instruction::Add, Index0, Int1, "", CI); |
| auto GEP1 = GetElementPtrInst::Create(ShortTy, Cast, Index1, "", CI); |
| new StoreInst(Y1, GEP1, CI); |
| |
| auto Index2 = |
| BinaryOperator::Create(Instruction::Add, Index1, Int1, "", CI); |
| auto GEP2 = GetElementPtrInst::Create(ShortTy, Cast, Index2, "", CI); |
| return new StoreInst(Y2, GEP2, CI); |
| }); |
| } |
| |
| bool ReplaceOpenCLBuiltinPass::replaceVstoreHalf4(Function &F) { |
| Module &M = *F.getParent(); |
| return replaceCallsWithValue(F, [&](CallInst *CI) { |
| // The value to store. |
| auto Arg0 = CI->getOperand(0); |
| |
| // The index argument from vstore_half. |
| auto Arg1 = CI->getOperand(1); |
| |
| // The pointer argument from vstore_half. |
| auto Arg2 = CI->getOperand(2); |
| |
| auto IntTy = Type::getInt32Ty(M.getContext()); |
| auto Int2Ty = FixedVectorType::get(IntTy, 2); |
| auto Float2Ty = FixedVectorType::get(Type::getFloatTy(M.getContext()), 2); |
| auto NewPointerTy = |
| PointerType::get(Int2Ty, Arg2->getType()->getPointerAddressSpace()); |
| auto NewFType = FunctionType::get(IntTy, Float2Ty, false); |
| |
| Constant *LoShuffleMask[2] = {ConstantInt::get(IntTy, 0), |
| ConstantInt::get(IntTy, 1)}; |
| |
| // Extract out the x & y components of our to store value. |
| auto Lo = new ShuffleVectorInst(Arg0, UndefValue::get(Arg0->getType()), |
| ConstantVector::get(LoShuffleMask), "", CI); |
| |
| Constant *HiShuffleMask[2] = {ConstantInt::get(IntTy, 2), |
| ConstantInt::get(IntTy, 3)}; |
| |
| // Extract out the z & w components of our to store value. |
| auto Hi = new ShuffleVectorInst(Arg0, UndefValue::get(Arg0->getType()), |
| ConstantVector::get(HiShuffleMask), "", CI); |
| |
| // Our intrinsic to pack a float2 to an int. |
| auto SPIRVIntrinsic = clspv::PackFunction(); |
| |
| auto NewF = M.getOrInsertFunction(SPIRVIntrinsic, NewFType); |
| |
| // Turn the packed x & y into the final component of our int2. |
| auto X = CallInst::Create(NewF, Lo, "", CI); |
| |
| // Turn the packed z & w into the final component of our int2. |
| auto Y = CallInst::Create(NewF, Hi, "", CI); |
| |
| auto Combine = InsertElementInst::Create( |
| UndefValue::get(Int2Ty), X, ConstantInt::get(IntTy, 0), "", CI); |
| Combine = InsertElementInst::Create(Combine, Y, ConstantInt::get(IntTy, 1), |
| "", CI); |
| |
| // Cast the half* pointer to int2*. |
| // TODO(#816): remove after final transition. |
| Value *Cast = Arg2; |
| if (Arg2->getType() != NewPointerTy) { |
| Cast = CastInst::CreatePointerCast(Arg2, NewPointerTy, "", CI); |
| } |
| |
| // Index into the correct address of the casted pointer. |
| auto Index = GetElementPtrInst::Create(Int2Ty, Cast, Arg1, "", CI); |
| |
| // Store to the int2* we casted to. |
| return new StoreInst(Combine, Index, CI); |
| }); |
| } |
| |
| bool ReplaceOpenCLBuiltinPass::replaceVstoreHalf8(Function &F) { |
| Module &M = *F.getParent(); |
| return replaceCallsWithValue(F, [&](CallInst *CI) { |
| // The value to store. |
| auto Arg0 = CI->getOperand(0); |
| |
| // The index argument from vstore_half. |
| auto Arg1 = CI->getOperand(1); |
| |
| // The pointer argument from vstore_half. |
| auto Arg2 = CI->getOperand(2); |
| |
| auto IntTy = Type::getInt32Ty(M.getContext()); |
| auto Int4Ty = FixedVectorType::get(IntTy, 4); |
| auto Float2Ty = FixedVectorType::get(Type::getFloatTy(M.getContext()), 2); |
| auto NewPointerTy = |
| PointerType::get(Int4Ty, Arg2->getType()->getPointerAddressSpace()); |
| auto NewFType = FunctionType::get(IntTy, Float2Ty, false); |
| |
| Constant *ShuffleMask01[2] = {ConstantInt::get(IntTy, 0), |
| ConstantInt::get(IntTy, 1)}; |
| auto X01 = |
| new ShuffleVectorInst(Arg0, UndefValue::get(Arg0->getType()), |
| ConstantVector::get(ShuffleMask01), "", CI); |
| Constant *ShuffleMask23[2] = {ConstantInt::get(IntTy, 2), |
| ConstantInt::get(IntTy, 3)}; |
| auto X23 = |
| new ShuffleVectorInst(Arg0, UndefValue::get(Arg0->getType()), |
| ConstantVector::get(ShuffleMask23), "", CI); |
| Constant *ShuffleMask45[2] = {ConstantInt::get(IntTy, 4), |
| ConstantInt::get(IntTy, 5)}; |
| auto X45 = |
| new ShuffleVectorInst(Arg0, UndefValue::get(Arg0->getType()), |
| ConstantVector::get(ShuffleMask45), "", CI); |
| Constant *ShuffleMask67[2] = {ConstantInt::get(IntTy, 6), |
| ConstantInt::get(IntTy, 7)}; |
| auto X67 = |
| new ShuffleVectorInst(Arg0, UndefValue::get(Arg0->getType()), |
| ConstantVector::get(ShuffleMask67), "", CI); |
| |
| // Our intrinsic to pack a float2 to an int. |
| auto SPIRVIntrinsic = clspv::PackFunction(); |
| |
| auto NewF = M.getOrInsertFunction(SPIRVIntrinsic, NewFType); |
| |
| auto Y01 = CallInst::Create(NewF, X01, "", CI); |
| auto Y23 = CallInst::Create(NewF, X23, "", CI); |
| auto Y45 = CallInst::Create(NewF, X45, "", CI); |
| auto Y67 = CallInst::Create(NewF, X67, "", CI); |
| |
| auto Combine = InsertElementInst::Create( |
| UndefValue::get(Int4Ty), Y01, ConstantInt::get(IntTy, 0), "", CI); |
| Combine = InsertElementInst::Create(Combine, Y23, |
| ConstantInt::get(IntTy, 1), "", CI); |
| Combine = InsertElementInst::Create(Combine, Y45, |
| ConstantInt::get(IntTy, 2), "", CI); |
| Combine = InsertElementInst::Create(Combine, Y67, |
| ConstantInt::get(IntTy, 3), "", CI); |
| |
| // Cast the half* pointer to int4*. |
| // TODO(#816): remove after final transition. |
| Value *Cast = Arg2; |
| if (Arg2->getType() != NewPointerTy) { |
| Cast = CastInst::CreatePointerCast(Arg2, NewPointerTy, "", CI); |
| } |
| |
| // Index into the correct address of the casted pointer. |
| auto Index = GetElementPtrInst::Create(Int4Ty, Cast, Arg1, "", CI); |
| |
| // Store to the int4* we casted to. |
| return new StoreInst(Combine, Index, CI); |
| }); |
| } |
| |
| bool ReplaceOpenCLBuiltinPass::replaceVstoreHalf16(Function &F) { |
| Module &M = *F.getParent(); |
| return replaceCallsWithValue(F, [&](CallInst *CI) { |
| // The value to store. |
| auto Arg0 = CI->getOperand(0); |
| |
| // The index argument from vstore_half. |
| auto Arg1 = CI->getOperand(1); |
| |
| // The pointer argument from vstore_half. |
| auto Arg2 = CI->getOperand(2); |
| |
| auto IntTy = Type::getInt32Ty(M.getContext()); |
| auto Int4Ty = FixedVectorType::get(IntTy, 4); |
| auto Float2Ty = FixedVectorType::get(Type::getFloatTy(M.getContext()), 2); |
| auto NewPointerTy = |
| PointerType::get(Int4Ty, Arg2->getType()->getPointerAddressSpace()); |
| auto NewFType = FunctionType::get(IntTy, Float2Ty, false); |
| |
| Constant *ShuffleMask0[2] = {ConstantInt::get(IntTy, 0), |
| ConstantInt::get(IntTy, 1)}; |
| auto X0 = new ShuffleVectorInst(Arg0, UndefValue::get(Arg0->getType()), |
| ConstantVector::get(ShuffleMask0), "", CI); |
| Constant *ShuffleMask1[2] = {ConstantInt::get(IntTy, 2), |
| ConstantInt::get(IntTy, 3)}; |
| auto X1 = new ShuffleVectorInst(Arg0, UndefValue::get(Arg0->getType()), |
| ConstantVector::get(ShuffleMask1), "", CI); |
| Constant *ShuffleMask2[2] = {ConstantInt::get(IntTy, 4), |
| ConstantInt::get(IntTy, 5)}; |
| auto X2 = new ShuffleVectorInst(Arg0, UndefValue::get(Arg0->getType()), |
| ConstantVector::get(ShuffleMask2), "", CI); |
| Constant *ShuffleMask3[2] = {ConstantInt::get(IntTy, 6), |
| ConstantInt::get(IntTy, 7)}; |
| auto X3 = new ShuffleVectorInst(Arg0, UndefValue::get(Arg0->getType()), |
| ConstantVector::get(ShuffleMask3), "", CI); |
| Constant *ShuffleMask4[2] = {ConstantInt::get(IntTy, 8), |
| ConstantInt::get(IntTy, 9)}; |
| auto X4 = new ShuffleVectorInst(Arg0, UndefValue::get(Arg0->getType()), |
| ConstantVector::get(ShuffleMask4), "", CI); |
| Constant *ShuffleMask5[2] = {ConstantInt::get(IntTy, 10), |
| ConstantInt::get(IntTy, 11)}; |
| auto X5 = new ShuffleVectorInst(Arg0, UndefValue::get(Arg0->getType()), |
| ConstantVector::get(ShuffleMask5), "", CI); |
| Constant *ShuffleMask6[2] = {ConstantInt::get(IntTy, 12), |
| ConstantInt::get(IntTy, 13)}; |
| auto X6 = new ShuffleVectorInst(Arg0, UndefValue::get(Arg0->getType()), |
| ConstantVector::get(ShuffleMask6), "", CI); |
| Constant *ShuffleMask7[2] = {ConstantInt::get(IntTy, 14), |
| ConstantInt::get(IntTy, 15)}; |
| auto X7 = new ShuffleVectorInst(Arg0, UndefValue::get(Arg0->getType()), |
| ConstantVector::get(ShuffleMask7), "", CI); |
| |
| // Our intrinsic to pack a float2 to an int. |
| auto SPIRVIntrinsic = clspv::PackFunction(); |
| |
| auto NewF = M.getOrInsertFunction(SPIRVIntrinsic, NewFType); |
| |
| auto Y0 = CallInst::Create(NewF, X0, "", CI); |
| auto Y1 = CallInst::Create(NewF, X1, "", CI); |
| auto Y2 = CallInst::Create(NewF, X2, "", CI); |
| auto Y3 = CallInst::Create(NewF, X3, "", CI); |
| auto Y4 = CallInst::Create(NewF, X4, "", CI); |
| auto Y5 = CallInst::Create(NewF, X5, "", CI); |
| auto Y6 = CallInst::Create(NewF, X6, "", CI); |
| auto Y7 = CallInst::Create(NewF, X7, "", CI); |
| |
| auto Combine1 = InsertElementInst::Create( |
| UndefValue::get(Int4Ty), Y0, ConstantInt::get(IntTy, 0), "", CI); |
| Combine1 = InsertElementInst::Create(Combine1, Y1, |
| ConstantInt::get(IntTy, 1), "", CI); |
| Combine1 = InsertElementInst::Create(Combine1, Y2, |
| ConstantInt::get(IntTy, 2), "", CI); |
| Combine1 = InsertElementInst::Create(Combine1, Y3, |
| ConstantInt::get(IntTy, 3), "", CI); |
| |
| auto Combine2 = InsertElementInst::Create( |
| UndefValue::get(Int4Ty), Y4, ConstantInt::get(IntTy, 0), "", CI); |
| Combine2 = InsertElementInst::Create(Combine2, Y5, |
| ConstantInt::get(IntTy, 1), "", CI); |
| Combine2 = InsertElementInst::Create(Combine2, Y6, |
| ConstantInt::get(IntTy, 2), "", CI); |
| Combine2 = InsertElementInst::Create(Combine2, Y7, |
| ConstantInt::get(IntTy, 3), "", CI); |
| |
| // Cast the half* pointer to int4*. |
| // TODO(#816): remove after final transition. |
| Value *Cast = Arg2; |
| if (Arg2->getType() != NewPointerTy) { |
| Cast = CastInst::CreatePointerCast(Arg2, NewPointerTy, "", CI); |
| } |
| |
| // Index into the correct address of the casted pointer. |
| auto Arg1x2 = BinaryOperator::Create(Instruction::Shl, Arg1, |
| ConstantInt::get(IntTy, 1), "", CI); |
| auto Index1 = GetElementPtrInst::Create(Int4Ty, Cast, Arg1x2, "", CI); |
| |
| // Store to the int4* we casted to. |
| new StoreInst(Combine1, Index1, CI); |
| |
| // Index into the correct address of the casted pointer. |
| auto Arg1Plus1 = BinaryOperator::Create(Instruction::Add, Arg1x2, |
| ConstantInt::get(IntTy, 1), "", CI); |
| auto Index2 = GetElementPtrInst::Create(Int4Ty, Cast, Arg1Plus1, "", CI); |
| |
| // Store to the int4* we casted to. |
| return new StoreInst(Combine2, Index2, CI); |
| }); |
| } |
| |
| bool ReplaceOpenCLBuiltinPass::replaceHalfReadImage(Function &F) { |
| // convert half to float |
| Module &M = *F.getParent(); |
| return replaceCallsWithValue(F, [&](CallInst *CI) { |
| SmallVector<Type *, 3> types; |
| SmallVector<Value *, 3> args; |
| for (size_t i = 0; i < CI->arg_size(); ++i) { |
| types.push_back(CI->getArgOperand(i)->getType()); |
| args.push_back(CI->getArgOperand(i)); |
| } |
| |
| auto NewFType = |
| FunctionType::get(FixedVectorType::get(Type::getFloatTy(M.getContext()), |
| cast<VectorType>(CI->getType()) |
| ->getElementCount() |
| .getKnownMinValue()), |
| types, false); |
| |
| std::string NewFName = |
| Builtins::GetMangledFunctionName("read_imagef", NewFType); |
| |
| auto NewF = M.getOrInsertFunction(NewFName, NewFType); |
| |
| auto NewCI = CallInst::Create(NewF, args, "", CI); |
| |
| // Convert to the half type. |
| return CastInst::CreateFPCast(NewCI, CI->getType(), "", CI); |
| }); |
| } |
| |
| bool ReplaceOpenCLBuiltinPass::replaceHalfWriteImage(Function &F) { |
| // convert half to float |
| Module &M = *F.getParent(); |
| return replaceCallsWithValue(F, [&](CallInst *CI) { |
| SmallVector<Type *, 3> types(3); |
| SmallVector<Value *, 3> args(3); |
| |
| // Image |
| types[0] = CI->getArgOperand(0)->getType(); |
| args[0] = CI->getArgOperand(0); |
| |
| // Coord |
| types[1] = CI->getArgOperand(1)->getType(); |
| args[1] = CI->getArgOperand(1); |
| |
| // Data |
| types[2] = |
| FixedVectorType::get(Type::getFloatTy(M.getContext()), |
| cast<VectorType>(CI->getArgOperand(2)->getType()) |
| ->getElementCount() |
| .getKnownMinValue()); |
| |
| auto NewFType = |
| FunctionType::get(Type::getVoidTy(M.getContext()), types, false); |
| |
| std::string NewFName = |
| Builtins::GetMangledFunctionName("write_imagef", NewFType); |
| |
| auto NewF = M.getOrInsertFunction(NewFName, NewFType); |
| |
| // Convert data to the float type. |
| auto Cast = CastInst::CreateFPCast(CI->getArgOperand(2), types[2], "", CI); |
| args[2] = Cast; |
| |
| return CallInst::Create(NewF, args, "", CI); |
| }); |
| } |
| |
| bool ReplaceOpenCLBuiltinPass::replaceSampledReadImageWithIntCoords( |
| Function &F) { |
| // convert read_image with int coords to float coords |
| Module &M = *F.getParent(); |
| return replaceCallsWithValue(F, [&](CallInst *CI) { |
| // The image. |
| auto Arg0 = CI->getOperand(0); |
| |
| // The sampler. |
| auto Arg1 = CI->getOperand(1); |
| |
| // The coordinate (integer type that we can't handle). |
| auto Arg2 = CI->getOperand(2); |
| |
| auto *image_ty = |
| cast<StructType>(InferType(Arg0, M.getContext(), &InferredTypeCache)); |
| uint32_t dim = clspv::ImageNumDimensions(image_ty); |
| uint32_t components = dim + (clspv::IsArrayImageType(image_ty) ? 1 : 0); |
| Type *float_ty = nullptr; |
| if (components == 1) { |
| float_ty = Type::getFloatTy(M.getContext()); |
| } else { |
| float_ty = FixedVectorType::get(Type::getFloatTy(M.getContext()), |
| cast<VectorType>(Arg2->getType()) |
| ->getElementCount() |
| .getKnownMinValue()); |
| } |
| |
| auto NewFType = FunctionType::get( |
| CI->getType(), {Arg0->getType(), Arg1->getType(), float_ty}, false); |
| |
| std::string NewFName = F.getName().str(); |
| NewFName[NewFName.length() - 1] = 'f'; |
| |
| auto NewF = M.getOrInsertFunction(NewFName, NewFType); |
| |
| auto Cast = CastInst::Create(Instruction::SIToFP, Arg2, float_ty, "", CI); |
| |
| return CallInst::Create(NewF, {Arg0, Arg1, Cast}, "", CI); |
| }); |
| } |
| |
| bool ReplaceOpenCLBuiltinPass::replaceAtomics(Function &F, spv::Op Op) { |
| return replaceCallsWithValue(F, [&](CallInst *CI) { |
| auto IntTy = Type::getInt32Ty(F.getContext()); |
| |
| // We need to map the OpenCL constants to the SPIR-V equivalents. |
| const auto ConstantScopeDevice = ConstantInt::get(IntTy, spv::ScopeDevice); |
| const auto ConstantMemorySemantics = ConstantInt::get( |
| IntTy, spv::MemorySemanticsUniformMemoryMask | |
| spv::MemorySemanticsSequentiallyConsistentMask); |
| |
| SmallVector<Value *, 5> Params; |
| |
| // The pointer. |
| Params.push_back(CI->getArgOperand(0)); |
| |
| // The memory scope. |
| Params.push_back(ConstantScopeDevice); |
| |
| // The memory semantics. |
| Params.push_back(ConstantMemorySemantics); |
| |
| if (2 < CI->arg_size()) { |
| // The unequal memory semantics. |
| Params.push_back(ConstantMemorySemantics); |
| |
| // The value. |
| Params.push_back(CI->getArgOperand(2)); |
| |
| // The comparator. |
| Params.push_back(CI->getArgOperand(1)); |
| } else if (1 < CI->arg_size()) { |
| // The value. |
| Params.push_back(CI->getArgOperand(1)); |
| } |
| |
| return clspv::InsertSPIRVOp(CI, Op, {}, CI->getType(), Params); |
| }); |
| } |
| |
| bool ReplaceOpenCLBuiltinPass::replaceAtomics(Function &F, |
| llvm::AtomicRMWInst::BinOp Op) { |
| return replaceCallsWithValue(F, [&](CallInst *CI) { |
| auto align = F.getParent()->getDataLayout().getABITypeAlign( |
| CI->getArgOperand(1)->getType()); |
| return new AtomicRMWInst(Op, CI->getArgOperand(0), CI->getArgOperand(1), |
| align, AtomicOrdering::SequentiallyConsistent, |
| SyncScope::System, CI); |
| }); |
| } |
| |
| bool ReplaceOpenCLBuiltinPass::replaceCross(Function &F) { |
| Module &M = *F.getParent(); |
| return replaceCallsWithValue(F, [&](CallInst *CI) { |
| auto IntTy = Type::getInt32Ty(M.getContext()); |
| auto FloatTy = Type::getFloatTy(M.getContext()); |
| |
| Constant *DownShuffleMask[3] = {ConstantInt::get(IntTy, 0), |
| ConstantInt::get(IntTy, 1), |
| ConstantInt::get(IntTy, 2)}; |
| |
| Constant *UpShuffleMask[4] = { |
| ConstantInt::get(IntTy, 0), ConstantInt::get(IntTy, 1), |
| ConstantInt::get(IntTy, 2), ConstantInt::get(IntTy, 3)}; |
| |
| Constant *FloatVec[3] = {ConstantFP::get(FloatTy, 0.0f), |
| UndefValue::get(FloatTy), |
| UndefValue::get(FloatTy)}; |
| |
| auto Vec4Ty = CI->getArgOperand(0)->getType(); |
| auto Arg0 = |
| new ShuffleVectorInst(CI->getArgOperand(0), UndefValue::get(Vec4Ty), |
| ConstantVector::get(DownShuffleMask), "", CI); |
| auto Arg1 = |
| new ShuffleVectorInst(CI->getArgOperand(1), UndefValue::get(Vec4Ty), |
| ConstantVector::get(DownShuffleMask), "", CI); |
| auto Vec3Ty = Arg0->getType(); |
| |
| auto NewFType = FunctionType::get(Vec3Ty, {Vec3Ty, Vec3Ty}, false); |
| auto NewFName = Builtins::GetMangledFunctionName("cross", NewFType); |
| |
| auto Cross3Func = M.getOrInsertFunction(NewFName, NewFType); |
| |
| auto DownResult = CallInst::Create(Cross3Func, {Arg0, Arg1}, "", CI); |
| |
| return new ShuffleVectorInst(DownResult, ConstantVector::get(FloatVec), |
| ConstantVector::get(UpShuffleMask), "", CI); |
| }); |
| } |
| |
| bool ReplaceOpenCLBuiltinPass::replaceFract(Function &F, int vec_size) { |
| // OpenCL's float result = fract(float x, float* ptr) |
| // |
| // In the LLVM domain: |
| // |
| // %floor_result = call spir_func float @floor(float %x) |
| // store float %floor_result, float * %ptr |
| // %fract_intermediate = call spir_func float @clspv.fract(float %x) |
| // %result = call spir_func float |
| // @fmin(float %fract_intermediate, float 0x1.fffffep-1f) |
| // |
| // Becomes in the SPIR-V domain, where translations of floor, fmin, |
| // and clspv.fract occur in the SPIR-V generator pass: |
| // |
| // %glsl_ext = OpExtInstImport "GLSL.std.450" |
| // %just_under_1 = OpConstant %float 0x1.fffffep-1f |
| // ... |
| // %floor_result = OpExtInst %float %glsl_ext Floor %x |
| // OpStore %ptr %floor_result |
| // %fract_intermediate = OpExtInst %float %glsl_ext Fract %x |
| // %fract_result = OpExtInst %float |
| // %glsl_ext Nmin %fract_intermediate %just_under_1 |
| |
| using std::string; |
| |
| // Mapping from the fract builtin to the floor, fmin, and clspv.fract builtins |
| // we need. The clspv.fract builtin is the same as GLSL.std.450 Fract. |
| |
| Module &M = *F.getParent(); |
| return replaceCallsWithValue(F, [&](CallInst *CI) { |
| // This is either float or a float vector. All the float-like |
| // types are this type. |
| auto result_ty = F.getReturnType(); |
| |
| std::string fmin_name = Builtins::GetMangledFunctionName("fmin", result_ty); |
| Function *fmin_fn = M.getFunction(fmin_name); |
| if (!fmin_fn) { |
| // Make the fmin function. |
| FunctionType *fn_ty = |
| FunctionType::get(result_ty, {result_ty, result_ty}, false); |
| fmin_fn = |
| cast<Function>(M.getOrInsertFunction(fmin_name, fn_ty).getCallee()); |
| fmin_fn->addFnAttr(Attribute::ReadNone); |
| fmin_fn->setCallingConv(CallingConv::SPIR_FUNC); |
| } |
| |
| std::string floor_name = |
| Builtins::GetMangledFunctionName("floor", result_ty); |
| Function *floor_fn = M.getFunction(floor_name); |
| if (!floor_fn) { |
| // Make the floor function. |
| FunctionType *fn_ty = FunctionType::get(result_ty, {result_ty}, false); |
| floor_fn = |
| cast<Function>(M.getOrInsertFunction(floor_name, fn_ty).getCallee()); |
| floor_fn->addFnAttr(Attribute::ReadNone); |
| floor_fn->setCallingConv(CallingConv::SPIR_FUNC); |
| } |
| |
| std::string clspv_fract_name = |
| Builtins::GetMangledFunctionName("clspv.fract", result_ty); |
| Function *clspv_fract_fn = M.getFunction(clspv_fract_name); |
| if (!clspv_fract_fn) { |
| // Make the clspv_fract function. |
| FunctionType *fn_ty = FunctionType::get(result_ty, {result_ty}, false); |
| clspv_fract_fn = cast<Function>( |
| M.getOrInsertFunction(clspv_fract_name, fn_ty).getCallee()); |
| clspv_fract_fn->addFnAttr(Attribute::ReadNone); |
| clspv_fract_fn->setCallingConv(CallingConv::SPIR_FUNC); |
| } |
| |
| // Number of significant significand bits, whether represented or not. |
| unsigned num_significand_bits; |
| switch (result_ty->getScalarType()->getTypeID()) { |
| case Type::HalfTyID: |
| num_significand_bits = 11; |
| break; |
| case Type::FloatTyID: |
| num_significand_bits = 24; |
| break; |
| case Type::DoubleTyID: |
| num_significand_bits = 53; |
| break; |
| default: |
| llvm_unreachable("Unhandled float type when processing fract builtin"); |
| break; |
| } |
| // Beware that the disassembler displays this value as |
| // OpConstant %float 1 |
| // which is not quite right. |
| const double kJustUnderOneScalar = |
| ldexp(double((1 << num_significand_bits) - 1), -num_significand_bits); |
| |
| Constant *just_under_one = |
| ConstantFP::get(result_ty->getScalarType(), kJustUnderOneScalar); |
| if (result_ty->isVectorTy()) { |
| just_under_one = ConstantVector::getSplat( |
| cast<VectorType>(result_ty)->getElementCount(), just_under_one); |
| } |
| |
| IRBuilder<> Builder(CI); |
| |
| auto arg = CI->getArgOperand(0); |
| auto ptr = CI->getArgOperand(1); |
| |
| // Compute floor result and store it. |
| auto floor = Builder.CreateCall(floor_fn, {arg}); |
| Builder.CreateStore(floor, ptr); |
| |
| auto fract_intermediate = Builder.CreateCall(clspv_fract_fn, arg); |
| auto fract_result = |
| Builder.CreateCall(fmin_fn, {fract_intermediate, just_under_one}); |
| |
| return fract_result; |
| }); |
| } |
| |
| bool ReplaceOpenCLBuiltinPass::replaceHadd(Function &F, bool is_signed, |
| Instruction::BinaryOps join_opcode) { |
| return replaceCallsWithValue(F, [is_signed, join_opcode](CallInst *Call) { |
| // a_shr = a >> 1 |
| // b_shr = b >> 1 |
| // add1 = a_shr + b_shr |
| // join = a |join_opcode| b |
| // and = join & 1 |
| // add = add1 + and |
| const auto a = Call->getArgOperand(0); |
| const auto b = Call->getArgOperand(1); |
| IRBuilder<> builder(Call); |
| Value *a_shift, *b_shift; |
| if (is_signed) { |
| a_shift = builder.CreateAShr(a, 1); |
| b_shift = builder.CreateAShr(b, 1); |
| } else { |
| a_shift = builder.CreateLShr(a, 1); |
| b_shift = builder.CreateLShr(b, 1); |
| } |
| auto add = builder.CreateAdd(a_shift, b_shift); |
| auto join = BinaryOperator::Create(join_opcode, a, b, "", Call); |
| auto constant_one = ConstantInt::get(a->getType(), 1); |
| auto and_bit = builder.CreateAnd(join, constant_one); |
| return builder.CreateAdd(add, and_bit); |
| }); |
| } |
| |
| bool ReplaceOpenCLBuiltinPass::replaceAddSubSat(Function &F, bool is_signed, |
| bool is_add) { |
| return replaceCallsWithValue(F, [&F, this, is_signed, |
| is_add](CallInst *Call) { |
| auto intrinsic_type = |
| is_signed ? (is_add ? Intrinsic::sadd_sat : Intrinsic::ssub_sat) |
| : (is_add ? Intrinsic::uadd_sat : Intrinsic::usub_sat); |
| auto a = Call->getArgOperand(0); |
| auto b = Call->getArgOperand(1); |
| auto intrinsic = Intrinsic::getDeclaration(F.getParent(), intrinsic_type, |
| Call->getType()); |
| return CallInst::Create(intrinsic->getFunctionType(), intrinsic, {a, b}, "", |
| Call); |
| }); |
| } |
| |
| bool ReplaceOpenCLBuiltinPass::replaceAtomicLoad(Function &F) { |
| return replaceCallsWithValue(F, [](CallInst *Call) { |
| auto pointer = Call->getArgOperand(0); |
| // Clang emits an address space cast to the generic address space. Skip the |
| // cast and use the input directly. |
| if (auto cast = dyn_cast<AddrSpaceCastOperator>(pointer)) { |
| pointer = cast->getPointerOperand(); |
| } |
| Value *order_arg = Call->arg_size() > 1 ? Call->getArgOperand(1) : nullptr; |
| Value *scope_arg = Call->arg_size() > 2 ? Call->getArgOperand(2) : nullptr; |
| bool is_global = pointer->getType()->getPointerAddressSpace() == |
| clspv::AddressSpace::Global; |
| auto order = MemoryOrderSemantics(order_arg, is_global, Call, |
| spv::MemorySemanticsAcquireMask); |
| auto scope = MemoryScope(scope_arg, is_global, Call); |
| return InsertSPIRVOp(Call, spv::OpAtomicLoad, {Attribute::Convergent}, |
| Call->getType(), {pointer, scope, order}); |
| }); |
| } |
| |
| bool ReplaceOpenCLBuiltinPass::replaceExplicitAtomics( |
| Function &F, spv::Op Op, spv::MemorySemanticsMask semantics) { |
| return replaceCallsWithValue(F, [Op, semantics](CallInst *Call) { |
| auto pointer = Call->getArgOperand(0); |
| // Clang emits an address space cast to the generic address space. Skip the |
| // cast and use the input directly. |
| if (auto cast = dyn_cast<AddrSpaceCastOperator>(pointer)) { |
| pointer = cast->getPointerOperand(); |
| } |
| Value *value = Call->getArgOperand(1); |
| Value *order_arg = Call->arg_size() > 2 ? Call->getArgOperand(2) : nullptr; |
| Value *scope_arg = Call->arg_size() > 3 ? Call->getArgOperand(3) : nullptr; |
| bool is_global = pointer->getType()->getPointerAddressSpace() == |
| clspv::AddressSpace::Global; |
| auto scope = MemoryScope(scope_arg, is_global, Call); |
| auto order = MemoryOrderSemantics(order_arg, is_global, Call, semantics); |
| return InsertSPIRVOp(Call, Op, {Attribute::Convergent}, Call->getType(), |
| {pointer, scope, order, value}); |
| }); |
| } |
| |
| bool ReplaceOpenCLBuiltinPass::replaceAtomicCompareExchange(Function &F) { |
| return replaceCallsWithValue(F, [](CallInst *Call) { |
| auto pointer = Call->getArgOperand(0); |
| // Clang emits an address space cast to the generic address space. Skip the |
| // cast and use the input directly. |
| if (auto cast = dyn_cast<AddrSpaceCastOperator>(pointer)) { |
| pointer = cast->getPointerOperand(); |
| } |
| auto expected = Call->getArgOperand(1); |
| if (auto cast = dyn_cast<AddrSpaceCastOperator>(expected)) { |
| expected = cast->getPointerOperand(); |
| } |
| auto value = Call->getArgOperand(2); |
| bool is_global = pointer->getType()->getPointerAddressSpace() == |
| clspv::AddressSpace::Global; |
| Value *success_arg = |
| Call->arg_size() > 3 ? Call->getArgOperand(3) : nullptr; |
| Value *failure_arg = |
| Call->arg_size() > 4 ? Call->getArgOperand(4) : nullptr; |
| Value *scope_arg = Call->arg_size() > 5 ? Call->getArgOperand(5) : nullptr; |
| auto scope = MemoryScope(scope_arg, is_global, Call); |
| auto success = MemoryOrderSemantics(success_arg, is_global, Call, |
| spv::MemorySemanticsAcquireReleaseMask); |
| auto failure = MemoryOrderSemantics(failure_arg, is_global, Call, |
| spv::MemorySemanticsAcquireMask); |
| |
| // If the value pointed to by |expected| equals the value pointed to by |
| // |pointer|, |value| is written into |pointer|, otherwise the value in |
| // |pointer| is written into |expected|. In order to avoid extra stores, |
| // the basic block with the original atomic is split and the store is |
| // performed in the |then| block. The condition is the inversion of the |
| // comparison result. |
| IRBuilder<> builder(Call); |
| auto load = builder.CreateLoad(value->getType(), expected); |
| auto cmp_xchg = InsertSPIRVOp( |
| Call, spv::OpAtomicCompareExchange, {Attribute::Convergent}, |
| value->getType(), {pointer, scope, success, failure, value, load}); |
| auto cmp = builder.CreateICmpEQ(cmp_xchg, load); |
| auto not_cmp = builder.CreateNot(cmp); |
| auto then_branch = SplitBlockAndInsertIfThen(not_cmp, Call, false); |
| builder.SetInsertPoint(then_branch); |
| builder.CreateStore(cmp_xchg, expected); |
| return cmp; |
| }); |
| } |
| |
| bool ReplaceOpenCLBuiltinPass::replaceCountZeroes(Function &F, bool leading) { |
| if (!isa<IntegerType>(F.getReturnType()->getScalarType())) |
| return false; |
| |
| auto bitwidth = F.getReturnType()->getScalarSizeInBits(); |
| if (bitwidth > 64) |
| return false; |
| |
| return replaceCallsWithValue(F, [&F, leading](CallInst *Call) { |
| Function *intrinsic = Intrinsic::getDeclaration( |
| F.getParent(), leading ? Intrinsic::ctlz : Intrinsic::cttz, |
| Call->getType()); |
| const auto c_false = ConstantInt::getFalse(Call->getContext()); |
| return CallInst::Create(intrinsic->getFunctionType(), intrinsic, |
| {Call->getArgOperand(0), c_false}, "", Call); |
| }); |
| } |
| |
| bool ReplaceOpenCLBuiltinPass::replaceMadSat(Function &F, bool is_signed) { |
| return replaceCallsWithValue(F, [&F, is_signed, this](CallInst *Call) { |
| const auto ty = Call->getType(); |
| const auto a = Call->getArgOperand(0); |
| const auto b = Call->getArgOperand(1); |
| const auto c = Call->getArgOperand(2); |
| IRBuilder<> builder(Call); |
| if (is_signed) { |
| unsigned bitwidth = Call->getType()->getScalarSizeInBits(); |
| if (bitwidth < 32) { |
| // mul = sext(a) * sext(b) |
| // add = mul + sext(c) |
| // res = clamp(add, MIN, MAX) |
| unsigned extended_width = bitwidth << 1; |
| if (clspv::Option::HackClampWidth() && extended_width < 32) { |
| extended_width = 32; |
| } |
| Type *extended_ty = IntegerType::get(F.getContext(), extended_width); |
| if (auto vec_ty = dyn_cast<VectorType>(ty)) { |
| extended_ty = VectorType::get(extended_ty, vec_ty->getElementCount()); |
| } |
| auto a_sext = builder.CreateSExt(a, extended_ty); |
| auto b_sext = builder.CreateSExt(b, extended_ty); |
| auto c_sext = builder.CreateSExt(c, extended_ty); |
| // Extended the size so no overflows occur. |
| auto mul = builder.CreateMul(a_sext, b_sext, "", true, true); |
| auto add = builder.CreateAdd(mul, c_sext, "", true, true); |
| auto func_ty = FunctionType::get( |
| extended_ty, {extended_ty, extended_ty, extended_ty}, false); |
| // Don't use function type because we need signed parameters. |
| std::string clamp_name = Builtins::GetMangledFunctionName("clamp"); |
| // The clamp values are the signed min and max of the original bitwidth |
| // sign extended to the extended bitwidth. |
| Constant *min = ConstantInt::get( |
| Call->getContext(), |
| APInt::getSignedMinValue(bitwidth).sext(extended_width)); |
| Constant *max = ConstantInt::get( |
| Call->getContext(), |
| APInt::getSignedMaxValue(bitwidth).sext(extended_width)); |
| if (auto vec_ty = dyn_cast<VectorType>(ty)) { |
| min = ConstantVector::getSplat(vec_ty->getElementCount(), min); |
| max = ConstantVector::getSplat(vec_ty->getElementCount(), max); |
| unsigned vec_width = vec_ty->getElementCount().getKnownMinValue(); |
| if (extended_width == 32) |
| clamp_name += "Dv" + std::to_string(vec_width) + "_iS_S_"; |
| else |
| clamp_name += "Dv" + std::to_string(vec_width) + "_sS_S_"; |
| } else { |
| if (extended_width == 32) |
| clamp_name += "iii"; |
| else |
| clamp_name += "sss"; |
| } |
| auto callee = F.getParent()->getOrInsertFunction(clamp_name, func_ty); |
| auto clamp = builder.CreateCall(callee, {add, min, max}); |
| return builder.CreateTrunc(clamp, ty); |
| } else { |
| // Compute |
| // {hi, lo} = smul_extended(a, b) |
| // add = lo + c |
| auto mul_ext = InsertOpMulExtended(Call, a, b, true); |
| |
| auto mul_lo = builder.CreateExtractValue(mul_ext, {0}); |
| auto mul_hi = builder.CreateExtractValue(mul_ext, {1}); |
| auto add = builder.CreateAdd(mul_lo, c); |
| |
| // Constants for use in the calculation. |
| Constant *min = ConstantInt::get(Call->getContext(), |
| APInt::getSignedMinValue(bitwidth)); |
| Constant *max = ConstantInt::get(Call->getContext(), |
| APInt::getSignedMaxValue(bitwidth)); |
| Constant *max_plus_1 = ConstantInt::get( |
| Call->getContext(), |
| APInt::getSignedMaxValue(bitwidth) + APInt(bitwidth, 1)); |
| if (auto vec_ty = dyn_cast<VectorType>(ty)) { |
| min = ConstantVector::getSplat(vec_ty->getElementCount(), min); |
| max = ConstantVector::getSplat(vec_ty->getElementCount(), max); |
| max_plus_1 = |
| ConstantVector::getSplat(vec_ty->getElementCount(), max_plus_1); |
| } |
| |
| auto a_xor_b = builder.CreateXor(a, b); |
| auto same_sign = |
| builder.CreateICmpSGT(a_xor_b, Constant::getAllOnesValue(ty)); |
| auto different_sign = builder.CreateNot(same_sign); |
| auto hi_eq_0 = builder.CreateICmpEQ(mul_hi, Constant::getNullValue(ty)); |
| auto hi_ne_0 = builder.CreateNot(hi_eq_0); |
| auto lo_ge_max = builder.CreateICmpUGE(mul_lo, max); |
| auto c_gt_0 = builder.CreateICmpSGT(c, Constant::getNullValue(ty)); |
| auto c_lt_0 = builder.CreateICmpSLT(c, Constant::getNullValue(ty)); |
| auto add_gt_max = builder.CreateICmpUGT(add, max); |
| auto hi_eq_m1 = |
| builder.CreateICmpEQ(mul_hi, Constant::getAllOnesValue(ty)); |
| auto hi_ne_m1 = builder.CreateNot(hi_eq_m1); |
| auto lo_le_max_plus_1 = builder.CreateICmpULE(mul_lo, max_plus_1); |
| auto max_sub_lo = builder.CreateSub(max, mul_lo); |
| auto c_lt_max_sub_lo = builder.CreateICmpULT(c, max_sub_lo); |
| |
| // Equivalent to: |
| // if (((x < 0) == (y < 0)) && mul_hi != 0) |
| // return MAX |
| // if (mul_hi == 0 && mul_lo >= MAX && (z > 0 || add > MAX)) |
| // return MAX |
| // if (((x < 0) != (y < 0)) && mul_hi != -1) |
| // return MIN |
| // if (hi == -1 && mul_lo <= (MAX + 1) && (z < 0 || z < (MAX - mul_lo)) |
| // return MIN |
| // return add |
| auto max_clamp_1 = builder.CreateAnd(same_sign, hi_ne_0); |
| auto max_clamp_2 = builder.CreateOr(c_gt_0, add_gt_max); |
| auto tmp = builder.CreateAnd(hi_eq_0, lo_ge_max); |
| max_clamp_2 = builder.CreateAnd(tmp, max_clamp_2); |
| auto max_clamp = builder.CreateOr(max_clamp_1, max_clamp_2); |
| auto min_clamp_1 = builder.CreateAnd(different_sign, hi_ne_m1); |
| auto min_clamp_2 = builder.CreateOr(c_lt_0, c_lt_max_sub_lo); |
| tmp = builder.CreateAnd(hi_eq_m1, lo_le_max_plus_1); |
| min_clamp_2 = builder.CreateAnd(tmp, min_clamp_2); |
| auto min_clamp = builder.CreateOr(min_clamp_1, min_clamp_2); |
| auto sel = builder.CreateSelect(min_clamp, min, add); |
| return builder.CreateSelect(max_clamp, max, sel); |
| } |
| } else { |
| // {lo, hi} = mul_extended(a, b) |
| // {add, carry} = add_carry(lo, c) |
| // cmp = (mul_hi | carry) == 0 |
| // mad_sat = cmp ? add : MAX |
| auto struct_ty = GetPairStruct(ty); |
| auto mul_ext = InsertOpMulExtended(Call, a, b, false); |
| auto mul_lo = builder.CreateExtractValue(mul_ext, {0}); |
| auto mul_hi = builder.CreateExtractValue(mul_ext, {1}); |
| auto add_carry = |
| InsertSPIRVOp(Call, spv::OpIAddCarry, {Attribute::ReadNone}, |
| struct_ty, {mul_lo, c}); |
| auto add = builder.CreateExtractValue(add_carry, {0}); |
| auto carry = builder.CreateExtractValue(add_carry, {1}); |
| auto or_value = builder.CreateOr(mul_hi, carry); |
| auto cmp = builder.CreateICmpEQ(or_value, Constant::getNullValue(ty)); |
| return builder.CreateSelect(cmp, add, Constant::getAllOnesValue(ty)); |
| } |
| }); |
| } |
| |
| bool ReplaceOpenCLBuiltinPass::replaceOrdered(Function &F, bool is_ordered) { |
| if (!isa<IntegerType>(F.getReturnType()->getScalarType())) |
| return false; |
| |
| if (F.getFunctionType()->getNumParams() != 2) |
| return false; |
| |
| if (F.getFunctionType()->getParamType(0) != |
| F.getFunctionType()->getParamType(1)) { |
| return false; |
| } |
| |
| switch (F.getFunctionType()->getParamType(0)->getScalarType()->getTypeID()) { |
| case Type::FloatTyID: |
| case Type::HalfTyID: |
| case Type::DoubleTyID: |
| break; |
| default: |
| return false; |
| } |
| |
| // Scalar versions all return an int, while vector versions return a vector |
| // of an equally sized integer types (e.g. short, int or long). |
| if (isa<VectorType>(F.getReturnType())) { |
| if (F.getReturnType()->getScalarSizeInBits() != |
| F.getFunctionType()->getParamType(0)->getScalarSizeInBits()) { |
| return false; |
| } |
| } else { |
| if (F.getReturnType()->getScalarSizeInBits() != 32) |
| return false; |
| } |
| |
| return replaceCallsWithValue(F, [is_ordered](CallInst *Call) { |
| // Replace with a floating point [un]ordered comparison followed by an |
| // extension. |
| auto x = Call->getArgOperand(0); |
| auto y = Call->getArgOperand(1); |
| IRBuilder<> builder(Call); |
| Value *tmp = nullptr; |
| if (is_ordered) { |
| // This leads to a slight inefficiency in the SPIR-V that is easy for |
| // drivers to optimize where the SPIR-V for the comparison and the |
| // extension could be fused to drop the inversion of the OpIsNan. |
| tmp = builder.CreateFCmpORD(x, y); |
| } else { |
| tmp = builder.CreateFCmpUNO(x, y); |
| } |
| // OpenCL CTS requires that vector versions use sign extension, but scalar |
| // versions use zero extension. |
| if (isa<VectorType>(Call->getType())) |
| return builder.CreateSExt(tmp, Call->getType()); |
| return builder.CreateZExt(tmp, Call->getType()); |
| }); |
| } |
| |
| bool ReplaceOpenCLBuiltinPass::replaceIsNormal(Function &F) { |
| return replaceCallsWithValue(F, [](CallInst *Call) { |
| auto ty = Call->getType(); |
| auto x = Call->getArgOperand(0); |
| unsigned width = x->getType()->getScalarSizeInBits(); |
| Type *int_ty = IntegerType::get(Call->getContext(), width); |
| uint64_t abs_mask = 0x7fffffff; |
| uint64_t exp_mask = 0x7f800000; |
| uint64_t min_mask = 0x00800000; |
| if (width == 16) { |
| abs_mask = 0x7fff; |
| exp_mask = 0x7c00; |
| min_mask = 0x0400; |
| } else if (width == 64) { |
| abs_mask = 0x7fffffffffffffff; |
| exp_mask = 0x7ff0000000000000; |
| min_mask = 0x0010000000000000; |
| } |
| Constant *abs_const = ConstantInt::get(int_ty, APInt(width, abs_mask)); |
| Constant *exp_const = ConstantInt::get(int_ty, APInt(width, exp_mask)); |
| Constant *min_const = ConstantInt::get(int_ty, APInt(width, min_mask)); |
| if (auto vec_ty = dyn_cast<VectorType>(ty)) { |
| int_ty = VectorType::get(int_ty, vec_ty->getElementCount()); |
| abs_const = |
| ConstantVector::getSplat(vec_ty->getElementCount(), abs_const); |
| exp_const = |
| ConstantVector::getSplat(vec_ty->getElementCount(), exp_const); |
| min_const = |
| ConstantVector::getSplat(vec_ty->getElementCount(), min_const); |
| } |
| // Drop the sign bit and then check that the number is between |
| // (exclusive) the min and max exponent values for the bit width. |
| IRBuilder<> builder(Call); |
| auto bitcast = builder.CreateBitCast(x, int_ty); |
| auto abs = builder.CreateAnd(bitcast, abs_const); |
| auto lt = builder.CreateICmpULT(abs, exp_const); |
| auto ge = builder.CreateICmpUGE(abs, min_const); |
| auto tmp = builder.CreateAnd(lt, ge); |
| // OpenCL CTS requires that vector versions use sign extension, but scalar |
| // versions use zero extension. |
| if (isa<VectorType>(ty)) |
| return builder.CreateSExt(tmp, ty); |
| return builder.CreateZExt(tmp, ty); |
| }); |
| } |
| |
| bool ReplaceOpenCLBuiltinPass::replaceFDim(Function &F) { |
| return replaceCallsWithValue(F, [](CallInst *Call) { |
| const auto x = Call->getArgOperand(0); |
| const auto y = Call->getArgOperand(1); |
| IRBuilder<> builder(Call); |
| auto sub = builder.CreateFSub(x, y); |
| auto cmp = builder.CreateFCmpUGT(x, y); |
| return builder.CreateSelect(cmp, sub, |
| Constant::getNullValue(Call->getType())); |
| }); |
| } |
| |
| bool ReplaceOpenCLBuiltinPass::replaceRound(Function &F) { |
| return replaceCallsWithValue(F, [&F](CallInst *Call) { |
| const auto x = Call->getArgOperand(0); |
| const double c_halfway = 0.5; |
| auto halfway = ConstantFP::get(Call->getType(), c_halfway); |
| |
| const auto clspv_fract_name = |
| Builtins::GetMangledFunctionName("clspv.fract", F.getFunctionType()); |
| Function *clspv_fract_fn = F.getParent()->getFunction(clspv_fract_name); |
| if (!clspv_fract_fn) { |
| // Make the clspv_fract function. |
| clspv_fract_fn = cast<Function>( |
| F.getParent() |
| ->getOrInsertFunction(clspv_fract_name, F.getFunctionType()) |
| .getCallee()); |
| clspv_fract_fn->addFnAttr(Attribute::ReadNone); |
| clspv_fract_fn->setCallingConv(CallingConv::SPIR_FUNC); |
| } |
| |
| auto ceil = Intrinsic::getDeclaration(F.getParent(), Intrinsic::ceil, |
| Call->getType()); |
| auto floor = Intrinsic::getDeclaration(F.getParent(), Intrinsic::floor, |
| Call->getType()); |
| auto fabs = Intrinsic::getDeclaration(F.getParent(), Intrinsic::fabs, |
| Call->getType()); |
| auto copysign = Intrinsic::getDeclaration( |
| F.getParent(), Intrinsic::copysign, {Call->getType(), Call->getType()}); |
| |
| IRBuilder<> builder(Call); |
| |
| auto fabs_call = builder.CreateCall(F.getFunctionType(), fabs, {x}); |
| auto ceil_call = builder.CreateCall(F.getFunctionType(), ceil, {fabs_call}); |
| auto floor_call = |
| builder.CreateCall(F.getFunctionType(), floor, {fabs_call}); |
| auto fract_call = |
| builder.CreateCall(F.getFunctionType(), clspv_fract_fn, {fabs_call}); |
| auto cmp = builder.CreateFCmpOGE(fract_call, halfway); |
| auto sel = builder.CreateSelect(cmp, ceil_call, floor_call); |
| return builder.CreateCall(copysign->getFunctionType(), copysign, {sel, x}); |
| }); |
| } |
| |
| bool ReplaceOpenCLBuiltinPass::replaceTrigPi(Function &F, |
| Builtins::BuiltinType type) { |
| return replaceCallsWithValue(F, [&F, type](CallInst *Call) -> Value * { |
| const auto x = Call->getArgOperand(0); |
| const double k_pi = 0x1.921fb54442d18p+1; |
| Constant *pi = ConstantFP::get(x->getType(), k_pi); |
| |
| IRBuilder<> builder(Call); |
| auto mul = builder.CreateFMul(x, pi); |
| switch (type) { |
| case Builtins::kSinpi: { |
| auto func = Intrinsic::getDeclaration(F.getParent(), Intrinsic::sin, |
| x->getType()); |
| return builder.CreateCall(func->getFunctionType(), func, {mul}); |
| } |
| case Builtins::kCospi: { |
| auto func = Intrinsic::getDeclaration(F.getParent(), Intrinsic::cos, |
| x->getType()); |
| return builder.CreateCall(func->getFunctionType(), func, {mul}); |
| } |
| case Builtins::kTanpi: { |
| auto sin = Intrinsic::getDeclaration(F.getParent(), Intrinsic::sin, |
| x->getType()); |
| auto sin_call = builder.CreateCall(sin->getFunctionType(), sin, {mul}); |
| auto cos = Intrinsic::getDeclaration(F.getParent(), Intrinsic::cos, |
| x->getType()); |
| auto cos_call = builder.CreateCall(cos->getFunctionType(), cos, {mul}); |
| return builder.CreateFDiv(sin_call, cos_call); |
| } |
| default: |
| llvm_unreachable("unexpected builtin"); |
| break; |
| } |
| return nullptr; |
| }); |
| } |
| |
| bool ReplaceOpenCLBuiltinPass::replaceSincos(Function &F) { |
| return replaceCallsWithValue(F, [&F](CallInst *Call) { |
| auto sin_func = Intrinsic::getDeclaration(F.getParent(), Intrinsic::sin, |
| Call->getType()); |
| auto cos_func = Intrinsic::getDeclaration(F.getParent(), Intrinsic::cos, |
| Call->getType()); |
| |
| IRBuilder<> builder(Call); |
| auto sin = builder.CreateCall(sin_func->getFunctionType(), sin_func, |
| {Call->getArgOperand(0)}); |
| auto cos = builder.CreateCall(cos_func->getFunctionType(), cos_func, |
| {Call->getArgOperand(0)}); |
| builder.CreateStore(cos, Call->getArgOperand(1)); |
| return sin; |
| }); |
| } |
| |
| bool ReplaceOpenCLBuiltinPass::replaceExpm1(Function &F) { |
| return replaceCallsWithValue(F, [&F](CallInst *Call) { |
| auto exp_func = Intrinsic::getDeclaration(F.getParent(), Intrinsic::exp, |
| Call->getType()); |
| |
| IRBuilder<> builder(Call); |
| auto exp = builder.CreateCall(exp_func->getFunctionType(), exp_func, |
| {Call->getArgOperand(0)}); |
| return builder.CreateFSub(exp, ConstantFP::get(Call->getType(), 1.0)); |
| }); |
| } |
| |
| bool ReplaceOpenCLBuiltinPass::replacePown(Function &F) { |
| return replaceCallsWithValue(F, [&F](CallInst *Call) { |
| auto pow_func = Intrinsic::getDeclaration(F.getParent(), Intrinsic::pow, |
| Call->getType()); |
| |
| IRBuilder<> builder(Call); |
| auto conv = builder.CreateSIToFP(Call->getArgOperand(1), Call->getType()); |
| return builder.CreateCall(pow_func->getFunctionType(), pow_func, |
| {Call->getArgOperand(0), conv}); |
| }); |
| } |