Douglas Anderson | 518003b | 2017-12-21 10:12:40 -0800 | [diff] [blame^] | 1 | #!/usr/bin/env python2 |
| 2 | |
| 3 | # Copyright 2017 The Chromium OS Authors. All rights reserved. |
| 4 | # Use of this source code is governed by a BSD-style license that can be |
| 5 | # found in the LICENSE file. |
| 6 | |
| 7 | """Mad Memory Muncher - Dynamically Organizing Non-Uniprocess Tester. |
| 8 | |
| 9 | This program attempts to exercise low memory situations by munching memory |
| 10 | in a coordinated way across several processes. |
| 11 | |
| 12 | Specifically, there is a single controlling process that keeps communication |
| 13 | channels open to subprocesses so that all processes can start and stop various |
| 14 | parts of the test at the same time. This tester also has various clever ways |
| 15 | to access memory. |
| 16 | |
| 17 | The main modes are: munch (allocate memory), taste (re-read already |
| 18 | allocated memory), and chew (modify already allocated memory). Whenever |
| 19 | possible we try to put some sane values into memory so that any memory |
| 20 | compression will behave in a real-world-like way. |
| 21 | |
| 22 | At the moment this program always makes sure that all of the child |
| 23 | sub-processes are set to have an OOM score of 1000 (easy to kill them) and |
| 24 | the parent has a default OOM score (unkillable on Chrome OS). At various |
| 25 | checkpoints in the test the parent looks for dead children and stops the test. |
| 26 | |
| 27 | NOTES: |
| 28 | - The way this program works is subject to chagne depending on the needs |
| 29 | of people stressing memory. Don't rely on command line arguments staying |
| 30 | consistent. If we need a consistent test, we could fork this or add a |
| 31 | consistent subcommand. |
| 32 | - You should probably have KASAN and slub_debug turned off when running this. |
| 33 | If you have those on then you're not doing a real test of the memory system |
| 34 | and shouldn't be surprised that it can't keep up. |
| 35 | |
| 36 | Examples: |
| 37 | 1. Launch one process per CPU and aim for 500 MB swap left. Re-access |
| 38 | memory for 70 seconds and then access/modify memory for 90 seconds: |
| 39 | |
| 40 | mmm_donut --free_swap=500 --taste=70 --chew=90 |
| 41 | 2. Like #1 but use 200 processes. Note that since by default each |
| 42 | process will access 1MB at a time we'll probably really end up stopping |
| 43 | at closer to 300 MB free swap or less (the muncher stops telling |
| 44 | sub-processes to allocate when free swap is 500 MB, but then any |
| 45 | outstanding allocatoins will finish. |
| 46 | |
| 47 | mmm_donut -n200 --free_swap=500 --taste=70 --chew=90 |
| 48 | 3. Like #1 but have children allocate 20MB chunks. This will act to |
| 49 | more quickly allocate memory but will also over-allocate a bit more. |
| 50 | On a 6-CPU system you might overallocate by 120MB. |
| 51 | |
| 52 | mmm_donut --free_swap=500 --munch_mbs=20 --taste=70 --chew=90 |
| 53 | """ |
| 54 | |
| 55 | |
| 56 | from __future__ import print_function |
| 57 | |
| 58 | import argparse |
| 59 | import ctypes |
| 60 | import multiprocessing |
| 61 | import numpy |
| 62 | import os |
| 63 | import Queue |
| 64 | import subprocess |
| 65 | import sys |
| 66 | import time |
| 67 | |
| 68 | libc = ctypes.CDLL('libc.so.6') |
| 69 | libc.free.argtypes = [ctypes.c_void_p] |
| 70 | libc.free.restype = None |
| 71 | libc.valloc.argtypes = [ctypes.c_size_t] |
| 72 | libc.valloc.restype = ctypes.c_void_p |
| 73 | |
| 74 | # By default, we'll fill memory with data based on the contents of this |
| 75 | # file. Ideally it should be a big file and fairly representative of |
| 76 | # what we expect memory to contain. |
| 77 | _DEFAULT_FILE_TO_MAP = '/opt/google/chrome/chrome' |
| 78 | |
| 79 | _KB = 1024 |
| 80 | _MB = _KB * _KB |
| 81 | |
| 82 | # For the purpose of this program, a 'word' is 32-bits. |
| 83 | _WORDS_PER_MB = _MB / 4 |
| 84 | |
| 85 | _PAGESIZE = os.sysconf('SC_PAGESIZE') |
| 86 | |
| 87 | |
| 88 | class _MemoryMuncher(object): |
| 89 | """A class for eating memory. |
| 90 | |
| 91 | This class has functions in it for efficiently munching up memory. |
| 92 | Specifically, it has a few things it can do: |
| 93 | |
| 94 | munch: This will allocate more memory and fill it with data copied from |
| 95 | a prototype datasource. It will attempt to make this data 'unique' |
| 96 | by adding a value to each word based on the current PID. Allocating |
| 97 | is done 1 MB at a time and done with valloc() so we get page-sized |
| 98 | allocations. Copying / making unique is done with numpy to get |
| 99 | reasonably efficiency. |
| 100 | taste: This will re-read memory (1MB at a time) that's already been munched, |
| 101 | which ought to cause it to get paged in. We read 1 word from each page. |
| 102 | Again we use numpy which ought to make it somewhat efficient. |
| 103 | chew: This will attempt to read-modify-write memory (1MB at a time) that's |
| 104 | already been munched. This ought to have no huge performance difference |
| 105 | than taste. |
| 106 | spit: This will release memory allocated by munch. |
| 107 | |
| 108 | Attributes: |
| 109 | num_mbs_allocated: Number of MB that are currently allocated. |
| 110 | num_mbs_munched: Number of MB that have been munched in total. Note |
| 111 | that if you munch something and then spit it out it still counts in |
| 112 | this number, so munch(30); spit(10); munch(20) => 50. |
| 113 | num_mbs_tasted: Number of MB that have been tasted in total. |
| 114 | num_mbs_chewed: Number of MB that have been chewed in total. |
| 115 | """ |
| 116 | |
| 117 | def __init__(self, proto_data=None): |
| 118 | """Create a MemoryMuncher object. |
| 119 | |
| 120 | Args: |
| 121 | proto_data: A numpy.memmap array, or None for the default. We'll |
| 122 | use this as prototype data to copy to our allocated pages. |
| 123 | """ |
| 124 | if not proto_data: |
| 125 | proto_data = numpy.memmap(_DEFAULT_FILE_TO_MAP, |
| 126 | dtype='uint32', mode='r') |
| 127 | self._proto_data = proto_data |
| 128 | self._num_proto_mbs = len(self._proto_data) / _WORDS_PER_MB |
| 129 | self._at_proto_mb = 0 |
| 130 | |
| 131 | # Every time we munch through a chunk we'll add this to each integer to |
| 132 | # make the chunk look unique, then increment it. |
| 133 | self._unique = os.getpid() << 16 |
| 134 | |
| 135 | self._mbs = [] |
| 136 | self._last_accessed_mb = -1 |
| 137 | |
| 138 | self.num_mbs_munched = 0 |
| 139 | self.num_mbs_tasted = 0 |
| 140 | self.num_mbs_chewed = 0 |
| 141 | |
| 142 | @property |
| 143 | def num_mbs_allocated(self): |
| 144 | return len(self._mbs) |
| 145 | |
| 146 | def _alloc_array(self, n, element_type=ctypes.c_uint8): |
| 147 | """Allocate a numpy array using libc.valloc (page aligned allocation). |
| 148 | |
| 149 | Args: |
| 150 | n: Number of elements in the array |
| 151 | element_type: The type of the element (a ctypes type) |
| 152 | """ |
| 153 | ptr = libc.valloc(n * ctypes.sizeof(element_type)) |
| 154 | ptr = ctypes.cast(ptr, ctypes.POINTER(element_type)) |
| 155 | |
| 156 | return numpy.ctypeslib.as_array(ptr, shape=(n,)) |
| 157 | |
| 158 | def _free_array(self, arr): |
| 159 | """Free a numpy array allocated with _alloc_array |
| 160 | |
| 161 | Args: |
| 162 | arr: The return value from _alloc_array. |
| 163 | """ |
| 164 | ptr = ctypes.cast(arr, ctypes.c_void_p) |
| 165 | libc.free(ptr) |
| 166 | |
| 167 | def munch(self, mbs_to_munch, quick_alloc=False): |
| 168 | """Allocate the given number of mbs, filling the memory with data. |
| 169 | |
| 170 | Args: |
| 171 | mbs_to_munch: The number of MBs to allocate. |
| 172 | quick_alloc: If true, we'll try to allocate quicker by not using |
| 173 | the proto data; we'll just put a unique value in the first |
| 174 | word of the page. |
| 175 | """ |
| 176 | for _ in xrange(mbs_to_munch): |
| 177 | # Allocate some memory using libc; give back a numpy object |
| 178 | mb = self._alloc_array(_WORDS_PER_MB, ctypes.c_uint32) |
| 179 | |
| 180 | # Copy data from our proto data making it unique by adding a |
| 181 | # unique integer to each word. |
| 182 | mb[0] = self._unique |
| 183 | |
| 184 | if quick_alloc: |
| 185 | # Don't even bother to zero memory, but put at least something |
| 186 | # unique per page |
| 187 | mb.reshape((_PAGESIZE, -1)).T[0] = self._unique |
| 188 | else: |
| 189 | # Copy from the next spot in the prototype |
| 190 | # As we copy, add the unique data based on our PID. |
| 191 | mb[:] = (self._proto_data[self._at_proto_mb * |
| 192 | _WORDS_PER_MB: |
| 193 | (self._at_proto_mb + 1) * |
| 194 | _WORDS_PER_MB] + self._unique) |
| 195 | |
| 196 | # Update so we're ready for the next time |
| 197 | self._at_proto_mb += 1 |
| 198 | self._at_proto_mb %= self._num_proto_mbs |
| 199 | self._unique += 1 |
| 200 | |
| 201 | self._mbs.append(mb) |
| 202 | self.num_mbs_munched += 1 |
| 203 | |
| 204 | def spit(self, mbs_to_spit): |
| 205 | """Spit (free) out the oldest munched memory. |
| 206 | |
| 207 | Args: |
| 208 | mbs_to_spit: Number of MBs to spit. |
| 209 | """ |
| 210 | for _ in xrange(mbs_to_spit): |
| 211 | if not self._mbs: |
| 212 | raise RuntimeError('No more memory to spit out') |
| 213 | self._free_array(self._mbs.pop(0)) |
| 214 | |
| 215 | def taste(self, mbs_to_taste): |
| 216 | """Access memory that we've chewed through, reading 1 word per page. |
| 217 | |
| 218 | Args: |
| 219 | mbs_to_taste: Number of MBs that we'd like to try to access |
| 220 | """ |
| 221 | if not self._mbs: |
| 222 | raise RuntimeError('No memory') |
| 223 | |
| 224 | mb_num = self._last_accessed_mb |
| 225 | for mb_num in xrange(mb_num + 1, mb_num + 1 + mbs_to_taste): |
| 226 | mb_num %= len(self._mbs) |
| 227 | mb = self._mbs[mb_num] |
| 228 | self.num_mbs_tasted += 1 |
| 229 | # Fancy numpy to access 1 word from each page |
| 230 | _ = sum(mb.reshape((-1, _PAGESIZE)).T[0]) |
| 231 | self._last_accessed_mb = mb_num |
| 232 | |
| 233 | def chew(self, mbs_to_chew): |
| 234 | """Modify memory that we've chewed through, tweaking 1 word per page. |
| 235 | |
| 236 | Args: |
| 237 | mbs_to_chew: Number of MBs that we'd like to try to access |
| 238 | """ |
| 239 | if not self._mbs: |
| 240 | raise RuntimeError('No memory') |
| 241 | |
| 242 | mb_num = self._last_accessed_mb |
| 243 | for mb_num in xrange(mb_num + 1, mb_num + 1 + mbs_to_chew): |
| 244 | mb_num %= len(self._mbs) |
| 245 | mb = self._mbs[mb_num] |
| 246 | self.num_mbs_chewed += 1 |
| 247 | |
| 248 | # Fancy numpy to access 1 word from each page; we'll invert each |
| 249 | # time as our modification |
| 250 | _ = sum(mb.reshape((-1, _PAGESIZE)).T[0]) |
| 251 | self._last_accessed_mb = mb_num |
| 252 | |
| 253 | |
| 254 | class _MemInfo(object): |
| 255 | """An object that makes accessing /proc/meminfo easy. |
| 256 | |
| 257 | When this object is created it will read /proc/meminfo and store all the |
| 258 | attributes it finds as integer properties. All memory quantities are |
| 259 | expressed in bytes, so if /proc/meminfo said 'MemFree' was 100 kB then our |
| 260 | MemFree attribute will be 102400. |
| 261 | """ |
| 262 | |
| 263 | def __init__(self): |
| 264 | with open('/proc/meminfo', 'r') as f: |
| 265 | for line in f.readlines(): |
| 266 | name, _, val = line.partition(':') |
| 267 | num, _, unit = val.strip().partition(' ') |
| 268 | num = int(num) |
| 269 | |
| 270 | if unit == 'kB': |
| 271 | num *= 1024 |
| 272 | elif unit != '': |
| 273 | raise RuntimeError('Unexpected meminfo: %s' % line) |
| 274 | |
| 275 | setattr(self, name, num) |
| 276 | |
| 277 | |
| 278 | def _make_self_oomable(): |
| 279 | """Makes sure that the current process is easily OOMable.""" |
| 280 | with open('/proc/self/oom_score_adj', 'w') as f: |
| 281 | f.write('1000\n') |
| 282 | |
| 283 | |
| 284 | def _thread_main(task_num, options, cmd_queue, done_queue): |
| 285 | """The main entry point of the worker threads. |
| 286 | |
| 287 | Threads communicate with the main thread through two queues. They get |
| 288 | commands from the cmd_queue and communicate that they're done by putting |
| 289 | their task_num on the done_queue. |
| 290 | |
| 291 | Args: |
| 292 | task_num: The integer ID of this task. |
| 293 | options: Options created by _parse_options() |
| 294 | cmd_queue: String commands will be put here by the main thread. |
| 295 | done_queue: We'll put our task_num on this queue when we're done with |
| 296 | our command. |
| 297 | """ |
| 298 | _make_self_oomable() |
| 299 | |
| 300 | muncher = _MemoryMuncher() |
| 301 | |
| 302 | munch_mbs = options.munch_mbs |
| 303 | taste_mbs = options.taste_mbs |
| 304 | chew_mbs = options.chew_mbs |
| 305 | |
| 306 | try: |
| 307 | cmd = None |
| 308 | while cmd != 'done': |
| 309 | cmd = cmd_queue.get() |
| 310 | if cmd == 'status': |
| 311 | print(('Task %d: allocated %d MB, munched %d MB, ' + |
| 312 | 'tasted %d MB, chewed %d MB') % |
| 313 | (task_num, muncher.num_mbs_allocated, |
| 314 | muncher.num_mbs_munched, muncher.num_mbs_tasted, |
| 315 | muncher.num_mbs_chewed)) |
| 316 | elif cmd == 'munch': |
| 317 | muncher.munch(munch_mbs) |
| 318 | elif cmd == 'taste': |
| 319 | muncher.taste(chew_mbs) |
| 320 | elif cmd == 'chew': |
| 321 | muncher.chew(taste_mbs) |
| 322 | |
| 323 | done_queue.put(task_num) |
| 324 | except KeyboardInterrupt: |
| 325 | # Don't yell about keyboard interrupts |
| 326 | pass |
| 327 | finally: |
| 328 | print('Task %d is done' % task_num) |
| 329 | done_queue.close() |
| 330 | cmd_queue.close() |
| 331 | |
| 332 | |
| 333 | class WorkerDeadError(RuntimeError): |
| 334 | """We throw this when we see that a worker has died.""" |
| 335 | def __init__(self, task_num): |
| 336 | super(WorkerDeadError, self).__init__('Task %d is dead' % task_num) |
| 337 | self.task_num = task_num |
| 338 | |
| 339 | |
| 340 | def _wait_everyone_done(tasks, done_queue, refill_done_queue=True): |
| 341 | """Wait until all of our workers are done. |
| 342 | |
| 343 | This will wait until all tasks have put their task_num in the done_queue. |
| 344 | We'll also check to see if any tasks are dead and we'll raise an exception |
| 345 | if we notice this. |
| 346 | |
| 347 | Args: |
| 348 | tasks: The list of our worker tasks. |
| 349 | done_queue: Our done queue |
| 350 | refill_done_queue: If True then we'll make sure that the done_queue |
| 351 | has each task number in it when we're done; if False then we'll |
| 352 | leave the done_queue empty. |
| 353 | |
| 354 | Raises: |
| 355 | WorkerDeadError: If we notice something has died. |
| 356 | """ |
| 357 | num_tasks = len(tasks) |
| 358 | |
| 359 | # We want to see every task number report it's done via the done_queue; if |
| 360 | # things are taking too long we'll poll for dead children. |
| 361 | done_tasks = set() |
| 362 | while len(done_tasks) != num_tasks: |
| 363 | try: |
| 364 | task_num = done_queue.get(timeout=.5) |
| 365 | done_tasks.add(task_num) |
| 366 | except Queue.Empty: |
| 367 | for task_num, task in enumerate(tasks): |
| 368 | if not task.is_alive(): |
| 369 | raise WorkerDeadError(task_num) |
| 370 | |
| 371 | assert done_queue.empty() |
| 372 | if not refill_done_queue: |
| 373 | return |
| 374 | |
| 375 | # Add everyone back to the done_queue. |
| 376 | for task_num in xrange(num_tasks): |
| 377 | done_queue.put(task_num) |
| 378 | |
| 379 | |
| 380 | def _end_stage(old_stage_name, tasks, done_queue, cmd_queues): |
| 381 | """End the given stage and ask wokers to print status. |
| 382 | |
| 383 | Args: |
| 384 | old_stage_name: We'll print this to tell the user we finished this. |
| 385 | tasks: The list of our worker tasks. |
| 386 | done_queue: Our done queue |
| 387 | cmd_queues: A list of all task command queues. |
| 388 | """ |
| 389 | num_tasks = len(tasks) |
| 390 | |
| 391 | # Wait, but don't refill the queue since since we'll get the queue |
| 392 | # refilled after the workers finish printing their status. |
| 393 | _wait_everyone_done(tasks, done_queue, refill_done_queue=False) |
| 394 | |
| 395 | print('Done with stage %s' % old_stage_name) |
| 396 | |
| 397 | # Give the system a second to quiesce (TODO: needed?) |
| 398 | time.sleep(1) |
| 399 | |
| 400 | # We'll throw an extra status update; this will refill the done_queue |
| 401 | for task_num in xrange(num_tasks): |
| 402 | assert cmd_queues[task_num].empty() |
| 403 | cmd_queues[task_num].put('status') |
| 404 | _wait_everyone_done(tasks, done_queue) |
| 405 | |
| 406 | |
| 407 | def _parse_options(args): |
| 408 | """Parse command line options. |
| 409 | |
| 410 | Args: |
| 411 | args: sys.argv[1:] |
| 412 | |
| 413 | Returns: |
| 414 | An argparse.ArgumentParser object. |
| 415 | """ |
| 416 | p = subprocess.Popen(['nproc'], stdout=subprocess.PIPE, |
| 417 | stderr=subprocess.STDOUT) |
| 418 | stdout, _ = p.communicate() |
| 419 | nproc = int(stdout) |
| 420 | |
| 421 | parser = argparse.ArgumentParser( |
| 422 | description=__doc__, |
| 423 | formatter_class=argparse.RawDescriptionHelpFormatter |
| 424 | ) |
| 425 | parser.add_argument( |
| 426 | '-n', '--num_tasks', type=int, default=nproc, |
| 427 | help='Number of tasks to use (default: %(default)s)' |
| 428 | ) |
| 429 | parser.add_argument( |
| 430 | '-z', '--munch_mbs', type=int, default=1, |
| 431 | help='Munch this many MB at a time (default: %(default)s)' |
| 432 | ) |
| 433 | parser.add_argument( |
| 434 | '-s', '--free_swap', type=int, default=500, |
| 435 | help='Stop munching when free swap <= this many MB ' + |
| 436 | '(default: %(default)s)' |
| 437 | ) |
| 438 | parser.add_argument( |
| 439 | '-t', '--taste', type=int, default=30, |
| 440 | help='Taste for this many seconds (default: %(default)s)' |
| 441 | ) |
| 442 | parser.add_argument( |
| 443 | '-T', '--taste_mbs', type=int, default=-1, |
| 444 | help='Taste this many MB at a time (default: use munch_mbs)' |
| 445 | ) |
| 446 | parser.add_argument( |
| 447 | '-c', '--chew', type=int, default=30, |
| 448 | help='Chew for this many seconds (default: %(default)s)' |
| 449 | ) |
| 450 | parser.add_argument( |
| 451 | '-C', '--chew_mbs', type=int, default=-1, |
| 452 | help='Chew this many MB at a time (default: use munch_mbs)' |
| 453 | ) |
| 454 | parser.add_argument( |
| 455 | '-F', '--memfree_sleep', type=int, default=0, |
| 456 | help='Sleep when memfree is < this many MB (default: %(default)s)' |
| 457 | ) |
| 458 | |
| 459 | options = parser.parse_args(args) |
| 460 | |
| 461 | if options.taste_mbs == -1: |
| 462 | options.taste_mbs = options.munch_mbs |
| 463 | if options.chew_mbs == -1: |
| 464 | options.chew_mbs = options.munch_mbs |
| 465 | |
| 466 | return options |
| 467 | |
| 468 | |
| 469 | def main(args): |
| 470 | options = _parse_options(args) |
| 471 | |
| 472 | num_tasks = options.num_tasks |
| 473 | |
| 474 | done_queue = multiprocessing.Queue() |
| 475 | cmd_queues = [multiprocessing.Queue() for task_num in xrange(num_tasks)] |
| 476 | tasks = [ |
| 477 | multiprocessing.Process( |
| 478 | target=_thread_main, |
| 479 | args=(task_num, options, cmd_queues[task_num], done_queue) |
| 480 | ) |
| 481 | for task_num in xrange(num_tasks) |
| 482 | ] |
| 483 | for task in tasks: |
| 484 | task.start() |
| 485 | |
| 486 | print('Starting test.') |
| 487 | for task_num in xrange(num_tasks): |
| 488 | cmd_queues[task_num].put('status') |
| 489 | _wait_everyone_done(tasks, done_queue) |
| 490 | |
| 491 | try: |
| 492 | print('Munching till swap < %d MB free; munch %d MB at a time.' % |
| 493 | (options.free_swap, options.munch_mbs)) |
| 494 | while True: |
| 495 | meminfo = _MemInfo() |
| 496 | if meminfo.SwapFree < options.free_swap * _MB: |
| 497 | break |
| 498 | if meminfo.MemFree < options.memfree_sleep * _MB: |
| 499 | print('MemFree only %d MB; sleeping' % (meminfo.MemFree / _MB)) |
| 500 | time.sleep(1) |
| 501 | continue |
| 502 | task_num = done_queue.get() |
| 503 | cmd_queues[task_num].put('munch') |
| 504 | _end_stage('munch', tasks, done_queue, cmd_queues) |
| 505 | |
| 506 | print('Tasting for %d seconds; taste %d MB at a time.' % |
| 507 | (options.taste, options.taste_mbs)) |
| 508 | end_time = time.time() + options.taste |
| 509 | while time.time() < end_time: |
| 510 | task_num = done_queue.get() |
| 511 | cmd_queues[task_num].put('taste') |
| 512 | _end_stage('taste', tasks, done_queue, cmd_queues) |
| 513 | |
| 514 | print('Chewing for %d seconds; chew %d MB at a time.' % |
| 515 | (options.chew, options.chew_mbs)) |
| 516 | end_time = time.time() + options.chew |
| 517 | while time.time() < end_time: |
| 518 | task_num = done_queue.get() |
| 519 | cmd_queues[task_num].put('chew') |
| 520 | _end_stage('chew', tasks, done_queue, cmd_queues) |
| 521 | |
| 522 | except KeyboardInterrupt: |
| 523 | pass |
| 524 | except WorkerDeadError as error: |
| 525 | print('ERROR: %s' % str(error)) |
| 526 | finally: |
| 527 | print('All done I guess; trying to end things nicely.') |
| 528 | |
| 529 | # Throw in a command to try to get them to quit |
| 530 | for cmd_queue in cmd_queues: |
| 531 | cmd_queue.put('done') |
| 532 | for task in tasks: |
| 533 | task.join(10) |
| 534 | task.terminate() |
| 535 | |
| 536 | done_queue.close() |
| 537 | for cmd_queue in cmd_queues: |
| 538 | cmd_queue.close() |
| 539 | |
| 540 | print('Quitting') |
| 541 | |
| 542 | return 0 |
| 543 | |
| 544 | |
| 545 | if __name__ == '__main__': |
| 546 | sys.exit(main(sys.argv[1:])) |
| 547 | |