blob: f5f7893714fddd007c11e2aeb1dc7cea564e785b [file] [log] [blame]
danielk1977bc2ca9e2008-11-13 14:28:28 +00001/*
2** 2008 November 05
3**
4** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
6**
7** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
10**
11*************************************************************************
12**
13** This file implements the default page cache implementation (the
14** sqlite3_pcache interface). It also contains part of the implementation
15** of the SQLITE_CONFIG_PAGECACHE and sqlite3_release_memory() features.
peter.d.reid60ec9142014-09-06 16:39:46 +000016** If the default page cache implementation is overridden, then neither of
danielk1977bc2ca9e2008-11-13 14:28:28 +000017** these two features are available.
danielk1977bc2ca9e2008-11-13 14:28:28 +000018*/
19
20#include "sqliteInt.h"
21
22typedef struct PCache1 PCache1;
23typedef struct PgHdr1 PgHdr1;
24typedef struct PgFreeslot PgFreeslot;
drh9f8cf9d2011-01-17 21:32:24 +000025typedef struct PGroup PGroup;
26
27/* Each page cache (or PCache) belongs to a PGroup. A PGroup is a set
peter.d.reid60ec9142014-09-06 16:39:46 +000028** of one or more PCaches that are able to recycle each other's unpinned
drh9f8cf9d2011-01-17 21:32:24 +000029** pages when they are under memory pressure. A PGroup is an instance of
30** the following object.
31**
32** This page cache implementation works in one of two modes:
33**
34** (1) Every PCache is the sole member of its own PGroup. There is
35** one PGroup per PCache.
36**
37** (2) There is a single global PGroup that all PCaches are a member
38** of.
39**
40** Mode 1 uses more memory (since PCache instances are not able to rob
41** unused pages from other PCaches) but it also operates without a mutex,
42** and is therefore often faster. Mode 2 requires a mutex in order to be
drh45d29302012-01-08 22:18:33 +000043** threadsafe, but recycles pages more efficiently.
drh9f8cf9d2011-01-17 21:32:24 +000044**
45** For mode (1), PGroup.mutex is NULL. For mode (2) there is only a single
46** PGroup which is the pcache1.grp global variable and its mutex is
47** SQLITE_MUTEX_STATIC_LRU.
48*/
49struct PGroup {
50 sqlite3_mutex *mutex; /* MUTEX_STATIC_LRU or NULL */
drha69085c2012-01-02 18:00:55 +000051 unsigned int nMaxPage; /* Sum of nMax for purgeable caches */
52 unsigned int nMinPage; /* Sum of nMin for purgeable caches */
53 unsigned int mxPinned; /* nMaxpage + 10 - nMinPage */
54 unsigned int nCurrentPage; /* Number of purgeable pages allocated */
drh9f8cf9d2011-01-17 21:32:24 +000055 PgHdr1 *pLruHead, *pLruTail; /* LRU list of unpinned pages */
56};
danielk1977bc2ca9e2008-11-13 14:28:28 +000057
drh9d13f112010-08-24 18:06:35 +000058/* Each page cache is an instance of the following object. Every
59** open database file (including each in-memory database and each
60** temporary or transient database) has a single page cache which
61** is an instance of this object.
62**
63** Pointers to structures of this type are cast and returned as
64** opaque sqlite3_pcache* handles.
danielk1977bc2ca9e2008-11-13 14:28:28 +000065*/
66struct PCache1 {
67 /* Cache configuration parameters. Page size (szPage) and the purgeable
68 ** flag (bPurgeable) are set when the cache is created. nMax may be
drh45d29302012-01-08 22:18:33 +000069 ** modified at any time by a call to the pcache1Cachesize() method.
drh9f8cf9d2011-01-17 21:32:24 +000070 ** The PGroup mutex must be held when accessing nMax.
danielk1977bc2ca9e2008-11-13 14:28:28 +000071 */
drh9f8cf9d2011-01-17 21:32:24 +000072 PGroup *pGroup; /* PGroup this cache belongs to */
danielk1977bc2ca9e2008-11-13 14:28:28 +000073 int szPage; /* Size of allocated pages in bytes */
dan22e21ff2011-11-08 20:08:44 +000074 int szExtra; /* Size of extra space in bytes */
danielk1977bc2ca9e2008-11-13 14:28:28 +000075 int bPurgeable; /* True if cache is purgeable */
danielk197744cd45c2008-11-15 11:22:45 +000076 unsigned int nMin; /* Minimum number of pages reserved */
77 unsigned int nMax; /* Configured "cache_size" value */
drh25ca5682011-01-26 00:07:03 +000078 unsigned int n90pct; /* nMax*9/10 */
drh2cbd78b2012-02-02 19:37:18 +000079 unsigned int iMaxKey; /* Largest key seen since xTruncate() */
danielk1977bc2ca9e2008-11-13 14:28:28 +000080
81 /* Hash table of all pages. The following variables may only be accessed
drh9f8cf9d2011-01-17 21:32:24 +000082 ** when the accessor is holding the PGroup mutex.
danielk1977bc2ca9e2008-11-13 14:28:28 +000083 */
danielk197744cd45c2008-11-15 11:22:45 +000084 unsigned int nRecyclable; /* Number of pages in the LRU list */
85 unsigned int nPage; /* Total number of pages in apHash */
86 unsigned int nHash; /* Number of slots in apHash[] */
danielk1977bc2ca9e2008-11-13 14:28:28 +000087 PgHdr1 **apHash; /* Hash table for fast lookup by key */
88};
89
90/*
91** Each cache entry is represented by an instance of the following
dan22e21ff2011-11-08 20:08:44 +000092** structure. Unless SQLITE_PCACHE_SEPARATE_HEADER is defined, a buffer of
93** PgHdr1.pCache->szPage bytes is allocated directly before this structure
94** in memory.
danielk1977bc2ca9e2008-11-13 14:28:28 +000095*/
96struct PgHdr1 {
dan22e21ff2011-11-08 20:08:44 +000097 sqlite3_pcache_page page;
danielk1977bc2ca9e2008-11-13 14:28:28 +000098 unsigned int iKey; /* Key value (page number) */
drh5d56dd22013-12-13 18:50:40 +000099 u8 isPinned; /* Page in use, not on the LRU list */
danielk1977bc2ca9e2008-11-13 14:28:28 +0000100 PgHdr1 *pNext; /* Next in hash table chain */
101 PCache1 *pCache; /* Cache that currently owns this page */
102 PgHdr1 *pLruNext; /* Next in LRU list of unpinned pages */
103 PgHdr1 *pLruPrev; /* Previous in LRU list of unpinned pages */
104};
105
106/*
107** Free slots in the allocator used to divide up the buffer provided using
108** the SQLITE_CONFIG_PAGECACHE mechanism.
109*/
110struct PgFreeslot {
111 PgFreeslot *pNext; /* Next free slot */
112};
113
114/*
115** Global data used by this cache.
116*/
117static SQLITE_WSD struct PCacheGlobal {
drh9f8cf9d2011-01-17 21:32:24 +0000118 PGroup grp; /* The global PGroup for mode (2) */
danielk1977bc2ca9e2008-11-13 14:28:28 +0000119
drh9f8cf9d2011-01-17 21:32:24 +0000120 /* Variables related to SQLITE_CONFIG_PAGECACHE settings. The
121 ** szSlot, nSlot, pStart, pEnd, nReserve, and isInit values are all
122 ** fixed at sqlite3_initialize() time and do not require mutex protection.
123 ** The nFreeSlot and pFree values do require mutex protection.
124 */
125 int isInit; /* True if initialized */
126 int szSlot; /* Size of each free slot */
127 int nSlot; /* The number of pcache slots */
128 int nReserve; /* Try to keep nFreeSlot above this */
129 void *pStart, *pEnd; /* Bounds of pagecache malloc range */
130 /* Above requires no mutex. Use mutex below for variable that follow. */
131 sqlite3_mutex *mutex; /* Mutex for accessing the following: */
drh9f8cf9d2011-01-17 21:32:24 +0000132 PgFreeslot *pFree; /* Free page blocks */
drh2cbd78b2012-02-02 19:37:18 +0000133 int nFreeSlot; /* Number of unused pcache slots */
drh9f8cf9d2011-01-17 21:32:24 +0000134 /* The following value requires a mutex to change. We skip the mutex on
135 ** reading because (1) most platforms read a 32-bit integer atomically and
136 ** (2) even if an incorrect value is read, no great harm is done since this
137 ** is really just an optimization. */
138 int bUnderPressure; /* True if low on PAGECACHE memory */
danielk197744cd45c2008-11-15 11:22:45 +0000139} pcache1_g;
danielk1977bc2ca9e2008-11-13 14:28:28 +0000140
141/*
142** All code in this file should access the global structure above via the
143** alias "pcache1". This ensures that the WSD emulation is used when
144** compiling for systems that do not support real WSD.
145*/
146#define pcache1 (GLOBAL(struct PCacheGlobal, pcache1_g))
147
148/*
drh9f8cf9d2011-01-17 21:32:24 +0000149** Macros to enter and leave the PCache LRU mutex.
danielk1977bc2ca9e2008-11-13 14:28:28 +0000150*/
drh9f8cf9d2011-01-17 21:32:24 +0000151#define pcache1EnterMutex(X) sqlite3_mutex_enter((X)->mutex)
152#define pcache1LeaveMutex(X) sqlite3_mutex_leave((X)->mutex)
danielk1977bc2ca9e2008-11-13 14:28:28 +0000153
154/******************************************************************************/
155/******** Page Allocation/SQLITE_CONFIG_PCACHE Related Functions **************/
156
157/*
158** This function is called during initialization if a static buffer is
159** supplied to use for the page-cache by passing the SQLITE_CONFIG_PAGECACHE
160** verb to sqlite3_config(). Parameter pBuf points to an allocation large
161** enough to contain 'n' buffers of 'sz' bytes each.
drh9f8cf9d2011-01-17 21:32:24 +0000162**
163** This routine is called from sqlite3_initialize() and so it is guaranteed
164** to be serialized already. There is no need for further mutexing.
danielk1977bc2ca9e2008-11-13 14:28:28 +0000165*/
166void sqlite3PCacheBufferSetup(void *pBuf, int sz, int n){
drhf4622dc2009-05-22 11:10:24 +0000167 if( pcache1.isInit ){
168 PgFreeslot *p;
169 sz = ROUNDDOWN8(sz);
170 pcache1.szSlot = sz;
drh50d1b5f2010-08-27 12:21:06 +0000171 pcache1.nSlot = pcache1.nFreeSlot = n;
172 pcache1.nReserve = n>90 ? 10 : (n/10 + 1);
drhf4622dc2009-05-22 11:10:24 +0000173 pcache1.pStart = pBuf;
174 pcache1.pFree = 0;
drh9f8cf9d2011-01-17 21:32:24 +0000175 pcache1.bUnderPressure = 0;
drhf4622dc2009-05-22 11:10:24 +0000176 while( n-- ){
177 p = (PgFreeslot*)pBuf;
178 p->pNext = pcache1.pFree;
179 pcache1.pFree = p;
180 pBuf = (void*)&((char*)pBuf)[sz];
181 }
182 pcache1.pEnd = pBuf;
danielk1977bc2ca9e2008-11-13 14:28:28 +0000183 }
danielk1977bc2ca9e2008-11-13 14:28:28 +0000184}
185
186/*
187** Malloc function used within this file to allocate space from the buffer
188** configured using sqlite3_config(SQLITE_CONFIG_PAGECACHE) option. If no
189** such buffer exists or there is no space left in it, this function falls
190** back to sqlite3Malloc().
drh9f8cf9d2011-01-17 21:32:24 +0000191**
192** Multiple threads can run this routine at the same time. Global variables
193** in pcache1 need to be protected via mutex.
danielk1977bc2ca9e2008-11-13 14:28:28 +0000194*/
195static void *pcache1Alloc(int nByte){
drh9f8cf9d2011-01-17 21:32:24 +0000196 void *p = 0;
197 assert( sqlite3_mutex_notheld(pcache1.grp.mutex) );
drh29dfbe32010-07-28 17:01:24 +0000198 sqlite3StatusSet(SQLITE_STATUS_PAGECACHE_SIZE, nByte);
drh9f8cf9d2011-01-17 21:32:24 +0000199 if( nByte<=pcache1.szSlot ){
200 sqlite3_mutex_enter(pcache1.mutex);
danielk1977bc2ca9e2008-11-13 14:28:28 +0000201 p = (PgHdr1 *)pcache1.pFree;
drh9f8cf9d2011-01-17 21:32:24 +0000202 if( p ){
203 pcache1.pFree = pcache1.pFree->pNext;
204 pcache1.nFreeSlot--;
205 pcache1.bUnderPressure = pcache1.nFreeSlot<pcache1.nReserve;
206 assert( pcache1.nFreeSlot>=0 );
207 sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_USED, 1);
208 }
209 sqlite3_mutex_leave(pcache1.mutex);
210 }
211 if( p==0 ){
212 /* Memory is not available in the SQLITE_CONFIG_PAGECACHE pool. Get
213 ** it from sqlite3Malloc instead.
danielk1977bc2ca9e2008-11-13 14:28:28 +0000214 */
danielk1977bc2ca9e2008-11-13 14:28:28 +0000215 p = sqlite3Malloc(nByte);
drh4bd69522012-06-07 02:35:29 +0000216#ifndef SQLITE_DISABLE_PAGECACHE_OVERFLOW_STATS
danielk1977bc2ca9e2008-11-13 14:28:28 +0000217 if( p ){
218 int sz = sqlite3MallocSize(p);
drh9bf3da8e2011-01-26 13:24:40 +0000219 sqlite3_mutex_enter(pcache1.mutex);
danielk1977bc2ca9e2008-11-13 14:28:28 +0000220 sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_OVERFLOW, sz);
drh9bf3da8e2011-01-26 13:24:40 +0000221 sqlite3_mutex_leave(pcache1.mutex);
danielk1977bc2ca9e2008-11-13 14:28:28 +0000222 }
drh4bd69522012-06-07 02:35:29 +0000223#endif
drh107b56e2010-03-12 16:32:53 +0000224 sqlite3MemdebugSetType(p, MEMTYPE_PCACHE);
danielk1977bc2ca9e2008-11-13 14:28:28 +0000225 }
226 return p;
227}
228
229/*
230** Free an allocated buffer obtained from pcache1Alloc().
231*/
drh09419b42011-11-16 19:29:17 +0000232static int pcache1Free(void *p){
233 int nFreed = 0;
234 if( p==0 ) return 0;
danielk1977bc2ca9e2008-11-13 14:28:28 +0000235 if( p>=pcache1.pStart && p<pcache1.pEnd ){
236 PgFreeslot *pSlot;
drh9f8cf9d2011-01-17 21:32:24 +0000237 sqlite3_mutex_enter(pcache1.mutex);
danielk1977bc2ca9e2008-11-13 14:28:28 +0000238 sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_USED, -1);
239 pSlot = (PgFreeslot*)p;
240 pSlot->pNext = pcache1.pFree;
241 pcache1.pFree = pSlot;
drh50d1b5f2010-08-27 12:21:06 +0000242 pcache1.nFreeSlot++;
drh9f8cf9d2011-01-17 21:32:24 +0000243 pcache1.bUnderPressure = pcache1.nFreeSlot<pcache1.nReserve;
drh50d1b5f2010-08-27 12:21:06 +0000244 assert( pcache1.nFreeSlot<=pcache1.nSlot );
drh9f8cf9d2011-01-17 21:32:24 +0000245 sqlite3_mutex_leave(pcache1.mutex);
danielk1977bc2ca9e2008-11-13 14:28:28 +0000246 }else{
drh107b56e2010-03-12 16:32:53 +0000247 assert( sqlite3MemdebugHasType(p, MEMTYPE_PCACHE) );
248 sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
drh09419b42011-11-16 19:29:17 +0000249 nFreed = sqlite3MallocSize(p);
drh4bd69522012-06-07 02:35:29 +0000250#ifndef SQLITE_DISABLE_PAGECACHE_OVERFLOW_STATS
drh15ad92f2011-01-26 13:28:06 +0000251 sqlite3_mutex_enter(pcache1.mutex);
drh09419b42011-11-16 19:29:17 +0000252 sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_OVERFLOW, -nFreed);
drh15ad92f2011-01-26 13:28:06 +0000253 sqlite3_mutex_leave(pcache1.mutex);
drh4bd69522012-06-07 02:35:29 +0000254#endif
danielk1977bc2ca9e2008-11-13 14:28:28 +0000255 sqlite3_free(p);
256 }
drh09419b42011-11-16 19:29:17 +0000257 return nFreed;
danielk1977bc2ca9e2008-11-13 14:28:28 +0000258}
259
drhc8f503a2010-08-20 09:14:13 +0000260#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
261/*
drh9d13f112010-08-24 18:06:35 +0000262** Return the size of a pcache allocation
drhc8f503a2010-08-20 09:14:13 +0000263*/
264static int pcache1MemSize(void *p){
drhc8f503a2010-08-20 09:14:13 +0000265 if( p>=pcache1.pStart && p<pcache1.pEnd ){
266 return pcache1.szSlot;
267 }else{
268 int iSize;
269 assert( sqlite3MemdebugHasType(p, MEMTYPE_PCACHE) );
270 sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
271 iSize = sqlite3MallocSize(p);
272 sqlite3MemdebugSetType(p, MEMTYPE_PCACHE);
273 return iSize;
274 }
275}
276#endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */
277
dand2925702011-08-19 18:15:00 +0000278/*
danielk1977bc2ca9e2008-11-13 14:28:28 +0000279** Allocate a new page object initially associated with cache pCache.
280*/
281static PgHdr1 *pcache1AllocPage(PCache1 *pCache){
danb5126dd2011-09-22 14:56:31 +0000282 PgHdr1 *p = 0;
283 void *pPg;
dand2925702011-08-19 18:15:00 +0000284
dand2925702011-08-19 18:15:00 +0000285 /* The group mutex must be released before pcache1Alloc() is called. This
286 ** is because it may call sqlite3_release_memory(), which assumes that
287 ** this mutex is not held. */
288 assert( sqlite3_mutex_held(pCache->pGroup->mutex) );
289 pcache1LeaveMutex(pCache->pGroup);
dan22e21ff2011-11-08 20:08:44 +0000290#ifdef SQLITE_PCACHE_SEPARATE_HEADER
291 pPg = pcache1Alloc(pCache->szPage);
292 p = sqlite3Malloc(sizeof(PgHdr1) + pCache->szExtra);
293 if( !pPg || !p ){
294 pcache1Free(pPg);
295 sqlite3_free(p);
296 pPg = 0;
297 }
298#else
drh51dc84e2014-12-30 13:04:25 +0000299 pPg = pcache1Alloc(ROUND8(sizeof(PgHdr1)) + pCache->szPage + pCache->szExtra);
dan22e21ff2011-11-08 20:08:44 +0000300 p = (PgHdr1 *)&((u8 *)pPg)[pCache->szPage];
301#endif
dand2925702011-08-19 18:15:00 +0000302 pcache1EnterMutex(pCache->pGroup);
danb5126dd2011-09-22 14:56:31 +0000303
drh69e931e2009-06-03 21:04:35 +0000304 if( pPg ){
dan22e21ff2011-11-08 20:08:44 +0000305 p->page.pBuf = pPg;
306 p->page.pExtra = &p[1];
danielk1977bc2ca9e2008-11-13 14:28:28 +0000307 if( pCache->bPurgeable ){
drh9f8cf9d2011-01-17 21:32:24 +0000308 pCache->pGroup->nCurrentPage++;
danielk1977bc2ca9e2008-11-13 14:28:28 +0000309 }
dan22e21ff2011-11-08 20:08:44 +0000310 return p;
danielk1977bc2ca9e2008-11-13 14:28:28 +0000311 }
dan22e21ff2011-11-08 20:08:44 +0000312 return 0;
danielk1977bc2ca9e2008-11-13 14:28:28 +0000313}
314
315/*
316** Free a page object allocated by pcache1AllocPage().
drhf18a61d2009-07-17 11:44:07 +0000317**
318** The pointer is allowed to be NULL, which is prudent. But it turns out
319** that the current implementation happens to never call this routine
320** with a NULL pointer, so we mark the NULL test with ALWAYS().
danielk1977bc2ca9e2008-11-13 14:28:28 +0000321*/
322static void pcache1FreePage(PgHdr1 *p){
drhf18a61d2009-07-17 11:44:07 +0000323 if( ALWAYS(p) ){
drh9f8cf9d2011-01-17 21:32:24 +0000324 PCache1 *pCache = p->pCache;
dand2925702011-08-19 18:15:00 +0000325 assert( sqlite3_mutex_held(p->pCache->pGroup->mutex) );
dan22e21ff2011-11-08 20:08:44 +0000326 pcache1Free(p->page.pBuf);
327#ifdef SQLITE_PCACHE_SEPARATE_HEADER
328 sqlite3_free(p);
329#endif
drh9f8cf9d2011-01-17 21:32:24 +0000330 if( pCache->bPurgeable ){
331 pCache->pGroup->nCurrentPage--;
danielk1977bc2ca9e2008-11-13 14:28:28 +0000332 }
danielk1977bc2ca9e2008-11-13 14:28:28 +0000333 }
334}
335
336/*
337** Malloc function used by SQLite to obtain space from the buffer configured
338** using sqlite3_config(SQLITE_CONFIG_PAGECACHE) option. If no such buffer
339** exists, this function falls back to sqlite3Malloc().
340*/
341void *sqlite3PageMalloc(int sz){
drh9f8cf9d2011-01-17 21:32:24 +0000342 return pcache1Alloc(sz);
danielk1977bc2ca9e2008-11-13 14:28:28 +0000343}
344
345/*
346** Free an allocated buffer obtained from sqlite3PageMalloc().
347*/
348void sqlite3PageFree(void *p){
danielk1977bc2ca9e2008-11-13 14:28:28 +0000349 pcache1Free(p);
danielk1977bc2ca9e2008-11-13 14:28:28 +0000350}
351
drh50d1b5f2010-08-27 12:21:06 +0000352
353/*
354** Return true if it desirable to avoid allocating a new page cache
355** entry.
356**
357** If memory was allocated specifically to the page cache using
358** SQLITE_CONFIG_PAGECACHE but that memory has all been used, then
359** it is desirable to avoid allocating a new page cache entry because
360** presumably SQLITE_CONFIG_PAGECACHE was suppose to be sufficient
361** for all page cache needs and we should not need to spill the
362** allocation onto the heap.
363**
drh45d29302012-01-08 22:18:33 +0000364** Or, the heap is used for all page cache memory but the heap is
drh50d1b5f2010-08-27 12:21:06 +0000365** under memory pressure, then again it is desirable to avoid
366** allocating a new page cache entry in order to avoid stressing
367** the heap even further.
368*/
369static int pcache1UnderMemoryPressure(PCache1 *pCache){
dan22e21ff2011-11-08 20:08:44 +0000370 if( pcache1.nSlot && (pCache->szPage+pCache->szExtra)<=pcache1.szSlot ){
drh9f8cf9d2011-01-17 21:32:24 +0000371 return pcache1.bUnderPressure;
drh50d1b5f2010-08-27 12:21:06 +0000372 }else{
373 return sqlite3HeapNearlyFull();
374 }
375}
376
danielk1977bc2ca9e2008-11-13 14:28:28 +0000377/******************************************************************************/
378/******** General Implementation Functions ************************************/
379
380/*
381** This function is used to resize the hash table used by the cache passed
382** as the first argument.
383**
drh9f8cf9d2011-01-17 21:32:24 +0000384** The PCache mutex must be held when this function is called.
danielk1977bc2ca9e2008-11-13 14:28:28 +0000385*/
drhefbf0442014-08-23 23:15:31 +0000386static void pcache1ResizeHash(PCache1 *p){
danielk1977bc2ca9e2008-11-13 14:28:28 +0000387 PgHdr1 **apNew;
danielk197744cd45c2008-11-15 11:22:45 +0000388 unsigned int nNew;
danielk1977bc2ca9e2008-11-13 14:28:28 +0000389 unsigned int i;
390
drh9f8cf9d2011-01-17 21:32:24 +0000391 assert( sqlite3_mutex_held(p->pGroup->mutex) );
danielk1977bc2ca9e2008-11-13 14:28:28 +0000392
393 nNew = p->nHash*2;
394 if( nNew<256 ){
395 nNew = 256;
396 }
397
drh9f8cf9d2011-01-17 21:32:24 +0000398 pcache1LeaveMutex(p->pGroup);
drh085bb7f2008-12-06 14:34:33 +0000399 if( p->nHash ){ sqlite3BeginBenignMalloc(); }
dan6809c962012-07-30 14:53:54 +0000400 apNew = (PgHdr1 **)sqlite3MallocZero(sizeof(PgHdr1 *)*nNew);
drh085bb7f2008-12-06 14:34:33 +0000401 if( p->nHash ){ sqlite3EndBenignMalloc(); }
drh9f8cf9d2011-01-17 21:32:24 +0000402 pcache1EnterMutex(p->pGroup);
danielk1977bc2ca9e2008-11-13 14:28:28 +0000403 if( apNew ){
danielk1977bc2ca9e2008-11-13 14:28:28 +0000404 for(i=0; i<p->nHash; i++){
405 PgHdr1 *pPage;
406 PgHdr1 *pNext = p->apHash[i];
drhb27b7f52008-12-10 18:03:45 +0000407 while( (pPage = pNext)!=0 ){
danielk1977bc2ca9e2008-11-13 14:28:28 +0000408 unsigned int h = pPage->iKey % nNew;
409 pNext = pPage->pNext;
410 pPage->pNext = apNew[h];
411 apNew[h] = pPage;
412 }
413 }
414 sqlite3_free(p->apHash);
415 p->apHash = apNew;
416 p->nHash = nNew;
417 }
danielk1977bc2ca9e2008-11-13 14:28:28 +0000418}
419
420/*
421** This function is used internally to remove the page pPage from the
drh9f8cf9d2011-01-17 21:32:24 +0000422** PGroup LRU list, if is part of it. If pPage is not part of the PGroup
danielk1977bc2ca9e2008-11-13 14:28:28 +0000423** LRU list, then this function is a no-op.
424**
drh9f8cf9d2011-01-17 21:32:24 +0000425** The PGroup mutex must be held when this function is called.
danielk1977bc2ca9e2008-11-13 14:28:28 +0000426*/
427static void pcache1PinPage(PgHdr1 *pPage){
drh9f8cf9d2011-01-17 21:32:24 +0000428 PCache1 *pCache;
429 PGroup *pGroup;
430
drh5d56dd22013-12-13 18:50:40 +0000431 assert( pPage!=0 );
432 assert( pPage->isPinned==0 );
drh9f8cf9d2011-01-17 21:32:24 +0000433 pCache = pPage->pCache;
434 pGroup = pCache->pGroup;
drh5d56dd22013-12-13 18:50:40 +0000435 assert( pPage->pLruNext || pPage==pGroup->pLruTail );
436 assert( pPage->pLruPrev || pPage==pGroup->pLruHead );
drh9f8cf9d2011-01-17 21:32:24 +0000437 assert( sqlite3_mutex_held(pGroup->mutex) );
drh5d56dd22013-12-13 18:50:40 +0000438 if( pPage->pLruPrev ){
439 pPage->pLruPrev->pLruNext = pPage->pLruNext;
440 }else{
441 pGroup->pLruHead = pPage->pLruNext;
danielk1977bc2ca9e2008-11-13 14:28:28 +0000442 }
drh5d56dd22013-12-13 18:50:40 +0000443 if( pPage->pLruNext ){
444 pPage->pLruNext->pLruPrev = pPage->pLruPrev;
445 }else{
446 pGroup->pLruTail = pPage->pLruPrev;
447 }
448 pPage->pLruNext = 0;
449 pPage->pLruPrev = 0;
450 pPage->isPinned = 1;
451 pCache->nRecyclable--;
danielk1977bc2ca9e2008-11-13 14:28:28 +0000452}
453
454
455/*
456** Remove the page supplied as an argument from the hash table
457** (PCache1.apHash structure) that it is currently stored in.
458**
drh9f8cf9d2011-01-17 21:32:24 +0000459** The PGroup mutex must be held when this function is called.
danielk1977bc2ca9e2008-11-13 14:28:28 +0000460*/
461static void pcache1RemoveFromHash(PgHdr1 *pPage){
462 unsigned int h;
463 PCache1 *pCache = pPage->pCache;
464 PgHdr1 **pp;
465
drh9f8cf9d2011-01-17 21:32:24 +0000466 assert( sqlite3_mutex_held(pCache->pGroup->mutex) );
danielk1977bc2ca9e2008-11-13 14:28:28 +0000467 h = pPage->iKey % pCache->nHash;
468 for(pp=&pCache->apHash[h]; (*pp)!=pPage; pp=&(*pp)->pNext);
469 *pp = (*pp)->pNext;
470
471 pCache->nPage--;
472}
473
474/*
drh9f8cf9d2011-01-17 21:32:24 +0000475** If there are currently more than nMaxPage pages allocated, try
476** to recycle pages to reduce the number allocated to nMaxPage.
danielk1977bc2ca9e2008-11-13 14:28:28 +0000477*/
drh9f8cf9d2011-01-17 21:32:24 +0000478static void pcache1EnforceMaxPage(PGroup *pGroup){
479 assert( sqlite3_mutex_held(pGroup->mutex) );
480 while( pGroup->nCurrentPage>pGroup->nMaxPage && pGroup->pLruTail ){
481 PgHdr1 *p = pGroup->pLruTail;
482 assert( p->pCache->pGroup==pGroup );
drh5d56dd22013-12-13 18:50:40 +0000483 assert( p->isPinned==0 );
danielk1977bc2ca9e2008-11-13 14:28:28 +0000484 pcache1PinPage(p);
485 pcache1RemoveFromHash(p);
486 pcache1FreePage(p);
487 }
488}
489
490/*
491** Discard all pages from cache pCache with a page number (key value)
492** greater than or equal to iLimit. Any pinned pages that meet this
493** criteria are unpinned before they are discarded.
494**
drh9f8cf9d2011-01-17 21:32:24 +0000495** The PCache mutex must be held when this function is called.
danielk1977bc2ca9e2008-11-13 14:28:28 +0000496*/
497static void pcache1TruncateUnsafe(
drh9f8cf9d2011-01-17 21:32:24 +0000498 PCache1 *pCache, /* The cache to truncate */
499 unsigned int iLimit /* Drop pages with this pgno or larger */
danielk1977bc2ca9e2008-11-13 14:28:28 +0000500){
drh9f8cf9d2011-01-17 21:32:24 +0000501 TESTONLY( unsigned int nPage = 0; ) /* To assert pCache->nPage is correct */
danielk1977bc2ca9e2008-11-13 14:28:28 +0000502 unsigned int h;
drh9f8cf9d2011-01-17 21:32:24 +0000503 assert( sqlite3_mutex_held(pCache->pGroup->mutex) );
danielk1977bc2ca9e2008-11-13 14:28:28 +0000504 for(h=0; h<pCache->nHash; h++){
505 PgHdr1 **pp = &pCache->apHash[h];
506 PgHdr1 *pPage;
drhb27b7f52008-12-10 18:03:45 +0000507 while( (pPage = *pp)!=0 ){
danielk1977bc2ca9e2008-11-13 14:28:28 +0000508 if( pPage->iKey>=iLimit ){
danielk1977ea24ac42009-05-08 06:52:47 +0000509 pCache->nPage--;
danielk1977bc2ca9e2008-11-13 14:28:28 +0000510 *pp = pPage->pNext;
drh5d56dd22013-12-13 18:50:40 +0000511 if( !pPage->isPinned ) pcache1PinPage(pPage);
danielk1977bc2ca9e2008-11-13 14:28:28 +0000512 pcache1FreePage(pPage);
513 }else{
514 pp = &pPage->pNext;
danielk1977ea24ac42009-05-08 06:52:47 +0000515 TESTONLY( nPage++; )
danielk1977bc2ca9e2008-11-13 14:28:28 +0000516 }
517 }
518 }
danielk1977ea24ac42009-05-08 06:52:47 +0000519 assert( pCache->nPage==nPage );
danielk1977bc2ca9e2008-11-13 14:28:28 +0000520}
521
522/******************************************************************************/
523/******** sqlite3_pcache Methods **********************************************/
524
525/*
526** Implementation of the sqlite3_pcache.xInit method.
527*/
danielk197762c14b32008-11-19 09:05:26 +0000528static int pcache1Init(void *NotUsed){
529 UNUSED_PARAMETER(NotUsed);
drhf4622dc2009-05-22 11:10:24 +0000530 assert( pcache1.isInit==0 );
danielk1977bc2ca9e2008-11-13 14:28:28 +0000531 memset(&pcache1, 0, sizeof(pcache1));
532 if( sqlite3GlobalConfig.bCoreMutex ){
drh9f8cf9d2011-01-17 21:32:24 +0000533 pcache1.grp.mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU);
drh40f98372011-01-18 15:17:57 +0000534 pcache1.mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_PMEM);
danielk1977bc2ca9e2008-11-13 14:28:28 +0000535 }
drh41692e92011-01-25 04:34:51 +0000536 pcache1.grp.mxPinned = 10;
drhf4622dc2009-05-22 11:10:24 +0000537 pcache1.isInit = 1;
danielk1977bc2ca9e2008-11-13 14:28:28 +0000538 return SQLITE_OK;
539}
540
541/*
542** Implementation of the sqlite3_pcache.xShutdown method.
shane7c7c3112009-08-17 15:31:23 +0000543** Note that the static mutex allocated in xInit does
544** not need to be freed.
danielk1977bc2ca9e2008-11-13 14:28:28 +0000545*/
danielk197762c14b32008-11-19 09:05:26 +0000546static void pcache1Shutdown(void *NotUsed){
547 UNUSED_PARAMETER(NotUsed);
drhf4622dc2009-05-22 11:10:24 +0000548 assert( pcache1.isInit!=0 );
drhb0937192009-05-22 10:53:29 +0000549 memset(&pcache1, 0, sizeof(pcache1));
danielk1977bc2ca9e2008-11-13 14:28:28 +0000550}
551
drhefbf0442014-08-23 23:15:31 +0000552/* forward declaration */
553static void pcache1Destroy(sqlite3_pcache *p);
554
danielk1977bc2ca9e2008-11-13 14:28:28 +0000555/*
556** Implementation of the sqlite3_pcache.xCreate method.
557**
558** Allocate a new cache.
559*/
drhe5c40b12011-11-09 00:06:05 +0000560static sqlite3_pcache *pcache1Create(int szPage, int szExtra, int bPurgeable){
drh9f8cf9d2011-01-17 21:32:24 +0000561 PCache1 *pCache; /* The newly created page cache */
562 PGroup *pGroup; /* The group the new page cache will belong to */
563 int sz; /* Bytes of memory required to allocate the new cache */
danielk1977bc2ca9e2008-11-13 14:28:28 +0000564
drh9f8cf9d2011-01-17 21:32:24 +0000565 /*
drhf7b54962013-05-28 12:11:54 +0000566 ** The separateCache variable is true if each PCache has its own private
drh9f8cf9d2011-01-17 21:32:24 +0000567 ** PGroup. In other words, separateCache is true for mode (1) where no
568 ** mutexing is required.
569 **
570 ** * Always use a unified cache (mode-2) if ENABLE_MEMORY_MANAGEMENT
571 **
572 ** * Always use a unified cache in single-threaded applications
573 **
574 ** * Otherwise (if multi-threaded and ENABLE_MEMORY_MANAGEMENT is off)
575 ** use separate caches (mode-1)
576 */
577#if defined(SQLITE_ENABLE_MEMORY_MANAGEMENT) || SQLITE_THREADSAFE==0
578 const int separateCache = 0;
579#else
580 int separateCache = sqlite3GlobalConfig.bCoreMutex>0;
581#endif
582
drhe73c9142011-11-09 16:12:24 +0000583 assert( (szPage & (szPage-1))==0 && szPage>=512 && szPage<=65536 );
584 assert( szExtra < 300 );
585
drh9f8cf9d2011-01-17 21:32:24 +0000586 sz = sizeof(PCache1) + sizeof(PGroup)*separateCache;
dan6809c962012-07-30 14:53:54 +0000587 pCache = (PCache1 *)sqlite3MallocZero(sz);
danielk1977bc2ca9e2008-11-13 14:28:28 +0000588 if( pCache ){
drh9f8cf9d2011-01-17 21:32:24 +0000589 if( separateCache ){
590 pGroup = (PGroup*)&pCache[1];
drh41692e92011-01-25 04:34:51 +0000591 pGroup->mxPinned = 10;
drh9f8cf9d2011-01-17 21:32:24 +0000592 }else{
dan9dde7cb2011-06-09 17:53:43 +0000593 pGroup = &pcache1.grp;
drh9f8cf9d2011-01-17 21:32:24 +0000594 }
595 pCache->pGroup = pGroup;
danielk1977bc2ca9e2008-11-13 14:28:28 +0000596 pCache->szPage = szPage;
dan22e21ff2011-11-08 20:08:44 +0000597 pCache->szExtra = szExtra;
danielk1977bc2ca9e2008-11-13 14:28:28 +0000598 pCache->bPurgeable = (bPurgeable ? 1 : 0);
drhefbf0442014-08-23 23:15:31 +0000599 pcache1EnterMutex(pGroup);
600 pcache1ResizeHash(pCache);
danielk1977bc2ca9e2008-11-13 14:28:28 +0000601 if( bPurgeable ){
602 pCache->nMin = 10;
drh9f8cf9d2011-01-17 21:32:24 +0000603 pGroup->nMinPage += pCache->nMin;
drh41692e92011-01-25 04:34:51 +0000604 pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage;
drhefbf0442014-08-23 23:15:31 +0000605 }
606 pcache1LeaveMutex(pGroup);
607 if( pCache->nHash==0 ){
608 pcache1Destroy((sqlite3_pcache*)pCache);
609 pCache = 0;
danielk1977bc2ca9e2008-11-13 14:28:28 +0000610 }
611 }
612 return (sqlite3_pcache *)pCache;
613}
614
615/*
616** Implementation of the sqlite3_pcache.xCachesize method.
617**
618** Configure the cache_size limit for a cache.
619*/
620static void pcache1Cachesize(sqlite3_pcache *p, int nMax){
621 PCache1 *pCache = (PCache1 *)p;
622 if( pCache->bPurgeable ){
drh9f8cf9d2011-01-17 21:32:24 +0000623 PGroup *pGroup = pCache->pGroup;
624 pcache1EnterMutex(pGroup);
625 pGroup->nMaxPage += (nMax - pCache->nMax);
drh41692e92011-01-25 04:34:51 +0000626 pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage;
danielk1977bc2ca9e2008-11-13 14:28:28 +0000627 pCache->nMax = nMax;
drh25ca5682011-01-26 00:07:03 +0000628 pCache->n90pct = pCache->nMax*9/10;
drh9f8cf9d2011-01-17 21:32:24 +0000629 pcache1EnforceMaxPage(pGroup);
630 pcache1LeaveMutex(pGroup);
danielk1977bc2ca9e2008-11-13 14:28:28 +0000631 }
632}
633
634/*
drh09419b42011-11-16 19:29:17 +0000635** Implementation of the sqlite3_pcache.xShrink method.
636**
637** Free up as much memory as possible.
638*/
639static void pcache1Shrink(sqlite3_pcache *p){
640 PCache1 *pCache = (PCache1*)p;
641 if( pCache->bPurgeable ){
642 PGroup *pGroup = pCache->pGroup;
643 int savedMaxPage;
644 pcache1EnterMutex(pGroup);
645 savedMaxPage = pGroup->nMaxPage;
646 pGroup->nMaxPage = 0;
647 pcache1EnforceMaxPage(pGroup);
648 pGroup->nMaxPage = savedMaxPage;
649 pcache1LeaveMutex(pGroup);
650 }
651}
652
653/*
danielk1977bc2ca9e2008-11-13 14:28:28 +0000654** Implementation of the sqlite3_pcache.xPagecount method.
655*/
656static int pcache1Pagecount(sqlite3_pcache *p){
657 int n;
drh9f8cf9d2011-01-17 21:32:24 +0000658 PCache1 *pCache = (PCache1*)p;
659 pcache1EnterMutex(pCache->pGroup);
660 n = pCache->nPage;
661 pcache1LeaveMutex(pCache->pGroup);
danielk1977bc2ca9e2008-11-13 14:28:28 +0000662 return n;
663}
664
drhefbf0442014-08-23 23:15:31 +0000665
666/*
667** Implement steps 3, 4, and 5 of the pcache1Fetch() algorithm described
668** in the header of the pcache1Fetch() procedure.
669**
670** This steps are broken out into a separate procedure because they are
671** usually not needed, and by avoiding the stack initialization required
672** for these steps, the main pcache1Fetch() procedure can run faster.
673*/
674static SQLITE_NOINLINE PgHdr1 *pcache1FetchStage2(
675 PCache1 *pCache,
676 unsigned int iKey,
677 int createFlag
678){
679 unsigned int nPinned;
680 PGroup *pGroup = pCache->pGroup;
681 PgHdr1 *pPage = 0;
682
683 /* Step 3: Abort if createFlag is 1 but the cache is nearly full */
684 assert( pCache->nPage >= pCache->nRecyclable );
685 nPinned = pCache->nPage - pCache->nRecyclable;
686 assert( pGroup->mxPinned == pGroup->nMaxPage + 10 - pGroup->nMinPage );
687 assert( pCache->n90pct == pCache->nMax*9/10 );
688 if( createFlag==1 && (
689 nPinned>=pGroup->mxPinned
690 || nPinned>=pCache->n90pct
dan5bd8af72014-10-10 19:10:59 +0000691 || (pcache1UnderMemoryPressure(pCache) && pCache->nRecyclable<nPinned)
drhefbf0442014-08-23 23:15:31 +0000692 )){
693 return 0;
694 }
695
696 if( pCache->nPage>=pCache->nHash ) pcache1ResizeHash(pCache);
697 assert( pCache->nHash>0 && pCache->apHash );
698
699 /* Step 4. Try to recycle a page. */
700 if( pCache->bPurgeable && pGroup->pLruTail && (
701 (pCache->nPage+1>=pCache->nMax)
702 || pGroup->nCurrentPage>=pGroup->nMaxPage
703 || pcache1UnderMemoryPressure(pCache)
704 )){
705 PCache1 *pOther;
706 pPage = pGroup->pLruTail;
707 assert( pPage->isPinned==0 );
708 pcache1RemoveFromHash(pPage);
709 pcache1PinPage(pPage);
710 pOther = pPage->pCache;
711
712 /* We want to verify that szPage and szExtra are the same for pOther
713 ** and pCache. Assert that we can verify this by comparing sums. */
714 assert( (pCache->szPage & (pCache->szPage-1))==0 && pCache->szPage>=512 );
715 assert( pCache->szExtra<512 );
716 assert( (pOther->szPage & (pOther->szPage-1))==0 && pOther->szPage>=512 );
717 assert( pOther->szExtra<512 );
718
719 if( pOther->szPage+pOther->szExtra != pCache->szPage+pCache->szExtra ){
720 pcache1FreePage(pPage);
721 pPage = 0;
722 }else{
723 pGroup->nCurrentPage -= (pOther->bPurgeable - pCache->bPurgeable);
724 }
725 }
726
727 /* Step 5. If a usable page buffer has still not been found,
728 ** attempt to allocate a new one.
729 */
730 if( !pPage ){
731 if( createFlag==1 ) sqlite3BeginBenignMalloc();
732 pPage = pcache1AllocPage(pCache);
733 if( createFlag==1 ) sqlite3EndBenignMalloc();
734 }
735
736 if( pPage ){
737 unsigned int h = iKey % pCache->nHash;
738 pCache->nPage++;
739 pPage->iKey = iKey;
740 pPage->pNext = pCache->apHash[h];
741 pPage->pCache = pCache;
742 pPage->pLruPrev = 0;
743 pPage->pLruNext = 0;
744 pPage->isPinned = 1;
745 *(void **)pPage->page.pExtra = 0;
746 pCache->apHash[h] = pPage;
747 if( iKey>pCache->iMaxKey ){
748 pCache->iMaxKey = iKey;
749 }
750 }
751 return pPage;
752}
753
danielk1977bc2ca9e2008-11-13 14:28:28 +0000754/*
755** Implementation of the sqlite3_pcache.xFetch method.
756**
757** Fetch a page by key value.
758**
759** Whether or not a new page may be allocated by this function depends on
drhf18a61d2009-07-17 11:44:07 +0000760** the value of the createFlag argument. 0 means do not allocate a new
761** page. 1 means allocate a new page if space is easily available. 2
762** means to try really hard to allocate a new page.
763**
764** For a non-purgeable cache (a cache used as the storage for an in-memory
765** database) there is really no difference between createFlag 1 and 2. So
766** the calling function (pcache.c) will never have a createFlag of 1 on
drh45d29302012-01-08 22:18:33 +0000767** a non-purgeable cache.
danielk1977bc2ca9e2008-11-13 14:28:28 +0000768**
769** There are three different approaches to obtaining space for a page,
770** depending on the value of parameter createFlag (which may be 0, 1 or 2).
771**
772** 1. Regardless of the value of createFlag, the cache is searched for a
773** copy of the requested page. If one is found, it is returned.
774**
775** 2. If createFlag==0 and the page is not already in the cache, NULL is
776** returned.
777**
drh50d1b5f2010-08-27 12:21:06 +0000778** 3. If createFlag is 1, and the page is not already in the cache, then
779** return NULL (do not allocate a new page) if any of the following
780** conditions are true:
danielk1977bc2ca9e2008-11-13 14:28:28 +0000781**
782** (a) the number of pages pinned by the cache is greater than
783** PCache1.nMax, or
drh50d1b5f2010-08-27 12:21:06 +0000784**
danielk1977bc2ca9e2008-11-13 14:28:28 +0000785** (b) the number of pages pinned by the cache is greater than
786** the sum of nMax for all purgeable caches, less the sum of
drh50d1b5f2010-08-27 12:21:06 +0000787** nMin for all other purgeable caches, or
danielk1977bc2ca9e2008-11-13 14:28:28 +0000788**
789** 4. If none of the first three conditions apply and the cache is marked
790** as purgeable, and if one of the following is true:
791**
792** (a) The number of pages allocated for the cache is already
793** PCache1.nMax, or
794**
795** (b) The number of pages allocated for all purgeable caches is
796** already equal to or greater than the sum of nMax for all
797** purgeable caches,
798**
drh50d1b5f2010-08-27 12:21:06 +0000799** (c) The system is under memory pressure and wants to avoid
800** unnecessary pages cache entry allocations
801**
danielk1977bc2ca9e2008-11-13 14:28:28 +0000802** then attempt to recycle a page from the LRU list. If it is the right
803** size, return the recycled buffer. Otherwise, free the buffer and
804** proceed to step 5.
805**
806** 5. Otherwise, allocate and return a new page buffer.
807*/
dan22e21ff2011-11-08 20:08:44 +0000808static sqlite3_pcache_page *pcache1Fetch(
809 sqlite3_pcache *p,
810 unsigned int iKey,
811 int createFlag
812){
danielk1977bc2ca9e2008-11-13 14:28:28 +0000813 PCache1 *pCache = (PCache1 *)p;
814 PgHdr1 *pPage = 0;
815
drh693e6712014-01-24 22:58:00 +0000816 assert( offsetof(PgHdr1,page)==0 );
drhf18a61d2009-07-17 11:44:07 +0000817 assert( pCache->bPurgeable || createFlag!=1 );
drh41692e92011-01-25 04:34:51 +0000818 assert( pCache->bPurgeable || pCache->nMin==0 );
819 assert( pCache->bPurgeable==0 || pCache->nMin==10 );
820 assert( pCache->nMin==0 || pCache->bPurgeable );
drhefbf0442014-08-23 23:15:31 +0000821 assert( pCache->nHash>0 );
822 pcache1EnterMutex(pCache->pGroup);
danielk1977bc2ca9e2008-11-13 14:28:28 +0000823
drh3a5676c2011-01-19 21:58:56 +0000824 /* Step 1: Search the hash table for an existing entry. */
drhefbf0442014-08-23 23:15:31 +0000825 pPage = pCache->apHash[iKey % pCache->nHash];
826 while( pPage && pPage->iKey!=iKey ){ pPage = pPage->pNext; }
danielk1977bc2ca9e2008-11-13 14:28:28 +0000827
drh3a5676c2011-01-19 21:58:56 +0000828 /* Step 2: Abort if no existing page is found and createFlag is 0 */
drh5d56dd22013-12-13 18:50:40 +0000829 if( pPage ){
830 if( !pPage->isPinned ) pcache1PinPage(pPage);
drhefbf0442014-08-23 23:15:31 +0000831 }else if( createFlag ){
832 /* Steps 3, 4, and 5 implemented by this subroutine */
833 pPage = pcache1FetchStage2(pCache, iKey, createFlag);
drh5d56dd22013-12-13 18:50:40 +0000834 }
drhefbf0442014-08-23 23:15:31 +0000835 assert( pPage==0 || pCache->iMaxKey>=iKey );
836 pcache1LeaveMutex(pCache->pGroup);
drh693e6712014-01-24 22:58:00 +0000837 return (sqlite3_pcache_page*)pPage;
danielk1977bc2ca9e2008-11-13 14:28:28 +0000838}
839
840
841/*
842** Implementation of the sqlite3_pcache.xUnpin method.
843**
844** Mark a page as unpinned (eligible for asynchronous recycling).
845*/
dan22e21ff2011-11-08 20:08:44 +0000846static void pcache1Unpin(
847 sqlite3_pcache *p,
848 sqlite3_pcache_page *pPg,
849 int reuseUnlikely
850){
danielk1977bc2ca9e2008-11-13 14:28:28 +0000851 PCache1 *pCache = (PCache1 *)p;
dan22e21ff2011-11-08 20:08:44 +0000852 PgHdr1 *pPage = (PgHdr1 *)pPg;
drh9f8cf9d2011-01-17 21:32:24 +0000853 PGroup *pGroup = pCache->pGroup;
drh69e931e2009-06-03 21:04:35 +0000854
855 assert( pPage->pCache==pCache );
drh9f8cf9d2011-01-17 21:32:24 +0000856 pcache1EnterMutex(pGroup);
danielk1977bc2ca9e2008-11-13 14:28:28 +0000857
858 /* It is an error to call this function if the page is already
drh9f8cf9d2011-01-17 21:32:24 +0000859 ** part of the PGroup LRU list.
danielk1977bc2ca9e2008-11-13 14:28:28 +0000860 */
861 assert( pPage->pLruPrev==0 && pPage->pLruNext==0 );
drh9f8cf9d2011-01-17 21:32:24 +0000862 assert( pGroup->pLruHead!=pPage && pGroup->pLruTail!=pPage );
drh5d56dd22013-12-13 18:50:40 +0000863 assert( pPage->isPinned==1 );
danielk1977bc2ca9e2008-11-13 14:28:28 +0000864
drh9f8cf9d2011-01-17 21:32:24 +0000865 if( reuseUnlikely || pGroup->nCurrentPage>pGroup->nMaxPage ){
danielk1977bc2ca9e2008-11-13 14:28:28 +0000866 pcache1RemoveFromHash(pPage);
867 pcache1FreePage(pPage);
868 }else{
drh9f8cf9d2011-01-17 21:32:24 +0000869 /* Add the page to the PGroup LRU list. */
870 if( pGroup->pLruHead ){
871 pGroup->pLruHead->pLruPrev = pPage;
872 pPage->pLruNext = pGroup->pLruHead;
873 pGroup->pLruHead = pPage;
danielk1977bc2ca9e2008-11-13 14:28:28 +0000874 }else{
drh9f8cf9d2011-01-17 21:32:24 +0000875 pGroup->pLruTail = pPage;
876 pGroup->pLruHead = pPage;
danielk1977bc2ca9e2008-11-13 14:28:28 +0000877 }
878 pCache->nRecyclable++;
drh5d56dd22013-12-13 18:50:40 +0000879 pPage->isPinned = 0;
danielk1977bc2ca9e2008-11-13 14:28:28 +0000880 }
881
drh9f8cf9d2011-01-17 21:32:24 +0000882 pcache1LeaveMutex(pCache->pGroup);
danielk1977bc2ca9e2008-11-13 14:28:28 +0000883}
884
885/*
886** Implementation of the sqlite3_pcache.xRekey method.
887*/
888static void pcache1Rekey(
889 sqlite3_pcache *p,
dan22e21ff2011-11-08 20:08:44 +0000890 sqlite3_pcache_page *pPg,
danielk1977bc2ca9e2008-11-13 14:28:28 +0000891 unsigned int iOld,
892 unsigned int iNew
893){
894 PCache1 *pCache = (PCache1 *)p;
dan22e21ff2011-11-08 20:08:44 +0000895 PgHdr1 *pPage = (PgHdr1 *)pPg;
danielk1977bc2ca9e2008-11-13 14:28:28 +0000896 PgHdr1 **pp;
897 unsigned int h;
898 assert( pPage->iKey==iOld );
drh69e931e2009-06-03 21:04:35 +0000899 assert( pPage->pCache==pCache );
danielk1977bc2ca9e2008-11-13 14:28:28 +0000900
drh9f8cf9d2011-01-17 21:32:24 +0000901 pcache1EnterMutex(pCache->pGroup);
danielk1977bc2ca9e2008-11-13 14:28:28 +0000902
903 h = iOld%pCache->nHash;
904 pp = &pCache->apHash[h];
905 while( (*pp)!=pPage ){
906 pp = &(*pp)->pNext;
907 }
908 *pp = pPage->pNext;
909
910 h = iNew%pCache->nHash;
911 pPage->iKey = iNew;
912 pPage->pNext = pCache->apHash[h];
913 pCache->apHash[h] = pPage;
drh98829a62009-11-20 13:18:14 +0000914 if( iNew>pCache->iMaxKey ){
danielk1977f90b7262009-01-07 15:18:20 +0000915 pCache->iMaxKey = iNew;
916 }
917
drh9f8cf9d2011-01-17 21:32:24 +0000918 pcache1LeaveMutex(pCache->pGroup);
danielk1977bc2ca9e2008-11-13 14:28:28 +0000919}
920
921/*
922** Implementation of the sqlite3_pcache.xTruncate method.
923**
924** Discard all unpinned pages in the cache with a page number equal to
925** or greater than parameter iLimit. Any pinned pages with a page number
926** equal to or greater than iLimit are implicitly unpinned.
927*/
928static void pcache1Truncate(sqlite3_pcache *p, unsigned int iLimit){
929 PCache1 *pCache = (PCache1 *)p;
drh9f8cf9d2011-01-17 21:32:24 +0000930 pcache1EnterMutex(pCache->pGroup);
danielk1977f90b7262009-01-07 15:18:20 +0000931 if( iLimit<=pCache->iMaxKey ){
932 pcache1TruncateUnsafe(pCache, iLimit);
933 pCache->iMaxKey = iLimit-1;
934 }
drh9f8cf9d2011-01-17 21:32:24 +0000935 pcache1LeaveMutex(pCache->pGroup);
danielk1977bc2ca9e2008-11-13 14:28:28 +0000936}
937
938/*
939** Implementation of the sqlite3_pcache.xDestroy method.
940**
941** Destroy a cache allocated using pcache1Create().
942*/
943static void pcache1Destroy(sqlite3_pcache *p){
944 PCache1 *pCache = (PCache1 *)p;
drh9f8cf9d2011-01-17 21:32:24 +0000945 PGroup *pGroup = pCache->pGroup;
danb51d2fa2010-09-22 19:06:02 +0000946 assert( pCache->bPurgeable || (pCache->nMax==0 && pCache->nMin==0) );
drh9f8cf9d2011-01-17 21:32:24 +0000947 pcache1EnterMutex(pGroup);
danielk1977bc2ca9e2008-11-13 14:28:28 +0000948 pcache1TruncateUnsafe(pCache, 0);
drha69085c2012-01-02 18:00:55 +0000949 assert( pGroup->nMaxPage >= pCache->nMax );
drh9f8cf9d2011-01-17 21:32:24 +0000950 pGroup->nMaxPage -= pCache->nMax;
drha69085c2012-01-02 18:00:55 +0000951 assert( pGroup->nMinPage >= pCache->nMin );
drh9f8cf9d2011-01-17 21:32:24 +0000952 pGroup->nMinPage -= pCache->nMin;
drh41692e92011-01-25 04:34:51 +0000953 pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage;
drh9f8cf9d2011-01-17 21:32:24 +0000954 pcache1EnforceMaxPage(pGroup);
955 pcache1LeaveMutex(pGroup);
danielk1977bc2ca9e2008-11-13 14:28:28 +0000956 sqlite3_free(pCache->apHash);
957 sqlite3_free(pCache);
958}
959
960/*
961** This function is called during initialization (sqlite3_initialize()) to
962** install the default pluggable cache module, assuming the user has not
963** already provided an alternative.
964*/
965void sqlite3PCacheSetDefault(void){
dan22e21ff2011-11-08 20:08:44 +0000966 static const sqlite3_pcache_methods2 defaultMethods = {
drh81ef0f92011-11-13 21:44:03 +0000967 1, /* iVersion */
danielk1977bc2ca9e2008-11-13 14:28:28 +0000968 0, /* pArg */
969 pcache1Init, /* xInit */
970 pcache1Shutdown, /* xShutdown */
971 pcache1Create, /* xCreate */
972 pcache1Cachesize, /* xCachesize */
973 pcache1Pagecount, /* xPagecount */
974 pcache1Fetch, /* xFetch */
975 pcache1Unpin, /* xUnpin */
976 pcache1Rekey, /* xRekey */
977 pcache1Truncate, /* xTruncate */
drh09419b42011-11-16 19:29:17 +0000978 pcache1Destroy, /* xDestroy */
979 pcache1Shrink /* xShrink */
danielk1977bc2ca9e2008-11-13 14:28:28 +0000980 };
dan22e21ff2011-11-08 20:08:44 +0000981 sqlite3_config(SQLITE_CONFIG_PCACHE2, &defaultMethods);
danielk1977bc2ca9e2008-11-13 14:28:28 +0000982}
983
drhdef68892014-11-04 12:11:23 +0000984/*
985** Return the size of the header on each page of this PCACHE implementation.
986*/
drh37c057b2014-12-30 00:57:29 +0000987int sqlite3HeaderSizePcache1(void){ return ROUND8(sizeof(PgHdr1)); }
drhdef68892014-11-04 12:11:23 +0000988
danielk1977bc2ca9e2008-11-13 14:28:28 +0000989#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
990/*
991** This function is called to free superfluous dynamically allocated memory
992** held by the pager system. Memory in use by any SQLite pager allocated
993** by the current thread may be sqlite3_free()ed.
994**
995** nReq is the number of bytes of memory required. Once this much has
996** been released, the function returns. The return value is the total number
997** of bytes of memory released.
998*/
999int sqlite3PcacheReleaseMemory(int nReq){
1000 int nFree = 0;
drh9f8cf9d2011-01-17 21:32:24 +00001001 assert( sqlite3_mutex_notheld(pcache1.grp.mutex) );
1002 assert( sqlite3_mutex_notheld(pcache1.mutex) );
danielk1977bc2ca9e2008-11-13 14:28:28 +00001003 if( pcache1.pStart==0 ){
1004 PgHdr1 *p;
drh9f8cf9d2011-01-17 21:32:24 +00001005 pcache1EnterMutex(&pcache1.grp);
1006 while( (nReq<0 || nFree<nReq) && ((p=pcache1.grp.pLruTail)!=0) ){
dan22e21ff2011-11-08 20:08:44 +00001007 nFree += pcache1MemSize(p->page.pBuf);
1008#ifdef SQLITE_PCACHE_SEPARATE_HEADER
1009 nFree += sqlite3MemSize(p);
1010#endif
drh5d56dd22013-12-13 18:50:40 +00001011 assert( p->isPinned==0 );
danielk1977bc2ca9e2008-11-13 14:28:28 +00001012 pcache1PinPage(p);
1013 pcache1RemoveFromHash(p);
1014 pcache1FreePage(p);
1015 }
drh9f8cf9d2011-01-17 21:32:24 +00001016 pcache1LeaveMutex(&pcache1.grp);
danielk1977bc2ca9e2008-11-13 14:28:28 +00001017 }
1018 return nFree;
1019}
1020#endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */
1021
1022#ifdef SQLITE_TEST
1023/*
1024** This function is used by test procedures to inspect the internal state
1025** of the global cache.
1026*/
1027void sqlite3PcacheStats(
1028 int *pnCurrent, /* OUT: Total number of pages cached */
1029 int *pnMax, /* OUT: Global maximum cache size */
1030 int *pnMin, /* OUT: Sum of PCache1.nMin for purgeable caches */
1031 int *pnRecyclable /* OUT: Total number of pages available for recycling */
1032){
1033 PgHdr1 *p;
1034 int nRecyclable = 0;
drh9f8cf9d2011-01-17 21:32:24 +00001035 for(p=pcache1.grp.pLruHead; p; p=p->pLruNext){
drh5d56dd22013-12-13 18:50:40 +00001036 assert( p->isPinned==0 );
danielk1977bc2ca9e2008-11-13 14:28:28 +00001037 nRecyclable++;
1038 }
drh9f8cf9d2011-01-17 21:32:24 +00001039 *pnCurrent = pcache1.grp.nCurrentPage;
drha69085c2012-01-02 18:00:55 +00001040 *pnMax = (int)pcache1.grp.nMaxPage;
1041 *pnMin = (int)pcache1.grp.nMinPage;
danielk1977bc2ca9e2008-11-13 14:28:28 +00001042 *pnRecyclable = nRecyclable;
1043}
1044#endif