danielk1977 | a3f0659 | 2009-04-23 14:58:39 +0000 | [diff] [blame] | 1 | /* |
| 2 | ** 2005 December 14 |
| 3 | ** |
| 4 | ** The author disclaims copyright to this source code. In place of |
| 5 | ** a legal notice, here is a blessing: |
| 6 | ** |
| 7 | ** May you do good and not evil. |
| 8 | ** May you find forgiveness for yourself and forgive others. |
| 9 | ** May you share freely, never taking more than you give. |
| 10 | ** |
| 11 | ************************************************************************* |
| 12 | ** |
danielk1977 | debcfd2 | 2009-04-24 09:27:16 +0000 | [diff] [blame^] | 13 | ** $Id: sqlite3async.c,v 1.2 2009/04/24 09:27:16 danielk1977 Exp $ |
danielk1977 | a3f0659 | 2009-04-23 14:58:39 +0000 | [diff] [blame] | 14 | ** |
danielk1977 | debcfd2 | 2009-04-24 09:27:16 +0000 | [diff] [blame^] | 15 | ** This file contains the implementation of an asynchronous IO backend |
| 16 | ** for SQLite. |
danielk1977 | a3f0659 | 2009-04-23 14:58:39 +0000 | [diff] [blame] | 17 | */ |
| 18 | |
| 19 | #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_ASYNCIO) |
| 20 | |
| 21 | #include "sqlite3async.h" |
| 22 | |
| 23 | #define ENABLE_FILE_LOCKING |
| 24 | |
danielk1977 | a3f0659 | 2009-04-23 14:58:39 +0000 | [diff] [blame] | 25 | /* Useful macros used in several places */ |
| 26 | #define MIN(x,y) ((x)<(y)?(x):(y)) |
| 27 | #define MAX(x,y) ((x)>(y)?(x):(y)) |
| 28 | |
| 29 | /* Forward references */ |
| 30 | typedef struct AsyncWrite AsyncWrite; |
| 31 | typedef struct AsyncFile AsyncFile; |
| 32 | typedef struct AsyncFileData AsyncFileData; |
| 33 | typedef struct AsyncFileLock AsyncFileLock; |
| 34 | typedef struct AsyncLock AsyncLock; |
| 35 | |
| 36 | /* Enable for debugging */ |
| 37 | static int sqlite3async_trace = 0; |
| 38 | # define ASYNC_TRACE(X) if( sqlite3async_trace ) asyncTrace X |
| 39 | static void asyncTrace(const char *zFormat, ...){ |
| 40 | char *z; |
| 41 | va_list ap; |
| 42 | va_start(ap, zFormat); |
| 43 | z = sqlite3_vmprintf(zFormat, ap); |
| 44 | va_end(ap); |
| 45 | fprintf(stderr, "[%d] %s", 0 /* (int)pthread_self() */, z); |
| 46 | sqlite3_free(z); |
| 47 | } |
| 48 | |
| 49 | /* |
| 50 | ** THREAD SAFETY NOTES |
| 51 | ** |
| 52 | ** Basic rules: |
| 53 | ** |
| 54 | ** * Both read and write access to the global write-op queue must be |
| 55 | ** protected by the async.queueMutex. As are the async.ioError and |
| 56 | ** async.nFile variables. |
| 57 | ** |
| 58 | ** * The async.pLock list and all AsyncLock and AsyncFileLock |
| 59 | ** structures must be protected by the async.lockMutex mutex. |
| 60 | ** |
| 61 | ** * The file handles from the underlying system are not assumed to |
| 62 | ** be thread safe. |
| 63 | ** |
| 64 | ** * See the last two paragraphs under "The Writer Thread" for |
| 65 | ** an assumption to do with file-handle synchronization by the Os. |
| 66 | ** |
| 67 | ** Deadlock prevention: |
| 68 | ** |
| 69 | ** There are three mutex used by the system: the "writer" mutex, |
| 70 | ** the "queue" mutex and the "lock" mutex. Rules are: |
| 71 | ** |
| 72 | ** * It is illegal to block on the writer mutex when any other mutex |
| 73 | ** are held, and |
| 74 | ** |
| 75 | ** * It is illegal to block on the queue mutex when the lock mutex |
| 76 | ** is held. |
| 77 | ** |
| 78 | ** i.e. mutex's must be grabbed in the order "writer", "queue", "lock". |
| 79 | ** |
| 80 | ** File system operations (invoked by SQLite thread): |
| 81 | ** |
| 82 | ** xOpen |
| 83 | ** xDelete |
| 84 | ** xFileExists |
| 85 | ** |
| 86 | ** File handle operations (invoked by SQLite thread): |
| 87 | ** |
| 88 | ** asyncWrite, asyncClose, asyncTruncate, asyncSync |
| 89 | ** |
| 90 | ** The operations above add an entry to the global write-op list. They |
| 91 | ** prepare the entry, acquire the async.queueMutex momentarily while |
| 92 | ** list pointers are manipulated to insert the new entry, then release |
| 93 | ** the mutex and signal the writer thread to wake up in case it happens |
| 94 | ** to be asleep. |
| 95 | ** |
| 96 | ** |
| 97 | ** asyncRead, asyncFileSize. |
| 98 | ** |
| 99 | ** Read operations. Both of these read from both the underlying file |
| 100 | ** first then adjust their result based on pending writes in the |
| 101 | ** write-op queue. So async.queueMutex is held for the duration |
| 102 | ** of these operations to prevent other threads from changing the |
| 103 | ** queue in mid operation. |
| 104 | ** |
| 105 | ** |
| 106 | ** asyncLock, asyncUnlock, asyncCheckReservedLock |
| 107 | ** |
| 108 | ** These primitives implement in-process locking using a hash table |
| 109 | ** on the file name. Files are locked correctly for connections coming |
| 110 | ** from the same process. But other processes cannot see these locks |
| 111 | ** and will therefore not honor them. |
| 112 | ** |
| 113 | ** |
| 114 | ** The writer thread: |
| 115 | ** |
| 116 | ** The async.writerMutex is used to make sure only there is only |
| 117 | ** a single writer thread running at a time. |
| 118 | ** |
| 119 | ** Inside the writer thread is a loop that works like this: |
| 120 | ** |
| 121 | ** WHILE (write-op list is not empty) |
| 122 | ** Do IO operation at head of write-op list |
| 123 | ** Remove entry from head of write-op list |
| 124 | ** END WHILE |
| 125 | ** |
| 126 | ** The async.queueMutex is always held during the <write-op list is |
| 127 | ** not empty> test, and when the entry is removed from the head |
| 128 | ** of the write-op list. Sometimes it is held for the interim |
| 129 | ** period (while the IO is performed), and sometimes it is |
| 130 | ** relinquished. It is relinquished if (a) the IO op is an |
| 131 | ** ASYNC_CLOSE or (b) when the file handle was opened, two of |
| 132 | ** the underlying systems handles were opened on the same |
| 133 | ** file-system entry. |
| 134 | ** |
| 135 | ** If condition (b) above is true, then one file-handle |
| 136 | ** (AsyncFile.pBaseRead) is used exclusively by sqlite threads to read the |
| 137 | ** file, the other (AsyncFile.pBaseWrite) by sqlite3_async_flush() |
| 138 | ** threads to perform write() operations. This means that read |
| 139 | ** operations are not blocked by asynchronous writes (although |
| 140 | ** asynchronous writes may still be blocked by reads). |
| 141 | ** |
| 142 | ** This assumes that the OS keeps two handles open on the same file |
| 143 | ** properly in sync. That is, any read operation that starts after a |
| 144 | ** write operation on the same file system entry has completed returns |
| 145 | ** data consistent with the write. We also assume that if one thread |
| 146 | ** reads a file while another is writing it all bytes other than the |
| 147 | ** ones actually being written contain valid data. |
| 148 | ** |
| 149 | ** If the above assumptions are not true, set the preprocessor symbol |
| 150 | ** SQLITE_ASYNC_TWO_FILEHANDLES to 0. |
| 151 | */ |
| 152 | |
| 153 | |
| 154 | #ifndef NDEBUG |
| 155 | # define TESTONLY( X ) X |
| 156 | #else |
| 157 | # define TESTONLY( X ) |
| 158 | #endif |
| 159 | |
| 160 | /* |
danielk1977 | debcfd2 | 2009-04-24 09:27:16 +0000 | [diff] [blame^] | 161 | ** PORTING FUNCTIONS |
| 162 | ** |
danielk1977 | a3f0659 | 2009-04-23 14:58:39 +0000 | [diff] [blame] | 163 | ** There are two definitions of the following functions. One for pthreads |
| 164 | ** compatible systems and one for Win32. These functions isolate the OS |
| 165 | ** specific code required by each platform. |
| 166 | ** |
| 167 | ** The system uses three mutexes and a single condition variable. To |
| 168 | ** block on a mutex, async_mutex_enter() is called. The parameter passed |
| 169 | ** to async_mutex_enter(), which must be one of ASYNC_MUTEX_LOCK, |
| 170 | ** ASYNC_MUTEX_QUEUE or ASYNC_MUTEX_WRITER, identifies which of the three |
| 171 | ** mutexes to lock. Similarly, to unlock a mutex, async_mutex_leave() is |
| 172 | ** called with a parameter identifying the mutex being unlocked. Mutexes |
| 173 | ** are not recursive - it is an error to call async_mutex_enter() to |
| 174 | ** lock a mutex that is already locked, or to call async_mutex_leave() |
| 175 | ** to unlock a mutex that is not currently locked. |
| 176 | ** |
| 177 | ** The async_cond_wait() and async_cond_signal() functions are modelled |
| 178 | ** on the pthreads functions with similar names. The first parameter to |
| 179 | ** both functions is always ASYNC_COND_QUEUE. When async_cond_wait() |
| 180 | ** is called the mutex identified by the second parameter must be held. |
| 181 | ** The mutex is unlocked, and the calling thread simultaneously begins |
| 182 | ** waiting for the condition variable to be signalled by another thread. |
| 183 | ** After another thread signals the condition variable, the calling |
| 184 | ** thread stops waiting, locks mutex eMutex and returns. The |
| 185 | ** async_cond_signal() function is used to signal the condition variable. |
| 186 | ** It is assumed that the mutex used by the thread calling async_cond_wait() |
| 187 | ** is held by the caller of async_cond_signal() (otherwise there would be |
| 188 | ** a race condition). |
| 189 | ** |
| 190 | ** It is guaranteed that no other thread will call async_cond_wait() when |
| 191 | ** there is already a thread waiting on the condition variable. |
| 192 | ** |
| 193 | ** The async_sched_yield() function is called to suggest to the operating |
| 194 | ** system that it would be a good time to shift the current thread off the |
| 195 | ** CPU. The system will still work if this function is not implemented |
| 196 | ** (it is not currently implemented for win32), but it might be marginally |
| 197 | ** more efficient if it is. |
| 198 | */ |
| 199 | static void async_mutex_enter(int eMutex); |
| 200 | static void async_mutex_leave(int eMutex); |
| 201 | static void async_cond_wait(int eCond, int eMutex); |
| 202 | static void async_cond_signal(int eCond); |
| 203 | static void async_sched_yield(void); |
| 204 | |
| 205 | /* |
| 206 | ** There are also two definitions of the following. async_os_initialize() |
| 207 | ** is called when the asynchronous VFS is first installed, and os_shutdown() |
| 208 | ** is called when it is uninstalled (from within sqlite3async_shutdown()). |
| 209 | ** |
| 210 | ** For pthreads builds, both of these functions are no-ops. For win32, |
| 211 | ** they provide an opportunity to initialize and finalize the required |
| 212 | ** mutex and condition variables. |
| 213 | ** |
| 214 | ** If async_os_initialize() returns other than zero, then the initialization |
| 215 | ** fails and SQLITE_ERROR is returned to the user. |
| 216 | */ |
| 217 | static int async_os_initialize(void); |
| 218 | static void async_os_shutdown(void); |
| 219 | |
| 220 | /* Values for use as the 'eMutex' argument of the above functions. The |
| 221 | ** integer values assigned to these constants are important for assert() |
| 222 | ** statements that verify that mutexes are locked in the correct order. |
| 223 | ** Specifically, it is unsafe to try to lock mutex N while holding a lock |
| 224 | ** on mutex M if (M<=N). |
| 225 | */ |
| 226 | #define ASYNC_MUTEX_LOCK 0 |
| 227 | #define ASYNC_MUTEX_QUEUE 1 |
| 228 | #define ASYNC_MUTEX_WRITER 2 |
| 229 | |
| 230 | /* Values for use as the 'eCond' argument of the above functions. */ |
| 231 | #define ASYNC_COND_QUEUE 0 |
| 232 | |
| 233 | /************************************************************************* |
| 234 | ** Start of OS specific code. |
| 235 | */ |
| 236 | #if SQLITE_OS_WIN || defined(_WIN32) || defined(WIN32) || defined(__CYGWIN__) || defined(__MINGW32__) || defined(__BORLANDC__) |
| 237 | |
| 238 | /* The following block contains the win32 specific code. */ |
| 239 | |
| 240 | #define mutex_held(X) (GetCurrentThreadId()==primitives.aHolder[X]) |
| 241 | |
| 242 | static struct AsyncPrimitives { |
| 243 | int isInit; |
| 244 | DWORD aHolder[3]; |
| 245 | CRITICAL_SECTION aMutex[3]; |
| 246 | HANDLE aCond[1]; |
| 247 | } primitives = { 0 }; |
| 248 | |
| 249 | static int async_os_initialize(void){ |
| 250 | if( !primitives.isInit ){ |
| 251 | primitives.aCond[0] = CreateEvent(NULL, TRUE, FALSE, 0); |
| 252 | if( primitives.aCond[0]==NULL ){ |
| 253 | return 1; |
| 254 | } |
| 255 | InitializeCriticalSection(&primitives.aMutex[0]); |
| 256 | InitializeCriticalSection(&primitives.aMutex[1]); |
| 257 | InitializeCriticalSection(&primitives.aMutex[2]); |
| 258 | primitives.isInit = 1; |
| 259 | } |
| 260 | return 0; |
| 261 | } |
| 262 | static void async_os_shutdown(void){ |
| 263 | if( primitives.isInit ){ |
| 264 | DeleteCriticalSection(&primitives.aMutex[0]); |
| 265 | DeleteCriticalSection(&primitives.aMutex[1]); |
| 266 | DeleteCriticalSection(&primitives.aMutex[2]); |
| 267 | CloseHandle(primitives.aCond[0]); |
| 268 | primitives.isInit = 0; |
| 269 | } |
| 270 | } |
| 271 | |
| 272 | /* The following block contains the Win32 specific code. */ |
| 273 | static void async_mutex_enter(int eMutex){ |
| 274 | assert( eMutex==0 || eMutex==1 || eMutex==2 ); |
| 275 | assert( eMutex!=2 || (!mutex_held(0) && !mutex_held(1) && !mutex_held(2)) ); |
| 276 | assert( eMutex!=1 || (!mutex_held(0) && !mutex_held(1)) ); |
| 277 | assert( eMutex!=0 || (!mutex_held(0)) ); |
| 278 | EnterCriticalSection(&primitives.aMutex[eMutex]); |
| 279 | TESTONLY( primitives.aHolder[eMutex] = GetCurrentThreadId(); ) |
| 280 | } |
| 281 | static void async_mutex_leave(int eMutex){ |
| 282 | assert( eMutex==0 || eMutex==1 || eMutex==2 ); |
| 283 | assert( mutex_held(eMutex) ); |
| 284 | TESTONLY( primitives.aHolder[eMutex] = 0; ) |
| 285 | LeaveCriticalSection(&primitives.aMutex[eMutex]); |
| 286 | } |
| 287 | static void async_cond_wait(int eCond, int eMutex){ |
| 288 | ResetEvent(primitives.aCond[eCond]); |
| 289 | async_mutex_leave(eMutex); |
| 290 | WaitForSingleObject(primitives.aCond[eCond], INFINITE); |
| 291 | async_mutex_enter(eMutex); |
| 292 | } |
| 293 | static void async_cond_signal(int eCond){ |
| 294 | assert( mutex_held(ASYNC_MUTEX_QUEUE) ); |
| 295 | SetEvent(primitives.aCond[eCond]); |
| 296 | } |
| 297 | static void async_sched_yield(void){ |
| 298 | /* Todo: Find out if win32 offers anything like sched_yield() */ |
| 299 | } |
| 300 | #else |
| 301 | |
| 302 | /* The following block contains the pthreads specific code. */ |
| 303 | #include <pthread.h> |
| 304 | #include <sched.h> |
| 305 | |
| 306 | #define mutex_held(X) pthread_equal(primitives.aHolder[X], pthread_self()) |
| 307 | |
| 308 | static int async_os_initialize(void) {return 0;} |
| 309 | static void async_os_shutdown(void) {} |
| 310 | |
| 311 | static struct AsyncPrimitives { |
| 312 | pthread_mutex_t aMutex[3]; |
| 313 | pthread_cond_t aCond[1]; |
| 314 | pthread_t aHolder[3]; |
| 315 | } primitives = { |
| 316 | { PTHREAD_MUTEX_INITIALIZER, |
| 317 | PTHREAD_MUTEX_INITIALIZER, |
| 318 | PTHREAD_MUTEX_INITIALIZER |
| 319 | } , { |
| 320 | PTHREAD_COND_INITIALIZER |
| 321 | } , { 0, 0, 0 } |
| 322 | }; |
| 323 | |
| 324 | static void async_mutex_enter(int eMutex){ |
| 325 | assert( eMutex==0 || eMutex==1 || eMutex==2 ); |
| 326 | assert( eMutex!=2 || (!mutex_held(0) && !mutex_held(1) && !mutex_held(2)) ); |
| 327 | assert( eMutex!=1 || (!mutex_held(0) && !mutex_held(1)) ); |
| 328 | assert( eMutex!=0 || (!mutex_held(0)) ); |
| 329 | pthread_mutex_lock(&primitives.aMutex[eMutex]); |
| 330 | TESTONLY( primitives.aHolder[eMutex] = pthread_self(); ) |
| 331 | } |
| 332 | static void async_mutex_leave(int eMutex){ |
| 333 | assert( eMutex==0 || eMutex==1 || eMutex==2 ); |
| 334 | assert( mutex_held(eMutex) ); |
| 335 | TESTONLY( primitives.aHolder[eMutex] = 0; ) |
| 336 | pthread_mutex_unlock(&primitives.aMutex[eMutex]); |
| 337 | } |
| 338 | static void async_cond_wait(int eCond, int eMutex){ |
| 339 | assert( eMutex==0 || eMutex==1 || eMutex==2 ); |
| 340 | assert( mutex_held(eMutex) ); |
| 341 | TESTONLY( primitives.aHolder[eMutex] = 0; ) |
| 342 | pthread_cond_wait(&primitives.aCond[eCond], &primitives.aMutex[eMutex]); |
| 343 | TESTONLY( primitives.aHolder[eMutex] = pthread_self(); ) |
| 344 | } |
| 345 | static void async_cond_signal(int eCond){ |
| 346 | assert( mutex_held(ASYNC_MUTEX_QUEUE) ); |
| 347 | pthread_cond_signal(&primitives.aCond[eCond]); |
| 348 | } |
| 349 | static void async_sched_yield(void){ |
| 350 | sched_yield(); |
| 351 | } |
| 352 | #endif |
| 353 | /* |
| 354 | ** End of OS specific code. |
| 355 | *************************************************************************/ |
| 356 | |
| 357 | #define assert_mutex_is_held(X) assert( mutex_held(X) ) |
| 358 | |
| 359 | |
| 360 | #ifndef SQLITE_ASYNC_TWO_FILEHANDLES |
| 361 | /* #define SQLITE_ASYNC_TWO_FILEHANDLES 0 */ |
| 362 | #define SQLITE_ASYNC_TWO_FILEHANDLES 1 |
| 363 | #endif |
| 364 | |
| 365 | /* |
| 366 | ** State information is held in the static variable "async" defined |
| 367 | ** as the following structure. |
| 368 | ** |
| 369 | ** Both async.ioError and async.nFile are protected by async.queueMutex. |
| 370 | */ |
| 371 | static struct TestAsyncStaticData { |
| 372 | AsyncWrite *pQueueFirst; /* Next write operation to be processed */ |
| 373 | AsyncWrite *pQueueLast; /* Last write operation on the list */ |
| 374 | AsyncLock *pLock; /* Linked list of all AsyncLock structures */ |
| 375 | volatile int ioDelay; /* Extra delay between write operations */ |
| 376 | volatile int eHalt; /* One of the SQLITEASYNC_HALT_XXX values */ |
| 377 | int ioError; /* True if an IO error has occurred */ |
| 378 | int nFile; /* Number of open files (from sqlite pov) */ |
| 379 | } async = { 0,0,0,0,0,0,0 }; |
| 380 | |
| 381 | /* Possible values of AsyncWrite.op */ |
| 382 | #define ASYNC_NOOP 0 |
| 383 | #define ASYNC_WRITE 1 |
| 384 | #define ASYNC_SYNC 2 |
| 385 | #define ASYNC_TRUNCATE 3 |
| 386 | #define ASYNC_CLOSE 4 |
| 387 | #define ASYNC_DELETE 5 |
| 388 | #define ASYNC_OPENEXCLUSIVE 6 |
| 389 | #define ASYNC_UNLOCK 7 |
| 390 | |
| 391 | /* Names of opcodes. Used for debugging only. |
| 392 | ** Make sure these stay in sync with the macros above! |
| 393 | */ |
| 394 | static const char *azOpcodeName[] = { |
| 395 | "NOOP", "WRITE", "SYNC", "TRUNCATE", "CLOSE", "DELETE", "OPENEX", "UNLOCK" |
| 396 | }; |
| 397 | |
| 398 | /* |
| 399 | ** Entries on the write-op queue are instances of the AsyncWrite |
| 400 | ** structure, defined here. |
| 401 | ** |
| 402 | ** The interpretation of the iOffset and nByte variables varies depending |
| 403 | ** on the value of AsyncWrite.op: |
| 404 | ** |
| 405 | ** ASYNC_NOOP: |
| 406 | ** No values used. |
| 407 | ** |
| 408 | ** ASYNC_WRITE: |
| 409 | ** iOffset -> Offset in file to write to. |
| 410 | ** nByte -> Number of bytes of data to write (pointed to by zBuf). |
| 411 | ** |
| 412 | ** ASYNC_SYNC: |
| 413 | ** nByte -> flags to pass to sqlite3OsSync(). |
| 414 | ** |
| 415 | ** ASYNC_TRUNCATE: |
| 416 | ** iOffset -> Size to truncate file to. |
| 417 | ** nByte -> Unused. |
| 418 | ** |
| 419 | ** ASYNC_CLOSE: |
| 420 | ** iOffset -> Unused. |
| 421 | ** nByte -> Unused. |
| 422 | ** |
| 423 | ** ASYNC_DELETE: |
| 424 | ** iOffset -> Contains the "syncDir" flag. |
| 425 | ** nByte -> Number of bytes of zBuf points to (file name). |
| 426 | ** |
| 427 | ** ASYNC_OPENEXCLUSIVE: |
| 428 | ** iOffset -> Value of "delflag". |
| 429 | ** nByte -> Number of bytes of zBuf points to (file name). |
| 430 | ** |
| 431 | ** ASYNC_UNLOCK: |
| 432 | ** nByte -> Argument to sqlite3OsUnlock(). |
| 433 | ** |
| 434 | ** |
| 435 | ** For an ASYNC_WRITE operation, zBuf points to the data to write to the file. |
| 436 | ** This space is sqlite3_malloc()d along with the AsyncWrite structure in a |
| 437 | ** single blob, so is deleted when sqlite3_free() is called on the parent |
| 438 | ** structure. |
| 439 | */ |
| 440 | struct AsyncWrite { |
| 441 | AsyncFileData *pFileData; /* File to write data to or sync */ |
| 442 | int op; /* One of ASYNC_xxx etc. */ |
| 443 | sqlite_int64 iOffset; /* See above */ |
| 444 | int nByte; /* See above */ |
| 445 | char *zBuf; /* Data to write to file (or NULL if op!=ASYNC_WRITE) */ |
| 446 | AsyncWrite *pNext; /* Next write operation (to any file) */ |
| 447 | }; |
| 448 | |
| 449 | /* |
| 450 | ** An instance of this structure is created for each distinct open file |
| 451 | ** (i.e. if two handles are opened on the one file, only one of these |
| 452 | ** structures is allocated) and stored in the async.aLock hash table. The |
| 453 | ** keys for async.aLock are the full pathnames of the opened files. |
| 454 | ** |
| 455 | ** AsyncLock.pList points to the head of a linked list of AsyncFileLock |
| 456 | ** structures, one for each handle currently open on the file. |
| 457 | ** |
| 458 | ** If the opened file is not a main-database (the SQLITE_OPEN_MAIN_DB is |
| 459 | ** not passed to the sqlite3OsOpen() call), or if ENABLE_FILE_LOCKING is |
| 460 | ** not defined at compile time, variables AsyncLock.pFile and |
| 461 | ** AsyncLock.eLock are never used. Otherwise, pFile is a file handle |
| 462 | ** opened on the file in question and used to obtain the file-system |
| 463 | ** locks required by database connections within this process. |
| 464 | ** |
| 465 | ** See comments above the asyncLock() function for more details on |
| 466 | ** the implementation of database locking used by this backend. |
| 467 | */ |
| 468 | struct AsyncLock { |
| 469 | char *zFile; |
| 470 | int nFile; |
| 471 | sqlite3_file *pFile; |
| 472 | int eLock; |
| 473 | AsyncFileLock *pList; |
| 474 | AsyncLock *pNext; /* Next in linked list headed by async.pLock */ |
| 475 | }; |
| 476 | |
| 477 | /* |
| 478 | ** An instance of the following structure is allocated along with each |
| 479 | ** AsyncFileData structure (see AsyncFileData.lock), but is only used if the |
| 480 | ** file was opened with the SQLITE_OPEN_MAIN_DB. |
| 481 | */ |
| 482 | struct AsyncFileLock { |
| 483 | int eLock; /* Internally visible lock state (sqlite pov) */ |
| 484 | int eAsyncLock; /* Lock-state with write-queue unlock */ |
| 485 | AsyncFileLock *pNext; |
| 486 | }; |
| 487 | |
| 488 | /* |
| 489 | ** The AsyncFile structure is a subclass of sqlite3_file used for |
| 490 | ** asynchronous IO. |
| 491 | ** |
| 492 | ** All of the actual data for the structure is stored in the structure |
| 493 | ** pointed to by AsyncFile.pData, which is allocated as part of the |
| 494 | ** sqlite3OsOpen() using sqlite3_malloc(). The reason for this is that the |
| 495 | ** lifetime of the AsyncFile structure is ended by the caller after OsClose() |
| 496 | ** is called, but the data in AsyncFileData may be required by the |
| 497 | ** writer thread after that point. |
| 498 | */ |
| 499 | struct AsyncFile { |
| 500 | sqlite3_io_methods *pMethod; |
| 501 | AsyncFileData *pData; |
| 502 | }; |
| 503 | struct AsyncFileData { |
| 504 | char *zName; /* Underlying OS filename - used for debugging */ |
| 505 | int nName; /* Number of characters in zName */ |
| 506 | sqlite3_file *pBaseRead; /* Read handle to the underlying Os file */ |
| 507 | sqlite3_file *pBaseWrite; /* Write handle to the underlying Os file */ |
| 508 | AsyncFileLock lock; /* Lock state for this handle */ |
| 509 | AsyncLock *pLock; /* AsyncLock object for this file system entry */ |
| 510 | AsyncWrite closeOp; /* Preallocated close operation */ |
| 511 | }; |
| 512 | |
| 513 | /* |
| 514 | ** Add an entry to the end of the global write-op list. pWrite should point |
| 515 | ** to an AsyncWrite structure allocated using sqlite3_malloc(). The writer |
| 516 | ** thread will call sqlite3_free() to free the structure after the specified |
| 517 | ** operation has been completed. |
| 518 | ** |
| 519 | ** Once an AsyncWrite structure has been added to the list, it becomes the |
| 520 | ** property of the writer thread and must not be read or modified by the |
| 521 | ** caller. |
| 522 | */ |
| 523 | static void addAsyncWrite(AsyncWrite *pWrite){ |
| 524 | /* We must hold the queue mutex in order to modify the queue pointers */ |
| 525 | if( pWrite->op!=ASYNC_UNLOCK ){ |
| 526 | async_mutex_enter(ASYNC_MUTEX_QUEUE); |
| 527 | } |
| 528 | |
| 529 | /* Add the record to the end of the write-op queue */ |
| 530 | assert( !pWrite->pNext ); |
| 531 | if( async.pQueueLast ){ |
| 532 | assert( async.pQueueFirst ); |
| 533 | async.pQueueLast->pNext = pWrite; |
| 534 | }else{ |
| 535 | async.pQueueFirst = pWrite; |
| 536 | } |
| 537 | async.pQueueLast = pWrite; |
| 538 | ASYNC_TRACE(("PUSH %p (%s %s %d)\n", pWrite, azOpcodeName[pWrite->op], |
| 539 | pWrite->pFileData ? pWrite->pFileData->zName : "-", pWrite->iOffset)); |
| 540 | |
| 541 | if( pWrite->op==ASYNC_CLOSE ){ |
| 542 | async.nFile--; |
| 543 | } |
| 544 | |
| 545 | /* The writer thread might have been idle because there was nothing |
| 546 | ** on the write-op queue for it to do. So wake it up. */ |
| 547 | async_cond_signal(ASYNC_COND_QUEUE); |
| 548 | |
| 549 | /* Drop the queue mutex */ |
| 550 | if( pWrite->op!=ASYNC_UNLOCK ){ |
| 551 | async_mutex_leave(ASYNC_MUTEX_QUEUE); |
| 552 | } |
| 553 | } |
| 554 | |
| 555 | /* |
| 556 | ** Increment async.nFile in a thread-safe manner. |
| 557 | */ |
| 558 | static void incrOpenFileCount(void){ |
| 559 | /* We must hold the queue mutex in order to modify async.nFile */ |
| 560 | async_mutex_enter(ASYNC_MUTEX_QUEUE); |
| 561 | if( async.nFile==0 ){ |
| 562 | async.ioError = SQLITE_OK; |
| 563 | } |
| 564 | async.nFile++; |
| 565 | async_mutex_leave(ASYNC_MUTEX_QUEUE); |
| 566 | } |
| 567 | |
| 568 | /* |
| 569 | ** This is a utility function to allocate and populate a new AsyncWrite |
| 570 | ** structure and insert it (via addAsyncWrite() ) into the global list. |
| 571 | */ |
| 572 | static int addNewAsyncWrite( |
| 573 | AsyncFileData *pFileData, |
| 574 | int op, |
| 575 | sqlite3_int64 iOffset, |
| 576 | int nByte, |
| 577 | const char *zByte |
| 578 | ){ |
| 579 | AsyncWrite *p; |
| 580 | if( op!=ASYNC_CLOSE && async.ioError ){ |
| 581 | return async.ioError; |
| 582 | } |
| 583 | p = sqlite3_malloc(sizeof(AsyncWrite) + (zByte?nByte:0)); |
| 584 | if( !p ){ |
| 585 | /* The upper layer does not expect operations like OsWrite() to |
| 586 | ** return SQLITE_NOMEM. This is partly because under normal conditions |
| 587 | ** SQLite is required to do rollback without calling malloc(). So |
| 588 | ** if malloc() fails here, treat it as an I/O error. The above |
| 589 | ** layer knows how to handle that. |
| 590 | */ |
| 591 | return SQLITE_IOERR; |
| 592 | } |
| 593 | p->op = op; |
| 594 | p->iOffset = iOffset; |
| 595 | p->nByte = nByte; |
| 596 | p->pFileData = pFileData; |
| 597 | p->pNext = 0; |
| 598 | if( zByte ){ |
| 599 | p->zBuf = (char *)&p[1]; |
| 600 | memcpy(p->zBuf, zByte, nByte); |
| 601 | }else{ |
| 602 | p->zBuf = 0; |
| 603 | } |
| 604 | addAsyncWrite(p); |
| 605 | return SQLITE_OK; |
| 606 | } |
| 607 | |
| 608 | /* |
| 609 | ** Close the file. This just adds an entry to the write-op list, the file is |
| 610 | ** not actually closed. |
| 611 | */ |
| 612 | static int asyncClose(sqlite3_file *pFile){ |
| 613 | AsyncFileData *p = ((AsyncFile *)pFile)->pData; |
| 614 | |
| 615 | /* Unlock the file, if it is locked */ |
| 616 | async_mutex_enter(ASYNC_MUTEX_LOCK); |
| 617 | p->lock.eLock = 0; |
| 618 | async_mutex_leave(ASYNC_MUTEX_LOCK); |
| 619 | |
| 620 | addAsyncWrite(&p->closeOp); |
| 621 | return SQLITE_OK; |
| 622 | } |
| 623 | |
| 624 | /* |
| 625 | ** Implementation of sqlite3OsWrite() for asynchronous files. Instead of |
| 626 | ** writing to the underlying file, this function adds an entry to the end of |
| 627 | ** the global AsyncWrite list. Either SQLITE_OK or SQLITE_NOMEM may be |
| 628 | ** returned. |
| 629 | */ |
| 630 | static int asyncWrite( |
| 631 | sqlite3_file *pFile, |
| 632 | const void *pBuf, |
| 633 | int amt, |
| 634 | sqlite3_int64 iOff |
| 635 | ){ |
| 636 | AsyncFileData *p = ((AsyncFile *)pFile)->pData; |
| 637 | return addNewAsyncWrite(p, ASYNC_WRITE, iOff, amt, pBuf); |
| 638 | } |
| 639 | |
| 640 | /* |
| 641 | ** Read data from the file. First we read from the filesystem, then adjust |
| 642 | ** the contents of the buffer based on ASYNC_WRITE operations in the |
| 643 | ** write-op queue. |
| 644 | ** |
| 645 | ** This method holds the mutex from start to finish. |
| 646 | */ |
| 647 | static int asyncRead( |
| 648 | sqlite3_file *pFile, |
| 649 | void *zOut, |
| 650 | int iAmt, |
| 651 | sqlite3_int64 iOffset |
| 652 | ){ |
| 653 | AsyncFileData *p = ((AsyncFile *)pFile)->pData; |
| 654 | int rc = SQLITE_OK; |
| 655 | sqlite3_int64 filesize; |
| 656 | int nRead; |
| 657 | sqlite3_file *pBase = p->pBaseRead; |
| 658 | |
| 659 | /* Grab the write queue mutex for the duration of the call */ |
| 660 | async_mutex_enter(ASYNC_MUTEX_QUEUE); |
| 661 | |
| 662 | /* If an I/O error has previously occurred in this virtual file |
| 663 | ** system, then all subsequent operations fail. |
| 664 | */ |
| 665 | if( async.ioError!=SQLITE_OK ){ |
| 666 | rc = async.ioError; |
| 667 | goto asyncread_out; |
| 668 | } |
| 669 | |
| 670 | if( pBase->pMethods ){ |
| 671 | rc = pBase->pMethods->xFileSize(pBase, &filesize); |
| 672 | if( rc!=SQLITE_OK ){ |
| 673 | goto asyncread_out; |
| 674 | } |
| 675 | nRead = MIN(filesize - iOffset, iAmt); |
| 676 | if( nRead>0 ){ |
| 677 | rc = pBase->pMethods->xRead(pBase, zOut, nRead, iOffset); |
| 678 | ASYNC_TRACE(("READ %s %d bytes at %d\n", p->zName, nRead, iOffset)); |
| 679 | } |
| 680 | } |
| 681 | |
| 682 | if( rc==SQLITE_OK ){ |
| 683 | AsyncWrite *pWrite; |
| 684 | char *zName = p->zName; |
| 685 | |
| 686 | for(pWrite=async.pQueueFirst; pWrite; pWrite = pWrite->pNext){ |
| 687 | if( pWrite->op==ASYNC_WRITE && ( |
| 688 | (pWrite->pFileData==p) || |
| 689 | (zName && pWrite->pFileData->zName==zName) |
| 690 | )){ |
| 691 | int iBeginOut = (pWrite->iOffset-iOffset); |
| 692 | int iBeginIn = -iBeginOut; |
| 693 | int nCopy; |
| 694 | |
| 695 | if( iBeginIn<0 ) iBeginIn = 0; |
| 696 | if( iBeginOut<0 ) iBeginOut = 0; |
| 697 | nCopy = MIN(pWrite->nByte-iBeginIn, iAmt-iBeginOut); |
| 698 | |
| 699 | if( nCopy>0 ){ |
| 700 | memcpy(&((char *)zOut)[iBeginOut], &pWrite->zBuf[iBeginIn], nCopy); |
| 701 | ASYNC_TRACE(("OVERREAD %d bytes at %d\n", nCopy, iBeginOut+iOffset)); |
| 702 | } |
| 703 | } |
| 704 | } |
| 705 | } |
| 706 | |
| 707 | asyncread_out: |
| 708 | async_mutex_leave(ASYNC_MUTEX_QUEUE); |
| 709 | return rc; |
| 710 | } |
| 711 | |
| 712 | /* |
| 713 | ** Truncate the file to nByte bytes in length. This just adds an entry to |
| 714 | ** the write-op list, no IO actually takes place. |
| 715 | */ |
| 716 | static int asyncTruncate(sqlite3_file *pFile, sqlite3_int64 nByte){ |
| 717 | AsyncFileData *p = ((AsyncFile *)pFile)->pData; |
| 718 | return addNewAsyncWrite(p, ASYNC_TRUNCATE, nByte, 0, 0); |
| 719 | } |
| 720 | |
| 721 | /* |
| 722 | ** Sync the file. This just adds an entry to the write-op list, the |
| 723 | ** sync() is done later by sqlite3_async_flush(). |
| 724 | */ |
| 725 | static int asyncSync(sqlite3_file *pFile, int flags){ |
| 726 | AsyncFileData *p = ((AsyncFile *)pFile)->pData; |
| 727 | return addNewAsyncWrite(p, ASYNC_SYNC, 0, flags, 0); |
| 728 | } |
| 729 | |
| 730 | /* |
| 731 | ** Read the size of the file. First we read the size of the file system |
| 732 | ** entry, then adjust for any ASYNC_WRITE or ASYNC_TRUNCATE operations |
| 733 | ** currently in the write-op list. |
| 734 | ** |
| 735 | ** This method holds the mutex from start to finish. |
| 736 | */ |
| 737 | int asyncFileSize(sqlite3_file *pFile, sqlite3_int64 *piSize){ |
| 738 | AsyncFileData *p = ((AsyncFile *)pFile)->pData; |
| 739 | int rc = SQLITE_OK; |
| 740 | sqlite3_int64 s = 0; |
| 741 | sqlite3_file *pBase; |
| 742 | |
| 743 | async_mutex_enter(ASYNC_MUTEX_QUEUE); |
| 744 | |
| 745 | /* Read the filesystem size from the base file. If pBaseRead is NULL, this |
| 746 | ** means the file hasn't been opened yet. In this case all relevant data |
| 747 | ** must be in the write-op queue anyway, so we can omit reading from the |
| 748 | ** file-system. |
| 749 | */ |
| 750 | pBase = p->pBaseRead; |
| 751 | if( pBase->pMethods ){ |
| 752 | rc = pBase->pMethods->xFileSize(pBase, &s); |
| 753 | } |
| 754 | |
| 755 | if( rc==SQLITE_OK ){ |
| 756 | AsyncWrite *pWrite; |
| 757 | for(pWrite=async.pQueueFirst; pWrite; pWrite = pWrite->pNext){ |
| 758 | if( pWrite->op==ASYNC_DELETE |
| 759 | && p->zName |
| 760 | && strcmp(p->zName, pWrite->zBuf)==0 |
| 761 | ){ |
| 762 | s = 0; |
| 763 | }else if( pWrite->pFileData && ( |
| 764 | (pWrite->pFileData==p) |
| 765 | || (p->zName && pWrite->pFileData->zName==p->zName) |
| 766 | )){ |
| 767 | switch( pWrite->op ){ |
| 768 | case ASYNC_WRITE: |
| 769 | s = MAX(pWrite->iOffset + (sqlite3_int64)(pWrite->nByte), s); |
| 770 | break; |
| 771 | case ASYNC_TRUNCATE: |
| 772 | s = MIN(s, pWrite->iOffset); |
| 773 | break; |
| 774 | } |
| 775 | } |
| 776 | } |
| 777 | *piSize = s; |
| 778 | } |
| 779 | async_mutex_leave(ASYNC_MUTEX_QUEUE); |
| 780 | return rc; |
| 781 | } |
| 782 | |
| 783 | /* |
| 784 | ** Lock or unlock the actual file-system entry. |
| 785 | */ |
| 786 | static int getFileLock(AsyncLock *pLock){ |
| 787 | int rc = SQLITE_OK; |
| 788 | AsyncFileLock *pIter; |
| 789 | int eRequired = 0; |
| 790 | |
| 791 | if( pLock->pFile ){ |
| 792 | for(pIter=pLock->pList; pIter; pIter=pIter->pNext){ |
| 793 | assert(pIter->eAsyncLock>=pIter->eLock); |
| 794 | if( pIter->eAsyncLock>eRequired ){ |
| 795 | eRequired = pIter->eAsyncLock; |
| 796 | assert(eRequired>=0 && eRequired<=SQLITE_LOCK_EXCLUSIVE); |
| 797 | } |
| 798 | } |
| 799 | |
| 800 | if( eRequired>pLock->eLock ){ |
| 801 | rc = pLock->pFile->pMethods->xLock(pLock->pFile, eRequired); |
| 802 | if( rc==SQLITE_OK ){ |
| 803 | pLock->eLock = eRequired; |
| 804 | } |
| 805 | } |
| 806 | else if( eRequired<pLock->eLock && eRequired<=SQLITE_LOCK_SHARED ){ |
| 807 | rc = pLock->pFile->pMethods->xUnlock(pLock->pFile, eRequired); |
| 808 | if( rc==SQLITE_OK ){ |
| 809 | pLock->eLock = eRequired; |
| 810 | } |
| 811 | } |
| 812 | } |
| 813 | |
| 814 | return rc; |
| 815 | } |
| 816 | |
| 817 | /* |
| 818 | ** Return the AsyncLock structure from the global async.pLock list |
| 819 | ** associated with the file-system entry identified by path zName |
| 820 | ** (a string of nName bytes). If no such structure exists, return 0. |
| 821 | */ |
| 822 | static AsyncLock *findLock(const char *zName, int nName){ |
| 823 | AsyncLock *p = async.pLock; |
| 824 | while( p && (p->nFile!=nName || memcmp(p->zFile, zName, nName)) ){ |
| 825 | p = p->pNext; |
| 826 | } |
| 827 | return p; |
| 828 | } |
| 829 | |
| 830 | /* |
| 831 | ** The following two methods - asyncLock() and asyncUnlock() - are used |
| 832 | ** to obtain and release locks on database files opened with the |
| 833 | ** asynchronous backend. |
| 834 | */ |
| 835 | static int asyncLock(sqlite3_file *pFile, int eLock){ |
| 836 | int rc = SQLITE_OK; |
| 837 | AsyncFileData *p = ((AsyncFile *)pFile)->pData; |
| 838 | |
| 839 | if( p->zName ){ |
| 840 | async_mutex_enter(ASYNC_MUTEX_LOCK); |
| 841 | if( p->lock.eLock<eLock ){ |
| 842 | AsyncLock *pLock = p->pLock; |
| 843 | AsyncFileLock *pIter; |
| 844 | assert(pLock && pLock->pList); |
| 845 | for(pIter=pLock->pList; pIter; pIter=pIter->pNext){ |
| 846 | if( pIter!=&p->lock && ( |
| 847 | (eLock==SQLITE_LOCK_EXCLUSIVE && pIter->eLock>=SQLITE_LOCK_SHARED) || |
| 848 | (eLock==SQLITE_LOCK_PENDING && pIter->eLock>=SQLITE_LOCK_RESERVED) || |
| 849 | (eLock==SQLITE_LOCK_RESERVED && pIter->eLock>=SQLITE_LOCK_RESERVED) || |
| 850 | (eLock==SQLITE_LOCK_SHARED && pIter->eLock>=SQLITE_LOCK_PENDING) |
| 851 | )){ |
| 852 | rc = SQLITE_BUSY; |
| 853 | } |
| 854 | } |
| 855 | if( rc==SQLITE_OK ){ |
| 856 | p->lock.eLock = eLock; |
| 857 | p->lock.eAsyncLock = MAX(p->lock.eAsyncLock, eLock); |
| 858 | } |
| 859 | assert(p->lock.eAsyncLock>=p->lock.eLock); |
| 860 | if( rc==SQLITE_OK ){ |
| 861 | rc = getFileLock(pLock); |
| 862 | } |
| 863 | } |
| 864 | async_mutex_leave(ASYNC_MUTEX_LOCK); |
| 865 | } |
| 866 | |
| 867 | ASYNC_TRACE(("LOCK %d (%s) rc=%d\n", eLock, p->zName, rc)); |
| 868 | return rc; |
| 869 | } |
| 870 | static int asyncUnlock(sqlite3_file *pFile, int eLock){ |
| 871 | int rc = SQLITE_OK; |
| 872 | AsyncFileData *p = ((AsyncFile *)pFile)->pData; |
| 873 | if( p->zName ){ |
| 874 | AsyncFileLock *pLock = &p->lock; |
| 875 | async_mutex_enter(ASYNC_MUTEX_QUEUE); |
| 876 | async_mutex_enter(ASYNC_MUTEX_LOCK); |
| 877 | pLock->eLock = MIN(pLock->eLock, eLock); |
| 878 | rc = addNewAsyncWrite(p, ASYNC_UNLOCK, 0, eLock, 0); |
| 879 | async_mutex_leave(ASYNC_MUTEX_LOCK); |
| 880 | async_mutex_leave(ASYNC_MUTEX_QUEUE); |
| 881 | } |
| 882 | return rc; |
| 883 | } |
| 884 | |
| 885 | /* |
| 886 | ** This function is called when the pager layer first opens a database file |
| 887 | ** and is checking for a hot-journal. |
| 888 | */ |
| 889 | static int asyncCheckReservedLock(sqlite3_file *pFile, int *pResOut){ |
| 890 | int ret = 0; |
| 891 | AsyncFileLock *pIter; |
| 892 | AsyncFileData *p = ((AsyncFile *)pFile)->pData; |
| 893 | |
| 894 | async_mutex_enter(ASYNC_MUTEX_LOCK); |
| 895 | for(pIter=p->pLock->pList; pIter; pIter=pIter->pNext){ |
| 896 | if( pIter->eLock>=SQLITE_LOCK_RESERVED ){ |
| 897 | ret = 1; |
| 898 | } |
| 899 | } |
| 900 | async_mutex_leave(ASYNC_MUTEX_LOCK); |
| 901 | |
| 902 | ASYNC_TRACE(("CHECK-LOCK %d (%s)\n", ret, p->zName)); |
| 903 | *pResOut = ret; |
| 904 | return SQLITE_OK; |
| 905 | } |
| 906 | |
| 907 | /* |
| 908 | ** sqlite3_file_control() implementation. |
| 909 | */ |
| 910 | static int asyncFileControl(sqlite3_file *id, int op, void *pArg){ |
| 911 | switch( op ){ |
| 912 | case SQLITE_FCNTL_LOCKSTATE: { |
| 913 | async_mutex_enter(ASYNC_MUTEX_LOCK); |
| 914 | *(int*)pArg = ((AsyncFile*)id)->pData->lock.eLock; |
| 915 | async_mutex_leave(ASYNC_MUTEX_LOCK); |
| 916 | return SQLITE_OK; |
| 917 | } |
| 918 | } |
| 919 | return SQLITE_ERROR; |
| 920 | } |
| 921 | |
| 922 | /* |
| 923 | ** Return the device characteristics and sector-size of the device. It |
| 924 | ** is not tricky to implement these correctly, as this backend might |
| 925 | ** not have an open file handle at this point. |
| 926 | */ |
| 927 | static int asyncSectorSize(sqlite3_file *pFile){ |
| 928 | return 512; |
| 929 | } |
| 930 | static int asyncDeviceCharacteristics(sqlite3_file *pFile){ |
| 931 | return 0; |
| 932 | } |
| 933 | |
| 934 | static int unlinkAsyncFile(AsyncFileData *pData){ |
| 935 | AsyncFileLock **ppIter; |
| 936 | int rc = SQLITE_OK; |
| 937 | |
| 938 | if( pData->zName ){ |
| 939 | AsyncLock *pLock = pData->pLock; |
| 940 | for(ppIter=&pLock->pList; *ppIter; ppIter=&((*ppIter)->pNext)){ |
| 941 | if( (*ppIter)==&pData->lock ){ |
| 942 | *ppIter = pData->lock.pNext; |
| 943 | break; |
| 944 | } |
| 945 | } |
| 946 | if( !pLock->pList ){ |
| 947 | AsyncLock **pp; |
| 948 | if( pLock->pFile ){ |
| 949 | pLock->pFile->pMethods->xClose(pLock->pFile); |
| 950 | } |
| 951 | for(pp=&async.pLock; *pp!=pLock; pp=&((*pp)->pNext)); |
| 952 | *pp = pLock->pNext; |
| 953 | sqlite3_free(pLock); |
| 954 | }else{ |
| 955 | rc = getFileLock(pLock); |
| 956 | } |
| 957 | } |
| 958 | |
| 959 | return rc; |
| 960 | } |
| 961 | |
| 962 | /* |
| 963 | ** The parameter passed to this function is a copy of a 'flags' parameter |
| 964 | ** passed to this modules xOpen() method. This function returns true |
| 965 | ** if the file should be opened asynchronously, or false if it should |
| 966 | ** be opened immediately. |
| 967 | ** |
| 968 | ** If the file is to be opened asynchronously, then asyncOpen() will add |
| 969 | ** an entry to the event queue and the file will not actually be opened |
| 970 | ** until the event is processed. Otherwise, the file is opened directly |
| 971 | ** by the caller. |
| 972 | */ |
| 973 | static int doAsynchronousOpen(int flags){ |
| 974 | return (flags&SQLITE_OPEN_CREATE) && ( |
| 975 | (flags&SQLITE_OPEN_MAIN_JOURNAL) || |
| 976 | (flags&SQLITE_OPEN_TEMP_JOURNAL) || |
| 977 | (flags&SQLITE_OPEN_DELETEONCLOSE) |
| 978 | ); |
| 979 | } |
| 980 | |
| 981 | /* |
| 982 | ** Open a file. |
| 983 | */ |
| 984 | static int asyncOpen( |
| 985 | sqlite3_vfs *pAsyncVfs, |
| 986 | const char *zName, |
| 987 | sqlite3_file *pFile, |
| 988 | int flags, |
| 989 | int *pOutFlags |
| 990 | ){ |
| 991 | static sqlite3_io_methods async_methods = { |
| 992 | 1, /* iVersion */ |
| 993 | asyncClose, /* xClose */ |
| 994 | asyncRead, /* xRead */ |
| 995 | asyncWrite, /* xWrite */ |
| 996 | asyncTruncate, /* xTruncate */ |
| 997 | asyncSync, /* xSync */ |
| 998 | asyncFileSize, /* xFileSize */ |
| 999 | asyncLock, /* xLock */ |
| 1000 | asyncUnlock, /* xUnlock */ |
| 1001 | asyncCheckReservedLock, /* xCheckReservedLock */ |
| 1002 | asyncFileControl, /* xFileControl */ |
| 1003 | asyncSectorSize, /* xSectorSize */ |
| 1004 | asyncDeviceCharacteristics /* xDeviceCharacteristics */ |
| 1005 | }; |
| 1006 | |
| 1007 | sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData; |
| 1008 | AsyncFile *p = (AsyncFile *)pFile; |
| 1009 | int nName = 0; |
| 1010 | int rc = SQLITE_OK; |
| 1011 | int nByte; |
| 1012 | AsyncFileData *pData; |
| 1013 | AsyncLock *pLock = 0; |
| 1014 | char *z; |
| 1015 | int isAsyncOpen = doAsynchronousOpen(flags); |
| 1016 | |
| 1017 | /* If zName is NULL, then the upper layer is requesting an anonymous file */ |
| 1018 | if( zName ){ |
| 1019 | nName = strlen(zName)+1; |
| 1020 | } |
| 1021 | |
| 1022 | nByte = ( |
| 1023 | sizeof(AsyncFileData) + /* AsyncFileData structure */ |
| 1024 | 2 * pVfs->szOsFile + /* AsyncFileData.pBaseRead and pBaseWrite */ |
| 1025 | nName /* AsyncFileData.zName */ |
| 1026 | ); |
| 1027 | z = sqlite3_malloc(nByte); |
| 1028 | if( !z ){ |
| 1029 | return SQLITE_NOMEM; |
| 1030 | } |
| 1031 | memset(z, 0, nByte); |
| 1032 | pData = (AsyncFileData*)z; |
| 1033 | z += sizeof(pData[0]); |
| 1034 | pData->pBaseRead = (sqlite3_file*)z; |
| 1035 | z += pVfs->szOsFile; |
| 1036 | pData->pBaseWrite = (sqlite3_file*)z; |
| 1037 | pData->closeOp.pFileData = pData; |
| 1038 | pData->closeOp.op = ASYNC_CLOSE; |
| 1039 | |
| 1040 | if( zName ){ |
| 1041 | z += pVfs->szOsFile; |
| 1042 | pData->zName = z; |
| 1043 | pData->nName = nName; |
| 1044 | memcpy(pData->zName, zName, nName); |
| 1045 | } |
| 1046 | |
| 1047 | if( !isAsyncOpen ){ |
| 1048 | int flagsout; |
| 1049 | rc = pVfs->xOpen(pVfs, pData->zName, pData->pBaseRead, flags, &flagsout); |
| 1050 | if( rc==SQLITE_OK && (flagsout&SQLITE_OPEN_READWRITE) ){ |
| 1051 | rc = pVfs->xOpen(pVfs, pData->zName, pData->pBaseWrite, flags, 0); |
| 1052 | } |
| 1053 | if( pOutFlags ){ |
| 1054 | *pOutFlags = flagsout; |
| 1055 | } |
| 1056 | } |
| 1057 | |
| 1058 | async_mutex_enter(ASYNC_MUTEX_LOCK); |
| 1059 | |
| 1060 | if( zName && rc==SQLITE_OK ){ |
| 1061 | pLock = findLock(pData->zName, pData->nName); |
| 1062 | if( !pLock ){ |
| 1063 | int nByte = pVfs->szOsFile + sizeof(AsyncLock) + pData->nName + 1; |
| 1064 | pLock = (AsyncLock *)sqlite3_malloc(nByte); |
| 1065 | if( pLock ){ |
| 1066 | memset(pLock, 0, nByte); |
| 1067 | #ifdef ENABLE_FILE_LOCKING |
| 1068 | if( flags&SQLITE_OPEN_MAIN_DB ){ |
| 1069 | pLock->pFile = (sqlite3_file *)&pLock[1]; |
| 1070 | rc = pVfs->xOpen(pVfs, pData->zName, pLock->pFile, flags, 0); |
| 1071 | if( rc!=SQLITE_OK ){ |
| 1072 | sqlite3_free(pLock); |
| 1073 | pLock = 0; |
| 1074 | } |
| 1075 | } |
| 1076 | #endif |
| 1077 | if( pLock ){ |
| 1078 | pLock->nFile = pData->nName; |
| 1079 | pLock->zFile = &((char *)(&pLock[1]))[pVfs->szOsFile]; |
| 1080 | memcpy(pLock->zFile, pData->zName, pLock->nFile); |
| 1081 | pLock->pNext = async.pLock; |
| 1082 | async.pLock = pLock; |
| 1083 | } |
| 1084 | }else{ |
| 1085 | rc = SQLITE_NOMEM; |
| 1086 | } |
| 1087 | } |
| 1088 | } |
| 1089 | |
| 1090 | if( rc==SQLITE_OK ){ |
| 1091 | p->pMethod = &async_methods; |
| 1092 | p->pData = pData; |
| 1093 | |
| 1094 | /* Link AsyncFileData.lock into the linked list of |
| 1095 | ** AsyncFileLock structures for this file. |
| 1096 | */ |
| 1097 | if( zName ){ |
| 1098 | pData->lock.pNext = pLock->pList; |
| 1099 | pLock->pList = &pData->lock; |
| 1100 | pData->zName = pLock->zFile; |
| 1101 | } |
| 1102 | }else{ |
| 1103 | if( pData->pBaseRead->pMethods ){ |
| 1104 | pData->pBaseRead->pMethods->xClose(pData->pBaseRead); |
| 1105 | } |
| 1106 | if( pData->pBaseWrite->pMethods ){ |
| 1107 | pData->pBaseWrite->pMethods->xClose(pData->pBaseWrite); |
| 1108 | } |
| 1109 | sqlite3_free(pData); |
| 1110 | } |
| 1111 | |
| 1112 | async_mutex_leave(ASYNC_MUTEX_LOCK); |
| 1113 | |
| 1114 | if( rc==SQLITE_OK ){ |
| 1115 | incrOpenFileCount(); |
| 1116 | pData->pLock = pLock; |
| 1117 | } |
| 1118 | |
| 1119 | if( rc==SQLITE_OK && isAsyncOpen ){ |
| 1120 | rc = addNewAsyncWrite(pData, ASYNC_OPENEXCLUSIVE, (sqlite3_int64)flags,0,0); |
| 1121 | if( rc==SQLITE_OK ){ |
| 1122 | if( pOutFlags ) *pOutFlags = flags; |
| 1123 | }else{ |
| 1124 | async_mutex_enter(ASYNC_MUTEX_LOCK); |
| 1125 | unlinkAsyncFile(pData); |
| 1126 | async_mutex_leave(ASYNC_MUTEX_LOCK); |
| 1127 | sqlite3_free(pData); |
| 1128 | } |
| 1129 | } |
| 1130 | if( rc!=SQLITE_OK ){ |
| 1131 | p->pMethod = 0; |
| 1132 | } |
| 1133 | return rc; |
| 1134 | } |
| 1135 | |
| 1136 | /* |
| 1137 | ** Implementation of sqlite3OsDelete. Add an entry to the end of the |
| 1138 | ** write-op queue to perform the delete. |
| 1139 | */ |
| 1140 | static int asyncDelete(sqlite3_vfs *pAsyncVfs, const char *z, int syncDir){ |
| 1141 | return addNewAsyncWrite(0, ASYNC_DELETE, syncDir, strlen(z)+1, z); |
| 1142 | } |
| 1143 | |
| 1144 | /* |
| 1145 | ** Implementation of sqlite3OsAccess. This method holds the mutex from |
| 1146 | ** start to finish. |
| 1147 | */ |
| 1148 | static int asyncAccess( |
| 1149 | sqlite3_vfs *pAsyncVfs, |
| 1150 | const char *zName, |
| 1151 | int flags, |
| 1152 | int *pResOut |
| 1153 | ){ |
| 1154 | int rc; |
| 1155 | int ret; |
| 1156 | AsyncWrite *p; |
| 1157 | sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData; |
| 1158 | |
| 1159 | assert(flags==SQLITE_ACCESS_READWRITE |
| 1160 | || flags==SQLITE_ACCESS_READ |
| 1161 | || flags==SQLITE_ACCESS_EXISTS |
| 1162 | ); |
| 1163 | |
| 1164 | async_mutex_enter(ASYNC_MUTEX_QUEUE); |
| 1165 | rc = pVfs->xAccess(pVfs, zName, flags, &ret); |
| 1166 | if( rc==SQLITE_OK && flags==SQLITE_ACCESS_EXISTS ){ |
| 1167 | for(p=async.pQueueFirst; p; p = p->pNext){ |
| 1168 | if( p->op==ASYNC_DELETE && 0==strcmp(p->zBuf, zName) ){ |
| 1169 | ret = 0; |
| 1170 | }else if( p->op==ASYNC_OPENEXCLUSIVE |
| 1171 | && p->pFileData->zName |
| 1172 | && 0==strcmp(p->pFileData->zName, zName) |
| 1173 | ){ |
| 1174 | ret = 1; |
| 1175 | } |
| 1176 | } |
| 1177 | } |
| 1178 | ASYNC_TRACE(("ACCESS(%s): %s = %d\n", |
| 1179 | flags==SQLITE_ACCESS_READWRITE?"read-write": |
| 1180 | flags==SQLITE_ACCESS_READ?"read":"exists" |
| 1181 | , zName, ret) |
| 1182 | ); |
| 1183 | async_mutex_leave(ASYNC_MUTEX_QUEUE); |
| 1184 | *pResOut = ret; |
| 1185 | return rc; |
| 1186 | } |
| 1187 | |
| 1188 | /* |
| 1189 | ** Fill in zPathOut with the full path to the file identified by zPath. |
| 1190 | */ |
| 1191 | static int asyncFullPathname( |
| 1192 | sqlite3_vfs *pAsyncVfs, |
| 1193 | const char *zPath, |
| 1194 | int nPathOut, |
| 1195 | char *zPathOut |
| 1196 | ){ |
| 1197 | int rc; |
| 1198 | sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData; |
| 1199 | rc = pVfs->xFullPathname(pVfs, zPath, nPathOut, zPathOut); |
| 1200 | |
| 1201 | /* Because of the way intra-process file locking works, this backend |
| 1202 | ** needs to return a canonical path. The following block assumes the |
| 1203 | ** file-system uses unix style paths. |
| 1204 | */ |
| 1205 | if( rc==SQLITE_OK ){ |
| 1206 | int i, j; |
| 1207 | int n = nPathOut; |
| 1208 | char *z = zPathOut; |
| 1209 | while( n>1 && z[n-1]=='/' ){ n--; } |
| 1210 | for(i=j=0; i<n; i++){ |
| 1211 | if( z[i]=='/' ){ |
| 1212 | if( z[i+1]=='/' ) continue; |
| 1213 | if( z[i+1]=='.' && i+2<n && z[i+2]=='/' ){ |
| 1214 | i += 1; |
| 1215 | continue; |
| 1216 | } |
| 1217 | if( z[i+1]=='.' && i+3<n && z[i+2]=='.' && z[i+3]=='/' ){ |
| 1218 | while( j>0 && z[j-1]!='/' ){ j--; } |
| 1219 | if( j>0 ){ j--; } |
| 1220 | i += 2; |
| 1221 | continue; |
| 1222 | } |
| 1223 | } |
| 1224 | z[j++] = z[i]; |
| 1225 | } |
| 1226 | z[j] = 0; |
| 1227 | } |
| 1228 | |
| 1229 | return rc; |
| 1230 | } |
| 1231 | static void *asyncDlOpen(sqlite3_vfs *pAsyncVfs, const char *zPath){ |
| 1232 | sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData; |
| 1233 | return pVfs->xDlOpen(pVfs, zPath); |
| 1234 | } |
| 1235 | static void asyncDlError(sqlite3_vfs *pAsyncVfs, int nByte, char *zErrMsg){ |
| 1236 | sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData; |
| 1237 | pVfs->xDlError(pVfs, nByte, zErrMsg); |
| 1238 | } |
| 1239 | static void (*asyncDlSym( |
| 1240 | sqlite3_vfs *pAsyncVfs, |
| 1241 | void *pHandle, |
| 1242 | const char *zSymbol |
| 1243 | ))(void){ |
| 1244 | sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData; |
| 1245 | return pVfs->xDlSym(pVfs, pHandle, zSymbol); |
| 1246 | } |
| 1247 | static void asyncDlClose(sqlite3_vfs *pAsyncVfs, void *pHandle){ |
| 1248 | sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData; |
| 1249 | pVfs->xDlClose(pVfs, pHandle); |
| 1250 | } |
| 1251 | static int asyncRandomness(sqlite3_vfs *pAsyncVfs, int nByte, char *zBufOut){ |
| 1252 | sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData; |
| 1253 | return pVfs->xRandomness(pVfs, nByte, zBufOut); |
| 1254 | } |
| 1255 | static int asyncSleep(sqlite3_vfs *pAsyncVfs, int nMicro){ |
| 1256 | sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData; |
| 1257 | return pVfs->xSleep(pVfs, nMicro); |
| 1258 | } |
| 1259 | static int asyncCurrentTime(sqlite3_vfs *pAsyncVfs, double *pTimeOut){ |
| 1260 | sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData; |
| 1261 | return pVfs->xCurrentTime(pVfs, pTimeOut); |
| 1262 | } |
| 1263 | |
| 1264 | static sqlite3_vfs async_vfs = { |
| 1265 | 1, /* iVersion */ |
| 1266 | sizeof(AsyncFile), /* szOsFile */ |
| 1267 | 0, /* mxPathname */ |
| 1268 | 0, /* pNext */ |
| 1269 | SQLITEASYNC_VFSNAME, /* zName */ |
| 1270 | 0, /* pAppData */ |
| 1271 | asyncOpen, /* xOpen */ |
| 1272 | asyncDelete, /* xDelete */ |
| 1273 | asyncAccess, /* xAccess */ |
| 1274 | asyncFullPathname, /* xFullPathname */ |
| 1275 | asyncDlOpen, /* xDlOpen */ |
| 1276 | asyncDlError, /* xDlError */ |
| 1277 | asyncDlSym, /* xDlSym */ |
| 1278 | asyncDlClose, /* xDlClose */ |
| 1279 | asyncRandomness, /* xDlError */ |
| 1280 | asyncSleep, /* xDlSym */ |
| 1281 | asyncCurrentTime /* xDlClose */ |
| 1282 | }; |
| 1283 | |
| 1284 | /* |
| 1285 | ** This procedure runs in a separate thread, reading messages off of the |
| 1286 | ** write queue and processing them one by one. |
| 1287 | ** |
| 1288 | ** If async.writerHaltNow is true, then this procedure exits |
| 1289 | ** after processing a single message. |
| 1290 | ** |
| 1291 | ** If async.writerHaltWhenIdle is true, then this procedure exits when |
| 1292 | ** the write queue is empty. |
| 1293 | ** |
| 1294 | ** If both of the above variables are false, this procedure runs |
| 1295 | ** indefinately, waiting for operations to be added to the write queue |
| 1296 | ** and processing them in the order in which they arrive. |
| 1297 | ** |
| 1298 | ** An artifical delay of async.ioDelay milliseconds is inserted before |
| 1299 | ** each write operation in order to simulate the effect of a slow disk. |
| 1300 | ** |
| 1301 | ** Only one instance of this procedure may be running at a time. |
| 1302 | */ |
| 1303 | static void asyncWriterThread(void){ |
| 1304 | sqlite3_vfs *pVfs = (sqlite3_vfs *)(async_vfs.pAppData); |
| 1305 | AsyncWrite *p = 0; |
| 1306 | int rc = SQLITE_OK; |
| 1307 | int holdingMutex = 0; |
| 1308 | |
| 1309 | async_mutex_enter(ASYNC_MUTEX_WRITER); |
| 1310 | |
| 1311 | while( async.eHalt!=SQLITEASYNC_HALT_NOW ){ |
| 1312 | int doNotFree = 0; |
| 1313 | sqlite3_file *pBase = 0; |
| 1314 | |
| 1315 | if( !holdingMutex ){ |
| 1316 | async_mutex_enter(ASYNC_MUTEX_QUEUE); |
| 1317 | } |
| 1318 | while( (p = async.pQueueFirst)==0 ){ |
| 1319 | if( async.eHalt!=SQLITEASYNC_HALT_NEVER ){ |
| 1320 | async_mutex_leave(ASYNC_MUTEX_QUEUE); |
| 1321 | break; |
| 1322 | }else{ |
| 1323 | ASYNC_TRACE(("IDLE\n")); |
| 1324 | async_cond_wait(ASYNC_COND_QUEUE, ASYNC_MUTEX_QUEUE); |
| 1325 | ASYNC_TRACE(("WAKEUP\n")); |
| 1326 | } |
| 1327 | } |
| 1328 | if( p==0 ) break; |
| 1329 | holdingMutex = 1; |
| 1330 | |
| 1331 | /* Right now this thread is holding the mutex on the write-op queue. |
| 1332 | ** Variable 'p' points to the first entry in the write-op queue. In |
| 1333 | ** the general case, we hold on to the mutex for the entire body of |
| 1334 | ** the loop. |
| 1335 | ** |
| 1336 | ** However in the cases enumerated below, we relinquish the mutex, |
| 1337 | ** perform the IO, and then re-request the mutex before removing 'p' from |
| 1338 | ** the head of the write-op queue. The idea is to increase concurrency with |
| 1339 | ** sqlite threads. |
| 1340 | ** |
| 1341 | ** * An ASYNC_CLOSE operation. |
| 1342 | ** * An ASYNC_OPENEXCLUSIVE operation. For this one, we relinquish |
| 1343 | ** the mutex, call the underlying xOpenExclusive() function, then |
| 1344 | ** re-aquire the mutex before seting the AsyncFile.pBaseRead |
| 1345 | ** variable. |
| 1346 | ** * ASYNC_SYNC and ASYNC_WRITE operations, if |
| 1347 | ** SQLITE_ASYNC_TWO_FILEHANDLES was set at compile time and two |
| 1348 | ** file-handles are open for the particular file being "synced". |
| 1349 | */ |
| 1350 | if( async.ioError!=SQLITE_OK && p->op!=ASYNC_CLOSE ){ |
| 1351 | p->op = ASYNC_NOOP; |
| 1352 | } |
| 1353 | if( p->pFileData ){ |
| 1354 | pBase = p->pFileData->pBaseWrite; |
| 1355 | if( |
| 1356 | p->op==ASYNC_CLOSE || |
| 1357 | p->op==ASYNC_OPENEXCLUSIVE || |
| 1358 | (pBase->pMethods && (p->op==ASYNC_SYNC || p->op==ASYNC_WRITE) ) |
| 1359 | ){ |
| 1360 | async_mutex_leave(ASYNC_MUTEX_QUEUE); |
| 1361 | holdingMutex = 0; |
| 1362 | } |
| 1363 | if( !pBase->pMethods ){ |
| 1364 | pBase = p->pFileData->pBaseRead; |
| 1365 | } |
| 1366 | } |
| 1367 | |
| 1368 | switch( p->op ){ |
| 1369 | case ASYNC_NOOP: |
| 1370 | break; |
| 1371 | |
| 1372 | case ASYNC_WRITE: |
| 1373 | assert( pBase ); |
| 1374 | ASYNC_TRACE(("WRITE %s %d bytes at %d\n", |
| 1375 | p->pFileData->zName, p->nByte, p->iOffset)); |
| 1376 | rc = pBase->pMethods->xWrite(pBase, (void *)(p->zBuf), p->nByte, p->iOffset); |
| 1377 | break; |
| 1378 | |
| 1379 | case ASYNC_SYNC: |
| 1380 | assert( pBase ); |
| 1381 | ASYNC_TRACE(("SYNC %s\n", p->pFileData->zName)); |
| 1382 | rc = pBase->pMethods->xSync(pBase, p->nByte); |
| 1383 | break; |
| 1384 | |
| 1385 | case ASYNC_TRUNCATE: |
| 1386 | assert( pBase ); |
| 1387 | ASYNC_TRACE(("TRUNCATE %s to %d bytes\n", |
| 1388 | p->pFileData->zName, p->iOffset)); |
| 1389 | rc = pBase->pMethods->xTruncate(pBase, p->iOffset); |
| 1390 | break; |
| 1391 | |
| 1392 | case ASYNC_CLOSE: { |
| 1393 | AsyncFileData *pData = p->pFileData; |
| 1394 | ASYNC_TRACE(("CLOSE %s\n", p->pFileData->zName)); |
| 1395 | if( pData->pBaseWrite->pMethods ){ |
| 1396 | pData->pBaseWrite->pMethods->xClose(pData->pBaseWrite); |
| 1397 | } |
| 1398 | if( pData->pBaseRead->pMethods ){ |
| 1399 | pData->pBaseRead->pMethods->xClose(pData->pBaseRead); |
| 1400 | } |
| 1401 | |
| 1402 | /* Unlink AsyncFileData.lock from the linked list of AsyncFileLock |
| 1403 | ** structures for this file. Obtain the async.lockMutex mutex |
| 1404 | ** before doing so. |
| 1405 | */ |
| 1406 | async_mutex_enter(ASYNC_MUTEX_LOCK); |
| 1407 | rc = unlinkAsyncFile(pData); |
| 1408 | async_mutex_leave(ASYNC_MUTEX_LOCK); |
| 1409 | |
| 1410 | if( !holdingMutex ){ |
| 1411 | async_mutex_enter(ASYNC_MUTEX_QUEUE); |
| 1412 | holdingMutex = 1; |
| 1413 | } |
| 1414 | assert_mutex_is_held(ASYNC_MUTEX_QUEUE); |
| 1415 | async.pQueueFirst = p->pNext; |
| 1416 | sqlite3_free(pData); |
| 1417 | doNotFree = 1; |
| 1418 | break; |
| 1419 | } |
| 1420 | |
| 1421 | case ASYNC_UNLOCK: { |
| 1422 | AsyncWrite *pIter; |
| 1423 | AsyncFileData *pData = p->pFileData; |
| 1424 | int eLock = p->nByte; |
| 1425 | |
| 1426 | /* When a file is locked by SQLite using the async backend, it is |
| 1427 | ** locked within the 'real' file-system synchronously. When it is |
| 1428 | ** unlocked, an ASYNC_UNLOCK event is added to the write-queue to |
| 1429 | ** unlock the file asynchronously. The design of the async backend |
| 1430 | ** requires that the 'real' file-system file be locked from the |
| 1431 | ** time that SQLite first locks it (and probably reads from it) |
| 1432 | ** until all asynchronous write events that were scheduled before |
| 1433 | ** SQLite unlocked the file have been processed. |
| 1434 | ** |
| 1435 | ** This is more complex if SQLite locks and unlocks the file multiple |
| 1436 | ** times in quick succession. For example, if SQLite does: |
| 1437 | ** |
| 1438 | ** lock, write, unlock, lock, write, unlock |
| 1439 | ** |
| 1440 | ** Each "lock" operation locks the file immediately. Each "write" |
| 1441 | ** and "unlock" operation adds an event to the event queue. If the |
| 1442 | ** second "lock" operation is performed before the first "unlock" |
| 1443 | ** operation has been processed asynchronously, then the first |
| 1444 | ** "unlock" cannot be safely processed as is, since this would mean |
| 1445 | ** the file was unlocked when the second "write" operation is |
| 1446 | ** processed. To work around this, when processing an ASYNC_UNLOCK |
| 1447 | ** operation, SQLite: |
| 1448 | ** |
| 1449 | ** 1) Unlocks the file to the minimum of the argument passed to |
| 1450 | ** the xUnlock() call and the current lock from SQLite's point |
| 1451 | ** of view, and |
| 1452 | ** |
| 1453 | ** 2) Only unlocks the file at all if this event is the last |
| 1454 | ** ASYNC_UNLOCK event on this file in the write-queue. |
| 1455 | */ |
| 1456 | assert( holdingMutex==1 ); |
| 1457 | assert( async.pQueueFirst==p ); |
| 1458 | for(pIter=async.pQueueFirst->pNext; pIter; pIter=pIter->pNext){ |
| 1459 | if( pIter->pFileData==pData && pIter->op==ASYNC_UNLOCK ) break; |
| 1460 | } |
| 1461 | if( !pIter ){ |
| 1462 | async_mutex_enter(ASYNC_MUTEX_LOCK); |
| 1463 | pData->lock.eAsyncLock = MIN( |
| 1464 | pData->lock.eAsyncLock, MAX(pData->lock.eLock, eLock) |
| 1465 | ); |
| 1466 | assert(pData->lock.eAsyncLock>=pData->lock.eLock); |
| 1467 | rc = getFileLock(pData->pLock); |
| 1468 | async_mutex_leave(ASYNC_MUTEX_LOCK); |
| 1469 | } |
| 1470 | break; |
| 1471 | } |
| 1472 | |
| 1473 | case ASYNC_DELETE: |
| 1474 | ASYNC_TRACE(("DELETE %s\n", p->zBuf)); |
| 1475 | rc = pVfs->xDelete(pVfs, p->zBuf, (int)p->iOffset); |
| 1476 | break; |
| 1477 | |
| 1478 | case ASYNC_OPENEXCLUSIVE: { |
| 1479 | int flags = (int)p->iOffset; |
| 1480 | AsyncFileData *pData = p->pFileData; |
| 1481 | ASYNC_TRACE(("OPEN %s flags=%d\n", p->zBuf, (int)p->iOffset)); |
| 1482 | assert(pData->pBaseRead->pMethods==0 && pData->pBaseWrite->pMethods==0); |
| 1483 | rc = pVfs->xOpen(pVfs, pData->zName, pData->pBaseRead, flags, 0); |
| 1484 | assert( holdingMutex==0 ); |
| 1485 | async_mutex_enter(ASYNC_MUTEX_QUEUE); |
| 1486 | holdingMutex = 1; |
| 1487 | break; |
| 1488 | } |
| 1489 | |
| 1490 | default: assert(!"Illegal value for AsyncWrite.op"); |
| 1491 | } |
| 1492 | |
| 1493 | /* If we didn't hang on to the mutex during the IO op, obtain it now |
| 1494 | ** so that the AsyncWrite structure can be safely removed from the |
| 1495 | ** global write-op queue. |
| 1496 | */ |
| 1497 | if( !holdingMutex ){ |
| 1498 | async_mutex_enter(ASYNC_MUTEX_QUEUE); |
| 1499 | holdingMutex = 1; |
| 1500 | } |
| 1501 | /* ASYNC_TRACE(("UNLINK %p\n", p)); */ |
| 1502 | if( p==async.pQueueLast ){ |
| 1503 | async.pQueueLast = 0; |
| 1504 | } |
| 1505 | if( !doNotFree ){ |
| 1506 | assert_mutex_is_held(ASYNC_MUTEX_QUEUE); |
| 1507 | async.pQueueFirst = p->pNext; |
| 1508 | sqlite3_free(p); |
| 1509 | } |
| 1510 | assert( holdingMutex ); |
| 1511 | |
| 1512 | /* An IO error has occurred. We cannot report the error back to the |
| 1513 | ** connection that requested the I/O since the error happened |
| 1514 | ** asynchronously. The connection has already moved on. There |
| 1515 | ** really is nobody to report the error to. |
| 1516 | ** |
| 1517 | ** The file for which the error occurred may have been a database or |
| 1518 | ** journal file. Regardless, none of the currently queued operations |
| 1519 | ** associated with the same database should now be performed. Nor should |
| 1520 | ** any subsequently requested IO on either a database or journal file |
| 1521 | ** handle for the same database be accepted until the main database |
| 1522 | ** file handle has been closed and reopened. |
| 1523 | ** |
| 1524 | ** Furthermore, no further IO should be queued or performed on any file |
| 1525 | ** handle associated with a database that may have been part of a |
| 1526 | ** multi-file transaction that included the database associated with |
| 1527 | ** the IO error (i.e. a database ATTACHed to the same handle at some |
| 1528 | ** point in time). |
| 1529 | */ |
| 1530 | if( rc!=SQLITE_OK ){ |
| 1531 | async.ioError = rc; |
| 1532 | } |
| 1533 | |
| 1534 | if( async.ioError && !async.pQueueFirst ){ |
| 1535 | async_mutex_enter(ASYNC_MUTEX_LOCK); |
| 1536 | if( 0==async.pLock ){ |
| 1537 | async.ioError = SQLITE_OK; |
| 1538 | } |
| 1539 | async_mutex_leave(ASYNC_MUTEX_LOCK); |
| 1540 | } |
| 1541 | |
| 1542 | /* Drop the queue mutex before continuing to the next write operation |
| 1543 | ** in order to give other threads a chance to work with the write queue. |
| 1544 | */ |
| 1545 | if( !async.pQueueFirst || !async.ioError ){ |
| 1546 | async_mutex_leave(ASYNC_MUTEX_QUEUE); |
| 1547 | holdingMutex = 0; |
| 1548 | if( async.ioDelay>0 ){ |
| 1549 | pVfs->xSleep(pVfs, async.ioDelay); |
| 1550 | }else{ |
| 1551 | async_sched_yield(); |
| 1552 | } |
| 1553 | } |
| 1554 | } |
| 1555 | |
| 1556 | async_mutex_leave(ASYNC_MUTEX_WRITER); |
| 1557 | return; |
| 1558 | } |
| 1559 | |
| 1560 | /* |
| 1561 | ** Install the asynchronous VFS. |
| 1562 | */ |
| 1563 | int sqlite3async_initialize(const char *zParent, int isDefault){ |
| 1564 | int rc = SQLITE_OK; |
| 1565 | if( async_vfs.pAppData==0 ){ |
| 1566 | sqlite3_vfs *pParent = sqlite3_vfs_find(zParent); |
| 1567 | if( !pParent || async_os_initialize() ){ |
| 1568 | rc = SQLITE_ERROR; |
| 1569 | }else if( SQLITE_OK!=(rc = sqlite3_vfs_register(&async_vfs, isDefault)) ){ |
| 1570 | async_os_shutdown(); |
| 1571 | }else{ |
| 1572 | async_vfs.pAppData = (void *)pParent; |
| 1573 | async_vfs.mxPathname = ((sqlite3_vfs *)async_vfs.pAppData)->mxPathname; |
| 1574 | } |
| 1575 | } |
| 1576 | return rc; |
| 1577 | } |
| 1578 | |
| 1579 | /* |
| 1580 | ** Uninstall the asynchronous VFS. |
| 1581 | */ |
| 1582 | void sqlite3async_shutdown(void){ |
| 1583 | if( async_vfs.pAppData ){ |
| 1584 | async_os_shutdown(); |
| 1585 | sqlite3_vfs_unregister((sqlite3_vfs *)&async_vfs); |
| 1586 | async_vfs.pAppData = 0; |
| 1587 | } |
| 1588 | } |
| 1589 | |
| 1590 | /* |
| 1591 | ** Process events on the write-queue. |
| 1592 | */ |
| 1593 | void sqlite3async_run(void){ |
| 1594 | asyncWriterThread(); |
| 1595 | } |
| 1596 | |
| 1597 | /* |
| 1598 | ** Control/configure the asynchronous IO system. |
| 1599 | */ |
| 1600 | int sqlite3async_control(int op, ...){ |
| 1601 | va_list ap; |
| 1602 | va_start(ap, op); |
| 1603 | switch( op ){ |
| 1604 | case SQLITEASYNC_HALT: { |
| 1605 | int eWhen = va_arg(ap, int); |
| 1606 | if( eWhen!=SQLITEASYNC_HALT_NEVER |
| 1607 | && eWhen!=SQLITEASYNC_HALT_NOW |
| 1608 | && eWhen!=SQLITEASYNC_HALT_IDLE |
| 1609 | ){ |
| 1610 | return SQLITE_ERROR; |
| 1611 | } |
| 1612 | async.eHalt = eWhen; |
| 1613 | async_mutex_enter(ASYNC_MUTEX_QUEUE); |
| 1614 | async_cond_signal(ASYNC_COND_QUEUE); |
| 1615 | async_mutex_leave(ASYNC_MUTEX_QUEUE); |
| 1616 | break; |
| 1617 | } |
| 1618 | |
| 1619 | case SQLITEASYNC_DELAY: { |
| 1620 | int iDelay = va_arg(ap, int); |
| 1621 | async.ioDelay = iDelay; |
| 1622 | break; |
| 1623 | } |
| 1624 | |
| 1625 | case SQLITEASYNC_GET_HALT: { |
| 1626 | int *peWhen = va_arg(ap, int *); |
| 1627 | *peWhen = async.eHalt; |
| 1628 | break; |
| 1629 | } |
| 1630 | case SQLITEASYNC_GET_DELAY: { |
| 1631 | int *piDelay = va_arg(ap, int *); |
| 1632 | *piDelay = async.ioDelay; |
| 1633 | break; |
| 1634 | } |
| 1635 | |
| 1636 | default: |
| 1637 | return SQLITE_ERROR; |
| 1638 | } |
| 1639 | return SQLITE_OK; |
| 1640 | } |
| 1641 | |
| 1642 | #endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_ASYNCIO) */ |
| 1643 | |