blob: f173e23fe300a5dd6206166054fdb2844a9ae50d [file] [log] [blame]
danielk1977bc2ca9e2008-11-13 14:28:28 +00001/*
2** 2008 November 05
3**
4** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
6**
7** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
10**
11*************************************************************************
12**
13** This file implements the default page cache implementation (the
14** sqlite3_pcache interface). It also contains part of the implementation
15** of the SQLITE_CONFIG_PAGECACHE and sqlite3_release_memory() features.
16** If the default page cache implementation is overriden, then neither of
17** these two features are available.
danielk1977bc2ca9e2008-11-13 14:28:28 +000018*/
19
20#include "sqliteInt.h"
21
22typedef struct PCache1 PCache1;
23typedef struct PgHdr1 PgHdr1;
24typedef struct PgFreeslot PgFreeslot;
drh9f8cf9d2011-01-17 21:32:24 +000025typedef struct PGroup PGroup;
26
27/* Each page cache (or PCache) belongs to a PGroup. A PGroup is a set
28** of one or more PCaches that are able to recycle each others unpinned
29** pages when they are under memory pressure. A PGroup is an instance of
30** the following object.
31**
32** This page cache implementation works in one of two modes:
33**
34** (1) Every PCache is the sole member of its own PGroup. There is
35** one PGroup per PCache.
36**
37** (2) There is a single global PGroup that all PCaches are a member
38** of.
39**
40** Mode 1 uses more memory (since PCache instances are not able to rob
41** unused pages from other PCaches) but it also operates without a mutex,
42** and is therefore often faster. Mode 2 requires a mutex in order to be
drh45d29302012-01-08 22:18:33 +000043** threadsafe, but recycles pages more efficiently.
drh9f8cf9d2011-01-17 21:32:24 +000044**
45** For mode (1), PGroup.mutex is NULL. For mode (2) there is only a single
46** PGroup which is the pcache1.grp global variable and its mutex is
47** SQLITE_MUTEX_STATIC_LRU.
48*/
49struct PGroup {
50 sqlite3_mutex *mutex; /* MUTEX_STATIC_LRU or NULL */
drha69085c2012-01-02 18:00:55 +000051 unsigned int nMaxPage; /* Sum of nMax for purgeable caches */
52 unsigned int nMinPage; /* Sum of nMin for purgeable caches */
53 unsigned int mxPinned; /* nMaxpage + 10 - nMinPage */
54 unsigned int nCurrentPage; /* Number of purgeable pages allocated */
drh9f8cf9d2011-01-17 21:32:24 +000055 PgHdr1 *pLruHead, *pLruTail; /* LRU list of unpinned pages */
56};
danielk1977bc2ca9e2008-11-13 14:28:28 +000057
drh9d13f112010-08-24 18:06:35 +000058/* Each page cache is an instance of the following object. Every
59** open database file (including each in-memory database and each
60** temporary or transient database) has a single page cache which
61** is an instance of this object.
62**
63** Pointers to structures of this type are cast and returned as
64** opaque sqlite3_pcache* handles.
danielk1977bc2ca9e2008-11-13 14:28:28 +000065*/
66struct PCache1 {
67 /* Cache configuration parameters. Page size (szPage) and the purgeable
68 ** flag (bPurgeable) are set when the cache is created. nMax may be
drh45d29302012-01-08 22:18:33 +000069 ** modified at any time by a call to the pcache1Cachesize() method.
drh9f8cf9d2011-01-17 21:32:24 +000070 ** The PGroup mutex must be held when accessing nMax.
danielk1977bc2ca9e2008-11-13 14:28:28 +000071 */
drh9f8cf9d2011-01-17 21:32:24 +000072 PGroup *pGroup; /* PGroup this cache belongs to */
danielk1977bc2ca9e2008-11-13 14:28:28 +000073 int szPage; /* Size of allocated pages in bytes */
dan22e21ff2011-11-08 20:08:44 +000074 int szExtra; /* Size of extra space in bytes */
danielk1977bc2ca9e2008-11-13 14:28:28 +000075 int bPurgeable; /* True if cache is purgeable */
danielk197744cd45c2008-11-15 11:22:45 +000076 unsigned int nMin; /* Minimum number of pages reserved */
77 unsigned int nMax; /* Configured "cache_size" value */
drh25ca5682011-01-26 00:07:03 +000078 unsigned int n90pct; /* nMax*9/10 */
drh2cbd78b2012-02-02 19:37:18 +000079 unsigned int iMaxKey; /* Largest key seen since xTruncate() */
danielk1977bc2ca9e2008-11-13 14:28:28 +000080
81 /* Hash table of all pages. The following variables may only be accessed
drh9f8cf9d2011-01-17 21:32:24 +000082 ** when the accessor is holding the PGroup mutex.
danielk1977bc2ca9e2008-11-13 14:28:28 +000083 */
danielk197744cd45c2008-11-15 11:22:45 +000084 unsigned int nRecyclable; /* Number of pages in the LRU list */
85 unsigned int nPage; /* Total number of pages in apHash */
86 unsigned int nHash; /* Number of slots in apHash[] */
danielk1977bc2ca9e2008-11-13 14:28:28 +000087 PgHdr1 **apHash; /* Hash table for fast lookup by key */
88};
89
90/*
91** Each cache entry is represented by an instance of the following
dan22e21ff2011-11-08 20:08:44 +000092** structure. Unless SQLITE_PCACHE_SEPARATE_HEADER is defined, a buffer of
93** PgHdr1.pCache->szPage bytes is allocated directly before this structure
94** in memory.
danielk1977bc2ca9e2008-11-13 14:28:28 +000095*/
96struct PgHdr1 {
dan22e21ff2011-11-08 20:08:44 +000097 sqlite3_pcache_page page;
danielk1977bc2ca9e2008-11-13 14:28:28 +000098 unsigned int iKey; /* Key value (page number) */
drh5d56dd22013-12-13 18:50:40 +000099 u8 isPinned; /* Page in use, not on the LRU list */
danielk1977bc2ca9e2008-11-13 14:28:28 +0000100 PgHdr1 *pNext; /* Next in hash table chain */
101 PCache1 *pCache; /* Cache that currently owns this page */
102 PgHdr1 *pLruNext; /* Next in LRU list of unpinned pages */
103 PgHdr1 *pLruPrev; /* Previous in LRU list of unpinned pages */
104};
105
106/*
107** Free slots in the allocator used to divide up the buffer provided using
108** the SQLITE_CONFIG_PAGECACHE mechanism.
109*/
110struct PgFreeslot {
111 PgFreeslot *pNext; /* Next free slot */
112};
113
114/*
115** Global data used by this cache.
116*/
117static SQLITE_WSD struct PCacheGlobal {
drh9f8cf9d2011-01-17 21:32:24 +0000118 PGroup grp; /* The global PGroup for mode (2) */
danielk1977bc2ca9e2008-11-13 14:28:28 +0000119
drh9f8cf9d2011-01-17 21:32:24 +0000120 /* Variables related to SQLITE_CONFIG_PAGECACHE settings. The
121 ** szSlot, nSlot, pStart, pEnd, nReserve, and isInit values are all
122 ** fixed at sqlite3_initialize() time and do not require mutex protection.
123 ** The nFreeSlot and pFree values do require mutex protection.
124 */
125 int isInit; /* True if initialized */
126 int szSlot; /* Size of each free slot */
127 int nSlot; /* The number of pcache slots */
128 int nReserve; /* Try to keep nFreeSlot above this */
129 void *pStart, *pEnd; /* Bounds of pagecache malloc range */
130 /* Above requires no mutex. Use mutex below for variable that follow. */
131 sqlite3_mutex *mutex; /* Mutex for accessing the following: */
drh9f8cf9d2011-01-17 21:32:24 +0000132 PgFreeslot *pFree; /* Free page blocks */
drh2cbd78b2012-02-02 19:37:18 +0000133 int nFreeSlot; /* Number of unused pcache slots */
drh9f8cf9d2011-01-17 21:32:24 +0000134 /* The following value requires a mutex to change. We skip the mutex on
135 ** reading because (1) most platforms read a 32-bit integer atomically and
136 ** (2) even if an incorrect value is read, no great harm is done since this
137 ** is really just an optimization. */
138 int bUnderPressure; /* True if low on PAGECACHE memory */
danielk197744cd45c2008-11-15 11:22:45 +0000139} pcache1_g;
danielk1977bc2ca9e2008-11-13 14:28:28 +0000140
141/*
142** All code in this file should access the global structure above via the
143** alias "pcache1". This ensures that the WSD emulation is used when
144** compiling for systems that do not support real WSD.
145*/
146#define pcache1 (GLOBAL(struct PCacheGlobal, pcache1_g))
147
148/*
drh9f8cf9d2011-01-17 21:32:24 +0000149** Macros to enter and leave the PCache LRU mutex.
danielk1977bc2ca9e2008-11-13 14:28:28 +0000150*/
drh9f8cf9d2011-01-17 21:32:24 +0000151#define pcache1EnterMutex(X) sqlite3_mutex_enter((X)->mutex)
152#define pcache1LeaveMutex(X) sqlite3_mutex_leave((X)->mutex)
danielk1977bc2ca9e2008-11-13 14:28:28 +0000153
154/******************************************************************************/
155/******** Page Allocation/SQLITE_CONFIG_PCACHE Related Functions **************/
156
157/*
158** This function is called during initialization if a static buffer is
159** supplied to use for the page-cache by passing the SQLITE_CONFIG_PAGECACHE
160** verb to sqlite3_config(). Parameter pBuf points to an allocation large
161** enough to contain 'n' buffers of 'sz' bytes each.
drh9f8cf9d2011-01-17 21:32:24 +0000162**
163** This routine is called from sqlite3_initialize() and so it is guaranteed
164** to be serialized already. There is no need for further mutexing.
danielk1977bc2ca9e2008-11-13 14:28:28 +0000165*/
166void sqlite3PCacheBufferSetup(void *pBuf, int sz, int n){
drhf4622dc2009-05-22 11:10:24 +0000167 if( pcache1.isInit ){
168 PgFreeslot *p;
169 sz = ROUNDDOWN8(sz);
170 pcache1.szSlot = sz;
drh50d1b5f2010-08-27 12:21:06 +0000171 pcache1.nSlot = pcache1.nFreeSlot = n;
172 pcache1.nReserve = n>90 ? 10 : (n/10 + 1);
drhf4622dc2009-05-22 11:10:24 +0000173 pcache1.pStart = pBuf;
174 pcache1.pFree = 0;
drh9f8cf9d2011-01-17 21:32:24 +0000175 pcache1.bUnderPressure = 0;
drhf4622dc2009-05-22 11:10:24 +0000176 while( n-- ){
177 p = (PgFreeslot*)pBuf;
178 p->pNext = pcache1.pFree;
179 pcache1.pFree = p;
180 pBuf = (void*)&((char*)pBuf)[sz];
181 }
182 pcache1.pEnd = pBuf;
danielk1977bc2ca9e2008-11-13 14:28:28 +0000183 }
danielk1977bc2ca9e2008-11-13 14:28:28 +0000184}
185
186/*
187** Malloc function used within this file to allocate space from the buffer
188** configured using sqlite3_config(SQLITE_CONFIG_PAGECACHE) option. If no
189** such buffer exists or there is no space left in it, this function falls
190** back to sqlite3Malloc().
drh9f8cf9d2011-01-17 21:32:24 +0000191**
192** Multiple threads can run this routine at the same time. Global variables
193** in pcache1 need to be protected via mutex.
danielk1977bc2ca9e2008-11-13 14:28:28 +0000194*/
195static void *pcache1Alloc(int nByte){
drh9f8cf9d2011-01-17 21:32:24 +0000196 void *p = 0;
197 assert( sqlite3_mutex_notheld(pcache1.grp.mutex) );
drh29dfbe32010-07-28 17:01:24 +0000198 sqlite3StatusSet(SQLITE_STATUS_PAGECACHE_SIZE, nByte);
drh9f8cf9d2011-01-17 21:32:24 +0000199 if( nByte<=pcache1.szSlot ){
200 sqlite3_mutex_enter(pcache1.mutex);
danielk1977bc2ca9e2008-11-13 14:28:28 +0000201 p = (PgHdr1 *)pcache1.pFree;
drh9f8cf9d2011-01-17 21:32:24 +0000202 if( p ){
203 pcache1.pFree = pcache1.pFree->pNext;
204 pcache1.nFreeSlot--;
205 pcache1.bUnderPressure = pcache1.nFreeSlot<pcache1.nReserve;
206 assert( pcache1.nFreeSlot>=0 );
207 sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_USED, 1);
208 }
209 sqlite3_mutex_leave(pcache1.mutex);
210 }
211 if( p==0 ){
212 /* Memory is not available in the SQLITE_CONFIG_PAGECACHE pool. Get
213 ** it from sqlite3Malloc instead.
danielk1977bc2ca9e2008-11-13 14:28:28 +0000214 */
danielk1977bc2ca9e2008-11-13 14:28:28 +0000215 p = sqlite3Malloc(nByte);
drh4bd69522012-06-07 02:35:29 +0000216#ifndef SQLITE_DISABLE_PAGECACHE_OVERFLOW_STATS
danielk1977bc2ca9e2008-11-13 14:28:28 +0000217 if( p ){
218 int sz = sqlite3MallocSize(p);
drh9bf3da8e2011-01-26 13:24:40 +0000219 sqlite3_mutex_enter(pcache1.mutex);
danielk1977bc2ca9e2008-11-13 14:28:28 +0000220 sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_OVERFLOW, sz);
drh9bf3da8e2011-01-26 13:24:40 +0000221 sqlite3_mutex_leave(pcache1.mutex);
danielk1977bc2ca9e2008-11-13 14:28:28 +0000222 }
drh4bd69522012-06-07 02:35:29 +0000223#endif
drh107b56e2010-03-12 16:32:53 +0000224 sqlite3MemdebugSetType(p, MEMTYPE_PCACHE);
danielk1977bc2ca9e2008-11-13 14:28:28 +0000225 }
226 return p;
227}
228
229/*
230** Free an allocated buffer obtained from pcache1Alloc().
231*/
drh09419b42011-11-16 19:29:17 +0000232static int pcache1Free(void *p){
233 int nFreed = 0;
234 if( p==0 ) return 0;
danielk1977bc2ca9e2008-11-13 14:28:28 +0000235 if( p>=pcache1.pStart && p<pcache1.pEnd ){
236 PgFreeslot *pSlot;
drh9f8cf9d2011-01-17 21:32:24 +0000237 sqlite3_mutex_enter(pcache1.mutex);
danielk1977bc2ca9e2008-11-13 14:28:28 +0000238 sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_USED, -1);
239 pSlot = (PgFreeslot*)p;
240 pSlot->pNext = pcache1.pFree;
241 pcache1.pFree = pSlot;
drh50d1b5f2010-08-27 12:21:06 +0000242 pcache1.nFreeSlot++;
drh9f8cf9d2011-01-17 21:32:24 +0000243 pcache1.bUnderPressure = pcache1.nFreeSlot<pcache1.nReserve;
drh50d1b5f2010-08-27 12:21:06 +0000244 assert( pcache1.nFreeSlot<=pcache1.nSlot );
drh9f8cf9d2011-01-17 21:32:24 +0000245 sqlite3_mutex_leave(pcache1.mutex);
danielk1977bc2ca9e2008-11-13 14:28:28 +0000246 }else{
drh107b56e2010-03-12 16:32:53 +0000247 assert( sqlite3MemdebugHasType(p, MEMTYPE_PCACHE) );
248 sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
drh09419b42011-11-16 19:29:17 +0000249 nFreed = sqlite3MallocSize(p);
drh4bd69522012-06-07 02:35:29 +0000250#ifndef SQLITE_DISABLE_PAGECACHE_OVERFLOW_STATS
drh15ad92f2011-01-26 13:28:06 +0000251 sqlite3_mutex_enter(pcache1.mutex);
drh09419b42011-11-16 19:29:17 +0000252 sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_OVERFLOW, -nFreed);
drh15ad92f2011-01-26 13:28:06 +0000253 sqlite3_mutex_leave(pcache1.mutex);
drh4bd69522012-06-07 02:35:29 +0000254#endif
danielk1977bc2ca9e2008-11-13 14:28:28 +0000255 sqlite3_free(p);
256 }
drh09419b42011-11-16 19:29:17 +0000257 return nFreed;
danielk1977bc2ca9e2008-11-13 14:28:28 +0000258}
259
drhc8f503a2010-08-20 09:14:13 +0000260#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
261/*
drh9d13f112010-08-24 18:06:35 +0000262** Return the size of a pcache allocation
drhc8f503a2010-08-20 09:14:13 +0000263*/
264static int pcache1MemSize(void *p){
drhc8f503a2010-08-20 09:14:13 +0000265 if( p>=pcache1.pStart && p<pcache1.pEnd ){
266 return pcache1.szSlot;
267 }else{
268 int iSize;
269 assert( sqlite3MemdebugHasType(p, MEMTYPE_PCACHE) );
270 sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
271 iSize = sqlite3MallocSize(p);
272 sqlite3MemdebugSetType(p, MEMTYPE_PCACHE);
273 return iSize;
274 }
275}
276#endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */
277
dand2925702011-08-19 18:15:00 +0000278/*
danielk1977bc2ca9e2008-11-13 14:28:28 +0000279** Allocate a new page object initially associated with cache pCache.
280*/
281static PgHdr1 *pcache1AllocPage(PCache1 *pCache){
danb5126dd2011-09-22 14:56:31 +0000282 PgHdr1 *p = 0;
283 void *pPg;
dand2925702011-08-19 18:15:00 +0000284
dand2925702011-08-19 18:15:00 +0000285 /* The group mutex must be released before pcache1Alloc() is called. This
286 ** is because it may call sqlite3_release_memory(), which assumes that
287 ** this mutex is not held. */
288 assert( sqlite3_mutex_held(pCache->pGroup->mutex) );
289 pcache1LeaveMutex(pCache->pGroup);
dan22e21ff2011-11-08 20:08:44 +0000290#ifdef SQLITE_PCACHE_SEPARATE_HEADER
291 pPg = pcache1Alloc(pCache->szPage);
292 p = sqlite3Malloc(sizeof(PgHdr1) + pCache->szExtra);
293 if( !pPg || !p ){
294 pcache1Free(pPg);
295 sqlite3_free(p);
296 pPg = 0;
297 }
298#else
299 pPg = pcache1Alloc(sizeof(PgHdr1) + pCache->szPage + pCache->szExtra);
300 p = (PgHdr1 *)&((u8 *)pPg)[pCache->szPage];
301#endif
dand2925702011-08-19 18:15:00 +0000302 pcache1EnterMutex(pCache->pGroup);
danb5126dd2011-09-22 14:56:31 +0000303
drh69e931e2009-06-03 21:04:35 +0000304 if( pPg ){
dan22e21ff2011-11-08 20:08:44 +0000305 p->page.pBuf = pPg;
306 p->page.pExtra = &p[1];
danielk1977bc2ca9e2008-11-13 14:28:28 +0000307 if( pCache->bPurgeable ){
drh9f8cf9d2011-01-17 21:32:24 +0000308 pCache->pGroup->nCurrentPage++;
danielk1977bc2ca9e2008-11-13 14:28:28 +0000309 }
dan22e21ff2011-11-08 20:08:44 +0000310 return p;
danielk1977bc2ca9e2008-11-13 14:28:28 +0000311 }
dan22e21ff2011-11-08 20:08:44 +0000312 return 0;
danielk1977bc2ca9e2008-11-13 14:28:28 +0000313}
314
315/*
316** Free a page object allocated by pcache1AllocPage().
drhf18a61d2009-07-17 11:44:07 +0000317**
318** The pointer is allowed to be NULL, which is prudent. But it turns out
319** that the current implementation happens to never call this routine
320** with a NULL pointer, so we mark the NULL test with ALWAYS().
danielk1977bc2ca9e2008-11-13 14:28:28 +0000321*/
322static void pcache1FreePage(PgHdr1 *p){
drhf18a61d2009-07-17 11:44:07 +0000323 if( ALWAYS(p) ){
drh9f8cf9d2011-01-17 21:32:24 +0000324 PCache1 *pCache = p->pCache;
dand2925702011-08-19 18:15:00 +0000325 assert( sqlite3_mutex_held(p->pCache->pGroup->mutex) );
dan22e21ff2011-11-08 20:08:44 +0000326 pcache1Free(p->page.pBuf);
327#ifdef SQLITE_PCACHE_SEPARATE_HEADER
328 sqlite3_free(p);
329#endif
drh9f8cf9d2011-01-17 21:32:24 +0000330 if( pCache->bPurgeable ){
331 pCache->pGroup->nCurrentPage--;
danielk1977bc2ca9e2008-11-13 14:28:28 +0000332 }
danielk1977bc2ca9e2008-11-13 14:28:28 +0000333 }
334}
335
336/*
337** Malloc function used by SQLite to obtain space from the buffer configured
338** using sqlite3_config(SQLITE_CONFIG_PAGECACHE) option. If no such buffer
339** exists, this function falls back to sqlite3Malloc().
340*/
341void *sqlite3PageMalloc(int sz){
drh9f8cf9d2011-01-17 21:32:24 +0000342 return pcache1Alloc(sz);
danielk1977bc2ca9e2008-11-13 14:28:28 +0000343}
344
345/*
346** Free an allocated buffer obtained from sqlite3PageMalloc().
347*/
348void sqlite3PageFree(void *p){
danielk1977bc2ca9e2008-11-13 14:28:28 +0000349 pcache1Free(p);
danielk1977bc2ca9e2008-11-13 14:28:28 +0000350}
351
drh50d1b5f2010-08-27 12:21:06 +0000352
353/*
354** Return true if it desirable to avoid allocating a new page cache
355** entry.
356**
357** If memory was allocated specifically to the page cache using
358** SQLITE_CONFIG_PAGECACHE but that memory has all been used, then
359** it is desirable to avoid allocating a new page cache entry because
360** presumably SQLITE_CONFIG_PAGECACHE was suppose to be sufficient
361** for all page cache needs and we should not need to spill the
362** allocation onto the heap.
363**
drh45d29302012-01-08 22:18:33 +0000364** Or, the heap is used for all page cache memory but the heap is
drh50d1b5f2010-08-27 12:21:06 +0000365** under memory pressure, then again it is desirable to avoid
366** allocating a new page cache entry in order to avoid stressing
367** the heap even further.
368*/
369static int pcache1UnderMemoryPressure(PCache1 *pCache){
dan22e21ff2011-11-08 20:08:44 +0000370 if( pcache1.nSlot && (pCache->szPage+pCache->szExtra)<=pcache1.szSlot ){
drh9f8cf9d2011-01-17 21:32:24 +0000371 return pcache1.bUnderPressure;
drh50d1b5f2010-08-27 12:21:06 +0000372 }else{
373 return sqlite3HeapNearlyFull();
374 }
375}
376
danielk1977bc2ca9e2008-11-13 14:28:28 +0000377/******************************************************************************/
378/******** General Implementation Functions ************************************/
379
380/*
381** This function is used to resize the hash table used by the cache passed
382** as the first argument.
383**
drh9f8cf9d2011-01-17 21:32:24 +0000384** The PCache mutex must be held when this function is called.
danielk1977bc2ca9e2008-11-13 14:28:28 +0000385*/
386static int pcache1ResizeHash(PCache1 *p){
387 PgHdr1 **apNew;
danielk197744cd45c2008-11-15 11:22:45 +0000388 unsigned int nNew;
danielk1977bc2ca9e2008-11-13 14:28:28 +0000389 unsigned int i;
390
drh9f8cf9d2011-01-17 21:32:24 +0000391 assert( sqlite3_mutex_held(p->pGroup->mutex) );
danielk1977bc2ca9e2008-11-13 14:28:28 +0000392
393 nNew = p->nHash*2;
394 if( nNew<256 ){
395 nNew = 256;
396 }
397
drh9f8cf9d2011-01-17 21:32:24 +0000398 pcache1LeaveMutex(p->pGroup);
drh085bb7f2008-12-06 14:34:33 +0000399 if( p->nHash ){ sqlite3BeginBenignMalloc(); }
dan6809c962012-07-30 14:53:54 +0000400 apNew = (PgHdr1 **)sqlite3MallocZero(sizeof(PgHdr1 *)*nNew);
drh085bb7f2008-12-06 14:34:33 +0000401 if( p->nHash ){ sqlite3EndBenignMalloc(); }
drh9f8cf9d2011-01-17 21:32:24 +0000402 pcache1EnterMutex(p->pGroup);
danielk1977bc2ca9e2008-11-13 14:28:28 +0000403 if( apNew ){
danielk1977bc2ca9e2008-11-13 14:28:28 +0000404 for(i=0; i<p->nHash; i++){
405 PgHdr1 *pPage;
406 PgHdr1 *pNext = p->apHash[i];
drhb27b7f52008-12-10 18:03:45 +0000407 while( (pPage = pNext)!=0 ){
danielk1977bc2ca9e2008-11-13 14:28:28 +0000408 unsigned int h = pPage->iKey % nNew;
409 pNext = pPage->pNext;
410 pPage->pNext = apNew[h];
411 apNew[h] = pPage;
412 }
413 }
414 sqlite3_free(p->apHash);
415 p->apHash = apNew;
416 p->nHash = nNew;
417 }
418
419 return (p->apHash ? SQLITE_OK : SQLITE_NOMEM);
420}
421
422/*
423** This function is used internally to remove the page pPage from the
drh9f8cf9d2011-01-17 21:32:24 +0000424** PGroup LRU list, if is part of it. If pPage is not part of the PGroup
danielk1977bc2ca9e2008-11-13 14:28:28 +0000425** LRU list, then this function is a no-op.
426**
drh9f8cf9d2011-01-17 21:32:24 +0000427** The PGroup mutex must be held when this function is called.
danielk1977bc2ca9e2008-11-13 14:28:28 +0000428*/
429static void pcache1PinPage(PgHdr1 *pPage){
drh9f8cf9d2011-01-17 21:32:24 +0000430 PCache1 *pCache;
431 PGroup *pGroup;
432
drh5d56dd22013-12-13 18:50:40 +0000433 assert( pPage!=0 );
434 assert( pPage->isPinned==0 );
drh9f8cf9d2011-01-17 21:32:24 +0000435 pCache = pPage->pCache;
436 pGroup = pCache->pGroup;
drh5d56dd22013-12-13 18:50:40 +0000437 assert( pPage->pLruNext || pPage==pGroup->pLruTail );
438 assert( pPage->pLruPrev || pPage==pGroup->pLruHead );
drh9f8cf9d2011-01-17 21:32:24 +0000439 assert( sqlite3_mutex_held(pGroup->mutex) );
drh5d56dd22013-12-13 18:50:40 +0000440 if( pPage->pLruPrev ){
441 pPage->pLruPrev->pLruNext = pPage->pLruNext;
442 }else{
443 pGroup->pLruHead = pPage->pLruNext;
danielk1977bc2ca9e2008-11-13 14:28:28 +0000444 }
drh5d56dd22013-12-13 18:50:40 +0000445 if( pPage->pLruNext ){
446 pPage->pLruNext->pLruPrev = pPage->pLruPrev;
447 }else{
448 pGroup->pLruTail = pPage->pLruPrev;
449 }
450 pPage->pLruNext = 0;
451 pPage->pLruPrev = 0;
452 pPage->isPinned = 1;
453 pCache->nRecyclable--;
danielk1977bc2ca9e2008-11-13 14:28:28 +0000454}
455
456
457/*
458** Remove the page supplied as an argument from the hash table
459** (PCache1.apHash structure) that it is currently stored in.
460**
drh9f8cf9d2011-01-17 21:32:24 +0000461** The PGroup mutex must be held when this function is called.
danielk1977bc2ca9e2008-11-13 14:28:28 +0000462*/
463static void pcache1RemoveFromHash(PgHdr1 *pPage){
464 unsigned int h;
465 PCache1 *pCache = pPage->pCache;
466 PgHdr1 **pp;
467
drh9f8cf9d2011-01-17 21:32:24 +0000468 assert( sqlite3_mutex_held(pCache->pGroup->mutex) );
danielk1977bc2ca9e2008-11-13 14:28:28 +0000469 h = pPage->iKey % pCache->nHash;
470 for(pp=&pCache->apHash[h]; (*pp)!=pPage; pp=&(*pp)->pNext);
471 *pp = (*pp)->pNext;
472
473 pCache->nPage--;
474}
475
476/*
drh9f8cf9d2011-01-17 21:32:24 +0000477** If there are currently more than nMaxPage pages allocated, try
478** to recycle pages to reduce the number allocated to nMaxPage.
danielk1977bc2ca9e2008-11-13 14:28:28 +0000479*/
drh9f8cf9d2011-01-17 21:32:24 +0000480static void pcache1EnforceMaxPage(PGroup *pGroup){
481 assert( sqlite3_mutex_held(pGroup->mutex) );
482 while( pGroup->nCurrentPage>pGroup->nMaxPage && pGroup->pLruTail ){
483 PgHdr1 *p = pGroup->pLruTail;
484 assert( p->pCache->pGroup==pGroup );
drh5d56dd22013-12-13 18:50:40 +0000485 assert( p->isPinned==0 );
danielk1977bc2ca9e2008-11-13 14:28:28 +0000486 pcache1PinPage(p);
487 pcache1RemoveFromHash(p);
488 pcache1FreePage(p);
489 }
490}
491
492/*
493** Discard all pages from cache pCache with a page number (key value)
494** greater than or equal to iLimit. Any pinned pages that meet this
495** criteria are unpinned before they are discarded.
496**
drh9f8cf9d2011-01-17 21:32:24 +0000497** The PCache mutex must be held when this function is called.
danielk1977bc2ca9e2008-11-13 14:28:28 +0000498*/
499static void pcache1TruncateUnsafe(
drh9f8cf9d2011-01-17 21:32:24 +0000500 PCache1 *pCache, /* The cache to truncate */
501 unsigned int iLimit /* Drop pages with this pgno or larger */
danielk1977bc2ca9e2008-11-13 14:28:28 +0000502){
drh9f8cf9d2011-01-17 21:32:24 +0000503 TESTONLY( unsigned int nPage = 0; ) /* To assert pCache->nPage is correct */
danielk1977bc2ca9e2008-11-13 14:28:28 +0000504 unsigned int h;
drh9f8cf9d2011-01-17 21:32:24 +0000505 assert( sqlite3_mutex_held(pCache->pGroup->mutex) );
danielk1977bc2ca9e2008-11-13 14:28:28 +0000506 for(h=0; h<pCache->nHash; h++){
507 PgHdr1 **pp = &pCache->apHash[h];
508 PgHdr1 *pPage;
drhb27b7f52008-12-10 18:03:45 +0000509 while( (pPage = *pp)!=0 ){
danielk1977bc2ca9e2008-11-13 14:28:28 +0000510 if( pPage->iKey>=iLimit ){
danielk1977ea24ac42009-05-08 06:52:47 +0000511 pCache->nPage--;
danielk1977bc2ca9e2008-11-13 14:28:28 +0000512 *pp = pPage->pNext;
drh5d56dd22013-12-13 18:50:40 +0000513 if( !pPage->isPinned ) pcache1PinPage(pPage);
danielk1977bc2ca9e2008-11-13 14:28:28 +0000514 pcache1FreePage(pPage);
515 }else{
516 pp = &pPage->pNext;
danielk1977ea24ac42009-05-08 06:52:47 +0000517 TESTONLY( nPage++; )
danielk1977bc2ca9e2008-11-13 14:28:28 +0000518 }
519 }
520 }
danielk1977ea24ac42009-05-08 06:52:47 +0000521 assert( pCache->nPage==nPage );
danielk1977bc2ca9e2008-11-13 14:28:28 +0000522}
523
524/******************************************************************************/
525/******** sqlite3_pcache Methods **********************************************/
526
527/*
528** Implementation of the sqlite3_pcache.xInit method.
529*/
danielk197762c14b32008-11-19 09:05:26 +0000530static int pcache1Init(void *NotUsed){
531 UNUSED_PARAMETER(NotUsed);
drhf4622dc2009-05-22 11:10:24 +0000532 assert( pcache1.isInit==0 );
danielk1977bc2ca9e2008-11-13 14:28:28 +0000533 memset(&pcache1, 0, sizeof(pcache1));
534 if( sqlite3GlobalConfig.bCoreMutex ){
drh9f8cf9d2011-01-17 21:32:24 +0000535 pcache1.grp.mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU);
drh40f98372011-01-18 15:17:57 +0000536 pcache1.mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_PMEM);
danielk1977bc2ca9e2008-11-13 14:28:28 +0000537 }
drh41692e92011-01-25 04:34:51 +0000538 pcache1.grp.mxPinned = 10;
drhf4622dc2009-05-22 11:10:24 +0000539 pcache1.isInit = 1;
danielk1977bc2ca9e2008-11-13 14:28:28 +0000540 return SQLITE_OK;
541}
542
543/*
544** Implementation of the sqlite3_pcache.xShutdown method.
shane7c7c3112009-08-17 15:31:23 +0000545** Note that the static mutex allocated in xInit does
546** not need to be freed.
danielk1977bc2ca9e2008-11-13 14:28:28 +0000547*/
danielk197762c14b32008-11-19 09:05:26 +0000548static void pcache1Shutdown(void *NotUsed){
549 UNUSED_PARAMETER(NotUsed);
drhf4622dc2009-05-22 11:10:24 +0000550 assert( pcache1.isInit!=0 );
drhb0937192009-05-22 10:53:29 +0000551 memset(&pcache1, 0, sizeof(pcache1));
danielk1977bc2ca9e2008-11-13 14:28:28 +0000552}
553
554/*
555** Implementation of the sqlite3_pcache.xCreate method.
556**
557** Allocate a new cache.
558*/
drhe5c40b12011-11-09 00:06:05 +0000559static sqlite3_pcache *pcache1Create(int szPage, int szExtra, int bPurgeable){
drh9f8cf9d2011-01-17 21:32:24 +0000560 PCache1 *pCache; /* The newly created page cache */
561 PGroup *pGroup; /* The group the new page cache will belong to */
562 int sz; /* Bytes of memory required to allocate the new cache */
danielk1977bc2ca9e2008-11-13 14:28:28 +0000563
drh9f8cf9d2011-01-17 21:32:24 +0000564 /*
drhf7b54962013-05-28 12:11:54 +0000565 ** The separateCache variable is true if each PCache has its own private
drh9f8cf9d2011-01-17 21:32:24 +0000566 ** PGroup. In other words, separateCache is true for mode (1) where no
567 ** mutexing is required.
568 **
569 ** * Always use a unified cache (mode-2) if ENABLE_MEMORY_MANAGEMENT
570 **
571 ** * Always use a unified cache in single-threaded applications
572 **
573 ** * Otherwise (if multi-threaded and ENABLE_MEMORY_MANAGEMENT is off)
574 ** use separate caches (mode-1)
575 */
576#if defined(SQLITE_ENABLE_MEMORY_MANAGEMENT) || SQLITE_THREADSAFE==0
577 const int separateCache = 0;
578#else
579 int separateCache = sqlite3GlobalConfig.bCoreMutex>0;
580#endif
581
drhe73c9142011-11-09 16:12:24 +0000582 assert( (szPage & (szPage-1))==0 && szPage>=512 && szPage<=65536 );
583 assert( szExtra < 300 );
584
drh9f8cf9d2011-01-17 21:32:24 +0000585 sz = sizeof(PCache1) + sizeof(PGroup)*separateCache;
dan6809c962012-07-30 14:53:54 +0000586 pCache = (PCache1 *)sqlite3MallocZero(sz);
danielk1977bc2ca9e2008-11-13 14:28:28 +0000587 if( pCache ){
drh9f8cf9d2011-01-17 21:32:24 +0000588 if( separateCache ){
589 pGroup = (PGroup*)&pCache[1];
drh41692e92011-01-25 04:34:51 +0000590 pGroup->mxPinned = 10;
drh9f8cf9d2011-01-17 21:32:24 +0000591 }else{
dan9dde7cb2011-06-09 17:53:43 +0000592 pGroup = &pcache1.grp;
drh9f8cf9d2011-01-17 21:32:24 +0000593 }
594 pCache->pGroup = pGroup;
danielk1977bc2ca9e2008-11-13 14:28:28 +0000595 pCache->szPage = szPage;
dan22e21ff2011-11-08 20:08:44 +0000596 pCache->szExtra = szExtra;
danielk1977bc2ca9e2008-11-13 14:28:28 +0000597 pCache->bPurgeable = (bPurgeable ? 1 : 0);
598 if( bPurgeable ){
599 pCache->nMin = 10;
drh9f8cf9d2011-01-17 21:32:24 +0000600 pcache1EnterMutex(pGroup);
601 pGroup->nMinPage += pCache->nMin;
drh41692e92011-01-25 04:34:51 +0000602 pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage;
drh9f8cf9d2011-01-17 21:32:24 +0000603 pcache1LeaveMutex(pGroup);
danielk1977bc2ca9e2008-11-13 14:28:28 +0000604 }
605 }
606 return (sqlite3_pcache *)pCache;
607}
608
609/*
610** Implementation of the sqlite3_pcache.xCachesize method.
611**
612** Configure the cache_size limit for a cache.
613*/
614static void pcache1Cachesize(sqlite3_pcache *p, int nMax){
615 PCache1 *pCache = (PCache1 *)p;
616 if( pCache->bPurgeable ){
drh9f8cf9d2011-01-17 21:32:24 +0000617 PGroup *pGroup = pCache->pGroup;
618 pcache1EnterMutex(pGroup);
619 pGroup->nMaxPage += (nMax - pCache->nMax);
drh41692e92011-01-25 04:34:51 +0000620 pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage;
danielk1977bc2ca9e2008-11-13 14:28:28 +0000621 pCache->nMax = nMax;
drh25ca5682011-01-26 00:07:03 +0000622 pCache->n90pct = pCache->nMax*9/10;
drh9f8cf9d2011-01-17 21:32:24 +0000623 pcache1EnforceMaxPage(pGroup);
624 pcache1LeaveMutex(pGroup);
danielk1977bc2ca9e2008-11-13 14:28:28 +0000625 }
626}
627
628/*
drh09419b42011-11-16 19:29:17 +0000629** Implementation of the sqlite3_pcache.xShrink method.
630**
631** Free up as much memory as possible.
632*/
633static void pcache1Shrink(sqlite3_pcache *p){
634 PCache1 *pCache = (PCache1*)p;
635 if( pCache->bPurgeable ){
636 PGroup *pGroup = pCache->pGroup;
637 int savedMaxPage;
638 pcache1EnterMutex(pGroup);
639 savedMaxPage = pGroup->nMaxPage;
640 pGroup->nMaxPage = 0;
641 pcache1EnforceMaxPage(pGroup);
642 pGroup->nMaxPage = savedMaxPage;
643 pcache1LeaveMutex(pGroup);
644 }
645}
646
647/*
danielk1977bc2ca9e2008-11-13 14:28:28 +0000648** Implementation of the sqlite3_pcache.xPagecount method.
649*/
650static int pcache1Pagecount(sqlite3_pcache *p){
651 int n;
drh9f8cf9d2011-01-17 21:32:24 +0000652 PCache1 *pCache = (PCache1*)p;
653 pcache1EnterMutex(pCache->pGroup);
654 n = pCache->nPage;
655 pcache1LeaveMutex(pCache->pGroup);
danielk1977bc2ca9e2008-11-13 14:28:28 +0000656 return n;
657}
658
659/*
660** Implementation of the sqlite3_pcache.xFetch method.
661**
662** Fetch a page by key value.
663**
664** Whether or not a new page may be allocated by this function depends on
drhf18a61d2009-07-17 11:44:07 +0000665** the value of the createFlag argument. 0 means do not allocate a new
666** page. 1 means allocate a new page if space is easily available. 2
667** means to try really hard to allocate a new page.
668**
669** For a non-purgeable cache (a cache used as the storage for an in-memory
670** database) there is really no difference between createFlag 1 and 2. So
671** the calling function (pcache.c) will never have a createFlag of 1 on
drh45d29302012-01-08 22:18:33 +0000672** a non-purgeable cache.
danielk1977bc2ca9e2008-11-13 14:28:28 +0000673**
674** There are three different approaches to obtaining space for a page,
675** depending on the value of parameter createFlag (which may be 0, 1 or 2).
676**
677** 1. Regardless of the value of createFlag, the cache is searched for a
678** copy of the requested page. If one is found, it is returned.
679**
680** 2. If createFlag==0 and the page is not already in the cache, NULL is
681** returned.
682**
drh50d1b5f2010-08-27 12:21:06 +0000683** 3. If createFlag is 1, and the page is not already in the cache, then
684** return NULL (do not allocate a new page) if any of the following
685** conditions are true:
danielk1977bc2ca9e2008-11-13 14:28:28 +0000686**
687** (a) the number of pages pinned by the cache is greater than
688** PCache1.nMax, or
drh50d1b5f2010-08-27 12:21:06 +0000689**
danielk1977bc2ca9e2008-11-13 14:28:28 +0000690** (b) the number of pages pinned by the cache is greater than
691** the sum of nMax for all purgeable caches, less the sum of
drh50d1b5f2010-08-27 12:21:06 +0000692** nMin for all other purgeable caches, or
danielk1977bc2ca9e2008-11-13 14:28:28 +0000693**
694** 4. If none of the first three conditions apply and the cache is marked
695** as purgeable, and if one of the following is true:
696**
697** (a) The number of pages allocated for the cache is already
698** PCache1.nMax, or
699**
700** (b) The number of pages allocated for all purgeable caches is
701** already equal to or greater than the sum of nMax for all
702** purgeable caches,
703**
drh50d1b5f2010-08-27 12:21:06 +0000704** (c) The system is under memory pressure and wants to avoid
705** unnecessary pages cache entry allocations
706**
danielk1977bc2ca9e2008-11-13 14:28:28 +0000707** then attempt to recycle a page from the LRU list. If it is the right
708** size, return the recycled buffer. Otherwise, free the buffer and
709** proceed to step 5.
710**
711** 5. Otherwise, allocate and return a new page buffer.
712*/
dan22e21ff2011-11-08 20:08:44 +0000713static sqlite3_pcache_page *pcache1Fetch(
714 sqlite3_pcache *p,
715 unsigned int iKey,
716 int createFlag
717){
drha69085c2012-01-02 18:00:55 +0000718 unsigned int nPinned;
danielk1977bc2ca9e2008-11-13 14:28:28 +0000719 PCache1 *pCache = (PCache1 *)p;
drh41692e92011-01-25 04:34:51 +0000720 PGroup *pGroup;
danielk1977bc2ca9e2008-11-13 14:28:28 +0000721 PgHdr1 *pPage = 0;
722
drhf18a61d2009-07-17 11:44:07 +0000723 assert( pCache->bPurgeable || createFlag!=1 );
drh41692e92011-01-25 04:34:51 +0000724 assert( pCache->bPurgeable || pCache->nMin==0 );
725 assert( pCache->bPurgeable==0 || pCache->nMin==10 );
726 assert( pCache->nMin==0 || pCache->bPurgeable );
727 pcache1EnterMutex(pGroup = pCache->pGroup);
danielk1977bc2ca9e2008-11-13 14:28:28 +0000728
drh3a5676c2011-01-19 21:58:56 +0000729 /* Step 1: Search the hash table for an existing entry. */
danielk1977bc2ca9e2008-11-13 14:28:28 +0000730 if( pCache->nHash>0 ){
731 unsigned int h = iKey % pCache->nHash;
732 for(pPage=pCache->apHash[h]; pPage&&pPage->iKey!=iKey; pPage=pPage->pNext);
733 }
734
drh3a5676c2011-01-19 21:58:56 +0000735 /* Step 2: Abort if no existing page is found and createFlag is 0 */
drh5d56dd22013-12-13 18:50:40 +0000736 if( pPage ){
737 if( !pPage->isPinned ) pcache1PinPage(pPage);
738 goto fetch_out;
739 }
740 if( createFlag==0 ){
danielk1977bc2ca9e2008-11-13 14:28:28 +0000741 goto fetch_out;
742 }
743
drh41692e92011-01-25 04:34:51 +0000744 /* The pGroup local variable will normally be initialized by the
745 ** pcache1EnterMutex() macro above. But if SQLITE_MUTEX_OMIT is defined,
746 ** then pcache1EnterMutex() is a no-op, so we have to initialize the
747 ** local variable here. Delaying the initialization of pGroup is an
748 ** optimization: The common case is to exit the module before reaching
749 ** this point.
750 */
751#ifdef SQLITE_MUTEX_OMIT
752 pGroup = pCache->pGroup;
753#endif
754
drh3a5676c2011-01-19 21:58:56 +0000755 /* Step 3: Abort if createFlag is 1 but the cache is nearly full */
drha69085c2012-01-02 18:00:55 +0000756 assert( pCache->nPage >= pCache->nRecyclable );
danielk1977bc2ca9e2008-11-13 14:28:28 +0000757 nPinned = pCache->nPage - pCache->nRecyclable;
drh41692e92011-01-25 04:34:51 +0000758 assert( pGroup->mxPinned == pGroup->nMaxPage + 10 - pGroup->nMinPage );
drh25ca5682011-01-26 00:07:03 +0000759 assert( pCache->n90pct == pCache->nMax*9/10 );
drhf18a61d2009-07-17 11:44:07 +0000760 if( createFlag==1 && (
drh41692e92011-01-25 04:34:51 +0000761 nPinned>=pGroup->mxPinned
drha69085c2012-01-02 18:00:55 +0000762 || nPinned>=pCache->n90pct
drh50d1b5f2010-08-27 12:21:06 +0000763 || pcache1UnderMemoryPressure(pCache)
danielk1977bc2ca9e2008-11-13 14:28:28 +0000764 )){
765 goto fetch_out;
766 }
767
768 if( pCache->nPage>=pCache->nHash && pcache1ResizeHash(pCache) ){
769 goto fetch_out;
770 }
dan29070302013-08-19 18:17:03 +0000771 assert( pCache->nHash>0 && pCache->apHash );
danielk1977bc2ca9e2008-11-13 14:28:28 +0000772
drh3a5676c2011-01-19 21:58:56 +0000773 /* Step 4. Try to recycle a page. */
drh9f8cf9d2011-01-17 21:32:24 +0000774 if( pCache->bPurgeable && pGroup->pLruTail && (
drh50d1b5f2010-08-27 12:21:06 +0000775 (pCache->nPage+1>=pCache->nMax)
drh9f8cf9d2011-01-17 21:32:24 +0000776 || pGroup->nCurrentPage>=pGroup->nMaxPage
drh50d1b5f2010-08-27 12:21:06 +0000777 || pcache1UnderMemoryPressure(pCache)
danielk1977bc2ca9e2008-11-13 14:28:28 +0000778 )){
drhe73c9142011-11-09 16:12:24 +0000779 PCache1 *pOther;
drh9f8cf9d2011-01-17 21:32:24 +0000780 pPage = pGroup->pLruTail;
drh5d56dd22013-12-13 18:50:40 +0000781 assert( pPage->isPinned==0 );
danielk1977bc2ca9e2008-11-13 14:28:28 +0000782 pcache1RemoveFromHash(pPage);
783 pcache1PinPage(pPage);
drhe73c9142011-11-09 16:12:24 +0000784 pOther = pPage->pCache;
785
786 /* We want to verify that szPage and szExtra are the same for pOther
787 ** and pCache. Assert that we can verify this by comparing sums. */
788 assert( (pCache->szPage & (pCache->szPage-1))==0 && pCache->szPage>=512 );
789 assert( pCache->szExtra<512 );
790 assert( (pOther->szPage & (pOther->szPage-1))==0 && pOther->szPage>=512 );
791 assert( pOther->szExtra<512 );
792
793 if( pOther->szPage+pOther->szExtra != pCache->szPage+pCache->szExtra ){
danielk1977bc2ca9e2008-11-13 14:28:28 +0000794 pcache1FreePage(pPage);
795 pPage = 0;
796 }else{
drhe73c9142011-11-09 16:12:24 +0000797 pGroup->nCurrentPage -= (pOther->bPurgeable - pCache->bPurgeable);
danielk1977bc2ca9e2008-11-13 14:28:28 +0000798 }
799 }
800
801 /* Step 5. If a usable page buffer has still not been found,
802 ** attempt to allocate a new one.
803 */
804 if( !pPage ){
drh41692e92011-01-25 04:34:51 +0000805 if( createFlag==1 ) sqlite3BeginBenignMalloc();
danielk1977bc2ca9e2008-11-13 14:28:28 +0000806 pPage = pcache1AllocPage(pCache);
drh41692e92011-01-25 04:34:51 +0000807 if( createFlag==1 ) sqlite3EndBenignMalloc();
danielk1977bc2ca9e2008-11-13 14:28:28 +0000808 }
809
810 if( pPage ){
811 unsigned int h = iKey % pCache->nHash;
danielk1977bc2ca9e2008-11-13 14:28:28 +0000812 pCache->nPage++;
813 pPage->iKey = iKey;
814 pPage->pNext = pCache->apHash[h];
815 pPage->pCache = pCache;
danielk1977e1fd5082009-01-23 16:45:00 +0000816 pPage->pLruPrev = 0;
817 pPage->pLruNext = 0;
drh5d56dd22013-12-13 18:50:40 +0000818 pPage->isPinned = 1;
dan22e21ff2011-11-08 20:08:44 +0000819 *(void **)pPage->page.pExtra = 0;
danielk1977bc2ca9e2008-11-13 14:28:28 +0000820 pCache->apHash[h] = pPage;
821 }
822
823fetch_out:
danielk1977f90b7262009-01-07 15:18:20 +0000824 if( pPage && iKey>pCache->iMaxKey ){
825 pCache->iMaxKey = iKey;
826 }
drh9f8cf9d2011-01-17 21:32:24 +0000827 pcache1LeaveMutex(pGroup);
dan22e21ff2011-11-08 20:08:44 +0000828 return &pPage->page;
danielk1977bc2ca9e2008-11-13 14:28:28 +0000829}
830
831
832/*
833** Implementation of the sqlite3_pcache.xUnpin method.
834**
835** Mark a page as unpinned (eligible for asynchronous recycling).
836*/
dan22e21ff2011-11-08 20:08:44 +0000837static void pcache1Unpin(
838 sqlite3_pcache *p,
839 sqlite3_pcache_page *pPg,
840 int reuseUnlikely
841){
danielk1977bc2ca9e2008-11-13 14:28:28 +0000842 PCache1 *pCache = (PCache1 *)p;
dan22e21ff2011-11-08 20:08:44 +0000843 PgHdr1 *pPage = (PgHdr1 *)pPg;
drh9f8cf9d2011-01-17 21:32:24 +0000844 PGroup *pGroup = pCache->pGroup;
drh69e931e2009-06-03 21:04:35 +0000845
846 assert( pPage->pCache==pCache );
drh9f8cf9d2011-01-17 21:32:24 +0000847 pcache1EnterMutex(pGroup);
danielk1977bc2ca9e2008-11-13 14:28:28 +0000848
849 /* It is an error to call this function if the page is already
drh9f8cf9d2011-01-17 21:32:24 +0000850 ** part of the PGroup LRU list.
danielk1977bc2ca9e2008-11-13 14:28:28 +0000851 */
852 assert( pPage->pLruPrev==0 && pPage->pLruNext==0 );
drh9f8cf9d2011-01-17 21:32:24 +0000853 assert( pGroup->pLruHead!=pPage && pGroup->pLruTail!=pPage );
drh5d56dd22013-12-13 18:50:40 +0000854 assert( pPage->isPinned==1 );
danielk1977bc2ca9e2008-11-13 14:28:28 +0000855
drh9f8cf9d2011-01-17 21:32:24 +0000856 if( reuseUnlikely || pGroup->nCurrentPage>pGroup->nMaxPage ){
danielk1977bc2ca9e2008-11-13 14:28:28 +0000857 pcache1RemoveFromHash(pPage);
858 pcache1FreePage(pPage);
859 }else{
drh9f8cf9d2011-01-17 21:32:24 +0000860 /* Add the page to the PGroup LRU list. */
861 if( pGroup->pLruHead ){
862 pGroup->pLruHead->pLruPrev = pPage;
863 pPage->pLruNext = pGroup->pLruHead;
864 pGroup->pLruHead = pPage;
danielk1977bc2ca9e2008-11-13 14:28:28 +0000865 }else{
drh9f8cf9d2011-01-17 21:32:24 +0000866 pGroup->pLruTail = pPage;
867 pGroup->pLruHead = pPage;
danielk1977bc2ca9e2008-11-13 14:28:28 +0000868 }
869 pCache->nRecyclable++;
drh5d56dd22013-12-13 18:50:40 +0000870 pPage->isPinned = 0;
danielk1977bc2ca9e2008-11-13 14:28:28 +0000871 }
872
drh9f8cf9d2011-01-17 21:32:24 +0000873 pcache1LeaveMutex(pCache->pGroup);
danielk1977bc2ca9e2008-11-13 14:28:28 +0000874}
875
876/*
877** Implementation of the sqlite3_pcache.xRekey method.
878*/
879static void pcache1Rekey(
880 sqlite3_pcache *p,
dan22e21ff2011-11-08 20:08:44 +0000881 sqlite3_pcache_page *pPg,
danielk1977bc2ca9e2008-11-13 14:28:28 +0000882 unsigned int iOld,
883 unsigned int iNew
884){
885 PCache1 *pCache = (PCache1 *)p;
dan22e21ff2011-11-08 20:08:44 +0000886 PgHdr1 *pPage = (PgHdr1 *)pPg;
danielk1977bc2ca9e2008-11-13 14:28:28 +0000887 PgHdr1 **pp;
888 unsigned int h;
889 assert( pPage->iKey==iOld );
drh69e931e2009-06-03 21:04:35 +0000890 assert( pPage->pCache==pCache );
danielk1977bc2ca9e2008-11-13 14:28:28 +0000891
drh9f8cf9d2011-01-17 21:32:24 +0000892 pcache1EnterMutex(pCache->pGroup);
danielk1977bc2ca9e2008-11-13 14:28:28 +0000893
894 h = iOld%pCache->nHash;
895 pp = &pCache->apHash[h];
896 while( (*pp)!=pPage ){
897 pp = &(*pp)->pNext;
898 }
899 *pp = pPage->pNext;
900
901 h = iNew%pCache->nHash;
902 pPage->iKey = iNew;
903 pPage->pNext = pCache->apHash[h];
904 pCache->apHash[h] = pPage;
drh98829a62009-11-20 13:18:14 +0000905 if( iNew>pCache->iMaxKey ){
danielk1977f90b7262009-01-07 15:18:20 +0000906 pCache->iMaxKey = iNew;
907 }
908
drh9f8cf9d2011-01-17 21:32:24 +0000909 pcache1LeaveMutex(pCache->pGroup);
danielk1977bc2ca9e2008-11-13 14:28:28 +0000910}
911
912/*
913** Implementation of the sqlite3_pcache.xTruncate method.
914**
915** Discard all unpinned pages in the cache with a page number equal to
916** or greater than parameter iLimit. Any pinned pages with a page number
917** equal to or greater than iLimit are implicitly unpinned.
918*/
919static void pcache1Truncate(sqlite3_pcache *p, unsigned int iLimit){
920 PCache1 *pCache = (PCache1 *)p;
drh9f8cf9d2011-01-17 21:32:24 +0000921 pcache1EnterMutex(pCache->pGroup);
danielk1977f90b7262009-01-07 15:18:20 +0000922 if( iLimit<=pCache->iMaxKey ){
923 pcache1TruncateUnsafe(pCache, iLimit);
924 pCache->iMaxKey = iLimit-1;
925 }
drh9f8cf9d2011-01-17 21:32:24 +0000926 pcache1LeaveMutex(pCache->pGroup);
danielk1977bc2ca9e2008-11-13 14:28:28 +0000927}
928
929/*
930** Implementation of the sqlite3_pcache.xDestroy method.
931**
932** Destroy a cache allocated using pcache1Create().
933*/
934static void pcache1Destroy(sqlite3_pcache *p){
935 PCache1 *pCache = (PCache1 *)p;
drh9f8cf9d2011-01-17 21:32:24 +0000936 PGroup *pGroup = pCache->pGroup;
danb51d2fa2010-09-22 19:06:02 +0000937 assert( pCache->bPurgeable || (pCache->nMax==0 && pCache->nMin==0) );
drh9f8cf9d2011-01-17 21:32:24 +0000938 pcache1EnterMutex(pGroup);
danielk1977bc2ca9e2008-11-13 14:28:28 +0000939 pcache1TruncateUnsafe(pCache, 0);
drha69085c2012-01-02 18:00:55 +0000940 assert( pGroup->nMaxPage >= pCache->nMax );
drh9f8cf9d2011-01-17 21:32:24 +0000941 pGroup->nMaxPage -= pCache->nMax;
drha69085c2012-01-02 18:00:55 +0000942 assert( pGroup->nMinPage >= pCache->nMin );
drh9f8cf9d2011-01-17 21:32:24 +0000943 pGroup->nMinPage -= pCache->nMin;
drh41692e92011-01-25 04:34:51 +0000944 pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage;
drh9f8cf9d2011-01-17 21:32:24 +0000945 pcache1EnforceMaxPage(pGroup);
946 pcache1LeaveMutex(pGroup);
danielk1977bc2ca9e2008-11-13 14:28:28 +0000947 sqlite3_free(pCache->apHash);
948 sqlite3_free(pCache);
949}
950
951/*
952** This function is called during initialization (sqlite3_initialize()) to
953** install the default pluggable cache module, assuming the user has not
954** already provided an alternative.
955*/
956void sqlite3PCacheSetDefault(void){
dan22e21ff2011-11-08 20:08:44 +0000957 static const sqlite3_pcache_methods2 defaultMethods = {
drh81ef0f92011-11-13 21:44:03 +0000958 1, /* iVersion */
danielk1977bc2ca9e2008-11-13 14:28:28 +0000959 0, /* pArg */
960 pcache1Init, /* xInit */
961 pcache1Shutdown, /* xShutdown */
962 pcache1Create, /* xCreate */
963 pcache1Cachesize, /* xCachesize */
964 pcache1Pagecount, /* xPagecount */
965 pcache1Fetch, /* xFetch */
966 pcache1Unpin, /* xUnpin */
967 pcache1Rekey, /* xRekey */
968 pcache1Truncate, /* xTruncate */
drh09419b42011-11-16 19:29:17 +0000969 pcache1Destroy, /* xDestroy */
970 pcache1Shrink /* xShrink */
danielk1977bc2ca9e2008-11-13 14:28:28 +0000971 };
dan22e21ff2011-11-08 20:08:44 +0000972 sqlite3_config(SQLITE_CONFIG_PCACHE2, &defaultMethods);
danielk1977bc2ca9e2008-11-13 14:28:28 +0000973}
974
975#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
976/*
977** This function is called to free superfluous dynamically allocated memory
978** held by the pager system. Memory in use by any SQLite pager allocated
979** by the current thread may be sqlite3_free()ed.
980**
981** nReq is the number of bytes of memory required. Once this much has
982** been released, the function returns. The return value is the total number
983** of bytes of memory released.
984*/
985int sqlite3PcacheReleaseMemory(int nReq){
986 int nFree = 0;
drh9f8cf9d2011-01-17 21:32:24 +0000987 assert( sqlite3_mutex_notheld(pcache1.grp.mutex) );
988 assert( sqlite3_mutex_notheld(pcache1.mutex) );
danielk1977bc2ca9e2008-11-13 14:28:28 +0000989 if( pcache1.pStart==0 ){
990 PgHdr1 *p;
drh9f8cf9d2011-01-17 21:32:24 +0000991 pcache1EnterMutex(&pcache1.grp);
992 while( (nReq<0 || nFree<nReq) && ((p=pcache1.grp.pLruTail)!=0) ){
dan22e21ff2011-11-08 20:08:44 +0000993 nFree += pcache1MemSize(p->page.pBuf);
994#ifdef SQLITE_PCACHE_SEPARATE_HEADER
995 nFree += sqlite3MemSize(p);
996#endif
drh5d56dd22013-12-13 18:50:40 +0000997 assert( p->isPinned==0 );
danielk1977bc2ca9e2008-11-13 14:28:28 +0000998 pcache1PinPage(p);
999 pcache1RemoveFromHash(p);
1000 pcache1FreePage(p);
1001 }
drh9f8cf9d2011-01-17 21:32:24 +00001002 pcache1LeaveMutex(&pcache1.grp);
danielk1977bc2ca9e2008-11-13 14:28:28 +00001003 }
1004 return nFree;
1005}
1006#endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */
1007
1008#ifdef SQLITE_TEST
1009/*
1010** This function is used by test procedures to inspect the internal state
1011** of the global cache.
1012*/
1013void sqlite3PcacheStats(
1014 int *pnCurrent, /* OUT: Total number of pages cached */
1015 int *pnMax, /* OUT: Global maximum cache size */
1016 int *pnMin, /* OUT: Sum of PCache1.nMin for purgeable caches */
1017 int *pnRecyclable /* OUT: Total number of pages available for recycling */
1018){
1019 PgHdr1 *p;
1020 int nRecyclable = 0;
drh9f8cf9d2011-01-17 21:32:24 +00001021 for(p=pcache1.grp.pLruHead; p; p=p->pLruNext){
drh5d56dd22013-12-13 18:50:40 +00001022 assert( p->isPinned==0 );
danielk1977bc2ca9e2008-11-13 14:28:28 +00001023 nRecyclable++;
1024 }
drh9f8cf9d2011-01-17 21:32:24 +00001025 *pnCurrent = pcache1.grp.nCurrentPage;
drha69085c2012-01-02 18:00:55 +00001026 *pnMax = (int)pcache1.grp.nMaxPage;
1027 *pnMin = (int)pcache1.grp.nMinPage;
danielk1977bc2ca9e2008-11-13 14:28:28 +00001028 *pnRecyclable = nRecyclable;
1029}
1030#endif