blob: 10c23adfd32db4469c73b33627511c81296852d5 [file] [log] [blame]
drh4f26d6c2004-05-26 23:25:30 +00001/*
2** 2004 May 26
3**
4** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
6**
7** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
10**
11*************************************************************************
12**
13** This file contains code use to manipulate "Mem" structure. A "Mem"
14** stores a single value in the VDBE. Mem is an opaque structure visible
15** only within the VDBE. Interface routines refer to a Mem using the
16** name sqlite_value
17*/
18#include "sqliteInt.h"
drh4f26d6c2004-05-26 23:25:30 +000019#include "vdbeInt.h"
20
drh75fd0542014-03-01 16:24:44 +000021#ifdef SQLITE_DEBUG
22/*
23** Check invariants on a Mem object.
24**
25** This routine is intended for use inside of assert() statements, like
26** this: assert( sqlite3VdbeCheckMemInvariants(pMem) );
27*/
28int sqlite3VdbeCheckMemInvariants(Mem *p){
drhd3b74202014-09-17 16:41:15 +000029 /* If MEM_Dyn is set then Mem.xDel!=0.
drha0024e62017-07-27 15:53:24 +000030 ** Mem.xDel might not be initialized if MEM_Dyn is clear.
drhc91b2fd2014-03-01 18:13:23 +000031 */
32 assert( (p->flags & MEM_Dyn)==0 || p->xDel!=0 );
drhc91b2fd2014-03-01 18:13:23 +000033
drh722246e2014-10-07 23:02:24 +000034 /* MEM_Dyn may only be set if Mem.szMalloc==0. In this way we
35 ** ensure that if Mem.szMalloc>0 then it is safe to do
36 ** Mem.z = Mem.zMalloc without having to check Mem.flags&MEM_Dyn.
37 ** That saves a few cycles in inner loops. */
drh1eda9f72014-09-19 22:30:49 +000038 assert( (p->flags & MEM_Dyn)==0 || p->szMalloc==0 );
39
drh74eaba42014-09-18 17:52:15 +000040 /* Cannot be both MEM_Int and MEM_Real at the same time */
41 assert( (p->flags & (MEM_Int|MEM_Real))!=(MEM_Int|MEM_Real) );
42
drha0024e62017-07-27 15:53:24 +000043 if( p->flags & MEM_Null ){
44 /* Cannot be both MEM_Null and some other type */
drh9d67afc2018-08-29 20:24:03 +000045 assert( (p->flags & (MEM_Int|MEM_Real|MEM_Str|MEM_Blob|MEM_Agg))==0 );
drha0024e62017-07-27 15:53:24 +000046
47 /* If MEM_Null is set, then either the value is a pure NULL (the usual
48 ** case) or it is a pointer set using sqlite3_bind_pointer() or
49 ** sqlite3_result_pointer(). If a pointer, then MEM_Term must also be
50 ** set.
51 */
52 if( (p->flags & (MEM_Term|MEM_Subtype))==(MEM_Term|MEM_Subtype) ){
53 /* This is a pointer type. There may be a flag to indicate what to
54 ** do with the pointer. */
55 assert( ((p->flags&MEM_Dyn)!=0 ? 1 : 0) +
56 ((p->flags&MEM_Ephem)!=0 ? 1 : 0) +
57 ((p->flags&MEM_Static)!=0 ? 1 : 0) <= 1 );
58
59 /* No other bits set */
drhe0f20b42019-04-01 20:57:11 +000060 assert( (p->flags & ~(MEM_Null|MEM_Term|MEM_Subtype|MEM_FromBind
drha0024e62017-07-27 15:53:24 +000061 |MEM_Dyn|MEM_Ephem|MEM_Static))==0 );
62 }else{
63 /* A pure NULL might have other flags, such as MEM_Static, MEM_Dyn,
64 ** MEM_Ephem, MEM_Cleared, or MEM_Subtype */
65 }
66 }else{
67 /* The MEM_Cleared bit is only allowed on NULLs */
68 assert( (p->flags & MEM_Cleared)==0 );
69 }
drhe2bc6552017-04-17 20:50:34 +000070
drh17bcb102014-09-18 21:25:33 +000071 /* The szMalloc field holds the correct memory allocation size */
72 assert( p->szMalloc==0
73 || p->szMalloc==sqlite3DbMallocSize(p->db,p->zMalloc) );
drhc91b2fd2014-03-01 18:13:23 +000074
75 /* If p holds a string or blob, the Mem.z must point to exactly
76 ** one of the following:
77 **
78 ** (1) Memory in Mem.zMalloc and managed by the Mem object
79 ** (2) Memory to be freed using Mem.xDel
peter.d.reid60ec9142014-09-06 16:39:46 +000080 ** (3) An ephemeral string or blob
drhc91b2fd2014-03-01 18:13:23 +000081 ** (4) A static string or blob
82 */
drh17bcb102014-09-18 21:25:33 +000083 if( (p->flags & (MEM_Str|MEM_Blob)) && p->n>0 ){
drhc91b2fd2014-03-01 18:13:23 +000084 assert(
drh17bcb102014-09-18 21:25:33 +000085 ((p->szMalloc>0 && p->z==p->zMalloc)? 1 : 0) +
drhc91b2fd2014-03-01 18:13:23 +000086 ((p->flags&MEM_Dyn)!=0 ? 1 : 0) +
87 ((p->flags&MEM_Ephem)!=0 ? 1 : 0) +
88 ((p->flags&MEM_Static)!=0 ? 1 : 0) == 1
89 );
90 }
drh75fd0542014-03-01 16:24:44 +000091 return 1;
92}
93#endif
94
drh563ddbe2018-02-01 15:57:00 +000095#ifdef SQLITE_DEBUG
96/*
97** Check that string value of pMem agrees with its integer or real value.
98**
99** A single int or real value always converts to the same strings. But
100** many different strings can be converted into the same int or real.
101** If a table contains a numeric value and an index is based on the
102** corresponding string value, then it is important that the string be
103** derived from the numeric value, not the other way around, to ensure
104** that the index and table are consistent. See ticket
105** https://www.sqlite.org/src/info/343634942dd54ab (2018-01-31) for
106** an example.
107**
108** This routine looks at pMem to verify that if it has both a numeric
109** representation and a string representation then the string rep has
110** been derived from the numeric and not the other way around. It returns
111** true if everything is ok and false if there is a problem.
112**
113** This routine is for use inside of assert() statements only.
114*/
115int sqlite3VdbeMemConsistentDualRep(Mem *p){
116 char zBuf[100];
117 char *z;
118 int i, j, incr;
119 if( (p->flags & MEM_Str)==0 ) return 1;
120 if( (p->flags & (MEM_Int|MEM_Real))==0 ) return 1;
121 if( p->flags & MEM_Int ){
122 sqlite3_snprintf(sizeof(zBuf),zBuf,"%lld",p->u.i);
123 }else{
124 sqlite3_snprintf(sizeof(zBuf),zBuf,"%!.15g",p->u.r);
125 }
126 z = p->z;
127 i = j = 0;
128 incr = 1;
129 if( p->enc!=SQLITE_UTF8 ){
130 incr = 2;
131 if( p->enc==SQLITE_UTF16BE ) z++;
132 }
133 while( zBuf[j] ){
134 if( zBuf[j++]!=z[i] ) return 0;
135 i += incr;
136 }
137 return 1;
138}
139#endif /* SQLITE_DEBUG */
drh75fd0542014-03-01 16:24:44 +0000140
drh4f26d6c2004-05-26 23:25:30 +0000141/*
danielk1977bfd6cce2004-06-18 04:24:54 +0000142** If pMem is an object with a valid string representation, this routine
143** ensures the internal encoding for the string representation is
144** 'desiredEnc', one of SQLITE_UTF8, SQLITE_UTF16LE or SQLITE_UTF16BE.
drh4f26d6c2004-05-26 23:25:30 +0000145**
danielk1977bfd6cce2004-06-18 04:24:54 +0000146** If pMem is not a string object, or the encoding of the string
147** representation is already stored using the requested encoding, then this
148** routine is a no-op.
drh4f26d6c2004-05-26 23:25:30 +0000149**
150** SQLITE_OK is returned if the conversion is successful (or not required).
151** SQLITE_NOMEM may be returned if a malloc() fails during conversion
152** between formats.
153*/
drhb21c8cd2007-08-21 19:33:56 +0000154int sqlite3VdbeChangeEncoding(Mem *pMem, int desiredEnc){
mistachkinef593f22013-03-07 06:42:53 +0000155#ifndef SQLITE_OMIT_UTF16
danielk19772c336542005-01-13 02:14:23 +0000156 int rc;
mistachkinef593f22013-03-07 06:42:53 +0000157#endif
drh9d67afc2018-08-29 20:24:03 +0000158 assert( !sqlite3VdbeMemIsRowSet(pMem) );
drhb27b7f52008-12-10 18:03:45 +0000159 assert( desiredEnc==SQLITE_UTF8 || desiredEnc==SQLITE_UTF16LE
160 || desiredEnc==SQLITE_UTF16BE );
drhc07df4c2017-09-21 01:04:30 +0000161 if( !(pMem->flags&MEM_Str) || pMem->enc==desiredEnc ){
drh4f26d6c2004-05-26 23:25:30 +0000162 return SQLITE_OK;
163 }
drhb21c8cd2007-08-21 19:33:56 +0000164 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
drh6c626082004-11-14 21:56:29 +0000165#ifdef SQLITE_OMIT_UTF16
166 return SQLITE_ERROR;
167#else
danielk197700fd9572005-12-07 06:27:43 +0000168
169 /* MemTranslate() may return SQLITE_OK or SQLITE_NOMEM. If NOMEM is returned,
170 ** then the encoding of the value may not have changed.
171 */
drhb27b7f52008-12-10 18:03:45 +0000172 rc = sqlite3VdbeMemTranslate(pMem, (u8)desiredEnc);
danielk197700fd9572005-12-07 06:27:43 +0000173 assert(rc==SQLITE_OK || rc==SQLITE_NOMEM);
174 assert(rc==SQLITE_OK || pMem->enc!=desiredEnc);
175 assert(rc==SQLITE_NOMEM || pMem->enc==desiredEnc);
danielk19772c336542005-01-13 02:14:23 +0000176 return rc;
drh6c626082004-11-14 21:56:29 +0000177#endif
drh4f26d6c2004-05-26 23:25:30 +0000178}
179
drheb2e1762004-05-27 01:53:56 +0000180/*
drh6ff74272019-02-08 15:59:20 +0000181** Make sure pMem->z points to a writable allocation of at least n bytes.
danielk1977a7a8e142008-02-13 18:25:27 +0000182**
drhb0e77042013-12-10 19:49:00 +0000183** If the bPreserve argument is true, then copy of the content of
184** pMem->z into the new allocation. pMem must be either a string or
185** blob if bPreserve is true. If bPreserve is false, any prior content
186** in pMem->z is discarded.
danielk1977a7a8e142008-02-13 18:25:27 +0000187*/
drh322f2852014-09-19 00:43:39 +0000188SQLITE_NOINLINE int sqlite3VdbeMemGrow(Mem *pMem, int n, int bPreserve){
drh75fd0542014-03-01 16:24:44 +0000189 assert( sqlite3VdbeCheckMemInvariants(pMem) );
drh9d67afc2018-08-29 20:24:03 +0000190 assert( !sqlite3VdbeMemIsRowSet(pMem) );
drh575fad62016-02-05 13:38:36 +0000191 testcase( pMem->db==0 );
danielk1977a7a8e142008-02-13 18:25:27 +0000192
drhb0e77042013-12-10 19:49:00 +0000193 /* If the bPreserve flag is set to true, then the memory cell must already
dan2b9ee772012-03-31 09:59:44 +0000194 ** contain a valid string or blob value. */
drh0364f222019-04-10 13:24:35 +0000195 assert( bPreserve==0 || pMem->flags&(MEM_Blob|MEM_Str) );
drhb0e77042013-12-10 19:49:00 +0000196 testcase( bPreserve && pMem->z==0 );
dan2b9ee772012-03-31 09:59:44 +0000197
drh17bcb102014-09-18 21:25:33 +0000198 assert( pMem->szMalloc==0
199 || pMem->szMalloc==sqlite3DbMallocSize(pMem->db, pMem->zMalloc) );
drh762dffa2017-09-20 18:47:51 +0000200 if( pMem->szMalloc>0 && bPreserve && pMem->z==pMem->zMalloc ){
drh4c6463c2017-04-10 20:27:54 +0000201 pMem->z = pMem->zMalloc = sqlite3DbReallocOrFree(pMem->db, pMem->z, n);
202 bPreserve = 0;
203 }else{
204 if( pMem->szMalloc>0 ) sqlite3DbFreeNN(pMem->db, pMem->zMalloc);
205 pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, n);
206 }
207 if( pMem->zMalloc==0 ){
208 sqlite3VdbeMemSetNull(pMem);
209 pMem->z = 0;
210 pMem->szMalloc = 0;
211 return SQLITE_NOMEM_BKPT;
212 }else{
213 pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->zMalloc);
danielk1977a7a8e142008-02-13 18:25:27 +0000214 }
danielk19775f096132008-03-28 15:44:09 +0000215
drh762dffa2017-09-20 18:47:51 +0000216 if( bPreserve && pMem->z ){
217 assert( pMem->z!=pMem->zMalloc );
danielk19775f096132008-03-28 15:44:09 +0000218 memcpy(pMem->zMalloc, pMem->z, pMem->n);
219 }
drhc91b2fd2014-03-01 18:13:23 +0000220 if( (pMem->flags&MEM_Dyn)!=0 ){
221 assert( pMem->xDel!=0 && pMem->xDel!=SQLITE_DYNAMIC );
danielk19775f096132008-03-28 15:44:09 +0000222 pMem->xDel((void *)(pMem->z));
223 }
224
225 pMem->z = pMem->zMalloc;
drhc91b2fd2014-03-01 18:13:23 +0000226 pMem->flags &= ~(MEM_Dyn|MEM_Ephem|MEM_Static);
drhb0e77042013-12-10 19:49:00 +0000227 return SQLITE_OK;
danielk1977a7a8e142008-02-13 18:25:27 +0000228}
229
230/*
drh322f2852014-09-19 00:43:39 +0000231** Change the pMem->zMalloc allocation to be at least szNew bytes.
232** If pMem->zMalloc already meets or exceeds the requested size, this
233** routine is a no-op.
234**
235** Any prior string or blob content in the pMem object may be discarded.
drha5476e92014-09-19 04:42:38 +0000236** The pMem->xDel destructor is called, if it exists. Though MEM_Str
237** and MEM_Blob values may be discarded, MEM_Int, MEM_Real, and MEM_Null
238** values are preserved.
drh322f2852014-09-19 00:43:39 +0000239**
240** Return SQLITE_OK on success or an error code (probably SQLITE_NOMEM)
241** if unable to complete the resizing.
242*/
243int sqlite3VdbeMemClearAndResize(Mem *pMem, int szNew){
danb4738dd2019-01-23 20:31:56 +0000244 assert( CORRUPT_DB || szNew>0 );
drh722246e2014-10-07 23:02:24 +0000245 assert( (pMem->flags & MEM_Dyn)==0 || pMem->szMalloc==0 );
drh1eda9f72014-09-19 22:30:49 +0000246 if( pMem->szMalloc<szNew ){
drh322f2852014-09-19 00:43:39 +0000247 return sqlite3VdbeMemGrow(pMem, szNew, 0);
248 }
drh1eda9f72014-09-19 22:30:49 +0000249 assert( (pMem->flags & MEM_Dyn)==0 );
drh322f2852014-09-19 00:43:39 +0000250 pMem->z = pMem->zMalloc;
drha5476e92014-09-19 04:42:38 +0000251 pMem->flags &= (MEM_Null|MEM_Int|MEM_Real);
drh322f2852014-09-19 00:43:39 +0000252 return SQLITE_OK;
253}
254
255/*
drh97397a72017-09-20 17:49:12 +0000256** It is already known that pMem contains an unterminated string.
257** Add the zero terminator.
258*/
259static SQLITE_NOINLINE int vdbeMemAddTerminator(Mem *pMem){
260 if( sqlite3VdbeMemGrow(pMem, pMem->n+2, 1) ){
261 return SQLITE_NOMEM_BKPT;
262 }
263 pMem->z[pMem->n] = 0;
264 pMem->z[pMem->n+1] = 0;
265 pMem->flags |= MEM_Term;
266 return SQLITE_OK;
267}
268
269/*
drh1eda9f72014-09-19 22:30:49 +0000270** Change pMem so that its MEM_Str or MEM_Blob value is stored in
271** MEM.zMalloc, where it can be safely written.
drheb2e1762004-05-27 01:53:56 +0000272**
273** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails.
274*/
drhdab898f2008-07-30 13:14:55 +0000275int sqlite3VdbeMemMakeWriteable(Mem *pMem){
drhb21c8cd2007-08-21 19:33:56 +0000276 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
drh9d67afc2018-08-29 20:24:03 +0000277 assert( !sqlite3VdbeMemIsRowSet(pMem) );
drh8aaf7bc2016-09-20 01:19:18 +0000278 if( (pMem->flags & (MEM_Str|MEM_Blob))!=0 ){
279 if( ExpandBlob(pMem) ) return SQLITE_NOMEM;
280 if( pMem->szMalloc==0 || pMem->z!=pMem->zMalloc ){
drh97397a72017-09-20 17:49:12 +0000281 int rc = vdbeMemAddTerminator(pMem);
282 if( rc ) return rc;
danielk1977a7a8e142008-02-13 18:25:27 +0000283 }
drheb2e1762004-05-27 01:53:56 +0000284 }
drhbd6789e2015-04-28 14:00:02 +0000285 pMem->flags &= ~MEM_Ephem;
286#ifdef SQLITE_DEBUG
287 pMem->pScopyFrom = 0;
288#endif
danielk1977a7a8e142008-02-13 18:25:27 +0000289
drhf4479502004-05-27 03:12:53 +0000290 return SQLITE_OK;
drheb2e1762004-05-27 01:53:56 +0000291}
292
293/*
drhfdf972a2007-05-02 13:30:27 +0000294** If the given Mem* has a zero-filled tail, turn it into an ordinary
drhb026e052007-05-02 01:34:31 +0000295** blob stored in dynamically allocated space.
296*/
danielk1977246ad312007-05-16 14:23:00 +0000297#ifndef SQLITE_OMIT_INCRBLOB
drhb21c8cd2007-08-21 19:33:56 +0000298int sqlite3VdbeMemExpandBlob(Mem *pMem){
drhff535a22016-09-20 01:46:15 +0000299 int nByte;
300 assert( pMem->flags & MEM_Zero );
drh7d683392019-04-07 18:04:57 +0000301 assert( (pMem->flags&MEM_Blob)!=0 || MemNullNochng(pMem) );
drh427db2d2019-04-07 18:21:12 +0000302 testcase( sqlite3_value_nochange(pMem) );
drh9d67afc2018-08-29 20:24:03 +0000303 assert( !sqlite3VdbeMemIsRowSet(pMem) );
drhff535a22016-09-20 01:46:15 +0000304 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
danielk1977a7a8e142008-02-13 18:25:27 +0000305
drhff535a22016-09-20 01:46:15 +0000306 /* Set nByte to the number of bytes required to store the expanded blob. */
307 nByte = pMem->n + pMem->u.nZero;
308 if( nByte<=0 ){
drh0364f222019-04-10 13:24:35 +0000309 if( (pMem->flags & MEM_Blob)==0 ) return SQLITE_OK;
drhff535a22016-09-20 01:46:15 +0000310 nByte = 1;
drhb026e052007-05-02 01:34:31 +0000311 }
drhff535a22016-09-20 01:46:15 +0000312 if( sqlite3VdbeMemGrow(pMem, nByte, 1) ){
313 return SQLITE_NOMEM_BKPT;
314 }
315
316 memset(&pMem->z[pMem->n], 0, pMem->u.nZero);
317 pMem->n += pMem->u.nZero;
318 pMem->flags &= ~(MEM_Zero|MEM_Term);
drhb026e052007-05-02 01:34:31 +0000319 return SQLITE_OK;
320}
danielk1977246ad312007-05-16 14:23:00 +0000321#endif
drhb026e052007-05-02 01:34:31 +0000322
drhb026e052007-05-02 01:34:31 +0000323/*
drhb63388b2014-08-27 00:50:11 +0000324** Make sure the given Mem is \u0000 terminated.
325*/
326int sqlite3VdbeMemNulTerminate(Mem *pMem){
327 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
328 testcase( (pMem->flags & (MEM_Term|MEM_Str))==(MEM_Term|MEM_Str) );
329 testcase( (pMem->flags & (MEM_Term|MEM_Str))==0 );
330 if( (pMem->flags & (MEM_Term|MEM_Str))!=MEM_Str ){
331 return SQLITE_OK; /* Nothing to do */
332 }else{
333 return vdbeMemAddTerminator(pMem);
334 }
335}
336
337/*
danielk197713073932004-06-30 11:54:06 +0000338** Add MEM_Str to the set of representations for the given Mem. Numbers
339** are converted using sqlite3_snprintf(). Converting a BLOB to a string
340** is a no-op.
drheb2e1762004-05-27 01:53:56 +0000341**
drhbd9507c2014-08-23 17:21:37 +0000342** Existing representations MEM_Int and MEM_Real are invalidated if
343** bForce is true but are retained if bForce is false.
danielk197713073932004-06-30 11:54:06 +0000344**
345** A MEM_Null value will never be passed to this function. This function is
346** used for converting values to text for returning to the user (i.e. via
347** sqlite3_value_text()), or for ensuring that values to be used as btree
348** keys are strings. In the former case a NULL pointer is returned the
peter.d.reid60ec9142014-09-06 16:39:46 +0000349** user and the latter is an internal programming error.
drheb2e1762004-05-27 01:53:56 +0000350*/
drhbd9507c2014-08-23 17:21:37 +0000351int sqlite3VdbeMemStringify(Mem *pMem, u8 enc, u8 bForce){
drheb2e1762004-05-27 01:53:56 +0000352 int fg = pMem->flags;
danielk1977a7a8e142008-02-13 18:25:27 +0000353 const int nByte = 32;
drheb2e1762004-05-27 01:53:56 +0000354
drhb21c8cd2007-08-21 19:33:56 +0000355 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
danielk1977def0fec2007-05-10 15:37:52 +0000356 assert( !(fg&MEM_Zero) );
drheb2e1762004-05-27 01:53:56 +0000357 assert( !(fg&(MEM_Str|MEM_Blob)) );
danielk197713073932004-06-30 11:54:06 +0000358 assert( fg&(MEM_Int|MEM_Real) );
drh9d67afc2018-08-29 20:24:03 +0000359 assert( !sqlite3VdbeMemIsRowSet(pMem) );
drhea598cb2009-04-05 12:22:08 +0000360 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
drh3d4501e2008-12-04 20:40:10 +0000361
drheb2e1762004-05-27 01:53:56 +0000362
drh322f2852014-09-19 00:43:39 +0000363 if( sqlite3VdbeMemClearAndResize(pMem, nByte) ){
drh2a1df932016-09-30 17:46:44 +0000364 pMem->enc = 0;
mistachkinfad30392016-02-13 23:43:46 +0000365 return SQLITE_NOMEM_BKPT;
danielk1977a7a8e142008-02-13 18:25:27 +0000366 }
367
drhbd9507c2014-08-23 17:21:37 +0000368 /* For a Real or Integer, use sqlite3_snprintf() to produce the UTF-8
danielk197713073932004-06-30 11:54:06 +0000369 ** string representation of the value. Then, if the required encoding
370 ** is UTF-16le or UTF-16be do a translation.
371 **
372 ** FIX ME: It would be better if sqlite3_snprintf() could do UTF-16.
373 */
drh8df447f2005-11-01 15:48:24 +0000374 if( fg & MEM_Int ){
danielk1977a7a8e142008-02-13 18:25:27 +0000375 sqlite3_snprintf(nByte, pMem->z, "%lld", pMem->u.i);
drh8df447f2005-11-01 15:48:24 +0000376 }else{
377 assert( fg & MEM_Real );
drh74eaba42014-09-18 17:52:15 +0000378 sqlite3_snprintf(nByte, pMem->z, "%!.15g", pMem->u.r);
drheb2e1762004-05-27 01:53:56 +0000379 }
drh7301e772018-10-31 20:52:00 +0000380 assert( pMem->z!=0 );
381 pMem->n = sqlite3Strlen30NN(pMem->z);
danielk197713073932004-06-30 11:54:06 +0000382 pMem->enc = SQLITE_UTF8;
danielk1977a7a8e142008-02-13 18:25:27 +0000383 pMem->flags |= MEM_Str|MEM_Term;
drhbd9507c2014-08-23 17:21:37 +0000384 if( bForce ) pMem->flags &= ~(MEM_Int|MEM_Real);
drhb21c8cd2007-08-21 19:33:56 +0000385 sqlite3VdbeChangeEncoding(pMem, enc);
drhbd9507c2014-08-23 17:21:37 +0000386 return SQLITE_OK;
drheb2e1762004-05-27 01:53:56 +0000387}
388
389/*
drhabfcea22005-09-06 20:36:48 +0000390** Memory cell pMem contains the context of an aggregate function.
391** This routine calls the finalize method for that function. The
392** result of the aggregate is stored back into pMem.
drh90669c12006-01-20 15:45:36 +0000393**
394** Return SQLITE_ERROR if the finalizer reports an error. SQLITE_OK
395** otherwise.
drhabfcea22005-09-06 20:36:48 +0000396*/
drh90669c12006-01-20 15:45:36 +0000397int sqlite3VdbeMemFinalize(Mem *pMem, FuncDef *pFunc){
drh9d9c41e2017-10-31 03:40:15 +0000398 sqlite3_context ctx;
399 Mem t;
400 assert( pFunc!=0 );
401 assert( pFunc->xFinalize!=0 );
402 assert( (pMem->flags & MEM_Null)!=0 || pFunc==pMem->u.pDef );
403 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
404 memset(&ctx, 0, sizeof(ctx));
405 memset(&t, 0, sizeof(t));
406 t.flags = MEM_Null;
407 t.db = pMem->db;
408 ctx.pOut = &t;
409 ctx.pMem = pMem;
410 ctx.pFunc = pFunc;
411 pFunc->xFinalize(&ctx); /* IMP: R-24505-23230 */
412 assert( (pMem->flags & MEM_Dyn)==0 );
413 if( pMem->szMalloc>0 ) sqlite3DbFreeNN(pMem->db, pMem->zMalloc);
414 memcpy(pMem, &t, sizeof(t));
415 return ctx.isError;
drhabfcea22005-09-06 20:36:48 +0000416}
417
dan9a947222018-06-14 19:06:36 +0000418/*
419** Memory cell pAccum contains the context of an aggregate function.
420** This routine calls the xValue method for that function and stores
421** the results in memory cell pMem.
422**
423** SQLITE_ERROR is returned if xValue() reports an error. SQLITE_OK
424** otherwise.
425*/
dan67a9b8e2018-06-22 20:51:35 +0000426#ifndef SQLITE_OMIT_WINDOWFUNC
dan86fb6e12018-05-16 20:58:07 +0000427int sqlite3VdbeMemAggValue(Mem *pAccum, Mem *pOut, FuncDef *pFunc){
428 sqlite3_context ctx;
429 Mem t;
430 assert( pFunc!=0 );
431 assert( pFunc->xValue!=0 );
432 assert( (pAccum->flags & MEM_Null)!=0 || pFunc==pAccum->u.pDef );
433 assert( pAccum->db==0 || sqlite3_mutex_held(pAccum->db->mutex) );
434 memset(&ctx, 0, sizeof(ctx));
435 memset(&t, 0, sizeof(t));
436 t.flags = MEM_Null;
437 t.db = pAccum->db;
drh8f26da62018-07-05 21:22:57 +0000438 sqlite3VdbeMemSetNull(pOut);
dan86fb6e12018-05-16 20:58:07 +0000439 ctx.pOut = pOut;
440 ctx.pMem = pAccum;
441 ctx.pFunc = pFunc;
442 pFunc->xValue(&ctx);
443 return ctx.isError;
444}
dan67a9b8e2018-06-22 20:51:35 +0000445#endif /* SQLITE_OMIT_WINDOWFUNC */
dan9a947222018-06-14 19:06:36 +0000446
drhabfcea22005-09-06 20:36:48 +0000447/*
drh8740a602014-09-16 20:05:21 +0000448** If the memory cell contains a value that must be freed by
drh0725cab2014-09-17 14:52:46 +0000449** invoking the external callback in Mem.xDel, then this routine
450** will free that value. It also sets Mem.flags to MEM_Null.
drh12b7c7d2014-08-25 11:20:27 +0000451**
drh0725cab2014-09-17 14:52:46 +0000452** This is a helper routine for sqlite3VdbeMemSetNull() and
453** for sqlite3VdbeMemRelease(). Use those other routines as the
454** entry point for releasing Mem resources.
danielk19775f096132008-03-28 15:44:09 +0000455*/
drh0725cab2014-09-17 14:52:46 +0000456static SQLITE_NOINLINE void vdbeMemClearExternAndSetNull(Mem *p){
danielk19775f096132008-03-28 15:44:09 +0000457 assert( p->db==0 || sqlite3_mutex_held(p->db->mutex) );
drh0725cab2014-09-17 14:52:46 +0000458 assert( VdbeMemDynamic(p) );
drh2d36eb42011-08-29 02:49:41 +0000459 if( p->flags&MEM_Agg ){
460 sqlite3VdbeMemFinalize(p, p->u.pDef);
461 assert( (p->flags & MEM_Agg)==0 );
drh0725cab2014-09-17 14:52:46 +0000462 testcase( p->flags & MEM_Dyn );
463 }
464 if( p->flags&MEM_Dyn ){
drhc91b2fd2014-03-01 18:13:23 +0000465 assert( p->xDel!=SQLITE_DYNAMIC && p->xDel!=0 );
drh2d36eb42011-08-29 02:49:41 +0000466 p->xDel((void *)p->z);
danielk19775f096132008-03-28 15:44:09 +0000467 }
drh6b478bc2014-09-16 21:54:11 +0000468 p->flags = MEM_Null;
danielk19775f096132008-03-28 15:44:09 +0000469}
470
471/*
drh12b7c7d2014-08-25 11:20:27 +0000472** Release memory held by the Mem p, both external memory cleared
473** by p->xDel and memory in p->zMalloc.
474**
475** This is a helper routine invoked by sqlite3VdbeMemRelease() in
drh0725cab2014-09-17 14:52:46 +0000476** the unusual case where there really is memory in p that needs
477** to be freed.
drh12b7c7d2014-08-25 11:20:27 +0000478*/
drh0725cab2014-09-17 14:52:46 +0000479static SQLITE_NOINLINE void vdbeMemClear(Mem *p){
drh12b7c7d2014-08-25 11:20:27 +0000480 if( VdbeMemDynamic(p) ){
drh0725cab2014-09-17 14:52:46 +0000481 vdbeMemClearExternAndSetNull(p);
drh12b7c7d2014-08-25 11:20:27 +0000482 }
drh17bcb102014-09-18 21:25:33 +0000483 if( p->szMalloc ){
drhdbd6a7d2017-04-05 12:39:49 +0000484 sqlite3DbFreeNN(p->db, p->zMalloc);
drh17bcb102014-09-18 21:25:33 +0000485 p->szMalloc = 0;
drh12b7c7d2014-08-25 11:20:27 +0000486 }
487 p->z = 0;
488}
489
490/*
drh0725cab2014-09-17 14:52:46 +0000491** Release any memory resources held by the Mem. Both the memory that is
492** free by Mem.xDel and the Mem.zMalloc allocation are freed.
drh8740a602014-09-16 20:05:21 +0000493**
drh0725cab2014-09-17 14:52:46 +0000494** Use this routine prior to clean up prior to abandoning a Mem, or to
495** reset a Mem back to its minimum memory utilization.
496**
497** Use sqlite3VdbeMemSetNull() to release just the Mem.xDel space
498** prior to inserting new content into the Mem.
drhf4479502004-05-27 03:12:53 +0000499*/
danielk1977d8123362004-06-12 09:25:12 +0000500void sqlite3VdbeMemRelease(Mem *p){
drh75fd0542014-03-01 16:24:44 +0000501 assert( sqlite3VdbeCheckMemInvariants(p) );
drh17bcb102014-09-18 21:25:33 +0000502 if( VdbeMemDynamic(p) || p->szMalloc ){
drh0725cab2014-09-17 14:52:46 +0000503 vdbeMemClear(p);
drh7250c542013-12-09 03:07:21 +0000504 }
drhf4479502004-05-27 03:12:53 +0000505}
506
507/*
drhd8c303f2008-01-11 15:27:03 +0000508** Convert a 64-bit IEEE double into a 64-bit signed integer.
drhde1a8b82013-11-26 15:45:02 +0000509** If the double is out of range of a 64-bit signed integer then
510** return the closest available 64-bit signed integer.
drhd8c303f2008-01-11 15:27:03 +0000511*/
drhb808d772017-04-01 11:59:36 +0000512static SQLITE_NOINLINE i64 doubleToInt64(double r){
drh52d14522010-01-13 15:15:40 +0000513#ifdef SQLITE_OMIT_FLOATING_POINT
514 /* When floating-point is omitted, double and int64 are the same thing */
515 return r;
516#else
drhd8c303f2008-01-11 15:27:03 +0000517 /*
518 ** Many compilers we encounter do not define constants for the
519 ** minimum and maximum 64-bit integers, or they define them
520 ** inconsistently. And many do not understand the "LL" notation.
521 ** So we define our own static constants here using nothing
522 ** larger than a 32-bit integer constant.
523 */
drh0f050352008-05-09 18:03:13 +0000524 static const i64 maxInt = LARGEST_INT64;
525 static const i64 minInt = SMALLEST_INT64;
drhd8c303f2008-01-11 15:27:03 +0000526
drhde1a8b82013-11-26 15:45:02 +0000527 if( r<=(double)minInt ){
drhd8c303f2008-01-11 15:27:03 +0000528 return minInt;
drhde1a8b82013-11-26 15:45:02 +0000529 }else if( r>=(double)maxInt ){
530 return maxInt;
drhd8c303f2008-01-11 15:27:03 +0000531 }else{
532 return (i64)r;
533 }
drh52d14522010-01-13 15:15:40 +0000534#endif
drhd8c303f2008-01-11 15:27:03 +0000535}
536
537/*
drh6a6124e2004-06-27 01:56:33 +0000538** Return some kind of integer value which is the best we can do
539** at representing the value that *pMem describes as an integer.
540** If pMem is an integer, then the value is exact. If pMem is
541** a floating-point then the value returned is the integer part.
542** If pMem is a string or blob, then we make an attempt to convert
peter.d.reid60ec9142014-09-06 16:39:46 +0000543** it into an integer and return that. If pMem represents an
drh347a7cb2009-03-23 21:37:04 +0000544** an SQL-NULL value, return 0.
drh6a6124e2004-06-27 01:56:33 +0000545**
drh347a7cb2009-03-23 21:37:04 +0000546** If pMem represents a string value, its encoding might be changed.
drheb2e1762004-05-27 01:53:56 +0000547*/
drhb808d772017-04-01 11:59:36 +0000548static SQLITE_NOINLINE i64 memIntValue(Mem *pMem){
549 i64 value = 0;
550 sqlite3Atoi64(pMem->z, &value, pMem->n, pMem->enc);
551 return value;
552}
drh6a6124e2004-06-27 01:56:33 +0000553i64 sqlite3VdbeIntValue(Mem *pMem){
drhb21c8cd2007-08-21 19:33:56 +0000554 int flags;
555 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
drhea598cb2009-04-05 12:22:08 +0000556 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
drhb21c8cd2007-08-21 19:33:56 +0000557 flags = pMem->flags;
drh6fec0762004-05-30 01:38:43 +0000558 if( flags & MEM_Int ){
drh3c024d62007-03-30 11:23:45 +0000559 return pMem->u.i;
drh6fec0762004-05-30 01:38:43 +0000560 }else if( flags & MEM_Real ){
drh74eaba42014-09-18 17:52:15 +0000561 return doubleToInt64(pMem->u.r);
drh6fec0762004-05-30 01:38:43 +0000562 }else if( flags & (MEM_Str|MEM_Blob) ){
drh9339da12010-09-30 00:50:49 +0000563 assert( pMem->z || pMem->n==0 );
drhb808d772017-04-01 11:59:36 +0000564 return memIntValue(pMem);
drheb2e1762004-05-27 01:53:56 +0000565 }else{
drh6a6124e2004-06-27 01:56:33 +0000566 return 0;
drheb2e1762004-05-27 01:53:56 +0000567 }
drh6a6124e2004-06-27 01:56:33 +0000568}
569
570/*
drh6a6124e2004-06-27 01:56:33 +0000571** Return the best representation of pMem that we can get into a
572** double. If pMem is already a double or an integer, return its
573** value. If it is a string or blob, try to convert it to a double.
574** If it is a NULL, return 0.0.
drheb2e1762004-05-27 01:53:56 +0000575*/
drhb808d772017-04-01 11:59:36 +0000576static SQLITE_NOINLINE double memRealValue(Mem *pMem){
577 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
578 double val = (double)0;
579 sqlite3AtoF(pMem->z, &val, pMem->n, pMem->enc);
580 return val;
581}
drh6a6124e2004-06-27 01:56:33 +0000582double sqlite3VdbeRealValue(Mem *pMem){
drhb21c8cd2007-08-21 19:33:56 +0000583 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
drhea598cb2009-04-05 12:22:08 +0000584 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
danielk1977f93bbbe2004-05-27 10:30:52 +0000585 if( pMem->flags & MEM_Real ){
drh74eaba42014-09-18 17:52:15 +0000586 return pMem->u.r;
drh6a6124e2004-06-27 01:56:33 +0000587 }else if( pMem->flags & MEM_Int ){
drh3c024d62007-03-30 11:23:45 +0000588 return (double)pMem->u.i;
drheb2e1762004-05-27 01:53:56 +0000589 }else if( pMem->flags & (MEM_Str|MEM_Blob) ){
drhb808d772017-04-01 11:59:36 +0000590 return memRealValue(pMem);
drheb2e1762004-05-27 01:53:56 +0000591 }else{
shanefbd60f82009-02-04 03:59:25 +0000592 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
593 return (double)0;
drheb2e1762004-05-27 01:53:56 +0000594 }
drh6a6124e2004-06-27 01:56:33 +0000595}
596
597/*
drh1fcfa722018-02-26 15:27:31 +0000598** Return 1 if pMem represents true, and return 0 if pMem represents false.
599** Return the value ifNull if pMem is NULL.
600*/
601int sqlite3VdbeBooleanValue(Mem *pMem, int ifNull){
602 if( pMem->flags & MEM_Int ) return pMem->u.i!=0;
603 if( pMem->flags & MEM_Null ) return ifNull;
604 return sqlite3VdbeRealValue(pMem)!=0.0;
605}
606
607/*
drh8df447f2005-11-01 15:48:24 +0000608** The MEM structure is already a MEM_Real. Try to also make it a
609** MEM_Int if we can.
610*/
611void sqlite3VdbeIntegerAffinity(Mem *pMem){
drh74eaba42014-09-18 17:52:15 +0000612 i64 ix;
drh8df447f2005-11-01 15:48:24 +0000613 assert( pMem->flags & MEM_Real );
drh9d67afc2018-08-29 20:24:03 +0000614 assert( !sqlite3VdbeMemIsRowSet(pMem) );
drhb21c8cd2007-08-21 19:33:56 +0000615 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
drhea598cb2009-04-05 12:22:08 +0000616 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
drhefe3d652008-01-11 00:06:10 +0000617
drh74eaba42014-09-18 17:52:15 +0000618 ix = doubleToInt64(pMem->u.r);
drh94c3a2b2009-06-17 16:20:04 +0000619
620 /* Only mark the value as an integer if
621 **
622 ** (1) the round-trip conversion real->int->real is a no-op, and
623 ** (2) The integer is neither the largest nor the smallest
624 ** possible integer (ticket #3922)
625 **
drhe74871a2009-08-14 17:53:39 +0000626 ** The second and third terms in the following conditional enforces
627 ** the second condition under the assumption that addition overflow causes
drhde1a8b82013-11-26 15:45:02 +0000628 ** values to wrap around.
drh94c3a2b2009-06-17 16:20:04 +0000629 */
drh74eaba42014-09-18 17:52:15 +0000630 if( pMem->u.r==ix && ix>SMALLEST_INT64 && ix<LARGEST_INT64 ){
631 pMem->u.i = ix;
632 MemSetTypeFlag(pMem, MEM_Int);
drh8df447f2005-11-01 15:48:24 +0000633 }
634}
635
drh8a512562005-11-14 22:29:05 +0000636/*
637** Convert pMem to type integer. Invalidate any prior representations.
638*/
639int sqlite3VdbeMemIntegerify(Mem *pMem){
drhb21c8cd2007-08-21 19:33:56 +0000640 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
drh9d67afc2018-08-29 20:24:03 +0000641 assert( !sqlite3VdbeMemIsRowSet(pMem) );
drhea598cb2009-04-05 12:22:08 +0000642 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
643
drh3c024d62007-03-30 11:23:45 +0000644 pMem->u.i = sqlite3VdbeIntValue(pMem);
drh3d4501e2008-12-04 20:40:10 +0000645 MemSetTypeFlag(pMem, MEM_Int);
drh8a512562005-11-14 22:29:05 +0000646 return SQLITE_OK;
647}
drh8df447f2005-11-01 15:48:24 +0000648
649/*
drh8a512562005-11-14 22:29:05 +0000650** Convert pMem so that it is of type MEM_Real.
651** Invalidate any prior representations.
drh6a6124e2004-06-27 01:56:33 +0000652*/
653int sqlite3VdbeMemRealify(Mem *pMem){
drhb21c8cd2007-08-21 19:33:56 +0000654 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
drhea598cb2009-04-05 12:22:08 +0000655 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
656
drh74eaba42014-09-18 17:52:15 +0000657 pMem->u.r = sqlite3VdbeRealValue(pMem);
drh3d4501e2008-12-04 20:40:10 +0000658 MemSetTypeFlag(pMem, MEM_Real);
drh8a512562005-11-14 22:29:05 +0000659 return SQLITE_OK;
660}
661
drhd15046a2018-01-23 17:33:42 +0000662/* Compare a floating point value to an integer. Return true if the two
663** values are the same within the precision of the floating point value.
664**
665** For some versions of GCC on 32-bit machines, if you do the more obvious
666** comparison of "r1==(double)i" you sometimes get an answer of false even
667** though the r1 and (double)i values are bit-for-bit the same.
668*/
669static int sqlite3RealSameAsInt(double r1, sqlite3_int64 i){
670 double r2 = (double)i;
671 return memcmp(&r1, &r2, sizeof(r1))==0;
672}
673
drh8a512562005-11-14 22:29:05 +0000674/*
675** Convert pMem so that it has types MEM_Real or MEM_Int or both.
676** Invalidate any prior representations.
drh4b5db5a2010-01-21 01:53:07 +0000677**
678** Every effort is made to force the conversion, even if the input
679** is a string that does not look completely like a number. Convert
680** as much of the string as we can and ignore the rest.
drh8a512562005-11-14 22:29:05 +0000681*/
682int sqlite3VdbeMemNumerify(Mem *pMem){
drh93518622010-09-30 14:48:06 +0000683 if( (pMem->flags & (MEM_Int|MEM_Real|MEM_Null))==0 ){
drh84d4f1a2017-09-20 10:47:10 +0000684 int rc;
drh93518622010-09-30 14:48:06 +0000685 assert( (pMem->flags & (MEM_Blob|MEM_Str))!=0 );
686 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
drh84d4f1a2017-09-20 10:47:10 +0000687 rc = sqlite3Atoi64(pMem->z, &pMem->u.i, pMem->n, pMem->enc);
688 if( rc==0 ){
drh93518622010-09-30 14:48:06 +0000689 MemSetTypeFlag(pMem, MEM_Int);
690 }else{
drh84d4f1a2017-09-20 10:47:10 +0000691 i64 i = pMem->u.i;
692 sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc);
drhd15046a2018-01-23 17:33:42 +0000693 if( rc==1 && sqlite3RealSameAsInt(pMem->u.r, i) ){
drh84d4f1a2017-09-20 10:47:10 +0000694 pMem->u.i = i;
695 MemSetTypeFlag(pMem, MEM_Int);
696 }else{
697 MemSetTypeFlag(pMem, MEM_Real);
698 }
drh93518622010-09-30 14:48:06 +0000699 }
drhcd7b46d2007-05-16 11:55:56 +0000700 }
drh93518622010-09-30 14:48:06 +0000701 assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_Null))!=0 );
drh27fe1c32016-09-09 20:23:59 +0000702 pMem->flags &= ~(MEM_Str|MEM_Blob|MEM_Zero);
drhf4479502004-05-27 03:12:53 +0000703 return SQLITE_OK;
drh4f26d6c2004-05-26 23:25:30 +0000704}
705
706/*
drh4169e432014-08-25 20:11:52 +0000707** Cast the datatype of the value in pMem according to the affinity
708** "aff". Casting is different from applying affinity in that a cast
709** is forced. In other words, the value is converted into the desired
710** affinity even if that results in loss of data. This routine is
711** used (for example) to implement the SQL "cast()" operator.
712*/
713void sqlite3VdbeMemCast(Mem *pMem, u8 aff, u8 encoding){
714 if( pMem->flags & MEM_Null ) return;
715 switch( aff ){
drh05883a32015-06-02 15:32:08 +0000716 case SQLITE_AFF_BLOB: { /* Really a cast to BLOB */
drh4169e432014-08-25 20:11:52 +0000717 if( (pMem->flags & MEM_Blob)==0 ){
718 sqlite3ValueApplyAffinity(pMem, SQLITE_AFF_TEXT, encoding);
719 assert( pMem->flags & MEM_Str || pMem->db->mallocFailed );
drhda5c6242016-10-05 15:02:00 +0000720 if( pMem->flags & MEM_Str ) MemSetTypeFlag(pMem, MEM_Blob);
drh4169e432014-08-25 20:11:52 +0000721 }else{
722 pMem->flags &= ~(MEM_TypeMask&~MEM_Blob);
723 }
724 break;
725 }
726 case SQLITE_AFF_NUMERIC: {
727 sqlite3VdbeMemNumerify(pMem);
728 break;
729 }
730 case SQLITE_AFF_INTEGER: {
731 sqlite3VdbeMemIntegerify(pMem);
732 break;
733 }
734 case SQLITE_AFF_REAL: {
735 sqlite3VdbeMemRealify(pMem);
736 break;
737 }
738 default: {
739 assert( aff==SQLITE_AFF_TEXT );
740 assert( MEM_Str==(MEM_Blob>>3) );
741 pMem->flags |= (pMem->flags&MEM_Blob)>>3;
742 sqlite3ValueApplyAffinity(pMem, SQLITE_AFF_TEXT, encoding);
743 assert( pMem->flags & MEM_Str || pMem->db->mallocFailed );
744 pMem->flags &= ~(MEM_Int|MEM_Real|MEM_Blob|MEM_Zero);
745 break;
746 }
747 }
748}
749
drhd3b74202014-09-17 16:41:15 +0000750/*
751** Initialize bulk memory to be a consistent Mem object.
752**
753** The minimum amount of initialization feasible is performed.
754*/
755void sqlite3VdbeMemInit(Mem *pMem, sqlite3 *db, u16 flags){
756 assert( (flags & ~MEM_TypeMask)==0 );
757 pMem->flags = flags;
758 pMem->db = db;
drh17bcb102014-09-18 21:25:33 +0000759 pMem->szMalloc = 0;
drhd3b74202014-09-17 16:41:15 +0000760}
761
drh4169e432014-08-25 20:11:52 +0000762
763/*
drh4f26d6c2004-05-26 23:25:30 +0000764** Delete any previous value and set the value stored in *pMem to NULL.
drh0725cab2014-09-17 14:52:46 +0000765**
766** This routine calls the Mem.xDel destructor to dispose of values that
767** require the destructor. But it preserves the Mem.zMalloc memory allocation.
768** To free all resources, use sqlite3VdbeMemRelease(), which both calls this
769** routine to invoke the destructor and deallocates Mem.zMalloc.
770**
771** Use this routine to reset the Mem prior to insert a new value.
772**
773** Use sqlite3VdbeMemRelease() to complete erase the Mem prior to abandoning it.
drh4f26d6c2004-05-26 23:25:30 +0000774*/
775void sqlite3VdbeMemSetNull(Mem *pMem){
drh6b478bc2014-09-16 21:54:11 +0000776 if( VdbeMemDynamic(pMem) ){
drh0725cab2014-09-17 14:52:46 +0000777 vdbeMemClearExternAndSetNull(pMem);
drh6b478bc2014-09-16 21:54:11 +0000778 }else{
779 pMem->flags = MEM_Null;
dan165921a2009-08-28 18:53:45 +0000780 }
drh4f26d6c2004-05-26 23:25:30 +0000781}
drha3cc0072013-12-13 16:23:55 +0000782void sqlite3ValueSetNull(sqlite3_value *p){
783 sqlite3VdbeMemSetNull((Mem*)p);
784}
drh4f26d6c2004-05-26 23:25:30 +0000785
786/*
drhb026e052007-05-02 01:34:31 +0000787** Delete any previous value and set the value to be a BLOB of length
788** n containing all zeros.
789*/
790void sqlite3VdbeMemSetZeroBlob(Mem *pMem, int n){
791 sqlite3VdbeMemRelease(pMem);
danielk1977a7a8e142008-02-13 18:25:27 +0000792 pMem->flags = MEM_Blob|MEM_Zero;
drhb026e052007-05-02 01:34:31 +0000793 pMem->n = 0;
drh98640a32007-06-07 19:08:32 +0000794 if( n<0 ) n = 0;
drh8df32842008-12-09 02:51:23 +0000795 pMem->u.nZero = n;
danielk1977def0fec2007-05-10 15:37:52 +0000796 pMem->enc = SQLITE_UTF8;
drh0725cab2014-09-17 14:52:46 +0000797 pMem->z = 0;
drhb026e052007-05-02 01:34:31 +0000798}
799
800/*
drh9bd038f2014-08-27 14:14:06 +0000801** The pMem is known to contain content that needs to be destroyed prior
802** to a value change. So invoke the destructor, then set the value to
803** a 64-bit integer.
804*/
805static SQLITE_NOINLINE void vdbeReleaseAndSetInt64(Mem *pMem, i64 val){
drh0725cab2014-09-17 14:52:46 +0000806 sqlite3VdbeMemSetNull(pMem);
drh9bd038f2014-08-27 14:14:06 +0000807 pMem->u.i = val;
808 pMem->flags = MEM_Int;
809}
810
811/*
drh4f26d6c2004-05-26 23:25:30 +0000812** Delete any previous value and set the value stored in *pMem to val,
813** manifest type INTEGER.
814*/
drheb2e1762004-05-27 01:53:56 +0000815void sqlite3VdbeMemSetInt64(Mem *pMem, i64 val){
drh9bd038f2014-08-27 14:14:06 +0000816 if( VdbeMemDynamic(pMem) ){
817 vdbeReleaseAndSetInt64(pMem, val);
818 }else{
819 pMem->u.i = val;
820 pMem->flags = MEM_Int;
821 }
drh4f26d6c2004-05-26 23:25:30 +0000822}
823
drha0024e62017-07-27 15:53:24 +0000824/* A no-op destructor */
drh92011842018-05-26 16:00:26 +0000825void sqlite3NoopDestructor(void *p){ UNUSED_PARAMETER(p); }
drha0024e62017-07-27 15:53:24 +0000826
drh3a96a5d2017-06-30 23:09:03 +0000827/*
828** Set the value stored in *pMem should already be a NULL.
829** Also store a pointer to go with it.
830*/
drh22930062017-07-27 03:48:02 +0000831void sqlite3VdbeMemSetPointer(
832 Mem *pMem,
833 void *pPtr,
834 const char *zPType,
835 void (*xDestructor)(void*)
836){
drh3a96a5d2017-06-30 23:09:03 +0000837 assert( pMem->flags==MEM_Null );
drha0024e62017-07-27 15:53:24 +0000838 pMem->u.zPType = zPType ? zPType : "";
drh22930062017-07-27 03:48:02 +0000839 pMem->z = pPtr;
drha0024e62017-07-27 15:53:24 +0000840 pMem->flags = MEM_Null|MEM_Dyn|MEM_Subtype|MEM_Term;
841 pMem->eSubtype = 'p';
842 pMem->xDel = xDestructor ? xDestructor : sqlite3NoopDestructor;
drh3a96a5d2017-06-30 23:09:03 +0000843}
844
drh7ec5ea92010-01-13 00:04:13 +0000845#ifndef SQLITE_OMIT_FLOATING_POINT
drh4f26d6c2004-05-26 23:25:30 +0000846/*
847** Delete any previous value and set the value stored in *pMem to val,
848** manifest type REAL.
849*/
drheb2e1762004-05-27 01:53:56 +0000850void sqlite3VdbeMemSetDouble(Mem *pMem, double val){
drh0725cab2014-09-17 14:52:46 +0000851 sqlite3VdbeMemSetNull(pMem);
852 if( !sqlite3IsNaN(val) ){
drh74eaba42014-09-18 17:52:15 +0000853 pMem->u.r = val;
drh53c14022007-05-10 17:23:11 +0000854 pMem->flags = MEM_Real;
drh53c14022007-05-10 17:23:11 +0000855 }
drh4f26d6c2004-05-26 23:25:30 +0000856}
drh7ec5ea92010-01-13 00:04:13 +0000857#endif
drh4f26d6c2004-05-26 23:25:30 +0000858
drh9d67afc2018-08-29 20:24:03 +0000859#ifdef SQLITE_DEBUG
860/*
861** Return true if the Mem holds a RowSet object. This routine is intended
862** for use inside of assert() statements.
863*/
864int sqlite3VdbeMemIsRowSet(const Mem *pMem){
865 return (pMem->flags&(MEM_Blob|MEM_Dyn))==(MEM_Blob|MEM_Dyn)
866 && pMem->xDel==sqlite3RowSetDelete;
867}
868#endif
869
drh4f26d6c2004-05-26 23:25:30 +0000870/*
drh3d4501e2008-12-04 20:40:10 +0000871** Delete any previous value and set the value of pMem to be an
872** empty boolean index.
drh9d67afc2018-08-29 20:24:03 +0000873**
874** Return SQLITE_OK on success and SQLITE_NOMEM if a memory allocation
875** error occurs.
drh3d4501e2008-12-04 20:40:10 +0000876*/
drh9d67afc2018-08-29 20:24:03 +0000877int sqlite3VdbeMemSetRowSet(Mem *pMem){
drh3d4501e2008-12-04 20:40:10 +0000878 sqlite3 *db = pMem->db;
drh9d67afc2018-08-29 20:24:03 +0000879 RowSet *p;
drh3d4501e2008-12-04 20:40:10 +0000880 assert( db!=0 );
drh9d67afc2018-08-29 20:24:03 +0000881 assert( !sqlite3VdbeMemIsRowSet(pMem) );
drh4c8555f2009-06-25 01:47:11 +0000882 sqlite3VdbeMemRelease(pMem);
drh9d67afc2018-08-29 20:24:03 +0000883 p = sqlite3RowSetInit(db);
884 if( p==0 ) return SQLITE_NOMEM;
885 pMem->z = (char*)p;
886 pMem->flags = MEM_Blob|MEM_Dyn;
887 pMem->xDel = sqlite3RowSetDelete;
888 return SQLITE_OK;
drh3d4501e2008-12-04 20:40:10 +0000889}
890
891/*
drh023ae032007-05-08 12:12:16 +0000892** Return true if the Mem object contains a TEXT or BLOB that is
893** too large - whose size exceeds SQLITE_MAX_LENGTH.
894*/
895int sqlite3VdbeMemTooBig(Mem *p){
drhfa4a4b92008-03-19 21:45:51 +0000896 assert( p->db!=0 );
drh023ae032007-05-08 12:12:16 +0000897 if( p->flags & (MEM_Str|MEM_Blob) ){
898 int n = p->n;
899 if( p->flags & MEM_Zero ){
drh8df32842008-12-09 02:51:23 +0000900 n += p->u.nZero;
drh023ae032007-05-08 12:12:16 +0000901 }
drhbb4957f2008-03-20 14:03:29 +0000902 return n>p->db->aLimit[SQLITE_LIMIT_LENGTH];
drh023ae032007-05-08 12:12:16 +0000903 }
904 return 0;
905}
906
drh2b4ded92010-09-27 21:09:31 +0000907#ifdef SQLITE_DEBUG
908/*
peter.d.reid60ec9142014-09-06 16:39:46 +0000909** This routine prepares a memory cell for modification by breaking
drh2b4ded92010-09-27 21:09:31 +0000910** its link to a shallow copy and by marking any current shallow
911** copies of this cell as invalid.
912**
913** This is used for testing and debugging only - to make sure shallow
914** copies are not misused.
915*/
drhe4c88c02012-01-04 12:57:45 +0000916void sqlite3VdbeMemAboutToChange(Vdbe *pVdbe, Mem *pMem){
drh2b4ded92010-09-27 21:09:31 +0000917 int i;
918 Mem *pX;
drh9f6168b2016-03-19 23:32:58 +0000919 for(i=0, pX=pVdbe->aMem; i<pVdbe->nMem; i++, pX++){
drh2b4ded92010-09-27 21:09:31 +0000920 if( pX->pScopyFrom==pMem ){
drh8d7b2122018-06-11 13:10:45 +0000921 /* If pX is marked as a shallow copy of pMem, then verify that
922 ** no significant changes have been made to pX since the OP_SCopy.
923 ** A significant change would indicated a missed call to this
924 ** function for pX. Minor changes, such as adding or removing a
925 ** dual type, are allowed, as long as the underlying value is the
926 ** same. */
drh58773a52018-06-12 13:52:23 +0000927 u16 mFlags = pMem->flags & pX->flags & pX->mScopyFlags;
drh8d7b2122018-06-11 13:10:45 +0000928 assert( (mFlags&MEM_Int)==0 || pMem->u.i==pX->u.i );
929 assert( (mFlags&MEM_Real)==0 || pMem->u.r==pX->u.r );
930 assert( (mFlags&MEM_Str)==0 || (pMem->n==pX->n && pMem->z==pX->z) );
931 assert( (mFlags&MEM_Blob)==0 || sqlite3BlobCompare(pMem,pX)==0 );
932
933 /* pMem is the register that is changing. But also mark pX as
934 ** undefined so that we can quickly detect the shallow-copy error */
935 pX->flags = MEM_Undefined;
drh2b4ded92010-09-27 21:09:31 +0000936 pX->pScopyFrom = 0;
937 }
938 }
939 pMem->pScopyFrom = 0;
940}
941#endif /* SQLITE_DEBUG */
942
danielk19775f096132008-03-28 15:44:09 +0000943
drh023ae032007-05-08 12:12:16 +0000944/*
drhfebe1062004-08-28 18:17:48 +0000945** Make an shallow copy of pFrom into pTo. Prior contents of
drha05a7222008-01-19 03:35:58 +0000946** pTo are freed. The pFrom->z field is not duplicated. If
drhfebe1062004-08-28 18:17:48 +0000947** pFrom->z is used, then pTo->z points to the same thing as pFrom->z
948** and flags gets srcType (either MEM_Ephem or MEM_Static).
drh4f26d6c2004-05-26 23:25:30 +0000949*/
drh14e06742015-06-17 23:28:03 +0000950static SQLITE_NOINLINE void vdbeClrCopy(Mem *pTo, const Mem *pFrom, int eType){
951 vdbeMemClearExternAndSetNull(pTo);
952 assert( !VdbeMemDynamic(pTo) );
953 sqlite3VdbeMemShallowCopy(pTo, pFrom, eType);
954}
drhfebe1062004-08-28 18:17:48 +0000955void sqlite3VdbeMemShallowCopy(Mem *pTo, const Mem *pFrom, int srcType){
drh9d67afc2018-08-29 20:24:03 +0000956 assert( !sqlite3VdbeMemIsRowSet(pFrom) );
drh035e5632014-09-16 14:16:31 +0000957 assert( pTo->db==pFrom->db );
drh14e06742015-06-17 23:28:03 +0000958 if( VdbeMemDynamic(pTo) ){ vdbeClrCopy(pTo,pFrom,srcType); return; }
danielk19775f096132008-03-28 15:44:09 +0000959 memcpy(pTo, pFrom, MEMCELLSIZE);
dan5fea9072010-03-05 18:46:12 +0000960 if( (pFrom->flags&MEM_Static)==0 ){
danielk1977a7a8e142008-02-13 18:25:27 +0000961 pTo->flags &= ~(MEM_Dyn|MEM_Static|MEM_Ephem);
drhfebe1062004-08-28 18:17:48 +0000962 assert( srcType==MEM_Ephem || srcType==MEM_Static );
963 pTo->flags |= srcType;
964 }
965}
966
967/*
968** Make a full copy of pFrom into pTo. Prior contents of pTo are
969** freed before the copy is made.
970*/
drhb21c8cd2007-08-21 19:33:56 +0000971int sqlite3VdbeMemCopy(Mem *pTo, const Mem *pFrom){
danielk1977a7a8e142008-02-13 18:25:27 +0000972 int rc = SQLITE_OK;
danielk1977a7a8e142008-02-13 18:25:27 +0000973
drh9d67afc2018-08-29 20:24:03 +0000974 assert( !sqlite3VdbeMemIsRowSet(pFrom) );
drh0725cab2014-09-17 14:52:46 +0000975 if( VdbeMemDynamic(pTo) ) vdbeMemClearExternAndSetNull(pTo);
danielk19775f096132008-03-28 15:44:09 +0000976 memcpy(pTo, pFrom, MEMCELLSIZE);
977 pTo->flags &= ~MEM_Dyn;
danielk19775f096132008-03-28 15:44:09 +0000978 if( pTo->flags&(MEM_Str|MEM_Blob) ){
979 if( 0==(pFrom->flags&MEM_Static) ){
980 pTo->flags |= MEM_Ephem;
981 rc = sqlite3VdbeMemMakeWriteable(pTo);
danielk19779172fd82008-02-14 15:31:52 +0000982 }
danielk1977a7a8e142008-02-13 18:25:27 +0000983 }
984
drh71c697e2004-08-08 23:39:19 +0000985 return rc;
drh4f26d6c2004-05-26 23:25:30 +0000986}
987
drheb2e1762004-05-27 01:53:56 +0000988/*
danielk1977369f27e2004-06-15 11:40:04 +0000989** Transfer the contents of pFrom to pTo. Any existing value in pTo is
drhfebe1062004-08-28 18:17:48 +0000990** freed. If pFrom contains ephemeral data, a copy is made.
991**
drh643167f2008-01-22 21:30:53 +0000992** pFrom contains an SQL NULL when this routine returns.
danielk1977369f27e2004-06-15 11:40:04 +0000993*/
drh643167f2008-01-22 21:30:53 +0000994void sqlite3VdbeMemMove(Mem *pTo, Mem *pFrom){
drhb21c8cd2007-08-21 19:33:56 +0000995 assert( pFrom->db==0 || sqlite3_mutex_held(pFrom->db->mutex) );
996 assert( pTo->db==0 || sqlite3_mutex_held(pTo->db->mutex) );
997 assert( pFrom->db==0 || pTo->db==0 || pFrom->db==pTo->db );
danielk19775f096132008-03-28 15:44:09 +0000998
999 sqlite3VdbeMemRelease(pTo);
danielk197713073932004-06-30 11:54:06 +00001000 memcpy(pTo, pFrom, sizeof(Mem));
danielk197713073932004-06-30 11:54:06 +00001001 pFrom->flags = MEM_Null;
drh17bcb102014-09-18 21:25:33 +00001002 pFrom->szMalloc = 0;
danielk1977369f27e2004-06-15 11:40:04 +00001003}
1004
1005/*
drheb2e1762004-05-27 01:53:56 +00001006** Change the value of a Mem to be a string or a BLOB.
danielk1977a7a8e142008-02-13 18:25:27 +00001007**
1008** The memory management strategy depends on the value of the xDel
1009** parameter. If the value passed is SQLITE_TRANSIENT, then the
1010** string is copied into a (possibly existing) buffer managed by the
1011** Mem structure. Otherwise, any existing buffer is freed and the
1012** pointer copied.
drh9a65f2c2009-06-22 19:05:40 +00001013**
1014** If the string is too large (if it exceeds the SQLITE_LIMIT_LENGTH
1015** size limit) then no memory allocation occurs. If the string can be
1016** stored without allocating memory, then it is. If a memory allocation
1017** is required to store the string, then value of pMem is unchanged. In
1018** either case, SQLITE_TOOBIG is returned.
drheb2e1762004-05-27 01:53:56 +00001019*/
drh4f26d6c2004-05-26 23:25:30 +00001020int sqlite3VdbeMemSetStr(
1021 Mem *pMem, /* Memory cell to set to string value */
1022 const char *z, /* String pointer */
1023 int n, /* Bytes in string, or negative */
drheb2e1762004-05-27 01:53:56 +00001024 u8 enc, /* Encoding of z. 0 for BLOBs */
danielk1977d8123362004-06-12 09:25:12 +00001025 void (*xDel)(void*) /* Destructor function */
drh4f26d6c2004-05-26 23:25:30 +00001026){
danielk1977a7a8e142008-02-13 18:25:27 +00001027 int nByte = n; /* New value for pMem->n */
drh0a687d12008-07-08 14:52:07 +00001028 int iLimit; /* Maximum allowed string or blob size */
drh8df32842008-12-09 02:51:23 +00001029 u16 flags = 0; /* New value for pMem->flags */
danielk1977a7a8e142008-02-13 18:25:27 +00001030
drhb21c8cd2007-08-21 19:33:56 +00001031 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
drh9d67afc2018-08-29 20:24:03 +00001032 assert( !sqlite3VdbeMemIsRowSet(pMem) );
danielk1977a7a8e142008-02-13 18:25:27 +00001033
1034 /* If z is a NULL pointer, set pMem to contain an SQL NULL. */
drh4f26d6c2004-05-26 23:25:30 +00001035 if( !z ){
danielk1977a7a8e142008-02-13 18:25:27 +00001036 sqlite3VdbeMemSetNull(pMem);
drh4f26d6c2004-05-26 23:25:30 +00001037 return SQLITE_OK;
1038 }
danielk1977a7a8e142008-02-13 18:25:27 +00001039
drh0a687d12008-07-08 14:52:07 +00001040 if( pMem->db ){
1041 iLimit = pMem->db->aLimit[SQLITE_LIMIT_LENGTH];
1042 }else{
1043 iLimit = SQLITE_MAX_LENGTH;
1044 }
danielk1977a7a8e142008-02-13 18:25:27 +00001045 flags = (enc==0?MEM_Blob:MEM_Str);
1046 if( nByte<0 ){
1047 assert( enc!=0 );
drh8fd38972008-02-19 15:44:09 +00001048 if( enc==SQLITE_UTF8 ){
drhb32c18b2017-08-21 02:05:22 +00001049 nByte = 0x7fffffff & (int)strlen(z);
drh8fd38972008-02-19 15:44:09 +00001050 }else{
drh0a687d12008-07-08 14:52:07 +00001051 for(nByte=0; nByte<=iLimit && (z[nByte] | z[nByte+1]); nByte+=2){}
drh8fd38972008-02-19 15:44:09 +00001052 }
danielk1977a7a8e142008-02-13 18:25:27 +00001053 flags |= MEM_Term;
drh4f26d6c2004-05-26 23:25:30 +00001054 }
danielk1977d8123362004-06-12 09:25:12 +00001055
danielk1977a7a8e142008-02-13 18:25:27 +00001056 /* The following block sets the new values of Mem.z and Mem.xDel. It
1057 ** also sets a flag in local variable "flags" to indicate the memory
1058 ** management (one of MEM_Dyn or MEM_Static).
1059 */
1060 if( xDel==SQLITE_TRANSIENT ){
drh16d7e872019-02-08 17:28:20 +00001061 u32 nAlloc = nByte;
danielk1977a7a8e142008-02-13 18:25:27 +00001062 if( flags&MEM_Term ){
1063 nAlloc += (enc==SQLITE_UTF8?1:2);
1064 }
drh0793f1b2008-11-05 17:41:19 +00001065 if( nByte>iLimit ){
drhc3dcdba2019-04-09 21:32:46 +00001066 return sqlite3ErrorToParser(pMem->db, SQLITE_TOOBIG);
drh0793f1b2008-11-05 17:41:19 +00001067 }
drh722246e2014-10-07 23:02:24 +00001068 testcase( nAlloc==0 );
1069 testcase( nAlloc==31 );
1070 testcase( nAlloc==32 );
drh16d7e872019-02-08 17:28:20 +00001071 if( sqlite3VdbeMemClearAndResize(pMem, (int)MAX(nAlloc,32)) ){
mistachkinfad30392016-02-13 23:43:46 +00001072 return SQLITE_NOMEM_BKPT;
danielk1977a7a8e142008-02-13 18:25:27 +00001073 }
1074 memcpy(pMem->z, z, nAlloc);
danielk1977a7a8e142008-02-13 18:25:27 +00001075 }else{
1076 sqlite3VdbeMemRelease(pMem);
1077 pMem->z = (char *)z;
drh16d7e872019-02-08 17:28:20 +00001078 if( xDel==SQLITE_DYNAMIC ){
1079 pMem->zMalloc = pMem->z;
1080 pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->zMalloc);
1081 }else{
1082 pMem->xDel = xDel;
1083 flags |= ((xDel==SQLITE_STATIC)?MEM_Static:MEM_Dyn);
1084 }
danielk1977a7a8e142008-02-13 18:25:27 +00001085 }
danielk1977d8123362004-06-12 09:25:12 +00001086
danielk1977a7a8e142008-02-13 18:25:27 +00001087 pMem->n = nByte;
1088 pMem->flags = flags;
1089 pMem->enc = (enc==0 ? SQLITE_UTF8 : enc);
drh4f26d6c2004-05-26 23:25:30 +00001090
drh6c626082004-11-14 21:56:29 +00001091#ifndef SQLITE_OMIT_UTF16
danielk1977a7a8e142008-02-13 18:25:27 +00001092 if( pMem->enc!=SQLITE_UTF8 && sqlite3VdbeMemHandleBom(pMem) ){
mistachkinfad30392016-02-13 23:43:46 +00001093 return SQLITE_NOMEM_BKPT;
drh4f26d6c2004-05-26 23:25:30 +00001094 }
danielk1977a7a8e142008-02-13 18:25:27 +00001095#endif
1096
drh9a65f2c2009-06-22 19:05:40 +00001097 if( nByte>iLimit ){
1098 return SQLITE_TOOBIG;
1099 }
1100
drhf4479502004-05-27 03:12:53 +00001101 return SQLITE_OK;
drh4f26d6c2004-05-26 23:25:30 +00001102}
1103
1104/*
drhd5788202004-05-28 08:21:05 +00001105** Move data out of a btree key or data field and into a Mem structure.
drhcb3cabd2016-11-25 19:18:28 +00001106** The data is payload from the entry that pCur is currently pointing
drhd5788202004-05-28 08:21:05 +00001107** to. offset and amt determine what portion of the data or key to retrieve.
drhcb3cabd2016-11-25 19:18:28 +00001108** The result is written into the pMem element.
drhd5788202004-05-28 08:21:05 +00001109**
drh2a2a6962014-09-16 18:22:44 +00001110** The pMem object must have been initialized. This routine will use
1111** pMem->zMalloc to hold the content from the btree, if possible. New
1112** pMem->zMalloc space will be allocated if necessary. The calling routine
1113** is responsible for making sure that the pMem object is eventually
1114** destroyed.
drhd5788202004-05-28 08:21:05 +00001115**
1116** If this routine fails for any reason (malloc returns NULL or unable
1117** to read from the disk) then the pMem is left in an inconsistent state.
1118*/
drhf1aabd62015-06-17 01:31:28 +00001119static SQLITE_NOINLINE int vdbeMemFromBtreeResize(
1120 BtCursor *pCur, /* Cursor pointing at record to retrieve. */
1121 u32 offset, /* Offset from the start of data to return bytes from. */
1122 u32 amt, /* Number of bytes to return. */
drhf1aabd62015-06-17 01:31:28 +00001123 Mem *pMem /* OUT: Return data in this Mem structure. */
1124){
1125 int rc;
1126 pMem->flags = MEM_Null;
drh53d30dd2019-02-04 21:10:24 +00001127 if( sqlite3BtreeMaxRecordSize(pCur)<offset+amt ){
1128 return SQLITE_CORRUPT_BKPT;
1129 }
drh24ddadf2017-09-22 12:52:31 +00001130 if( SQLITE_OK==(rc = sqlite3VdbeMemClearAndResize(pMem, amt+1)) ){
drhcb3cabd2016-11-25 19:18:28 +00001131 rc = sqlite3BtreePayload(pCur, offset, amt, pMem->z);
drhf1aabd62015-06-17 01:31:28 +00001132 if( rc==SQLITE_OK ){
drh24ddadf2017-09-22 12:52:31 +00001133 pMem->z[amt] = 0; /* Overrun area used when reading malformed records */
drh63d16322017-09-20 18:07:50 +00001134 pMem->flags = MEM_Blob;
drhf1aabd62015-06-17 01:31:28 +00001135 pMem->n = (int)amt;
1136 }else{
1137 sqlite3VdbeMemRelease(pMem);
1138 }
1139 }
1140 return rc;
1141}
drhd5788202004-05-28 08:21:05 +00001142int sqlite3VdbeMemFromBtree(
1143 BtCursor *pCur, /* Cursor pointing at record to retrieve. */
drh501932c2013-11-21 21:59:53 +00001144 u32 offset, /* Offset from the start of data to return bytes from. */
1145 u32 amt, /* Number of bytes to return. */
drhd5788202004-05-28 08:21:05 +00001146 Mem *pMem /* OUT: Return data in this Mem structure. */
1147){
danielk19774b0aa4c2009-05-28 11:05:57 +00001148 char *zData; /* Data from the btree layer */
drh501932c2013-11-21 21:59:53 +00001149 u32 available = 0; /* Number of bytes available on the local btree page */
danielk19774b0aa4c2009-05-28 11:05:57 +00001150 int rc = SQLITE_OK; /* Return code */
drhd5788202004-05-28 08:21:05 +00001151
drh5d1a8722009-07-22 18:07:40 +00001152 assert( sqlite3BtreeCursorIsValid(pCur) );
drhd3b74202014-09-17 16:41:15 +00001153 assert( !VdbeMemDynamic(pMem) );
drh5d1a8722009-07-22 18:07:40 +00001154
danielk19774b0aa4c2009-05-28 11:05:57 +00001155 /* Note: the calls to BtreeKeyFetch() and DataFetch() below assert()
1156 ** that both the BtShared and database handle mutexes are held. */
drh9d67afc2018-08-29 20:24:03 +00001157 assert( !sqlite3VdbeMemIsRowSet(pMem) );
drha7c90c42016-06-04 20:37:10 +00001158 zData = (char *)sqlite3BtreePayloadFetch(pCur, &available);
drh61fc5952007-04-01 23:49:51 +00001159 assert( zData!=0 );
drhd5788202004-05-28 08:21:05 +00001160
drh2b53e002013-11-21 19:05:04 +00001161 if( offset+amt<=available ){
drhd5788202004-05-28 08:21:05 +00001162 pMem->z = &zData[offset];
1163 pMem->flags = MEM_Blob|MEM_Ephem;
drh5f1d5362014-03-04 13:18:23 +00001164 pMem->n = (int)amt;
drh8740a602014-09-16 20:05:21 +00001165 }else{
drhcb3cabd2016-11-25 19:18:28 +00001166 rc = vdbeMemFromBtreeResize(pCur, offset, amt, pMem);
drhd5788202004-05-28 08:21:05 +00001167 }
1168
danielk1977a7a8e142008-02-13 18:25:27 +00001169 return rc;
drhd5788202004-05-28 08:21:05 +00001170}
1171
drh6c9f8e62014-08-27 03:28:50 +00001172/*
1173** The pVal argument is known to be a value other than NULL.
1174** Convert it into a string with encoding enc and return a pointer
1175** to a zero-terminated version of that string.
1176*/
drh3b335fc2014-10-07 16:59:22 +00001177static SQLITE_NOINLINE const void *valueToText(sqlite3_value* pVal, u8 enc){
drh6c9f8e62014-08-27 03:28:50 +00001178 assert( pVal!=0 );
1179 assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) );
1180 assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) );
drh9d67afc2018-08-29 20:24:03 +00001181 assert( !sqlite3VdbeMemIsRowSet(pVal) );
drh6c9f8e62014-08-27 03:28:50 +00001182 assert( (pVal->flags & (MEM_Null))==0 );
1183 if( pVal->flags & (MEM_Blob|MEM_Str) ){
drh34d04d62017-01-05 07:58:29 +00001184 if( ExpandBlob(pVal) ) return 0;
drh6c9f8e62014-08-27 03:28:50 +00001185 pVal->flags |= MEM_Str;
drh6c9f8e62014-08-27 03:28:50 +00001186 if( pVal->enc != (enc & ~SQLITE_UTF16_ALIGNED) ){
1187 sqlite3VdbeChangeEncoding(pVal, enc & ~SQLITE_UTF16_ALIGNED);
1188 }
1189 if( (enc & SQLITE_UTF16_ALIGNED)!=0 && 1==(1&SQLITE_PTR_TO_INT(pVal->z)) ){
1190 assert( (pVal->flags & (MEM_Ephem|MEM_Static))!=0 );
1191 if( sqlite3VdbeMemMakeWriteable(pVal)!=SQLITE_OK ){
1192 return 0;
1193 }
1194 }
1195 sqlite3VdbeMemNulTerminate(pVal); /* IMP: R-31275-44060 */
1196 }else{
1197 sqlite3VdbeMemStringify(pVal, enc, 0);
1198 assert( 0==(1&SQLITE_PTR_TO_INT(pVal->z)) );
1199 }
1200 assert(pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) || pVal->db==0
1201 || pVal->db->mallocFailed );
1202 if( pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) ){
drh563ddbe2018-02-01 15:57:00 +00001203 assert( sqlite3VdbeMemConsistentDualRep(pVal) );
drh6c9f8e62014-08-27 03:28:50 +00001204 return pVal->z;
1205 }else{
1206 return 0;
1207 }
1208}
1209
danielk19774e6af132004-06-10 14:01:08 +00001210/* This function is only available internally, it is not part of the
1211** external API. It works in a similar way to sqlite3_value_text(),
1212** except the data returned is in the encoding specified by the second
1213** parameter, which must be one of SQLITE_UTF16BE, SQLITE_UTF16LE or
1214** SQLITE_UTF8.
drh7d9bd4e2006-02-16 18:16:36 +00001215**
1216** (2006-02-16:) The enc value can be or-ed with SQLITE_UTF16_ALIGNED.
1217** If that is the case, then the result must be aligned on an even byte
1218** boundary.
danielk19774e6af132004-06-10 14:01:08 +00001219*/
drhb21c8cd2007-08-21 19:33:56 +00001220const void *sqlite3ValueText(sqlite3_value* pVal, u8 enc){
danielk1977bfd6cce2004-06-18 04:24:54 +00001221 if( !pVal ) return 0;
drhb21c8cd2007-08-21 19:33:56 +00001222 assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) );
drh7d9bd4e2006-02-16 18:16:36 +00001223 assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) );
drh9d67afc2018-08-29 20:24:03 +00001224 assert( !sqlite3VdbeMemIsRowSet(pVal) );
drh6c9f8e62014-08-27 03:28:50 +00001225 if( (pVal->flags&(MEM_Str|MEM_Term))==(MEM_Str|MEM_Term) && pVal->enc==enc ){
drh563ddbe2018-02-01 15:57:00 +00001226 assert( sqlite3VdbeMemConsistentDualRep(pVal) );
drh6c9f8e62014-08-27 03:28:50 +00001227 return pVal->z;
1228 }
danielk19774e6af132004-06-10 14:01:08 +00001229 if( pVal->flags&MEM_Null ){
danielk19774e6af132004-06-10 14:01:08 +00001230 return 0;
1231 }
drh6c9f8e62014-08-27 03:28:50 +00001232 return valueToText(pVal, enc);
danielk19774e6af132004-06-10 14:01:08 +00001233}
1234
drh6a6124e2004-06-27 01:56:33 +00001235/*
1236** Create a new sqlite3_value object.
1237*/
drh17435752007-08-16 04:30:38 +00001238sqlite3_value *sqlite3ValueNew(sqlite3 *db){
danielk197726783a52007-08-29 14:06:22 +00001239 Mem *p = sqlite3DbMallocZero(db, sizeof(*p));
danielk19774e6af132004-06-10 14:01:08 +00001240 if( p ){
1241 p->flags = MEM_Null;
drhb21c8cd2007-08-21 19:33:56 +00001242 p->db = db;
danielk19774e6af132004-06-10 14:01:08 +00001243 }
1244 return p;
1245}
1246
drh6a6124e2004-06-27 01:56:33 +00001247/*
danaf2583c2013-08-15 18:43:21 +00001248** Context object passed by sqlite3Stat4ProbeSetValue() through to
1249** valueNew(). See comments above valueNew() for details.
danielk1977aee18ef2005-03-09 12:26:50 +00001250*/
danaf2583c2013-08-15 18:43:21 +00001251struct ValueNewStat4Ctx {
1252 Parse *pParse;
1253 Index *pIdx;
1254 UnpackedRecord **ppRec;
1255 int iVal;
1256};
1257
1258/*
1259** Allocate and return a pointer to a new sqlite3_value object. If
1260** the second argument to this function is NULL, the object is allocated
1261** by calling sqlite3ValueNew().
1262**
1263** Otherwise, if the second argument is non-zero, then this function is
1264** being called indirectly by sqlite3Stat4ProbeSetValue(). If it has not
1265** already been allocated, allocate the UnpackedRecord structure that
drh96f4ad22015-03-12 21:02:36 +00001266** that function will return to its caller here. Then return a pointer to
danaf2583c2013-08-15 18:43:21 +00001267** an sqlite3_value within the UnpackedRecord.a[] array.
1268*/
1269static sqlite3_value *valueNew(sqlite3 *db, struct ValueNewStat4Ctx *p){
drh1435a9a2013-08-27 23:15:44 +00001270#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
danaf2583c2013-08-15 18:43:21 +00001271 if( p ){
1272 UnpackedRecord *pRec = p->ppRec[0];
1273
1274 if( pRec==0 ){
1275 Index *pIdx = p->pIdx; /* Index being probed */
1276 int nByte; /* Bytes of space to allocate */
1277 int i; /* Counter variable */
drhd2694612013-11-04 22:04:17 +00001278 int nCol = pIdx->nColumn; /* Number of index columns including rowid */
danaf2583c2013-08-15 18:43:21 +00001279
danb5f68b02013-12-03 18:26:56 +00001280 nByte = sizeof(Mem) * nCol + ROUND8(sizeof(UnpackedRecord));
danaf2583c2013-08-15 18:43:21 +00001281 pRec = (UnpackedRecord*)sqlite3DbMallocZero(db, nByte);
1282 if( pRec ){
drh2ec2fb22013-11-06 19:59:23 +00001283 pRec->pKeyInfo = sqlite3KeyInfoOfIndex(p->pParse, pIdx);
danaf2583c2013-08-15 18:43:21 +00001284 if( pRec->pKeyInfo ){
drha485ad12017-08-02 22:43:14 +00001285 assert( pRec->pKeyInfo->nAllField==nCol );
drh2ec2fb22013-11-06 19:59:23 +00001286 assert( pRec->pKeyInfo->enc==ENC(db) );
danb5f68b02013-12-03 18:26:56 +00001287 pRec->aMem = (Mem *)((u8*)pRec + ROUND8(sizeof(UnpackedRecord)));
danaf2583c2013-08-15 18:43:21 +00001288 for(i=0; i<nCol; i++){
1289 pRec->aMem[i].flags = MEM_Null;
danaf2583c2013-08-15 18:43:21 +00001290 pRec->aMem[i].db = db;
1291 }
1292 }else{
drhdbd6a7d2017-04-05 12:39:49 +00001293 sqlite3DbFreeNN(db, pRec);
danaf2583c2013-08-15 18:43:21 +00001294 pRec = 0;
1295 }
1296 }
1297 if( pRec==0 ) return 0;
1298 p->ppRec[0] = pRec;
1299 }
1300
1301 pRec->nField = p->iVal+1;
1302 return &pRec->aMem[p->iVal];
1303 }
drh4f991892013-10-11 15:05:05 +00001304#else
1305 UNUSED_PARAMETER(p);
1306#endif /* defined(SQLITE_ENABLE_STAT3_OR_STAT4) */
danaf2583c2013-08-15 18:43:21 +00001307 return sqlite3ValueNew(db);
dan7a419232013-08-06 20:01:43 +00001308}
1309
drh6a6124e2004-06-27 01:56:33 +00001310/*
dan18bf8072015-03-11 20:06:40 +00001311** The expression object indicated by the second argument is guaranteed
1312** to be a scalar SQL function. If
1313**
1314** * all function arguments are SQL literals,
drhe3a73072015-09-05 19:07:08 +00001315** * one of the SQLITE_FUNC_CONSTANT or _SLOCHNG function flags is set, and
dancdcc11d2015-03-11 20:59:42 +00001316** * the SQLITE_FUNC_NEEDCOLL function flag is not set,
dan18bf8072015-03-11 20:06:40 +00001317**
1318** then this routine attempts to invoke the SQL function. Assuming no
1319** error occurs, output parameter (*ppVal) is set to point to a value
1320** object containing the result before returning SQLITE_OK.
1321**
1322** Affinity aff is applied to the result of the function before returning.
1323** If the result is a text value, the sqlite3_value object uses encoding
1324** enc.
1325**
1326** If the conditions above are not met, this function returns SQLITE_OK
1327** and sets (*ppVal) to NULL. Or, if an error occurs, (*ppVal) is set to
1328** NULL and an SQLite error code returned.
1329*/
1330#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1331static int valueFromFunction(
1332 sqlite3 *db, /* The database connection */
1333 Expr *p, /* The expression to evaluate */
1334 u8 enc, /* Encoding to use */
1335 u8 aff, /* Affinity to use */
1336 sqlite3_value **ppVal, /* Write the new value here */
1337 struct ValueNewStat4Ctx *pCtx /* Second argument for valueNew() */
1338){
1339 sqlite3_context ctx; /* Context object for function invocation */
1340 sqlite3_value **apVal = 0; /* Function arguments */
1341 int nVal = 0; /* Size of apVal[] array */
1342 FuncDef *pFunc = 0; /* Function definition */
1343 sqlite3_value *pVal = 0; /* New value */
1344 int rc = SQLITE_OK; /* Return code */
dancdcc11d2015-03-11 20:59:42 +00001345 ExprList *pList = 0; /* Function arguments */
dan18bf8072015-03-11 20:06:40 +00001346 int i; /* Iterator variable */
1347
drh96f4ad22015-03-12 21:02:36 +00001348 assert( pCtx!=0 );
1349 assert( (p->flags & EP_TokenOnly)==0 );
1350 pList = p->x.pList;
1351 if( pList ) nVal = pList->nExpr;
drh80738d92016-02-15 00:34:16 +00001352 pFunc = sqlite3FindFunction(db, p->u.zToken, nVal, enc, 0);
dan18bf8072015-03-11 20:06:40 +00001353 assert( pFunc );
drhe3a73072015-09-05 19:07:08 +00001354 if( (pFunc->funcFlags & (SQLITE_FUNC_CONSTANT|SQLITE_FUNC_SLOCHNG))==0
dan18bf8072015-03-11 20:06:40 +00001355 || (pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL)
1356 ){
1357 return SQLITE_OK;
1358 }
1359
1360 if( pList ){
1361 apVal = (sqlite3_value**)sqlite3DbMallocZero(db, sizeof(apVal[0]) * nVal);
1362 if( apVal==0 ){
mistachkinfad30392016-02-13 23:43:46 +00001363 rc = SQLITE_NOMEM_BKPT;
dan18bf8072015-03-11 20:06:40 +00001364 goto value_from_function_out;
1365 }
1366 for(i=0; i<nVal; i++){
1367 rc = sqlite3ValueFromExpr(db, pList->a[i].pExpr, enc, aff, &apVal[i]);
drha9e03b12015-03-12 06:46:52 +00001368 if( apVal[i]==0 || rc!=SQLITE_OK ) goto value_from_function_out;
dan18bf8072015-03-11 20:06:40 +00001369 }
1370 }
1371
1372 pVal = valueNew(db, pCtx);
1373 if( pVal==0 ){
mistachkinfad30392016-02-13 23:43:46 +00001374 rc = SQLITE_NOMEM_BKPT;
dan18bf8072015-03-11 20:06:40 +00001375 goto value_from_function_out;
1376 }
1377
dan3df30592015-03-13 08:31:54 +00001378 assert( pCtx->pParse->rc==SQLITE_OK );
dan18bf8072015-03-11 20:06:40 +00001379 memset(&ctx, 0, sizeof(ctx));
1380 ctx.pOut = pVal;
1381 ctx.pFunc = pFunc;
drh2d801512016-01-14 22:19:58 +00001382 pFunc->xSFunc(&ctx, nVal, apVal);
dan18bf8072015-03-11 20:06:40 +00001383 if( ctx.isError ){
1384 rc = ctx.isError;
drh96f4ad22015-03-12 21:02:36 +00001385 sqlite3ErrorMsg(pCtx->pParse, "%s", sqlite3_value_text(pVal));
dan18bf8072015-03-11 20:06:40 +00001386 }else{
1387 sqlite3ValueApplyAffinity(pVal, aff, SQLITE_UTF8);
drh96f4ad22015-03-12 21:02:36 +00001388 assert( rc==SQLITE_OK );
1389 rc = sqlite3VdbeChangeEncoding(pVal, enc);
dan18bf8072015-03-11 20:06:40 +00001390 if( rc==SQLITE_OK && sqlite3VdbeMemTooBig(pVal) ){
1391 rc = SQLITE_TOOBIG;
dan3df30592015-03-13 08:31:54 +00001392 pCtx->pParse->nErr++;
dan18bf8072015-03-11 20:06:40 +00001393 }
1394 }
dan3df30592015-03-13 08:31:54 +00001395 pCtx->pParse->rc = rc;
dan18bf8072015-03-11 20:06:40 +00001396
1397 value_from_function_out:
1398 if( rc!=SQLITE_OK ){
dan18bf8072015-03-11 20:06:40 +00001399 pVal = 0;
1400 }
drha9e03b12015-03-12 06:46:52 +00001401 if( apVal ){
1402 for(i=0; i<nVal; i++){
1403 sqlite3ValueFree(apVal[i]);
1404 }
drhdbd6a7d2017-04-05 12:39:49 +00001405 sqlite3DbFreeNN(db, apVal);
dan18bf8072015-03-11 20:06:40 +00001406 }
dan18bf8072015-03-11 20:06:40 +00001407
1408 *ppVal = pVal;
1409 return rc;
1410}
1411#else
1412# define valueFromFunction(a,b,c,d,e,f) SQLITE_OK
1413#endif /* defined(SQLITE_ENABLE_STAT3_OR_STAT4) */
1414
1415/*
danaf2583c2013-08-15 18:43:21 +00001416** Extract a value from the supplied expression in the manner described
1417** above sqlite3ValueFromExpr(). Allocate the sqlite3_value object
1418** using valueNew().
1419**
1420** If pCtx is NULL and an error occurs after the sqlite3_value object
1421** has been allocated, it is freed before returning. Or, if pCtx is not
1422** NULL, it is assumed that the caller will free any allocated object
1423** in all cases.
danielk1977aee18ef2005-03-09 12:26:50 +00001424*/
drha7f4bf32013-10-14 13:21:00 +00001425static int valueFromExpr(
danaf2583c2013-08-15 18:43:21 +00001426 sqlite3 *db, /* The database connection */
1427 Expr *pExpr, /* The expression to evaluate */
1428 u8 enc, /* Encoding to use */
1429 u8 affinity, /* Affinity to use */
1430 sqlite3_value **ppVal, /* Write the new value here */
1431 struct ValueNewStat4Ctx *pCtx /* Second argument for valueNew() */
danielk1977aee18ef2005-03-09 12:26:50 +00001432){
1433 int op;
1434 char *zVal = 0;
1435 sqlite3_value *pVal = 0;
drh93518622010-09-30 14:48:06 +00001436 int negInt = 1;
1437 const char *zNeg = "";
drh0e1f0022013-08-16 14:49:00 +00001438 int rc = SQLITE_OK;
danielk1977aee18ef2005-03-09 12:26:50 +00001439
drh42735c72016-09-29 19:27:16 +00001440 assert( pExpr!=0 );
drh94fa9c42016-02-27 21:16:04 +00001441 while( (op = pExpr->op)==TK_UPLUS || op==TK_SPAN ) pExpr = pExpr->pLeft;
drh01f6b2d2017-12-06 20:50:08 +00001442#if defined(SQLITE_ENABLE_STAT3_OR_STAT4)
dan7ac2d482017-11-27 17:56:14 +00001443 if( op==TK_REGISTER ) op = pExpr->op2;
drh01f6b2d2017-12-06 20:50:08 +00001444#else
1445 if( NEVER(op==TK_REGISTER) ) op = pExpr->op2;
1446#endif
danielk1977aee18ef2005-03-09 12:26:50 +00001447
drh96f4ad22015-03-12 21:02:36 +00001448 /* Compressed expressions only appear when parsing the DEFAULT clause
1449 ** on a table column definition, and hence only when pCtx==0. This
1450 ** check ensures that an EP_TokenOnly expression is never passed down
1451 ** into valueFromFunction(). */
1452 assert( (pExpr->flags & EP_TokenOnly)==0 || pCtx==0 );
1453
drh4169e432014-08-25 20:11:52 +00001454 if( op==TK_CAST ){
1455 u8 aff = sqlite3AffinityType(pExpr->u.zToken,0);
1456 rc = valueFromExpr(db, pExpr->pLeft, enc, aff, ppVal, pCtx);
drhec3e4f72014-08-25 21:11:01 +00001457 testcase( rc!=SQLITE_OK );
1458 if( *ppVal ){
drh4169e432014-08-25 20:11:52 +00001459 sqlite3VdbeMemCast(*ppVal, aff, SQLITE_UTF8);
1460 sqlite3ValueApplyAffinity(*ppVal, affinity, SQLITE_UTF8);
1461 }
1462 return rc;
1463 }
1464
drh93518622010-09-30 14:48:06 +00001465 /* Handle negative integers in a single step. This is needed in the
1466 ** case when the value is -9223372036854775808.
1467 */
1468 if( op==TK_UMINUS
1469 && (pExpr->pLeft->op==TK_INTEGER || pExpr->pLeft->op==TK_FLOAT) ){
1470 pExpr = pExpr->pLeft;
1471 op = pExpr->op;
1472 negInt = -1;
1473 zNeg = "-";
1474 }
1475
danielk1977aee18ef2005-03-09 12:26:50 +00001476 if( op==TK_STRING || op==TK_FLOAT || op==TK_INTEGER ){
danaf2583c2013-08-15 18:43:21 +00001477 pVal = valueNew(db, pCtx);
drh33e619f2009-05-28 01:00:55 +00001478 if( pVal==0 ) goto no_mem;
1479 if( ExprHasProperty(pExpr, EP_IntValue) ){
drh93518622010-09-30 14:48:06 +00001480 sqlite3VdbeMemSetInt64(pVal, (i64)pExpr->u.iValue*negInt);
drh33e619f2009-05-28 01:00:55 +00001481 }else{
drh93518622010-09-30 14:48:06 +00001482 zVal = sqlite3MPrintf(db, "%s%s", zNeg, pExpr->u.zToken);
drh33e619f2009-05-28 01:00:55 +00001483 if( zVal==0 ) goto no_mem;
1484 sqlite3ValueSetStr(pVal, -1, zVal, SQLITE_UTF8, SQLITE_DYNAMIC);
1485 }
drh05883a32015-06-02 15:32:08 +00001486 if( (op==TK_INTEGER || op==TK_FLOAT ) && affinity==SQLITE_AFF_BLOB ){
drhe3b9bfe2009-05-05 12:54:50 +00001487 sqlite3ValueApplyAffinity(pVal, SQLITE_AFF_NUMERIC, SQLITE_UTF8);
danielk1977aee18ef2005-03-09 12:26:50 +00001488 }else{
drhe3b9bfe2009-05-05 12:54:50 +00001489 sqlite3ValueApplyAffinity(pVal, affinity, SQLITE_UTF8);
1490 }
drh93518622010-09-30 14:48:06 +00001491 if( pVal->flags & (MEM_Int|MEM_Real) ) pVal->flags &= ~MEM_Str;
drhe3b9bfe2009-05-05 12:54:50 +00001492 if( enc!=SQLITE_UTF8 ){
drh0e1f0022013-08-16 14:49:00 +00001493 rc = sqlite3VdbeChangeEncoding(pVal, enc);
danielk1977aee18ef2005-03-09 12:26:50 +00001494 }
1495 }else if( op==TK_UMINUS ) {
drh93518622010-09-30 14:48:06 +00001496 /* This branch happens for multiple negative signs. Ex: -(-5) */
drh6e3bccd2017-06-13 04:31:54 +00001497 if( SQLITE_OK==valueFromExpr(db,pExpr->pLeft,enc,affinity,&pVal,pCtx)
danad45ed72013-08-08 12:21:32 +00001498 && pVal!=0
1499 ){
drh93518622010-09-30 14:48:06 +00001500 sqlite3VdbeMemNumerify(pVal);
drh74eaba42014-09-18 17:52:15 +00001501 if( pVal->flags & MEM_Real ){
1502 pVal->u.r = -pVal->u.r;
1503 }else if( pVal->u.i==SMALLEST_INT64 ){
1504 pVal->u.r = -(double)SMALLEST_INT64;
1505 MemSetTypeFlag(pVal, MEM_Real);
drhd50ffc42011-03-08 02:38:28 +00001506 }else{
1507 pVal->u.i = -pVal->u.i;
1508 }
drh93518622010-09-30 14:48:06 +00001509 sqlite3ValueApplyAffinity(pVal, affinity, enc);
danielk1977aee18ef2005-03-09 12:26:50 +00001510 }
drh9b3eb0a2011-01-21 14:37:04 +00001511 }else if( op==TK_NULL ){
danaf2583c2013-08-15 18:43:21 +00001512 pVal = valueNew(db, pCtx);
drhb1aa0ab2011-02-18 17:23:23 +00001513 if( pVal==0 ) goto no_mem;
drhe0568d62016-12-09 00:15:17 +00001514 sqlite3VdbeMemNumerify(pVal);
danielk1977aee18ef2005-03-09 12:26:50 +00001515 }
1516#ifndef SQLITE_OMIT_BLOB_LITERAL
1517 else if( op==TK_BLOB ){
1518 int nVal;
drh33e619f2009-05-28 01:00:55 +00001519 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
1520 assert( pExpr->u.zToken[1]=='\'' );
danaf2583c2013-08-15 18:43:21 +00001521 pVal = valueNew(db, pCtx);
danielk1977f150c9d2008-10-30 17:21:12 +00001522 if( !pVal ) goto no_mem;
drh33e619f2009-05-28 01:00:55 +00001523 zVal = &pExpr->u.zToken[2];
drhb7916a72009-05-27 10:31:29 +00001524 nVal = sqlite3Strlen30(zVal)-1;
1525 assert( zVal[nVal]=='\'' );
drhca48c902008-01-18 14:08:24 +00001526 sqlite3VdbeMemSetStr(pVal, sqlite3HexToBlob(db, zVal, nVal), nVal/2,
drh633e6d52008-07-28 19:34:53 +00001527 0, SQLITE_DYNAMIC);
danielk1977aee18ef2005-03-09 12:26:50 +00001528 }
1529#endif
drh8cdcd872015-03-16 13:48:23 +00001530#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
drh96f4ad22015-03-12 21:02:36 +00001531 else if( op==TK_FUNCTION && pCtx!=0 ){
dan18bf8072015-03-11 20:06:40 +00001532 rc = valueFromFunction(db, pExpr, enc, affinity, &pVal, pCtx);
1533 }
drh8cdcd872015-03-16 13:48:23 +00001534#endif
drh3bc43152018-04-18 11:35:35 +00001535 else if( op==TK_TRUEFALSE ){
danc2ea77e2019-01-25 17:26:59 +00001536 pVal = valueNew(db, pCtx);
1537 if( pVal ){
1538 pVal->flags = MEM_Int;
1539 pVal->u.i = pExpr->u.zToken[4]==0;
1540 }
drh3bc43152018-04-18 11:35:35 +00001541 }
dan18bf8072015-03-11 20:06:40 +00001542
danielk1977aee18ef2005-03-09 12:26:50 +00001543 *ppVal = pVal;
drh0e1f0022013-08-16 14:49:00 +00001544 return rc;
danielk1977aee18ef2005-03-09 12:26:50 +00001545
1546no_mem:
drh84a6c852017-12-13 23:47:55 +00001547#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1548 if( pCtx==0 || pCtx->pParse->nErr==0 )
1549#endif
1550 sqlite3OomFault(db);
drh633e6d52008-07-28 19:34:53 +00001551 sqlite3DbFree(db, zVal);
danaf2583c2013-08-15 18:43:21 +00001552 assert( *ppVal==0 );
drh1435a9a2013-08-27 23:15:44 +00001553#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
danaf2583c2013-08-15 18:43:21 +00001554 if( pCtx==0 ) sqlite3ValueFree(pVal);
drh1435a9a2013-08-27 23:15:44 +00001555#else
1556 assert( pCtx==0 ); sqlite3ValueFree(pVal);
1557#endif
mistachkinfad30392016-02-13 23:43:46 +00001558 return SQLITE_NOMEM_BKPT;
danielk1977aee18ef2005-03-09 12:26:50 +00001559}
1560
1561/*
dan87cd9322013-08-07 15:52:41 +00001562** Create a new sqlite3_value object, containing the value of pExpr.
1563**
1564** This only works for very simple expressions that consist of one constant
1565** token (i.e. "5", "5.1", "'a string'"). If the expression can
1566** be converted directly into a value, then the value is allocated and
1567** a pointer written to *ppVal. The caller is responsible for deallocating
1568** the value by passing it to sqlite3ValueFree() later on. If the expression
1569** cannot be converted to a value, then *ppVal is set to NULL.
1570*/
1571int sqlite3ValueFromExpr(
1572 sqlite3 *db, /* The database connection */
1573 Expr *pExpr, /* The expression to evaluate */
1574 u8 enc, /* Encoding to use */
1575 u8 affinity, /* Affinity to use */
1576 sqlite3_value **ppVal /* Write the new value here */
1577){
drh42735c72016-09-29 19:27:16 +00001578 return pExpr ? valueFromExpr(db, pExpr, enc, affinity, ppVal, 0) : 0;
dan87cd9322013-08-07 15:52:41 +00001579}
1580
drh1435a9a2013-08-27 23:15:44 +00001581#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
dan8ad169a2013-08-12 20:14:04 +00001582/*
1583** The implementation of the sqlite_record() function. This function accepts
1584** a single argument of any type. The return value is a formatted database
1585** record (a blob) containing the argument value.
1586**
1587** This is used to convert the value stored in the 'sample' column of the
1588** sqlite_stat3 table to the record format SQLite uses internally.
1589*/
1590static void recordFunc(
1591 sqlite3_context *context,
1592 int argc,
1593 sqlite3_value **argv
1594){
1595 const int file_format = 1;
drhbe37c122015-10-16 14:54:17 +00001596 u32 iSerial; /* Serial type */
dan8ad169a2013-08-12 20:14:04 +00001597 int nSerial; /* Bytes of space for iSerial as varint */
drhbe37c122015-10-16 14:54:17 +00001598 u32 nVal; /* Bytes of space required for argv[0] */
dan8ad169a2013-08-12 20:14:04 +00001599 int nRet;
1600 sqlite3 *db;
1601 u8 *aRet;
1602
drh4f991892013-10-11 15:05:05 +00001603 UNUSED_PARAMETER( argc );
drhbe37c122015-10-16 14:54:17 +00001604 iSerial = sqlite3VdbeSerialType(argv[0], file_format, &nVal);
dan8ad169a2013-08-12 20:14:04 +00001605 nSerial = sqlite3VarintLen(iSerial);
dan8ad169a2013-08-12 20:14:04 +00001606 db = sqlite3_context_db_handle(context);
1607
1608 nRet = 1 + nSerial + nVal;
drh575fad62016-02-05 13:38:36 +00001609 aRet = sqlite3DbMallocRawNN(db, nRet);
dan8ad169a2013-08-12 20:14:04 +00001610 if( aRet==0 ){
1611 sqlite3_result_error_nomem(context);
1612 }else{
1613 aRet[0] = nSerial+1;
drh2f2b2b82014-08-22 18:48:25 +00001614 putVarint32(&aRet[1], iSerial);
drha9ab4812013-12-11 11:00:44 +00001615 sqlite3VdbeSerialPut(&aRet[1+nSerial], argv[0], iSerial);
dan8ad169a2013-08-12 20:14:04 +00001616 sqlite3_result_blob(context, aRet, nRet, SQLITE_TRANSIENT);
drhdbd6a7d2017-04-05 12:39:49 +00001617 sqlite3DbFreeNN(db, aRet);
dan8ad169a2013-08-12 20:14:04 +00001618 }
1619}
1620
1621/*
1622** Register built-in functions used to help read ANALYZE data.
1623*/
1624void sqlite3AnalyzeFunctions(void){
drh80738d92016-02-15 00:34:16 +00001625 static FuncDef aAnalyzeTableFuncs[] = {
dan8ad169a2013-08-12 20:14:04 +00001626 FUNCTION(sqlite_record, 1, 0, 0, recordFunc),
1627 };
drh80738d92016-02-15 00:34:16 +00001628 sqlite3InsertBuiltinFuncs(aAnalyzeTableFuncs, ArraySize(aAnalyzeTableFuncs));
dan8ad169a2013-08-12 20:14:04 +00001629}
1630
drh0288b212014-06-28 16:06:44 +00001631/*
1632** Attempt to extract a value from pExpr and use it to construct *ppVal.
1633**
1634** If pAlloc is not NULL, then an UnpackedRecord object is created for
1635** pAlloc if one does not exist and the new value is added to the
1636** UnpackedRecord object.
1637**
1638** A value is extracted in the following cases:
1639**
1640** * (pExpr==0). In this case the value is assumed to be an SQL NULL,
1641**
1642** * The expression is a bound variable, and this is a reprepare, or
1643**
1644** * The expression is a literal value.
1645**
1646** On success, *ppVal is made to point to the extracted value. The caller
1647** is responsible for ensuring that the value is eventually freed.
1648*/
danb0b82902014-06-26 20:21:46 +00001649static int stat4ValueFromExpr(
1650 Parse *pParse, /* Parse context */
1651 Expr *pExpr, /* The expression to extract a value from */
1652 u8 affinity, /* Affinity to use */
drh0288b212014-06-28 16:06:44 +00001653 struct ValueNewStat4Ctx *pAlloc,/* How to allocate space. Or NULL */
danb0b82902014-06-26 20:21:46 +00001654 sqlite3_value **ppVal /* OUT: New value object (or NULL) */
1655){
1656 int rc = SQLITE_OK;
1657 sqlite3_value *pVal = 0;
1658 sqlite3 *db = pParse->db;
1659
1660 /* Skip over any TK_COLLATE nodes */
1661 pExpr = sqlite3ExprSkipCollate(pExpr);
1662
drh7df74752017-06-26 14:46:05 +00001663 assert( pExpr==0 || pExpr->op!=TK_REGISTER || pExpr->op2!=TK_VARIABLE );
danb0b82902014-06-26 20:21:46 +00001664 if( !pExpr ){
1665 pVal = valueNew(db, pAlloc);
1666 if( pVal ){
1667 sqlite3VdbeMemSetNull((Mem*)pVal);
1668 }
drh7df74752017-06-26 14:46:05 +00001669 }else if( pExpr->op==TK_VARIABLE && (db->flags & SQLITE_EnableQPSG)==0 ){
danb0b82902014-06-26 20:21:46 +00001670 Vdbe *v;
1671 int iBindVar = pExpr->iColumn;
1672 sqlite3VdbeSetVarmask(pParse->pVdbe, iBindVar);
drh7df74752017-06-26 14:46:05 +00001673 if( (v = pParse->pReprepare)!=0 ){
danb0b82902014-06-26 20:21:46 +00001674 pVal = valueNew(db, pAlloc);
1675 if( pVal ){
1676 rc = sqlite3VdbeMemCopy((Mem*)pVal, &v->aVar[iBindVar-1]);
drh169dd922017-06-26 13:57:49 +00001677 sqlite3ValueApplyAffinity(pVal, affinity, ENC(db));
danb0b82902014-06-26 20:21:46 +00001678 pVal->db = pParse->db;
1679 }
1680 }
1681 }else{
1682 rc = valueFromExpr(db, pExpr, ENC(db), affinity, &pVal, pAlloc);
1683 }
1684
1685 assert( pVal==0 || pVal->db==db );
1686 *ppVal = pVal;
1687 return rc;
1688}
1689
dan87cd9322013-08-07 15:52:41 +00001690/*
dan87cd9322013-08-07 15:52:41 +00001691** This function is used to allocate and populate UnpackedRecord
1692** structures intended to be compared against sample index keys stored
1693** in the sqlite_stat4 table.
1694**
dand66e5792016-08-03 16:14:33 +00001695** A single call to this function populates zero or more fields of the
1696** record starting with field iVal (fields are numbered from left to
1697** right starting with 0). A single field is populated if:
dan87cd9322013-08-07 15:52:41 +00001698**
1699** * (pExpr==0). In this case the value is assumed to be an SQL NULL,
1700**
1701** * The expression is a bound variable, and this is a reprepare, or
1702**
1703** * The sqlite3ValueFromExpr() function is able to extract a value
1704** from the expression (i.e. the expression is a literal value).
1705**
dand66e5792016-08-03 16:14:33 +00001706** Or, if pExpr is a TK_VECTOR, one field is populated for each of the
1707** vector components that match either of the two latter criteria listed
1708** above.
1709**
1710** Before any value is appended to the record, the affinity of the
1711** corresponding column within index pIdx is applied to it. Before
1712** this function returns, output parameter *pnExtract is set to the
1713** number of values appended to the record.
dan87cd9322013-08-07 15:52:41 +00001714**
1715** When this function is called, *ppRec must either point to an object
1716** allocated by an earlier call to this function, or must be NULL. If it
1717** is NULL and a value can be successfully extracted, a new UnpackedRecord
1718** is allocated (and *ppRec set to point to it) before returning.
1719**
1720** Unless an error is encountered, SQLITE_OK is returned. It is not an
1721** error if a value cannot be extracted from pExpr. If an error does
1722** occur, an SQLite error code is returned.
1723*/
dan7a419232013-08-06 20:01:43 +00001724int sqlite3Stat4ProbeSetValue(
1725 Parse *pParse, /* Parse context */
dan87cd9322013-08-07 15:52:41 +00001726 Index *pIdx, /* Index being probed */
1727 UnpackedRecord **ppRec, /* IN/OUT: Probe record */
dan7a419232013-08-06 20:01:43 +00001728 Expr *pExpr, /* The expression to extract a value from */
dand66e5792016-08-03 16:14:33 +00001729 int nElem, /* Maximum number of values to append */
dan7a419232013-08-06 20:01:43 +00001730 int iVal, /* Array element to populate */
dand66e5792016-08-03 16:14:33 +00001731 int *pnExtract /* OUT: Values appended to the record */
dan7a419232013-08-06 20:01:43 +00001732){
dand66e5792016-08-03 16:14:33 +00001733 int rc = SQLITE_OK;
1734 int nExtract = 0;
danb0b82902014-06-26 20:21:46 +00001735
dand66e5792016-08-03 16:14:33 +00001736 if( pExpr==0 || pExpr->op!=TK_SELECT ){
1737 int i;
1738 struct ValueNewStat4Ctx alloc;
dan7a419232013-08-06 20:01:43 +00001739
dand66e5792016-08-03 16:14:33 +00001740 alloc.pParse = pParse;
1741 alloc.pIdx = pIdx;
1742 alloc.ppRec = ppRec;
1743
1744 for(i=0; i<nElem; i++){
1745 sqlite3_value *pVal = 0;
drhfc7f27b2016-08-20 00:07:01 +00001746 Expr *pElem = (pExpr ? sqlite3VectorFieldSubexpr(pExpr, i) : 0);
dand66e5792016-08-03 16:14:33 +00001747 u8 aff = sqlite3IndexColumnAffinity(pParse->db, pIdx, iVal+i);
1748 alloc.iVal = iVal+i;
1749 rc = stat4ValueFromExpr(pParse, pElem, aff, &alloc, &pVal);
1750 if( !pVal ) break;
1751 nExtract++;
1752 }
1753 }
1754
1755 *pnExtract = nExtract;
danb0b82902014-06-26 20:21:46 +00001756 return rc;
1757}
dan87cd9322013-08-07 15:52:41 +00001758
danb0b82902014-06-26 20:21:46 +00001759/*
1760** Attempt to extract a value from expression pExpr using the methods
1761** as described for sqlite3Stat4ProbeSetValue() above.
1762**
1763** If successful, set *ppVal to point to a new value object and return
1764** SQLITE_OK. If no value can be extracted, but no other error occurs
1765** (e.g. OOM), return SQLITE_OK and set *ppVal to NULL. Or, if an error
1766** does occur, return an SQLite error code. The final value of *ppVal
1767** is undefined in this case.
1768*/
1769int sqlite3Stat4ValueFromExpr(
1770 Parse *pParse, /* Parse context */
1771 Expr *pExpr, /* The expression to extract a value from */
1772 u8 affinity, /* Affinity to use */
1773 sqlite3_value **ppVal /* OUT: New value object (or NULL) */
1774){
1775 return stat4ValueFromExpr(pParse, pExpr, affinity, 0, ppVal);
1776}
1777
drh0288b212014-06-28 16:06:44 +00001778/*
1779** Extract the iCol-th column from the nRec-byte record in pRec. Write
1780** the column value into *ppVal. If *ppVal is initially NULL then a new
1781** sqlite3_value object is allocated.
1782**
1783** If *ppVal is initially NULL then the caller is responsible for
1784** ensuring that the value written into *ppVal is eventually freed.
1785*/
danb0b82902014-06-26 20:21:46 +00001786int sqlite3Stat4Column(
1787 sqlite3 *db, /* Database handle */
1788 const void *pRec, /* Pointer to buffer containing record */
1789 int nRec, /* Size of buffer pRec in bytes */
1790 int iCol, /* Column to extract */
1791 sqlite3_value **ppVal /* OUT: Extracted value */
1792){
mistachkined5e7722018-08-17 21:14:28 +00001793 u32 t = 0; /* a column type code */
drh0288b212014-06-28 16:06:44 +00001794 int nHdr; /* Size of the header in the record */
1795 int iHdr; /* Next unread header byte */
1796 int iField; /* Next unread data byte */
mistachkined5e7722018-08-17 21:14:28 +00001797 int szField = 0; /* Size of the current data field */
drh0288b212014-06-28 16:06:44 +00001798 int i; /* Column index */
1799 u8 *a = (u8*)pRec; /* Typecast byte array */
1800 Mem *pMem = *ppVal; /* Write result into this Mem object */
1801
1802 assert( iCol>0 );
1803 iHdr = getVarint32(a, nHdr);
1804 if( nHdr>nRec || iHdr>=nHdr ) return SQLITE_CORRUPT_BKPT;
1805 iField = nHdr;
1806 for(i=0; i<=iCol; i++){
1807 iHdr += getVarint32(&a[iHdr], t);
1808 testcase( iHdr==nHdr );
1809 testcase( iHdr==nHdr+1 );
1810 if( iHdr>nHdr ) return SQLITE_CORRUPT_BKPT;
1811 szField = sqlite3VdbeSerialTypeLen(t);
1812 iField += szField;
1813 }
1814 testcase( iField==nRec );
1815 testcase( iField==nRec+1 );
1816 if( iField>nRec ) return SQLITE_CORRUPT_BKPT;
danb0b82902014-06-26 20:21:46 +00001817 if( pMem==0 ){
drh0288b212014-06-28 16:06:44 +00001818 pMem = *ppVal = sqlite3ValueNew(db);
mistachkinfad30392016-02-13 23:43:46 +00001819 if( pMem==0 ) return SQLITE_NOMEM_BKPT;
danb0b82902014-06-26 20:21:46 +00001820 }
drh0288b212014-06-28 16:06:44 +00001821 sqlite3VdbeSerialGet(&a[iField-szField], t, pMem);
1822 pMem->enc = ENC(db);
1823 return SQLITE_OK;
dan7a419232013-08-06 20:01:43 +00001824}
1825
dan87cd9322013-08-07 15:52:41 +00001826/*
1827** Unless it is NULL, the argument must be an UnpackedRecord object returned
1828** by an earlier call to sqlite3Stat4ProbeSetValue(). This call deletes
1829** the object.
1830*/
dan7a419232013-08-06 20:01:43 +00001831void sqlite3Stat4ProbeFree(UnpackedRecord *pRec){
1832 if( pRec ){
1833 int i;
drha485ad12017-08-02 22:43:14 +00001834 int nCol = pRec->pKeyInfo->nAllField;
dan7a419232013-08-06 20:01:43 +00001835 Mem *aMem = pRec->aMem;
1836 sqlite3 *db = aMem[0].db;
dandd6e1f12013-08-10 19:08:30 +00001837 for(i=0; i<nCol; i++){
drhcef25842015-04-20 13:59:18 +00001838 sqlite3VdbeMemRelease(&aMem[i]);
dan7a419232013-08-06 20:01:43 +00001839 }
drh2ec2fb22013-11-06 19:59:23 +00001840 sqlite3KeyInfoUnref(pRec->pKeyInfo);
drhdbd6a7d2017-04-05 12:39:49 +00001841 sqlite3DbFreeNN(db, pRec);
dan7a419232013-08-06 20:01:43 +00001842 }
1843}
dan7a419232013-08-06 20:01:43 +00001844#endif /* ifdef SQLITE_ENABLE_STAT4 */
1845
drh4f26d6c2004-05-26 23:25:30 +00001846/*
1847** Change the string value of an sqlite3_value object
1848*/
1849void sqlite3ValueSetStr(
drh17435752007-08-16 04:30:38 +00001850 sqlite3_value *v, /* Value to be set */
1851 int n, /* Length of string z */
1852 const void *z, /* Text of the new string */
1853 u8 enc, /* Encoding to use */
1854 void (*xDel)(void*) /* Destructor for the string */
drh4f26d6c2004-05-26 23:25:30 +00001855){
drhb21c8cd2007-08-21 19:33:56 +00001856 if( v ) sqlite3VdbeMemSetStr((Mem *)v, z, n, enc, xDel);
drh4f26d6c2004-05-26 23:25:30 +00001857}
1858
1859/*
1860** Free an sqlite3_value object
1861*/
1862void sqlite3ValueFree(sqlite3_value *v){
1863 if( !v ) return;
danielk1977a7a8e142008-02-13 18:25:27 +00001864 sqlite3VdbeMemRelease((Mem *)v);
drhdbd6a7d2017-04-05 12:39:49 +00001865 sqlite3DbFreeNN(((Mem*)v)->db, v);
drh4f26d6c2004-05-26 23:25:30 +00001866}
1867
1868/*
drh591909c2015-06-25 23:52:48 +00001869** The sqlite3ValueBytes() routine returns the number of bytes in the
1870** sqlite3_value object assuming that it uses the encoding "enc".
1871** The valueBytes() routine is a helper function.
drh4f26d6c2004-05-26 23:25:30 +00001872*/
drh591909c2015-06-25 23:52:48 +00001873static SQLITE_NOINLINE int valueBytes(sqlite3_value *pVal, u8 enc){
1874 return valueToText(pVal, enc)!=0 ? pVal->n : 0;
1875}
drhb21c8cd2007-08-21 19:33:56 +00001876int sqlite3ValueBytes(sqlite3_value *pVal, u8 enc){
drh4f26d6c2004-05-26 23:25:30 +00001877 Mem *p = (Mem*)pVal;
drh591909c2015-06-25 23:52:48 +00001878 assert( (p->flags & MEM_Null)==0 || (p->flags & (MEM_Str|MEM_Blob))==0 );
1879 if( (p->flags & MEM_Str)!=0 && pVal->enc==enc ){
1880 return p->n;
1881 }
1882 if( (p->flags & MEM_Blob)!=0 ){
drhb026e052007-05-02 01:34:31 +00001883 if( p->flags & MEM_Zero ){
drh8df32842008-12-09 02:51:23 +00001884 return p->n + p->u.nZero;
drhb026e052007-05-02 01:34:31 +00001885 }else{
1886 return p->n;
1887 }
drh4f26d6c2004-05-26 23:25:30 +00001888 }
drh591909c2015-06-25 23:52:48 +00001889 if( p->flags & MEM_Null ) return 0;
1890 return valueBytes(pVal, enc);
drh4f26d6c2004-05-26 23:25:30 +00001891}