blob: 42d988403ee20934d006b2f33c7358f7194a35f0 [file] [log] [blame]
drhbbd42a62004-05-22 17:41:58 +00001/*
2** 2004 May 22
3**
4** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
6**
7** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
10**
11******************************************************************************
12**
13** This file contains code that is specific to Unix systems.
14*/
drhbbd42a62004-05-22 17:41:58 +000015#include "sqliteInt.h"
drheb206252004-10-01 02:00:31 +000016#include "os.h"
17#if OS_UNIX /* This file is used on unix only */
drh66560ad2006-01-06 14:32:19 +000018
drhbfe66312006-10-03 17:40:40 +000019/* #define SQLITE_ENABLE_LOCKING_STYLE 0 */
20
drh9cbe6352005-11-29 03:13:21 +000021/*
22** These #defines should enable >2GB file support on Posix if the
23** underlying operating system supports it. If the OS lacks
drhf1a221e2006-01-15 17:27:17 +000024** large file support, these should be no-ops.
drh9cbe6352005-11-29 03:13:21 +000025**
26** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch
27** on the compiler command line. This is necessary if you are compiling
28** on a recent machine (ex: RedHat 7.2) but you want your code to work
29** on an older machine (ex: RedHat 6.0). If you compile on RedHat 7.2
30** without this option, LFS is enable. But LFS does not exist in the kernel
31** in RedHat 6.0, so the code won't work. Hence, for maximum binary
32** portability you should omit LFS.
drh9cbe6352005-11-29 03:13:21 +000033*/
34#ifndef SQLITE_DISABLE_LFS
35# define _LARGE_FILE 1
36# ifndef _FILE_OFFSET_BITS
37# define _FILE_OFFSET_BITS 64
38# endif
39# define _LARGEFILE_SOURCE 1
40#endif
drhbbd42a62004-05-22 17:41:58 +000041
drh9cbe6352005-11-29 03:13:21 +000042/*
43** standard include files.
44*/
45#include <sys/types.h>
46#include <sys/stat.h>
47#include <fcntl.h>
48#include <unistd.h>
drhbbd42a62004-05-22 17:41:58 +000049#include <time.h>
drh19e2d372005-08-29 23:00:03 +000050#include <sys/time.h>
drhbbd42a62004-05-22 17:41:58 +000051#include <errno.h>
drhbfe66312006-10-03 17:40:40 +000052#ifdef SQLITE_ENABLE_LOCKING_STYLE
53#include <sys/ioctl.h>
54#include <sys/param.h>
55#include <sys/mount.h>
56#endif /* SQLITE_ENABLE_LOCKING_STYLE */
drh9cbe6352005-11-29 03:13:21 +000057
58/*
drhf1a221e2006-01-15 17:27:17 +000059** If we are to be thread-safe, include the pthreads header and define
60** the SQLITE_UNIX_THREADS macro.
drh9cbe6352005-11-29 03:13:21 +000061*/
62#if defined(THREADSAFE) && THREADSAFE
63# include <pthread.h>
64# define SQLITE_UNIX_THREADS 1
65#endif
66
67/*
68** Default permissions when creating a new file
69*/
70#ifndef SQLITE_DEFAULT_FILE_PERMISSIONS
71# define SQLITE_DEFAULT_FILE_PERMISSIONS 0644
72#endif
73
74
75
76/*
drh054889e2005-11-30 03:20:31 +000077** The unixFile structure is subclass of OsFile specific for the unix
78** protability layer.
drh9cbe6352005-11-29 03:13:21 +000079*/
drh054889e2005-11-30 03:20:31 +000080typedef struct unixFile unixFile;
81struct unixFile {
82 IoMethod const *pMethod; /* Always the first entry */
drh9cbe6352005-11-29 03:13:21 +000083 struct openCnt *pOpen; /* Info about all open fd's on this inode */
84 struct lockInfo *pLock; /* Info about locks on this inode */
drhbfe66312006-10-03 17:40:40 +000085#ifdef SQLITE_ENABLE_LOCKING_STYLE
86 void *lockingContext; /* Locking style specific state */
87#endif /* SQLITE_ENABLE_LOCKING_STYLE */
drh9cbe6352005-11-29 03:13:21 +000088 int h; /* The file descriptor */
89 unsigned char locktype; /* The type of lock held on this fd */
90 unsigned char isOpen; /* True if needs to be closed */
91 unsigned char fullSync; /* Use F_FULLSYNC if available */
92 int dirfd; /* File descriptor for the directory */
drhb912b282006-03-23 22:42:20 +000093 i64 offset; /* Seek offset */
drh9cbe6352005-11-29 03:13:21 +000094#ifdef SQLITE_UNIX_THREADS
drhf1a221e2006-01-15 17:27:17 +000095 pthread_t tid; /* The thread that "owns" this OsFile */
drh9cbe6352005-11-29 03:13:21 +000096#endif
97};
98
drh66560ad2006-01-06 14:32:19 +000099/*
100** Provide the ability to override some OS-layer functions during
101** testing. This is used to simulate OS crashes to verify that
102** commits are atomic even in the event of an OS crash.
103*/
104#ifdef SQLITE_CRASH_TEST
105 extern int sqlite3CrashTestEnable;
106 extern int sqlite3CrashOpenReadWrite(const char*, OsFile**, int*);
107 extern int sqlite3CrashOpenExclusive(const char*, OsFile**, int);
108 extern int sqlite3CrashOpenReadOnly(const char*, OsFile**, int);
109# define CRASH_TEST_OVERRIDE(X,A,B,C) \
110 if(sqlite3CrashTestEnable){ return X(A,B,C); }
111#else
112# define CRASH_TEST_OVERRIDE(X,A,B,C) /* no-op */
113#endif
114
drh0ccebe72005-06-07 22:22:50 +0000115
116/*
drh198bf392006-01-06 21:52:49 +0000117** Include code that is common to all os_*.c files
118*/
119#include "os_common.h"
120
121/*
drh0ccebe72005-06-07 22:22:50 +0000122** Do not include any of the File I/O interface procedures if the
drhf1a221e2006-01-15 17:27:17 +0000123** SQLITE_OMIT_DISKIO macro is defined (indicating that the database
drh0ccebe72005-06-07 22:22:50 +0000124** will be in-memory only)
125*/
126#ifndef SQLITE_OMIT_DISKIO
127
128
129/*
130** Define various macros that are missing from some systems.
131*/
drhbbd42a62004-05-22 17:41:58 +0000132#ifndef O_LARGEFILE
133# define O_LARGEFILE 0
134#endif
135#ifdef SQLITE_DISABLE_LFS
136# undef O_LARGEFILE
137# define O_LARGEFILE 0
138#endif
139#ifndef O_NOFOLLOW
140# define O_NOFOLLOW 0
141#endif
142#ifndef O_BINARY
143# define O_BINARY 0
144#endif
145
146/*
147** The DJGPP compiler environment looks mostly like Unix, but it
148** lacks the fcntl() system call. So redefine fcntl() to be something
149** that always succeeds. This means that locking does not occur under
danielk197726c5d792005-11-25 09:01:23 +0000150** DJGPP. But it's DOS - what did you expect?
drhbbd42a62004-05-22 17:41:58 +0000151*/
152#ifdef __DJGPP__
153# define fcntl(A,B,C) 0
154#endif
155
156/*
drh2b4b5962005-06-15 17:47:55 +0000157** The threadid macro resolves to the thread-id or to 0. Used for
158** testing and debugging only.
159*/
160#ifdef SQLITE_UNIX_THREADS
161#define threadid pthread_self()
162#else
163#define threadid 0
164#endif
165
166/*
167** Set or check the OsFile.tid field. This field is set when an OsFile
168** is first opened. All subsequent uses of the OsFile verify that the
169** same thread is operating on the OsFile. Some operating systems do
170** not allow locks to be overridden by other threads and that restriction
171** means that sqlite3* database handles cannot be moved from one thread
172** to another. This logic makes sure a user does not try to do that
173** by mistake.
drhf1a221e2006-01-15 17:27:17 +0000174**
175** Version 3.3.1 (2006-01-15): OsFiles can be moved from one thread to
176** another as long as we are running on a system that supports threads
177** overriding each others locks (which now the most common behavior)
178** or if no locks are held. But the OsFile.pLock field needs to be
179** recomputed because its key includes the thread-id. See the
180** transferOwnership() function below for additional information
drh2b4b5962005-06-15 17:47:55 +0000181*/
drh029b44b2006-01-15 00:13:15 +0000182#if defined(SQLITE_UNIX_THREADS)
drh9cbe6352005-11-29 03:13:21 +0000183# define SET_THREADID(X) (X)->tid = pthread_self()
drh029b44b2006-01-15 00:13:15 +0000184# define CHECK_THREADID(X) (threadsOverrideEachOthersLocks==0 && \
185 !pthread_equal((X)->tid, pthread_self()))
drh2b4b5962005-06-15 17:47:55 +0000186#else
187# define SET_THREADID(X)
188# define CHECK_THREADID(X) 0
danielk197713adf8a2004-06-03 16:08:41 +0000189#endif
190
drhbbd42a62004-05-22 17:41:58 +0000191/*
192** Here is the dirt on POSIX advisory locks: ANSI STD 1003.1 (1996)
193** section 6.5.2.2 lines 483 through 490 specify that when a process
194** sets or clears a lock, that operation overrides any prior locks set
195** by the same process. It does not explicitly say so, but this implies
196** that it overrides locks set by the same process using a different
197** file descriptor. Consider this test case:
198**
199** int fd1 = open("./file1", O_RDWR|O_CREAT, 0644);
200** int fd2 = open("./file2", O_RDWR|O_CREAT, 0644);
201**
202** Suppose ./file1 and ./file2 are really the same file (because
203** one is a hard or symbolic link to the other) then if you set
204** an exclusive lock on fd1, then try to get an exclusive lock
205** on fd2, it works. I would have expected the second lock to
206** fail since there was already a lock on the file due to fd1.
207** But not so. Since both locks came from the same process, the
208** second overrides the first, even though they were on different
209** file descriptors opened on different file names.
210**
211** Bummer. If you ask me, this is broken. Badly broken. It means
212** that we cannot use POSIX locks to synchronize file access among
213** competing threads of the same process. POSIX locks will work fine
214** to synchronize access for threads in separate processes, but not
215** threads within the same process.
216**
217** To work around the problem, SQLite has to manage file locks internally
218** on its own. Whenever a new database is opened, we have to find the
219** specific inode of the database file (the inode is determined by the
220** st_dev and st_ino fields of the stat structure that fstat() fills in)
221** and check for locks already existing on that inode. When locks are
222** created or removed, we have to look at our own internal record of the
223** locks to see if another thread has previously set a lock on that same
224** inode.
225**
226** The OsFile structure for POSIX is no longer just an integer file
227** descriptor. It is now a structure that holds the integer file
228** descriptor and a pointer to a structure that describes the internal
229** locks on the corresponding inode. There is one locking structure
230** per inode, so if the same inode is opened twice, both OsFile structures
231** point to the same locking structure. The locking structure keeps
232** a reference count (so we will know when to delete it) and a "cnt"
233** field that tells us its internal lock status. cnt==0 means the
234** file is unlocked. cnt==-1 means the file has an exclusive lock.
235** cnt>0 means there are cnt shared locks on the file.
236**
237** Any attempt to lock or unlock a file first checks the locking
238** structure. The fcntl() system call is only invoked to set a
239** POSIX lock if the internal lock structure transitions between
240** a locked and an unlocked state.
241**
242** 2004-Jan-11:
243** More recent discoveries about POSIX advisory locks. (The more
244** I discover, the more I realize the a POSIX advisory locks are
245** an abomination.)
246**
247** If you close a file descriptor that points to a file that has locks,
248** all locks on that file that are owned by the current process are
249** released. To work around this problem, each OsFile structure contains
250** a pointer to an openCnt structure. There is one openCnt structure
251** per open inode, which means that multiple OsFiles can point to a single
252** openCnt. When an attempt is made to close an OsFile, if there are
253** other OsFiles open on the same inode that are holding locks, the call
254** to close() the file descriptor is deferred until all of the locks clear.
255** The openCnt structure keeps a list of file descriptors that need to
256** be closed and that list is walked (and cleared) when the last lock
257** clears.
258**
259** First, under Linux threads, because each thread has a separate
260** process ID, lock operations in one thread do not override locks
261** to the same file in other threads. Linux threads behave like
262** separate processes in this respect. But, if you close a file
263** descriptor in linux threads, all locks are cleared, even locks
264** on other threads and even though the other threads have different
265** process IDs. Linux threads is inconsistent in this respect.
266** (I'm beginning to think that linux threads is an abomination too.)
267** The consequence of this all is that the hash table for the lockInfo
268** structure has to include the process id as part of its key because
269** locks in different threads are treated as distinct. But the
270** openCnt structure should not include the process id in its
271** key because close() clears lock on all threads, not just the current
272** thread. Were it not for this goofiness in linux threads, we could
273** combine the lockInfo and openCnt structures into a single structure.
drh5fdae772004-06-29 03:29:00 +0000274**
275** 2004-Jun-28:
276** On some versions of linux, threads can override each others locks.
277** On others not. Sometimes you can change the behavior on the same
278** system by setting the LD_ASSUME_KERNEL environment variable. The
279** POSIX standard is silent as to which behavior is correct, as far
280** as I can tell, so other versions of unix might show the same
281** inconsistency. There is no little doubt in my mind that posix
282** advisory locks and linux threads are profoundly broken.
283**
284** To work around the inconsistencies, we have to test at runtime
285** whether or not threads can override each others locks. This test
286** is run once, the first time any lock is attempted. A static
287** variable is set to record the results of this test for future
288** use.
drhbbd42a62004-05-22 17:41:58 +0000289*/
290
291/*
292** An instance of the following structure serves as the key used
drh5fdae772004-06-29 03:29:00 +0000293** to locate a particular lockInfo structure given its inode.
294**
295** If threads cannot override each others locks, then we set the
296** lockKey.tid field to the thread ID. If threads can override
drhf1a221e2006-01-15 17:27:17 +0000297** each others locks then tid is always set to zero. tid is omitted
298** if we compile without threading support.
drhbbd42a62004-05-22 17:41:58 +0000299*/
300struct lockKey {
drh5fdae772004-06-29 03:29:00 +0000301 dev_t dev; /* Device number */
302 ino_t ino; /* Inode number */
303#ifdef SQLITE_UNIX_THREADS
drhd9cb6ac2005-10-20 07:28:17 +0000304 pthread_t tid; /* Thread ID or zero if threads can override each other */
drh5fdae772004-06-29 03:29:00 +0000305#endif
drhbbd42a62004-05-22 17:41:58 +0000306};
307
308/*
309** An instance of the following structure is allocated for each open
310** inode on each thread with a different process ID. (Threads have
311** different process IDs on linux, but not on most other unixes.)
312**
313** A single inode can have multiple file descriptors, so each OsFile
314** structure contains a pointer to an instance of this object and this
315** object keeps a count of the number of OsFiles pointing to it.
316*/
317struct lockInfo {
318 struct lockKey key; /* The lookup key */
drh2ac3ee92004-06-07 16:27:46 +0000319 int cnt; /* Number of SHARED locks held */
danielk19779a1d0ab2004-06-01 14:09:28 +0000320 int locktype; /* One of SHARED_LOCK, RESERVED_LOCK etc. */
drhbbd42a62004-05-22 17:41:58 +0000321 int nRef; /* Number of pointers to this structure */
322};
323
324/*
325** An instance of the following structure serves as the key used
326** to locate a particular openCnt structure given its inode. This
drh5fdae772004-06-29 03:29:00 +0000327** is the same as the lockKey except that the thread ID is omitted.
drhbbd42a62004-05-22 17:41:58 +0000328*/
329struct openKey {
330 dev_t dev; /* Device number */
331 ino_t ino; /* Inode number */
332};
333
334/*
335** An instance of the following structure is allocated for each open
336** inode. This structure keeps track of the number of locks on that
337** inode. If a close is attempted against an inode that is holding
338** locks, the close is deferred until all locks clear by adding the
339** file descriptor to be closed to the pending list.
340*/
341struct openCnt {
342 struct openKey key; /* The lookup key */
343 int nRef; /* Number of pointers to this structure */
344 int nLock; /* Number of outstanding locks */
345 int nPending; /* Number of pending close() operations */
346 int *aPending; /* Malloced space holding fd's awaiting a close() */
347};
348
349/*
drhf1a221e2006-01-15 17:27:17 +0000350** These hash tables map inodes and file descriptors (really, lockKey and
351** openKey structures) into lockInfo and openCnt structures. Access to
352** these hash tables must be protected by a mutex.
drhbbd42a62004-05-22 17:41:58 +0000353*/
danielk1977750b03e2006-02-14 10:48:39 +0000354static Hash lockHash = {SQLITE_HASH_BINARY, 0, 0, 0,
355 sqlite3ThreadSafeMalloc, sqlite3ThreadSafeFree, 0, 0};
356static Hash openHash = {SQLITE_HASH_BINARY, 0, 0, 0,
357 sqlite3ThreadSafeMalloc, sqlite3ThreadSafeFree, 0, 0};
drh5fdae772004-06-29 03:29:00 +0000358
drhbfe66312006-10-03 17:40:40 +0000359#ifdef SQLITE_ENABLE_LOCKING_STYLE
360/*
361** The locking styles are associated with the different file locking
362** capabilities supported by different file systems.
363**
364** POSIX locking style fully supports shared and exclusive byte-range locks
365** ADP locking only supports exclusive byte-range locks
366** FLOCK only supports a single file-global exclusive lock
367** DOTLOCK isn't a true locking style, it refers to the use of a special
368** file named the same as the database file with a '.lock' extension, this
369** can be used on file systems that do not offer any reliable file locking
370** NO locking means that no locking will be attempted, this is only used for
371** read-only file systems currently
372** UNSUPPORTED means that no locking will be attempted, this is only used for
373** file systems that are known to be unsupported
374*/
375typedef enum {
376 posixLockingStyle = 0, /* standard posix-advisory locks */
377 afpLockingStyle, /* use afp locks */
378 flockLockingStyle, /* use flock() */
379 dotlockLockingStyle, /* use <file>.lock files */
380 noLockingStyle, /* useful for read-only file system */
381 unsupportedLockingStyle /* indicates unsupported file system */
382} sqlite3LockingStyle;
383#endif /* SQLITE_ENABLE_LOCKING_STYLE */
384
drh5fdae772004-06-29 03:29:00 +0000385#ifdef SQLITE_UNIX_THREADS
386/*
387** This variable records whether or not threads can override each others
388** locks.
389**
390** 0: No. Threads cannot override each others locks.
391** 1: Yes. Threads can override each others locks.
392** -1: We don't know yet.
drhf1a221e2006-01-15 17:27:17 +0000393**
drh5062d3a2006-01-31 23:03:35 +0000394** On some systems, we know at compile-time if threads can override each
395** others locks. On those systems, the SQLITE_THREAD_OVERRIDE_LOCK macro
396** will be set appropriately. On other systems, we have to check at
397** runtime. On these latter systems, SQLTIE_THREAD_OVERRIDE_LOCK is
398** undefined.
399**
drhf1a221e2006-01-15 17:27:17 +0000400** This variable normally has file scope only. But during testing, we make
401** it a global so that the test code can change its value in order to verify
402** that the right stuff happens in either case.
drh5fdae772004-06-29 03:29:00 +0000403*/
drh5062d3a2006-01-31 23:03:35 +0000404#ifndef SQLITE_THREAD_OVERRIDE_LOCK
405# define SQLITE_THREAD_OVERRIDE_LOCK -1
406#endif
drh029b44b2006-01-15 00:13:15 +0000407#ifdef SQLITE_TEST
drh5062d3a2006-01-31 23:03:35 +0000408int threadsOverrideEachOthersLocks = SQLITE_THREAD_OVERRIDE_LOCK;
drh029b44b2006-01-15 00:13:15 +0000409#else
drh5062d3a2006-01-31 23:03:35 +0000410static int threadsOverrideEachOthersLocks = SQLITE_THREAD_OVERRIDE_LOCK;
drh029b44b2006-01-15 00:13:15 +0000411#endif
drh5fdae772004-06-29 03:29:00 +0000412
413/*
414** This structure holds information passed into individual test
415** threads by the testThreadLockingBehavior() routine.
416*/
417struct threadTestData {
418 int fd; /* File to be locked */
419 struct flock lock; /* The locking operation */
420 int result; /* Result of the locking operation */
421};
422
drh2b4b5962005-06-15 17:47:55 +0000423#ifdef SQLITE_LOCK_TRACE
424/*
425** Print out information about all locking operations.
426**
427** This routine is used for troubleshooting locks on multithreaded
428** platforms. Enable by compiling with the -DSQLITE_LOCK_TRACE
429** command-line option on the compiler. This code is normally
drhf1a221e2006-01-15 17:27:17 +0000430** turned off.
drh2b4b5962005-06-15 17:47:55 +0000431*/
432static int lockTrace(int fd, int op, struct flock *p){
433 char *zOpName, *zType;
434 int s;
435 int savedErrno;
436 if( op==F_GETLK ){
437 zOpName = "GETLK";
438 }else if( op==F_SETLK ){
439 zOpName = "SETLK";
440 }else{
441 s = fcntl(fd, op, p);
442 sqlite3DebugPrintf("fcntl unknown %d %d %d\n", fd, op, s);
443 return s;
444 }
445 if( p->l_type==F_RDLCK ){
446 zType = "RDLCK";
447 }else if( p->l_type==F_WRLCK ){
448 zType = "WRLCK";
449 }else if( p->l_type==F_UNLCK ){
450 zType = "UNLCK";
451 }else{
452 assert( 0 );
453 }
454 assert( p->l_whence==SEEK_SET );
455 s = fcntl(fd, op, p);
456 savedErrno = errno;
457 sqlite3DebugPrintf("fcntl %d %d %s %s %d %d %d %d\n",
458 threadid, fd, zOpName, zType, (int)p->l_start, (int)p->l_len,
459 (int)p->l_pid, s);
460 if( s && op==F_SETLK && (p->l_type==F_RDLCK || p->l_type==F_WRLCK) ){
461 struct flock l2;
462 l2 = *p;
463 fcntl(fd, F_GETLK, &l2);
464 if( l2.l_type==F_RDLCK ){
465 zType = "RDLCK";
466 }else if( l2.l_type==F_WRLCK ){
467 zType = "WRLCK";
468 }else if( l2.l_type==F_UNLCK ){
469 zType = "UNLCK";
470 }else{
471 assert( 0 );
472 }
473 sqlite3DebugPrintf("fcntl-failure-reason: %s %d %d %d\n",
474 zType, (int)l2.l_start, (int)l2.l_len, (int)l2.l_pid);
475 }
476 errno = savedErrno;
477 return s;
478}
479#define fcntl lockTrace
480#endif /* SQLITE_LOCK_TRACE */
481
drh5fdae772004-06-29 03:29:00 +0000482/*
483** The testThreadLockingBehavior() routine launches two separate
484** threads on this routine. This routine attempts to lock a file
485** descriptor then returns. The success or failure of that attempt
486** allows the testThreadLockingBehavior() procedure to determine
487** whether or not threads can override each others locks.
488*/
489static void *threadLockingTest(void *pArg){
490 struct threadTestData *pData = (struct threadTestData*)pArg;
491 pData->result = fcntl(pData->fd, F_SETLK, &pData->lock);
492 return pArg;
493}
494
495/*
496** This procedure attempts to determine whether or not threads
497** can override each others locks then sets the
498** threadsOverrideEachOthersLocks variable appropriately.
499*/
danielk19774d5238f2006-01-27 06:32:00 +0000500static void testThreadLockingBehavior(int fd_orig){
drh5fdae772004-06-29 03:29:00 +0000501 int fd;
502 struct threadTestData d[2];
503 pthread_t t[2];
504
505 fd = dup(fd_orig);
506 if( fd<0 ) return;
507 memset(d, 0, sizeof(d));
508 d[0].fd = fd;
509 d[0].lock.l_type = F_RDLCK;
510 d[0].lock.l_len = 1;
511 d[0].lock.l_start = 0;
512 d[0].lock.l_whence = SEEK_SET;
513 d[1] = d[0];
514 d[1].lock.l_type = F_WRLCK;
515 pthread_create(&t[0], 0, threadLockingTest, &d[0]);
516 pthread_create(&t[1], 0, threadLockingTest, &d[1]);
517 pthread_join(t[0], 0);
518 pthread_join(t[1], 0);
519 close(fd);
520 threadsOverrideEachOthersLocks = d[0].result==0 && d[1].result==0;
521}
522#endif /* SQLITE_UNIX_THREADS */
523
drhbbd42a62004-05-22 17:41:58 +0000524/*
525** Release a lockInfo structure previously allocated by findLockInfo().
526*/
527static void releaseLockInfo(struct lockInfo *pLock){
drh757b04e2006-01-18 17:25:45 +0000528 assert( sqlite3OsInMutex(1) );
drhbfe66312006-10-03 17:40:40 +0000529 if (pLock == NULL)
530 return;
drhbbd42a62004-05-22 17:41:58 +0000531 pLock->nRef--;
532 if( pLock->nRef==0 ){
533 sqlite3HashInsert(&lockHash, &pLock->key, sizeof(pLock->key), 0);
danielk1977750b03e2006-02-14 10:48:39 +0000534 sqlite3ThreadSafeFree(pLock);
drhbbd42a62004-05-22 17:41:58 +0000535 }
536}
537
538/*
539** Release a openCnt structure previously allocated by findLockInfo().
540*/
541static void releaseOpenCnt(struct openCnt *pOpen){
drh757b04e2006-01-18 17:25:45 +0000542 assert( sqlite3OsInMutex(1) );
drhbfe66312006-10-03 17:40:40 +0000543 if (pOpen == NULL)
544 return;
drhbbd42a62004-05-22 17:41:58 +0000545 pOpen->nRef--;
546 if( pOpen->nRef==0 ){
547 sqlite3HashInsert(&openHash, &pOpen->key, sizeof(pOpen->key), 0);
drh64b1bea2006-01-15 02:30:57 +0000548 free(pOpen->aPending);
danielk1977750b03e2006-02-14 10:48:39 +0000549 sqlite3ThreadSafeFree(pOpen);
drhbbd42a62004-05-22 17:41:58 +0000550 }
551}
552
drhbfe66312006-10-03 17:40:40 +0000553#ifdef SQLITE_ENABLE_LOCKING_STYLE
554/*
555** Tests a byte-range locking query to see if byte range locks are
556** supported, if not we fall back to dotlockLockingStyle.
557*/
558static sqlite3LockingStyle sqlite3TestLockingStyle(const char *filePath,
559 int fd) {
560 /* test byte-range lock using fcntl */
561 struct flock lockInfo;
562
563 lockInfo.l_len = 1;
564 lockInfo.l_start = 0;
565 lockInfo.l_whence = SEEK_SET;
566 lockInfo.l_type = F_RDLCK;
567
aswiftae0943b2007-01-31 23:37:07 +0000568 if (fcntl(fd, F_GETLK, &lockInfo) != -1) {
drhbfe66312006-10-03 17:40:40 +0000569 return posixLockingStyle;
570 }
571
572 /* testing for flock can give false positives. So if if the above test
573 ** fails, then we fall back to using dot-lock style locking.
574 */
575 return dotlockLockingStyle;
576}
577
578/*
579** Examines the f_fstypename entry in the statfs structure as returned by
580** stat() for the file system hosting the database file, assigns the
581** appropriate locking style based on it's value. These values and
582** assignments are based on Darwin/OSX behavior and have not been tested on
583** other systems.
584*/
585static sqlite3LockingStyle sqlite3DetectLockingStyle(const char *filePath,
586 int fd) {
587
588#ifdef SQLITE_FIXED_LOCKING_STYLE
589 return (sqlite3LockingStyle)SQLITE_FIXED_LOCKING_STYLE;
590#else
591 struct statfs fsInfo;
592
593 if (statfs(filePath, &fsInfo) == -1)
594 return sqlite3TestLockingStyle(filePath, fd);
595
596 if (fsInfo.f_flags & MNT_RDONLY)
597 return noLockingStyle;
598
599 if( (!strcmp(fsInfo.f_fstypename, "hfs")) ||
600 (!strcmp(fsInfo.f_fstypename, "ufs")) )
601 return posixLockingStyle;
602
603 if(!strcmp(fsInfo.f_fstypename, "afpfs"))
604 return afpLockingStyle;
605
606 if(!strcmp(fsInfo.f_fstypename, "nfs"))
607 return sqlite3TestLockingStyle(filePath, fd);
608
609 if(!strcmp(fsInfo.f_fstypename, "smbfs"))
610 return flockLockingStyle;
611
612 if(!strcmp(fsInfo.f_fstypename, "msdos"))
613 return dotlockLockingStyle;
614
615 if(!strcmp(fsInfo.f_fstypename, "webdav"))
616 return unsupportedLockingStyle;
617
618 return sqlite3TestLockingStyle(filePath, fd);
619#endif // SQLITE_FIXED_LOCKING_STYLE
620}
621
622#endif /* SQLITE_ENABLE_LOCKING_STYLE */
623
drhbbd42a62004-05-22 17:41:58 +0000624/*
625** Given a file descriptor, locate lockInfo and openCnt structures that
drh029b44b2006-01-15 00:13:15 +0000626** describes that file descriptor. Create new ones if necessary. The
627** return values might be uninitialized if an error occurs.
drhbbd42a62004-05-22 17:41:58 +0000628**
629** Return the number of errors.
630*/
drh38f82712004-06-18 17:10:16 +0000631static int findLockInfo(
drhbbd42a62004-05-22 17:41:58 +0000632 int fd, /* The file descriptor used in the key */
633 struct lockInfo **ppLock, /* Return the lockInfo structure here */
drh5fdae772004-06-29 03:29:00 +0000634 struct openCnt **ppOpen /* Return the openCnt structure here */
drhbbd42a62004-05-22 17:41:58 +0000635){
636 int rc;
637 struct lockKey key1;
638 struct openKey key2;
639 struct stat statbuf;
640 struct lockInfo *pLock;
641 struct openCnt *pOpen;
642 rc = fstat(fd, &statbuf);
643 if( rc!=0 ) return 1;
danielk1977441b09a2006-01-05 13:48:29 +0000644
drh757b04e2006-01-18 17:25:45 +0000645 assert( sqlite3OsInMutex(1) );
drhbbd42a62004-05-22 17:41:58 +0000646 memset(&key1, 0, sizeof(key1));
647 key1.dev = statbuf.st_dev;
648 key1.ino = statbuf.st_ino;
drh5fdae772004-06-29 03:29:00 +0000649#ifdef SQLITE_UNIX_THREADS
650 if( threadsOverrideEachOthersLocks<0 ){
651 testThreadLockingBehavior(fd);
652 }
653 key1.tid = threadsOverrideEachOthersLocks ? 0 : pthread_self();
654#endif
drhbbd42a62004-05-22 17:41:58 +0000655 memset(&key2, 0, sizeof(key2));
656 key2.dev = statbuf.st_dev;
657 key2.ino = statbuf.st_ino;
658 pLock = (struct lockInfo*)sqlite3HashFind(&lockHash, &key1, sizeof(key1));
659 if( pLock==0 ){
660 struct lockInfo *pOld;
danielk1977750b03e2006-02-14 10:48:39 +0000661 pLock = sqlite3ThreadSafeMalloc( sizeof(*pLock) );
danielk1977441b09a2006-01-05 13:48:29 +0000662 if( pLock==0 ){
663 rc = 1;
664 goto exit_findlockinfo;
665 }
drhbbd42a62004-05-22 17:41:58 +0000666 pLock->key = key1;
667 pLock->nRef = 1;
668 pLock->cnt = 0;
danielk19779a1d0ab2004-06-01 14:09:28 +0000669 pLock->locktype = 0;
drhbbd42a62004-05-22 17:41:58 +0000670 pOld = sqlite3HashInsert(&lockHash, &pLock->key, sizeof(key1), pLock);
671 if( pOld!=0 ){
672 assert( pOld==pLock );
danielk1977750b03e2006-02-14 10:48:39 +0000673 sqlite3ThreadSafeFree(pLock);
danielk1977441b09a2006-01-05 13:48:29 +0000674 rc = 1;
675 goto exit_findlockinfo;
drhbbd42a62004-05-22 17:41:58 +0000676 }
677 }else{
678 pLock->nRef++;
679 }
680 *ppLock = pLock;
drh029b44b2006-01-15 00:13:15 +0000681 if( ppOpen!=0 ){
682 pOpen = (struct openCnt*)sqlite3HashFind(&openHash, &key2, sizeof(key2));
drhbbd42a62004-05-22 17:41:58 +0000683 if( pOpen==0 ){
drh029b44b2006-01-15 00:13:15 +0000684 struct openCnt *pOld;
danielk1977750b03e2006-02-14 10:48:39 +0000685 pOpen = sqlite3ThreadSafeMalloc( sizeof(*pOpen) );
drh029b44b2006-01-15 00:13:15 +0000686 if( pOpen==0 ){
687 releaseLockInfo(pLock);
688 rc = 1;
689 goto exit_findlockinfo;
690 }
691 pOpen->key = key2;
692 pOpen->nRef = 1;
693 pOpen->nLock = 0;
694 pOpen->nPending = 0;
695 pOpen->aPending = 0;
696 pOld = sqlite3HashInsert(&openHash, &pOpen->key, sizeof(key2), pOpen);
697 if( pOld!=0 ){
698 assert( pOld==pOpen );
danielk1977750b03e2006-02-14 10:48:39 +0000699 sqlite3ThreadSafeFree(pOpen);
drh029b44b2006-01-15 00:13:15 +0000700 releaseLockInfo(pLock);
701 rc = 1;
702 goto exit_findlockinfo;
703 }
704 }else{
705 pOpen->nRef++;
drhbbd42a62004-05-22 17:41:58 +0000706 }
drh029b44b2006-01-15 00:13:15 +0000707 *ppOpen = pOpen;
drhbbd42a62004-05-22 17:41:58 +0000708 }
danielk1977441b09a2006-01-05 13:48:29 +0000709
710exit_findlockinfo:
danielk1977441b09a2006-01-05 13:48:29 +0000711 return rc;
drhbbd42a62004-05-22 17:41:58 +0000712}
713
drh64b1bea2006-01-15 02:30:57 +0000714#ifdef SQLITE_DEBUG
715/*
716** Helper function for printing out trace information from debugging
717** binaries. This returns the string represetation of the supplied
718** integer lock-type.
719*/
720static const char *locktypeName(int locktype){
721 switch( locktype ){
722 case NO_LOCK: return "NONE";
723 case SHARED_LOCK: return "SHARED";
724 case RESERVED_LOCK: return "RESERVED";
725 case PENDING_LOCK: return "PENDING";
726 case EXCLUSIVE_LOCK: return "EXCLUSIVE";
727 }
728 return "ERROR";
729}
730#endif
731
drhbbd42a62004-05-22 17:41:58 +0000732/*
drh029b44b2006-01-15 00:13:15 +0000733** If we are currently in a different thread than the thread that the
734** unixFile argument belongs to, then transfer ownership of the unixFile
735** over to the current thread.
736**
737** A unixFile is only owned by a thread on systems where one thread is
738** unable to override locks created by a different thread. RedHat9 is
739** an example of such a system.
740**
741** Ownership transfer is only allowed if the unixFile is currently unlocked.
742** If the unixFile is locked and an ownership is wrong, then return
drhf1a221e2006-01-15 17:27:17 +0000743** SQLITE_MISUSE. SQLITE_OK is returned if everything works.
drh029b44b2006-01-15 00:13:15 +0000744*/
745#ifdef SQLITE_UNIX_THREADS
746static int transferOwnership(unixFile *pFile){
drh64b1bea2006-01-15 02:30:57 +0000747 int rc;
drh029b44b2006-01-15 00:13:15 +0000748 pthread_t hSelf;
749 if( threadsOverrideEachOthersLocks ){
750 /* Ownership transfers not needed on this system */
751 return SQLITE_OK;
752 }
753 hSelf = pthread_self();
754 if( pthread_equal(pFile->tid, hSelf) ){
755 /* We are still in the same thread */
drh64b1bea2006-01-15 02:30:57 +0000756 TRACE1("No-transfer, same thread\n");
drh029b44b2006-01-15 00:13:15 +0000757 return SQLITE_OK;
758 }
759 if( pFile->locktype!=NO_LOCK ){
760 /* We cannot change ownership while we are holding a lock! */
761 return SQLITE_MISUSE;
762 }
drh64b1bea2006-01-15 02:30:57 +0000763 TRACE4("Transfer ownership of %d from %d to %d\n", pFile->h,pFile->tid,hSelf);
drh029b44b2006-01-15 00:13:15 +0000764 pFile->tid = hSelf;
drhbfe66312006-10-03 17:40:40 +0000765 if (pFile->pLock != NULL) {
766 releaseLockInfo(pFile->pLock);
767 rc = findLockInfo(pFile->h, &pFile->pLock, 0);
768 TRACE5("LOCK %d is now %s(%s,%d)\n", pFile->h,
769 locktypeName(pFile->locktype),
770 locktypeName(pFile->pLock->locktype), pFile->pLock->cnt);
771 return rc;
772 } else {
773 return SQLITE_OK;
774 }
drh029b44b2006-01-15 00:13:15 +0000775}
776#else
drhf1a221e2006-01-15 17:27:17 +0000777 /* On single-threaded builds, ownership transfer is a no-op */
drh029b44b2006-01-15 00:13:15 +0000778# define transferOwnership(X) SQLITE_OK
779#endif
780
781/*
drhbbd42a62004-05-22 17:41:58 +0000782** Delete the named file
783*/
drh66560ad2006-01-06 14:32:19 +0000784int sqlite3UnixDelete(const char *zFilename){
drhbbd42a62004-05-22 17:41:58 +0000785 unlink(zFilename);
786 return SQLITE_OK;
787}
788
789/*
790** Return TRUE if the named file exists.
791*/
drh66560ad2006-01-06 14:32:19 +0000792int sqlite3UnixFileExists(const char *zFilename){
drhbbd42a62004-05-22 17:41:58 +0000793 return access(zFilename, 0)==0;
794}
795
drh054889e2005-11-30 03:20:31 +0000796/* Forward declaration */
drhbfe66312006-10-03 17:40:40 +0000797static int allocateUnixFile(
798 int h, /* File descriptor of the open file */
799 OsFile **pId, /* Write the real file descriptor here */
800 const char *zFilename, /* Name of the file being opened */
801 int delFlag /* If true, make sure the file deletes on close */
802);
drh9cbe6352005-11-29 03:13:21 +0000803
804/*
drhbbd42a62004-05-22 17:41:58 +0000805** Attempt to open a file for both reading and writing. If that
806** fails, try opening it read-only. If the file does not exist,
807** try to create it.
808**
809** On success, a handle for the open file is written to *id
810** and *pReadonly is set to 0 if the file was opened for reading and
811** writing or 1 if the file was opened read-only. The function returns
812** SQLITE_OK.
813**
814** On failure, the function returns SQLITE_CANTOPEN and leaves
815** *id and *pReadonly unchanged.
816*/
drh66560ad2006-01-06 14:32:19 +0000817int sqlite3UnixOpenReadWrite(
drhbbd42a62004-05-22 17:41:58 +0000818 const char *zFilename,
drh9cbe6352005-11-29 03:13:21 +0000819 OsFile **pId,
drhbbd42a62004-05-22 17:41:58 +0000820 int *pReadonly
821){
drhbfe66312006-10-03 17:40:40 +0000822 int h;
823
drh66560ad2006-01-06 14:32:19 +0000824 CRASH_TEST_OVERRIDE(sqlite3CrashOpenReadWrite, zFilename, pId, pReadonly);
drh9cbe6352005-11-29 03:13:21 +0000825 assert( 0==*pId );
drhbfe66312006-10-03 17:40:40 +0000826 h = open(zFilename, O_RDWR|O_CREAT|O_LARGEFILE|O_BINARY,
827 SQLITE_DEFAULT_FILE_PERMISSIONS);
828 if( h<0 ){
drh6458e392004-07-20 01:14:13 +0000829#ifdef EISDIR
830 if( errno==EISDIR ){
831 return SQLITE_CANTOPEN;
832 }
833#endif
drhbfe66312006-10-03 17:40:40 +0000834 h = open(zFilename, O_RDONLY|O_LARGEFILE|O_BINARY);
835 if( h<0 ){
drhbbd42a62004-05-22 17:41:58 +0000836 return SQLITE_CANTOPEN;
837 }
838 *pReadonly = 1;
839 }else{
840 *pReadonly = 0;
841 }
drhbfe66312006-10-03 17:40:40 +0000842 return allocateUnixFile(h, pId, zFilename, 0);
drhbbd42a62004-05-22 17:41:58 +0000843}
844
845
846/*
847** Attempt to open a new file for exclusive access by this process.
848** The file will be opened for both reading and writing. To avoid
849** a potential security problem, we do not allow the file to have
850** previously existed. Nor do we allow the file to be a symbolic
851** link.
852**
853** If delFlag is true, then make arrangements to automatically delete
854** the file when it is closed.
855**
856** On success, write the file handle into *id and return SQLITE_OK.
857**
858** On failure, return SQLITE_CANTOPEN.
859*/
drh66560ad2006-01-06 14:32:19 +0000860int sqlite3UnixOpenExclusive(const char *zFilename, OsFile **pId, int delFlag){
drhbfe66312006-10-03 17:40:40 +0000861 int h;
drh9cbe6352005-11-29 03:13:21 +0000862
drh66560ad2006-01-06 14:32:19 +0000863 CRASH_TEST_OVERRIDE(sqlite3CrashOpenExclusive, zFilename, pId, delFlag);
drh9cbe6352005-11-29 03:13:21 +0000864 assert( 0==*pId );
drhbfe66312006-10-03 17:40:40 +0000865 h = open(zFilename,
drhd6459672005-08-13 17:17:01 +0000866 O_RDWR|O_CREAT|O_EXCL|O_NOFOLLOW|O_LARGEFILE|O_BINARY,
drh3f56e6e2007-03-15 01:16:47 +0000867 delFlag ? 0600 : SQLITE_DEFAULT_FILE_PERMISSIONS);
drhbfe66312006-10-03 17:40:40 +0000868 if( h<0 ){
drhbbd42a62004-05-22 17:41:58 +0000869 return SQLITE_CANTOPEN;
870 }
drhbfe66312006-10-03 17:40:40 +0000871 return allocateUnixFile(h, pId, zFilename, delFlag);
drhbbd42a62004-05-22 17:41:58 +0000872}
873
874/*
875** Attempt to open a new file for read-only access.
876**
877** On success, write the file handle into *id and return SQLITE_OK.
878**
879** On failure, return SQLITE_CANTOPEN.
880*/
drh66560ad2006-01-06 14:32:19 +0000881int sqlite3UnixOpenReadOnly(const char *zFilename, OsFile **pId){
drhbfe66312006-10-03 17:40:40 +0000882 int h;
883
drh66560ad2006-01-06 14:32:19 +0000884 CRASH_TEST_OVERRIDE(sqlite3CrashOpenReadOnly, zFilename, pId, 0);
drh9cbe6352005-11-29 03:13:21 +0000885 assert( 0==*pId );
drhbfe66312006-10-03 17:40:40 +0000886 h = open(zFilename, O_RDONLY|O_LARGEFILE|O_BINARY);
887 if( h<0 ){
drhbbd42a62004-05-22 17:41:58 +0000888 return SQLITE_CANTOPEN;
889 }
drhbfe66312006-10-03 17:40:40 +0000890 return allocateUnixFile(h, pId, zFilename, 0);
drhbbd42a62004-05-22 17:41:58 +0000891}
892
893/*
894** Attempt to open a file descriptor for the directory that contains a
895** file. This file descriptor can be used to fsync() the directory
896** in order to make sure the creation of a new file is actually written
897** to disk.
898**
899** This routine is only meaningful for Unix. It is a no-op under
900** windows since windows does not support hard links.
901**
drhbfe66312006-10-03 17:40:40 +0000902** If FULL_FSYNC is enabled, this function is not longer useful,
903** a FULL_FSYNC sync applies to all pending disk operations.
904**
drh9cbe6352005-11-29 03:13:21 +0000905** On success, a handle for a previously open file at *id is
drhbbd42a62004-05-22 17:41:58 +0000906** updated with the new directory file descriptor and SQLITE_OK is
907** returned.
908**
909** On failure, the function returns SQLITE_CANTOPEN and leaves
910** *id unchanged.
911*/
drh9c06c952005-11-26 00:25:00 +0000912static int unixOpenDirectory(
drh054889e2005-11-30 03:20:31 +0000913 OsFile *id,
914 const char *zDirname
drhbbd42a62004-05-22 17:41:58 +0000915){
drh054889e2005-11-30 03:20:31 +0000916 unixFile *pFile = (unixFile*)id;
917 if( pFile==0 ){
drhbbd42a62004-05-22 17:41:58 +0000918 /* Do not open the directory if the corresponding file is not already
919 ** open. */
920 return SQLITE_CANTOPEN;
921 }
drh054889e2005-11-30 03:20:31 +0000922 SET_THREADID(pFile);
923 assert( pFile->dirfd<0 );
924 pFile->dirfd = open(zDirname, O_RDONLY|O_BINARY, 0);
925 if( pFile->dirfd<0 ){
drhbbd42a62004-05-22 17:41:58 +0000926 return SQLITE_CANTOPEN;
927 }
drh054889e2005-11-30 03:20:31 +0000928 TRACE3("OPENDIR %-3d %s\n", pFile->dirfd, zDirname);
drhbbd42a62004-05-22 17:41:58 +0000929 return SQLITE_OK;
930}
931
932/*
drhab3f9fe2004-08-14 17:10:10 +0000933** If the following global variable points to a string which is the
934** name of a directory, then that directory will be used to store
935** temporary files.
drhf1a221e2006-01-15 17:27:17 +0000936**
937** See also the "PRAGMA temp_store_directory" SQL command.
drhab3f9fe2004-08-14 17:10:10 +0000938*/
tpoindex9a09a3c2004-12-20 19:01:32 +0000939char *sqlite3_temp_directory = 0;
drhab3f9fe2004-08-14 17:10:10 +0000940
941/*
drhbbd42a62004-05-22 17:41:58 +0000942** Create a temporary file name in zBuf. zBuf must be big enough to
943** hold at least SQLITE_TEMPNAME_SIZE characters.
944*/
drh66560ad2006-01-06 14:32:19 +0000945int sqlite3UnixTempFileName(char *zBuf){
drhbbd42a62004-05-22 17:41:58 +0000946 static const char *azDirs[] = {
drhab3f9fe2004-08-14 17:10:10 +0000947 0,
drhbbd42a62004-05-22 17:41:58 +0000948 "/var/tmp",
949 "/usr/tmp",
950 "/tmp",
951 ".",
952 };
drh57196282004-10-06 15:41:16 +0000953 static const unsigned char zChars[] =
drhbbd42a62004-05-22 17:41:58 +0000954 "abcdefghijklmnopqrstuvwxyz"
955 "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
956 "0123456789";
957 int i, j;
958 struct stat buf;
959 const char *zDir = ".";
drheffd02b2004-08-29 23:42:13 +0000960 azDirs[0] = sqlite3_temp_directory;
drhbbd42a62004-05-22 17:41:58 +0000961 for(i=0; i<sizeof(azDirs)/sizeof(azDirs[0]); i++){
drhab3f9fe2004-08-14 17:10:10 +0000962 if( azDirs[i]==0 ) continue;
drhbbd42a62004-05-22 17:41:58 +0000963 if( stat(azDirs[i], &buf) ) continue;
964 if( !S_ISDIR(buf.st_mode) ) continue;
965 if( access(azDirs[i], 07) ) continue;
966 zDir = azDirs[i];
967 break;
968 }
969 do{
970 sprintf(zBuf, "%s/"TEMP_FILE_PREFIX, zDir);
971 j = strlen(zBuf);
972 sqlite3Randomness(15, &zBuf[j]);
973 for(i=0; i<15; i++, j++){
974 zBuf[j] = (char)zChars[ ((unsigned char)zBuf[j])%(sizeof(zChars)-1) ];
975 }
976 zBuf[j] = 0;
977 }while( access(zBuf,0)==0 );
978 return SQLITE_OK;
979}
980
981/*
tpoindex9a09a3c2004-12-20 19:01:32 +0000982** Check that a given pathname is a directory and is writable
983**
984*/
drh66560ad2006-01-06 14:32:19 +0000985int sqlite3UnixIsDirWritable(char *zBuf){
drh9c06c952005-11-26 00:25:00 +0000986#ifndef SQLITE_OMIT_PAGER_PRAGMAS
tpoindex9a09a3c2004-12-20 19:01:32 +0000987 struct stat buf;
988 if( zBuf==0 ) return 0;
drh268283b2005-01-08 15:44:25 +0000989 if( zBuf[0]==0 ) return 0;
tpoindex9a09a3c2004-12-20 19:01:32 +0000990 if( stat(zBuf, &buf) ) return 0;
991 if( !S_ISDIR(buf.st_mode) ) return 0;
992 if( access(zBuf, 07) ) return 0;
drh9c06c952005-11-26 00:25:00 +0000993#endif /* SQLITE_OMIT_PAGER_PRAGMAS */
tpoindex9a09a3c2004-12-20 19:01:32 +0000994 return 1;
995}
996
997/*
drhb912b282006-03-23 22:42:20 +0000998** Seek to the offset in id->offset then read cnt bytes into pBuf.
999** Return the number of bytes actually read. Update the offset.
1000*/
1001static int seekAndRead(unixFile *id, void *pBuf, int cnt){
1002 int got;
drh8ebf6702007-02-06 11:11:08 +00001003 i64 newOffset;
drh15d00c42007-02-27 02:01:14 +00001004 TIMER_START;
drhb912b282006-03-23 22:42:20 +00001005#ifdef USE_PREAD
1006 got = pread(id->h, pBuf, cnt, id->offset);
1007#else
drh8ebf6702007-02-06 11:11:08 +00001008 newOffset = lseek(id->h, id->offset, SEEK_SET);
1009 if( newOffset!=id->offset ){
1010 return -1;
1011 }
drhb912b282006-03-23 22:42:20 +00001012 got = read(id->h, pBuf, cnt);
1013#endif
drh15d00c42007-02-27 02:01:14 +00001014 TIMER_END;
1015 TRACE5("READ %-3d %5d %7lld %d\n", id->h, got, id->offset, TIMER_ELAPSED);
drhb912b282006-03-23 22:42:20 +00001016 if( got>0 ){
1017 id->offset += got;
1018 }
1019 return got;
1020}
1021
1022/*
drhbbd42a62004-05-22 17:41:58 +00001023** Read data from a file into a buffer. Return SQLITE_OK if all
1024** bytes were read successfully and SQLITE_IOERR if anything goes
1025** wrong.
1026*/
drh9c06c952005-11-26 00:25:00 +00001027static int unixRead(OsFile *id, void *pBuf, int amt){
drhbbd42a62004-05-22 17:41:58 +00001028 int got;
drh9cbe6352005-11-29 03:13:21 +00001029 assert( id );
drhb912b282006-03-23 22:42:20 +00001030 got = seekAndRead((unixFile*)id, pBuf, amt);
drh551b7732006-11-06 21:20:25 +00001031 SimulateIOError( got = -1 );
drhbbd42a62004-05-22 17:41:58 +00001032 if( got==amt ){
1033 return SQLITE_OK;
drh4ac285a2006-09-15 07:28:50 +00001034 }else if( got<0 ){
1035 return SQLITE_IOERR_READ;
drhbbd42a62004-05-22 17:41:58 +00001036 }else{
drhbafda092007-01-03 23:36:22 +00001037 memset(&((char*)pBuf)[got], 0, amt-got);
drh4ac285a2006-09-15 07:28:50 +00001038 return SQLITE_IOERR_SHORT_READ;
drhbbd42a62004-05-22 17:41:58 +00001039 }
1040}
1041
1042/*
drhb912b282006-03-23 22:42:20 +00001043** Seek to the offset in id->offset then read cnt bytes into pBuf.
1044** Return the number of bytes actually read. Update the offset.
1045*/
1046static int seekAndWrite(unixFile *id, const void *pBuf, int cnt){
1047 int got;
drh8ebf6702007-02-06 11:11:08 +00001048 i64 newOffset;
drh15d00c42007-02-27 02:01:14 +00001049 TIMER_START;
drhb912b282006-03-23 22:42:20 +00001050#ifdef USE_PREAD
1051 got = pwrite(id->h, pBuf, cnt, id->offset);
1052#else
drh8ebf6702007-02-06 11:11:08 +00001053 newOffset = lseek(id->h, id->offset, SEEK_SET);
1054 if( newOffset!=id->offset ){
1055 return -1;
1056 }
drhb912b282006-03-23 22:42:20 +00001057 got = write(id->h, pBuf, cnt);
1058#endif
drh15d00c42007-02-27 02:01:14 +00001059 TIMER_END;
1060 TRACE5("WRITE %-3d %5d %7lld %d\n", id->h, got, id->offset, TIMER_ELAPSED);
drhb912b282006-03-23 22:42:20 +00001061 if( got>0 ){
1062 id->offset += got;
1063 }
1064 return got;
1065}
1066
1067
1068/*
drhbbd42a62004-05-22 17:41:58 +00001069** Write data from a buffer into a file. Return SQLITE_OK on success
1070** or some other error code on failure.
1071*/
drh9c06c952005-11-26 00:25:00 +00001072static int unixWrite(OsFile *id, const void *pBuf, int amt){
drhbbd42a62004-05-22 17:41:58 +00001073 int wrote = 0;
drh9cbe6352005-11-29 03:13:21 +00001074 assert( id );
drh4c7f9412005-02-03 00:29:47 +00001075 assert( amt>0 );
drhb912b282006-03-23 22:42:20 +00001076 while( amt>0 && (wrote = seekAndWrite((unixFile*)id, pBuf, amt))>0 ){
drhbbd42a62004-05-22 17:41:58 +00001077 amt -= wrote;
1078 pBuf = &((char*)pBuf)[wrote];
1079 }
drh59685932006-09-14 13:47:11 +00001080 SimulateIOError(( wrote=(-1), amt=1 ));
1081 SimulateDiskfullError(( wrote=0, amt=1 ));
drhbbd42a62004-05-22 17:41:58 +00001082 if( amt>0 ){
drh59685932006-09-14 13:47:11 +00001083 if( wrote<0 ){
drh4ac285a2006-09-15 07:28:50 +00001084 return SQLITE_IOERR_WRITE;
drh59685932006-09-14 13:47:11 +00001085 }else{
1086 return SQLITE_FULL;
1087 }
drhbbd42a62004-05-22 17:41:58 +00001088 }
1089 return SQLITE_OK;
1090}
1091
1092/*
1093** Move the read/write pointer in a file.
1094*/
drh9c06c952005-11-26 00:25:00 +00001095static int unixSeek(OsFile *id, i64 offset){
drh9cbe6352005-11-29 03:13:21 +00001096 assert( id );
drhb4746b92005-09-09 01:32:06 +00001097#ifdef SQLITE_TEST
drh59685932006-09-14 13:47:11 +00001098 if( offset ) SimulateDiskfullError(return SQLITE_FULL);
drhb4746b92005-09-09 01:32:06 +00001099#endif
drhb912b282006-03-23 22:42:20 +00001100 ((unixFile*)id)->offset = offset;
drhbbd42a62004-05-22 17:41:58 +00001101 return SQLITE_OK;
1102}
1103
drhb851b2c2005-03-10 14:11:12 +00001104#ifdef SQLITE_TEST
1105/*
1106** Count the number of fullsyncs and normal syncs. This is used to test
1107** that syncs and fullsyncs are occuring at the right times.
1108*/
1109int sqlite3_sync_count = 0;
1110int sqlite3_fullsync_count = 0;
1111#endif
1112
drhf2f23912005-10-05 10:29:36 +00001113/*
1114** Use the fdatasync() API only if the HAVE_FDATASYNC macro is defined.
1115** Otherwise use fsync() in its place.
1116*/
1117#ifndef HAVE_FDATASYNC
1118# define fdatasync fsync
1119#endif
1120
drhac530b12006-02-11 01:25:50 +00001121/*
1122** Define HAVE_FULLFSYNC to 0 or 1 depending on whether or not
1123** the F_FULLFSYNC macro is defined. F_FULLFSYNC is currently
1124** only available on Mac OS X. But that could change.
1125*/
1126#ifdef F_FULLFSYNC
1127# define HAVE_FULLFSYNC 1
1128#else
1129# define HAVE_FULLFSYNC 0
1130#endif
1131
drhb851b2c2005-03-10 14:11:12 +00001132
drhbbd42a62004-05-22 17:41:58 +00001133/*
drhdd809b02004-07-17 21:44:57 +00001134** The fsync() system call does not work as advertised on many
1135** unix systems. The following procedure is an attempt to make
1136** it work better.
drh1398ad32005-01-19 23:24:50 +00001137**
1138** The SQLITE_NO_SYNC macro disables all fsync()s. This is useful
1139** for testing when we want to run through the test suite quickly.
1140** You are strongly advised *not* to deploy with SQLITE_NO_SYNC
1141** enabled, however, since with SQLITE_NO_SYNC enabled, an OS crash
1142** or power failure will likely corrupt the database file.
drhdd809b02004-07-17 21:44:57 +00001143*/
drheb796a72005-09-08 12:38:41 +00001144static int full_fsync(int fd, int fullSync, int dataOnly){
drhdd809b02004-07-17 21:44:57 +00001145 int rc;
drhb851b2c2005-03-10 14:11:12 +00001146
1147 /* Record the number of times that we do a normal fsync() and
1148 ** FULLSYNC. This is used during testing to verify that this procedure
1149 ** gets called with the correct arguments.
1150 */
1151#ifdef SQLITE_TEST
1152 if( fullSync ) sqlite3_fullsync_count++;
1153 sqlite3_sync_count++;
1154#endif
1155
1156 /* If we compiled with the SQLITE_NO_SYNC flag, then syncing is a
1157 ** no-op
1158 */
1159#ifdef SQLITE_NO_SYNC
1160 rc = SQLITE_OK;
1161#else
1162
drhac530b12006-02-11 01:25:50 +00001163#if HAVE_FULLFSYNC
drhb851b2c2005-03-10 14:11:12 +00001164 if( fullSync ){
drhf30cc942005-03-11 17:52:34 +00001165 rc = fcntl(fd, F_FULLFSYNC, 0);
aswiftae0943b2007-01-31 23:37:07 +00001166 }else{
1167 rc = 1;
1168 }
1169 /* If the FULLFSYNC failed, fall back to attempting an fsync().
1170 * It shouldn't be possible for fullfsync to fail on the local
1171 * file system (on OSX), so failure indicates that FULLFSYNC
1172 * isn't supported for this file system. So, attempt an fsync
1173 * and (for now) ignore the overhead of a superfluous fcntl call.
1174 * It'd be better to detect fullfsync support once and avoid
1175 * the fcntl call every time sync is called.
1176 */
1177 if( rc ) rc = fsync(fd);
1178
1179#else
drheb796a72005-09-08 12:38:41 +00001180 if( dataOnly ){
1181 rc = fdatasync(fd);
drhf2f23912005-10-05 10:29:36 +00001182 }else{
drheb796a72005-09-08 12:38:41 +00001183 rc = fsync(fd);
1184 }
aswiftae0943b2007-01-31 23:37:07 +00001185#endif /* HAVE_FULLFSYNC */
drhb851b2c2005-03-10 14:11:12 +00001186#endif /* defined(SQLITE_NO_SYNC) */
1187
drhdd809b02004-07-17 21:44:57 +00001188 return rc;
1189}
1190
1191/*
drhbbd42a62004-05-22 17:41:58 +00001192** Make sure all writes to a particular file are committed to disk.
1193**
drheb796a72005-09-08 12:38:41 +00001194** If dataOnly==0 then both the file itself and its metadata (file
1195** size, access time, etc) are synced. If dataOnly!=0 then only the
1196** file data is synced.
1197**
drhbbd42a62004-05-22 17:41:58 +00001198** Under Unix, also make sure that the directory entry for the file
1199** has been created by fsync-ing the directory that contains the file.
1200** If we do not do this and we encounter a power failure, the directory
1201** entry for the journal might not exist after we reboot. The next
1202** SQLite to access the file will not know that the journal exists (because
1203** the directory entry for the journal was never created) and the transaction
1204** will not roll back - possibly leading to database corruption.
1205*/
drh9c06c952005-11-26 00:25:00 +00001206static int unixSync(OsFile *id, int dataOnly){
drh59685932006-09-14 13:47:11 +00001207 int rc;
drh054889e2005-11-30 03:20:31 +00001208 unixFile *pFile = (unixFile*)id;
1209 assert( pFile );
drh054889e2005-11-30 03:20:31 +00001210 TRACE2("SYNC %-3d\n", pFile->h);
drh59685932006-09-14 13:47:11 +00001211 rc = full_fsync(pFile->h, pFile->fullSync, dataOnly);
1212 SimulateIOError( rc=1 );
1213 if( rc ){
drh4ac285a2006-09-15 07:28:50 +00001214 return SQLITE_IOERR_FSYNC;
drhbbd42a62004-05-22 17:41:58 +00001215 }
drh054889e2005-11-30 03:20:31 +00001216 if( pFile->dirfd>=0 ){
drhac530b12006-02-11 01:25:50 +00001217 TRACE4("DIRSYNC %-3d (have_fullfsync=%d fullsync=%d)\n", pFile->dirfd,
1218 HAVE_FULLFSYNC, pFile->fullSync);
danielk1977d7c03f72005-11-25 10:38:22 +00001219#ifndef SQLITE_DISABLE_DIRSYNC
drhac530b12006-02-11 01:25:50 +00001220 /* The directory sync is only attempted if full_fsync is
1221 ** turned off or unavailable. If a full_fsync occurred above,
1222 ** then the directory sync is superfluous.
1223 */
1224 if( (!HAVE_FULLFSYNC || !pFile->fullSync) && full_fsync(pFile->dirfd,0,0) ){
1225 /*
1226 ** We have received multiple reports of fsync() returning
drh86631a52006-02-09 23:05:51 +00001227 ** errors when applied to directories on certain file systems.
1228 ** A failed directory sync is not a big deal. So it seems
1229 ** better to ignore the error. Ticket #1657
1230 */
1231 /* return SQLITE_IOERR; */
danielk19770964b232005-11-25 08:47:57 +00001232 }
danielk1977d7c03f72005-11-25 10:38:22 +00001233#endif
drh054889e2005-11-30 03:20:31 +00001234 close(pFile->dirfd); /* Only need to sync once, so close the directory */
1235 pFile->dirfd = -1; /* when we are done. */
drha2854222004-06-17 19:04:17 +00001236 }
drha2854222004-06-17 19:04:17 +00001237 return SQLITE_OK;
drhbbd42a62004-05-22 17:41:58 +00001238}
1239
1240/*
danielk1977962398d2004-06-14 09:35:16 +00001241** Sync the directory zDirname. This is a no-op on operating systems other
1242** than UNIX.
drhb851b2c2005-03-10 14:11:12 +00001243**
1244** This is used to make sure the master journal file has truely been deleted
1245** before making changes to individual journals on a multi-database commit.
drhf30cc942005-03-11 17:52:34 +00001246** The F_FULLFSYNC option is not needed here.
danielk1977962398d2004-06-14 09:35:16 +00001247*/
drh66560ad2006-01-06 14:32:19 +00001248int sqlite3UnixSyncDirectory(const char *zDirname){
danielk1977d7c03f72005-11-25 10:38:22 +00001249#ifdef SQLITE_DISABLE_DIRSYNC
1250 return SQLITE_OK;
1251#else
danielk1977962398d2004-06-14 09:35:16 +00001252 int fd;
1253 int r;
drh8e855772005-05-17 11:25:31 +00001254 fd = open(zDirname, O_RDONLY|O_BINARY, 0);
danielk1977369f27e2004-06-15 11:40:04 +00001255 TRACE3("DIRSYNC %-3d (%s)\n", fd, zDirname);
danielk1977962398d2004-06-14 09:35:16 +00001256 if( fd<0 ){
1257 return SQLITE_CANTOPEN;
1258 }
1259 r = fsync(fd);
1260 close(fd);
drh59685932006-09-14 13:47:11 +00001261 SimulateIOError( r=1 );
1262 if( r ){
drh4ac285a2006-09-15 07:28:50 +00001263 return SQLITE_IOERR_DIR_FSYNC;
drh59685932006-09-14 13:47:11 +00001264 }else{
1265 return SQLITE_OK;
1266 }
danielk1977d7c03f72005-11-25 10:38:22 +00001267#endif
danielk1977962398d2004-06-14 09:35:16 +00001268}
1269
1270/*
drhbbd42a62004-05-22 17:41:58 +00001271** Truncate an open file to a specified size
1272*/
drh9c06c952005-11-26 00:25:00 +00001273static int unixTruncate(OsFile *id, i64 nByte){
drh59685932006-09-14 13:47:11 +00001274 int rc;
drh9cbe6352005-11-29 03:13:21 +00001275 assert( id );
drh59685932006-09-14 13:47:11 +00001276 rc = ftruncate(((unixFile*)id)->h, nByte);
1277 SimulateIOError( rc=1 );
1278 if( rc ){
drh4ac285a2006-09-15 07:28:50 +00001279 return SQLITE_IOERR_TRUNCATE;
drh59685932006-09-14 13:47:11 +00001280 }else{
1281 return SQLITE_OK;
1282 }
drhbbd42a62004-05-22 17:41:58 +00001283}
1284
1285/*
1286** Determine the current size of a file in bytes
1287*/
drh9c06c952005-11-26 00:25:00 +00001288static int unixFileSize(OsFile *id, i64 *pSize){
drh59685932006-09-14 13:47:11 +00001289 int rc;
drhbbd42a62004-05-22 17:41:58 +00001290 struct stat buf;
drh9cbe6352005-11-29 03:13:21 +00001291 assert( id );
drh59685932006-09-14 13:47:11 +00001292 rc = fstat(((unixFile*)id)->h, &buf);
1293 SimulateIOError( rc=1 );
1294 if( rc!=0 ){
drh4ac285a2006-09-15 07:28:50 +00001295 return SQLITE_IOERR_FSTAT;
drhbbd42a62004-05-22 17:41:58 +00001296 }
1297 *pSize = buf.st_size;
1298 return SQLITE_OK;
1299}
1300
danielk19779a1d0ab2004-06-01 14:09:28 +00001301/*
danielk197713adf8a2004-06-03 16:08:41 +00001302** This routine checks if there is a RESERVED lock held on the specified
1303** file by this or any other process. If such a lock is held, return
drh2ac3ee92004-06-07 16:27:46 +00001304** non-zero. If the file is unlocked or holds only SHARED locks, then
1305** return zero.
danielk197713adf8a2004-06-03 16:08:41 +00001306*/
drh9c06c952005-11-26 00:25:00 +00001307static int unixCheckReservedLock(OsFile *id){
danielk197713adf8a2004-06-03 16:08:41 +00001308 int r = 0;
drh054889e2005-11-30 03:20:31 +00001309 unixFile *pFile = (unixFile*)id;
danielk197713adf8a2004-06-03 16:08:41 +00001310
drh054889e2005-11-30 03:20:31 +00001311 assert( pFile );
drh66560ad2006-01-06 14:32:19 +00001312 sqlite3OsEnterMutex(); /* Because pFile->pLock is shared across threads */
danielk197713adf8a2004-06-03 16:08:41 +00001313
1314 /* Check if a thread in this process holds such a lock */
drh054889e2005-11-30 03:20:31 +00001315 if( pFile->pLock->locktype>SHARED_LOCK ){
danielk197713adf8a2004-06-03 16:08:41 +00001316 r = 1;
1317 }
1318
drh2ac3ee92004-06-07 16:27:46 +00001319 /* Otherwise see if some other process holds it.
danielk197713adf8a2004-06-03 16:08:41 +00001320 */
1321 if( !r ){
1322 struct flock lock;
1323 lock.l_whence = SEEK_SET;
drh2ac3ee92004-06-07 16:27:46 +00001324 lock.l_start = RESERVED_BYTE;
1325 lock.l_len = 1;
1326 lock.l_type = F_WRLCK;
drh054889e2005-11-30 03:20:31 +00001327 fcntl(pFile->h, F_GETLK, &lock);
danielk197713adf8a2004-06-03 16:08:41 +00001328 if( lock.l_type!=F_UNLCK ){
1329 r = 1;
1330 }
1331 }
1332
drh66560ad2006-01-06 14:32:19 +00001333 sqlite3OsLeaveMutex();
drh054889e2005-11-30 03:20:31 +00001334 TRACE3("TEST WR-LOCK %d %d\n", pFile->h, r);
danielk197713adf8a2004-06-03 16:08:41 +00001335
1336 return r;
1337}
1338
1339/*
danielk19779a1d0ab2004-06-01 14:09:28 +00001340** Lock the file with the lock specified by parameter locktype - one
1341** of the following:
1342**
drh2ac3ee92004-06-07 16:27:46 +00001343** (1) SHARED_LOCK
1344** (2) RESERVED_LOCK
1345** (3) PENDING_LOCK
1346** (4) EXCLUSIVE_LOCK
1347**
drhb3e04342004-06-08 00:47:47 +00001348** Sometimes when requesting one lock state, additional lock states
1349** are inserted in between. The locking might fail on one of the later
1350** transitions leaving the lock state different from what it started but
1351** still short of its goal. The following chart shows the allowed
1352** transitions and the inserted intermediate states:
1353**
1354** UNLOCKED -> SHARED
1355** SHARED -> RESERVED
1356** SHARED -> (PENDING) -> EXCLUSIVE
1357** RESERVED -> (PENDING) -> EXCLUSIVE
1358** PENDING -> EXCLUSIVE
drh2ac3ee92004-06-07 16:27:46 +00001359**
drha6abd042004-06-09 17:37:22 +00001360** This routine will only increase a lock. Use the sqlite3OsUnlock()
1361** routine to lower a locking level.
danielk19779a1d0ab2004-06-01 14:09:28 +00001362*/
drh9c06c952005-11-26 00:25:00 +00001363static int unixLock(OsFile *id, int locktype){
danielk1977f42f25c2004-06-25 07:21:28 +00001364 /* The following describes the implementation of the various locks and
1365 ** lock transitions in terms of the POSIX advisory shared and exclusive
1366 ** lock primitives (called read-locks and write-locks below, to avoid
1367 ** confusion with SQLite lock names). The algorithms are complicated
1368 ** slightly in order to be compatible with windows systems simultaneously
1369 ** accessing the same database file, in case that is ever required.
1370 **
1371 ** Symbols defined in os.h indentify the 'pending byte' and the 'reserved
1372 ** byte', each single bytes at well known offsets, and the 'shared byte
1373 ** range', a range of 510 bytes at a well known offset.
1374 **
1375 ** To obtain a SHARED lock, a read-lock is obtained on the 'pending
1376 ** byte'. If this is successful, a random byte from the 'shared byte
1377 ** range' is read-locked and the lock on the 'pending byte' released.
1378 **
danielk197790ba3bd2004-06-25 08:32:25 +00001379 ** A process may only obtain a RESERVED lock after it has a SHARED lock.
1380 ** A RESERVED lock is implemented by grabbing a write-lock on the
1381 ** 'reserved byte'.
danielk1977f42f25c2004-06-25 07:21:28 +00001382 **
1383 ** A process may only obtain a PENDING lock after it has obtained a
danielk197790ba3bd2004-06-25 08:32:25 +00001384 ** SHARED lock. A PENDING lock is implemented by obtaining a write-lock
1385 ** on the 'pending byte'. This ensures that no new SHARED locks can be
1386 ** obtained, but existing SHARED locks are allowed to persist. A process
1387 ** does not have to obtain a RESERVED lock on the way to a PENDING lock.
1388 ** This property is used by the algorithm for rolling back a journal file
1389 ** after a crash.
danielk1977f42f25c2004-06-25 07:21:28 +00001390 **
danielk197790ba3bd2004-06-25 08:32:25 +00001391 ** An EXCLUSIVE lock, obtained after a PENDING lock is held, is
1392 ** implemented by obtaining a write-lock on the entire 'shared byte
1393 ** range'. Since all other locks require a read-lock on one of the bytes
1394 ** within this range, this ensures that no other locks are held on the
1395 ** database.
danielk1977f42f25c2004-06-25 07:21:28 +00001396 **
1397 ** The reason a single byte cannot be used instead of the 'shared byte
1398 ** range' is that some versions of windows do not support read-locks. By
1399 ** locking a random byte from a range, concurrent SHARED locks may exist
1400 ** even if the locking primitive used is always a write-lock.
1401 */
danielk19779a1d0ab2004-06-01 14:09:28 +00001402 int rc = SQLITE_OK;
drh054889e2005-11-30 03:20:31 +00001403 unixFile *pFile = (unixFile*)id;
1404 struct lockInfo *pLock = pFile->pLock;
danielk19779a1d0ab2004-06-01 14:09:28 +00001405 struct flock lock;
1406 int s;
1407
drh054889e2005-11-30 03:20:31 +00001408 assert( pFile );
1409 TRACE7("LOCK %d %s was %s(%s,%d) pid=%d\n", pFile->h,
1410 locktypeName(locktype), locktypeName(pFile->locktype),
1411 locktypeName(pLock->locktype), pLock->cnt , getpid());
danielk19779a1d0ab2004-06-01 14:09:28 +00001412
1413 /* If there is already a lock of this type or more restrictive on the
1414 ** OsFile, do nothing. Don't use the end_lock: exit path, as
drh66560ad2006-01-06 14:32:19 +00001415 ** sqlite3OsEnterMutex() hasn't been called yet.
danielk19779a1d0ab2004-06-01 14:09:28 +00001416 */
drh054889e2005-11-30 03:20:31 +00001417 if( pFile->locktype>=locktype ){
1418 TRACE3("LOCK %d %s ok (already held)\n", pFile->h,
1419 locktypeName(locktype));
danielk19779a1d0ab2004-06-01 14:09:28 +00001420 return SQLITE_OK;
1421 }
1422
drhb3e04342004-06-08 00:47:47 +00001423 /* Make sure the locking sequence is correct
drh2ac3ee92004-06-07 16:27:46 +00001424 */
drh054889e2005-11-30 03:20:31 +00001425 assert( pFile->locktype!=NO_LOCK || locktype==SHARED_LOCK );
drhb3e04342004-06-08 00:47:47 +00001426 assert( locktype!=PENDING_LOCK );
drh054889e2005-11-30 03:20:31 +00001427 assert( locktype!=RESERVED_LOCK || pFile->locktype==SHARED_LOCK );
drh2ac3ee92004-06-07 16:27:46 +00001428
drh054889e2005-11-30 03:20:31 +00001429 /* This mutex is needed because pFile->pLock is shared across threads
drhb3e04342004-06-08 00:47:47 +00001430 */
drh66560ad2006-01-06 14:32:19 +00001431 sqlite3OsEnterMutex();
danielk19779a1d0ab2004-06-01 14:09:28 +00001432
drh029b44b2006-01-15 00:13:15 +00001433 /* Make sure the current thread owns the pFile.
1434 */
1435 rc = transferOwnership(pFile);
1436 if( rc!=SQLITE_OK ){
1437 sqlite3OsLeaveMutex();
1438 return rc;
1439 }
drh64b1bea2006-01-15 02:30:57 +00001440 pLock = pFile->pLock;
drh029b44b2006-01-15 00:13:15 +00001441
danielk19779a1d0ab2004-06-01 14:09:28 +00001442 /* If some thread using this PID has a lock via a different OsFile*
1443 ** handle that precludes the requested lock, return BUSY.
1444 */
drh054889e2005-11-30 03:20:31 +00001445 if( (pFile->locktype!=pLock->locktype &&
drh2ac3ee92004-06-07 16:27:46 +00001446 (pLock->locktype>=PENDING_LOCK || locktype>SHARED_LOCK))
danielk19779a1d0ab2004-06-01 14:09:28 +00001447 ){
1448 rc = SQLITE_BUSY;
1449 goto end_lock;
1450 }
1451
1452 /* If a SHARED lock is requested, and some thread using this PID already
1453 ** has a SHARED or RESERVED lock, then increment reference counts and
1454 ** return SQLITE_OK.
1455 */
1456 if( locktype==SHARED_LOCK &&
1457 (pLock->locktype==SHARED_LOCK || pLock->locktype==RESERVED_LOCK) ){
1458 assert( locktype==SHARED_LOCK );
drh054889e2005-11-30 03:20:31 +00001459 assert( pFile->locktype==0 );
danielk1977ecb2a962004-06-02 06:30:16 +00001460 assert( pLock->cnt>0 );
drh054889e2005-11-30 03:20:31 +00001461 pFile->locktype = SHARED_LOCK;
danielk19779a1d0ab2004-06-01 14:09:28 +00001462 pLock->cnt++;
drh054889e2005-11-30 03:20:31 +00001463 pFile->pOpen->nLock++;
danielk19779a1d0ab2004-06-01 14:09:28 +00001464 goto end_lock;
1465 }
1466
danielk197713adf8a2004-06-03 16:08:41 +00001467 lock.l_len = 1L;
drh2b4b5962005-06-15 17:47:55 +00001468
danielk19779a1d0ab2004-06-01 14:09:28 +00001469 lock.l_whence = SEEK_SET;
1470
drh3cde3bb2004-06-12 02:17:14 +00001471 /* A PENDING lock is needed before acquiring a SHARED lock and before
1472 ** acquiring an EXCLUSIVE lock. For the SHARED lock, the PENDING will
1473 ** be released.
danielk19779a1d0ab2004-06-01 14:09:28 +00001474 */
drh3cde3bb2004-06-12 02:17:14 +00001475 if( locktype==SHARED_LOCK
drh054889e2005-11-30 03:20:31 +00001476 || (locktype==EXCLUSIVE_LOCK && pFile->locktype<PENDING_LOCK)
drh3cde3bb2004-06-12 02:17:14 +00001477 ){
danielk1977489468c2004-06-28 08:25:47 +00001478 lock.l_type = (locktype==SHARED_LOCK?F_RDLCK:F_WRLCK);
drh2ac3ee92004-06-07 16:27:46 +00001479 lock.l_start = PENDING_BYTE;
drh054889e2005-11-30 03:20:31 +00001480 s = fcntl(pFile->h, F_SETLK, &lock);
danielk19779a1d0ab2004-06-01 14:09:28 +00001481 if( s ){
1482 rc = (errno==EINVAL) ? SQLITE_NOLFS : SQLITE_BUSY;
1483 goto end_lock;
1484 }
drh3cde3bb2004-06-12 02:17:14 +00001485 }
1486
1487
1488 /* If control gets to this point, then actually go ahead and make
1489 ** operating system calls for the specified lock.
1490 */
1491 if( locktype==SHARED_LOCK ){
1492 assert( pLock->cnt==0 );
1493 assert( pLock->locktype==0 );
danielk19779a1d0ab2004-06-01 14:09:28 +00001494
drh2ac3ee92004-06-07 16:27:46 +00001495 /* Now get the read-lock */
1496 lock.l_start = SHARED_FIRST;
1497 lock.l_len = SHARED_SIZE;
drh054889e2005-11-30 03:20:31 +00001498 s = fcntl(pFile->h, F_SETLK, &lock);
drh2ac3ee92004-06-07 16:27:46 +00001499
1500 /* Drop the temporary PENDING lock */
1501 lock.l_start = PENDING_BYTE;
1502 lock.l_len = 1L;
danielk19779a1d0ab2004-06-01 14:09:28 +00001503 lock.l_type = F_UNLCK;
drh054889e2005-11-30 03:20:31 +00001504 if( fcntl(pFile->h, F_SETLK, &lock)!=0 ){
drh4ac285a2006-09-15 07:28:50 +00001505 rc = SQLITE_IOERR_UNLOCK; /* This should never happen */
drh2b4b5962005-06-15 17:47:55 +00001506 goto end_lock;
1507 }
danielk19779a1d0ab2004-06-01 14:09:28 +00001508 if( s ){
drhbbd42a62004-05-22 17:41:58 +00001509 rc = (errno==EINVAL) ? SQLITE_NOLFS : SQLITE_BUSY;
1510 }else{
drh054889e2005-11-30 03:20:31 +00001511 pFile->locktype = SHARED_LOCK;
1512 pFile->pOpen->nLock++;
danielk19779a1d0ab2004-06-01 14:09:28 +00001513 pLock->cnt = 1;
drhbbd42a62004-05-22 17:41:58 +00001514 }
drh3cde3bb2004-06-12 02:17:14 +00001515 }else if( locktype==EXCLUSIVE_LOCK && pLock->cnt>1 ){
1516 /* We are trying for an exclusive lock but another thread in this
1517 ** same process is still holding a shared lock. */
1518 rc = SQLITE_BUSY;
drhbbd42a62004-05-22 17:41:58 +00001519 }else{
drh3cde3bb2004-06-12 02:17:14 +00001520 /* The request was for a RESERVED or EXCLUSIVE lock. It is
danielk19779a1d0ab2004-06-01 14:09:28 +00001521 ** assumed that there is a SHARED or greater lock on the file
1522 ** already.
1523 */
drh054889e2005-11-30 03:20:31 +00001524 assert( 0!=pFile->locktype );
danielk19779a1d0ab2004-06-01 14:09:28 +00001525 lock.l_type = F_WRLCK;
1526 switch( locktype ){
1527 case RESERVED_LOCK:
drh2ac3ee92004-06-07 16:27:46 +00001528 lock.l_start = RESERVED_BYTE;
danielk19779a1d0ab2004-06-01 14:09:28 +00001529 break;
danielk19779a1d0ab2004-06-01 14:09:28 +00001530 case EXCLUSIVE_LOCK:
drh2ac3ee92004-06-07 16:27:46 +00001531 lock.l_start = SHARED_FIRST;
1532 lock.l_len = SHARED_SIZE;
danielk19779a1d0ab2004-06-01 14:09:28 +00001533 break;
1534 default:
1535 assert(0);
1536 }
drh054889e2005-11-30 03:20:31 +00001537 s = fcntl(pFile->h, F_SETLK, &lock);
danielk19779a1d0ab2004-06-01 14:09:28 +00001538 if( s ){
1539 rc = (errno==EINVAL) ? SQLITE_NOLFS : SQLITE_BUSY;
1540 }
drhbbd42a62004-05-22 17:41:58 +00001541 }
danielk19779a1d0ab2004-06-01 14:09:28 +00001542
danielk1977ecb2a962004-06-02 06:30:16 +00001543 if( rc==SQLITE_OK ){
drh054889e2005-11-30 03:20:31 +00001544 pFile->locktype = locktype;
danielk1977ecb2a962004-06-02 06:30:16 +00001545 pLock->locktype = locktype;
drh3cde3bb2004-06-12 02:17:14 +00001546 }else if( locktype==EXCLUSIVE_LOCK ){
drh054889e2005-11-30 03:20:31 +00001547 pFile->locktype = PENDING_LOCK;
drh3cde3bb2004-06-12 02:17:14 +00001548 pLock->locktype = PENDING_LOCK;
danielk1977ecb2a962004-06-02 06:30:16 +00001549 }
danielk19779a1d0ab2004-06-01 14:09:28 +00001550
1551end_lock:
drh66560ad2006-01-06 14:32:19 +00001552 sqlite3OsLeaveMutex();
drh054889e2005-11-30 03:20:31 +00001553 TRACE4("LOCK %d %s %s\n", pFile->h, locktypeName(locktype),
danielk19772b444852004-06-29 07:45:33 +00001554 rc==SQLITE_OK ? "ok" : "failed");
drhbbd42a62004-05-22 17:41:58 +00001555 return rc;
1556}
1557
1558/*
drh054889e2005-11-30 03:20:31 +00001559** Lower the locking level on file descriptor pFile to locktype. locktype
drha6abd042004-06-09 17:37:22 +00001560** must be either NO_LOCK or SHARED_LOCK.
1561**
1562** If the locking level of the file descriptor is already at or below
1563** the requested locking level, this routine is a no-op.
drhbbd42a62004-05-22 17:41:58 +00001564*/
drh9c06c952005-11-26 00:25:00 +00001565static int unixUnlock(OsFile *id, int locktype){
drha6abd042004-06-09 17:37:22 +00001566 struct lockInfo *pLock;
1567 struct flock lock;
drh9c105bb2004-10-02 20:38:28 +00001568 int rc = SQLITE_OK;
drh054889e2005-11-30 03:20:31 +00001569 unixFile *pFile = (unixFile*)id;
drha6abd042004-06-09 17:37:22 +00001570
drh054889e2005-11-30 03:20:31 +00001571 assert( pFile );
1572 TRACE7("UNLOCK %d %d was %d(%d,%d) pid=%d\n", pFile->h, locktype,
1573 pFile->locktype, pFile->pLock->locktype, pFile->pLock->cnt, getpid());
drha6abd042004-06-09 17:37:22 +00001574
1575 assert( locktype<=SHARED_LOCK );
drh054889e2005-11-30 03:20:31 +00001576 if( pFile->locktype<=locktype ){
drha6abd042004-06-09 17:37:22 +00001577 return SQLITE_OK;
1578 }
drhf1a221e2006-01-15 17:27:17 +00001579 if( CHECK_THREADID(pFile) ){
1580 return SQLITE_MISUSE;
1581 }
drh66560ad2006-01-06 14:32:19 +00001582 sqlite3OsEnterMutex();
drh054889e2005-11-30 03:20:31 +00001583 pLock = pFile->pLock;
drha6abd042004-06-09 17:37:22 +00001584 assert( pLock->cnt!=0 );
drh054889e2005-11-30 03:20:31 +00001585 if( pFile->locktype>SHARED_LOCK ){
1586 assert( pLock->locktype==pFile->locktype );
drh9c105bb2004-10-02 20:38:28 +00001587 if( locktype==SHARED_LOCK ){
1588 lock.l_type = F_RDLCK;
1589 lock.l_whence = SEEK_SET;
1590 lock.l_start = SHARED_FIRST;
1591 lock.l_len = SHARED_SIZE;
drh054889e2005-11-30 03:20:31 +00001592 if( fcntl(pFile->h, F_SETLK, &lock)!=0 ){
drh9c105bb2004-10-02 20:38:28 +00001593 /* This should never happen */
drh4ac285a2006-09-15 07:28:50 +00001594 rc = SQLITE_IOERR_RDLOCK;
drh9c105bb2004-10-02 20:38:28 +00001595 }
1596 }
drhbbd42a62004-05-22 17:41:58 +00001597 lock.l_type = F_UNLCK;
1598 lock.l_whence = SEEK_SET;
drha6abd042004-06-09 17:37:22 +00001599 lock.l_start = PENDING_BYTE;
1600 lock.l_len = 2L; assert( PENDING_BYTE+1==RESERVED_BYTE );
drh054889e2005-11-30 03:20:31 +00001601 if( fcntl(pFile->h, F_SETLK, &lock)==0 ){
drh2b4b5962005-06-15 17:47:55 +00001602 pLock->locktype = SHARED_LOCK;
1603 }else{
drh4ac285a2006-09-15 07:28:50 +00001604 rc = SQLITE_IOERR_UNLOCK; /* This should never happen */
drh2b4b5962005-06-15 17:47:55 +00001605 }
drhbbd42a62004-05-22 17:41:58 +00001606 }
drha6abd042004-06-09 17:37:22 +00001607 if( locktype==NO_LOCK ){
1608 struct openCnt *pOpen;
danielk1977ecb2a962004-06-02 06:30:16 +00001609
drha6abd042004-06-09 17:37:22 +00001610 /* Decrement the shared lock counter. Release the lock using an
1611 ** OS call only when all threads in this same process have released
1612 ** the lock.
1613 */
1614 pLock->cnt--;
1615 if( pLock->cnt==0 ){
1616 lock.l_type = F_UNLCK;
1617 lock.l_whence = SEEK_SET;
1618 lock.l_start = lock.l_len = 0L;
drh054889e2005-11-30 03:20:31 +00001619 if( fcntl(pFile->h, F_SETLK, &lock)==0 ){
drh2b4b5962005-06-15 17:47:55 +00001620 pLock->locktype = NO_LOCK;
1621 }else{
drh4ac285a2006-09-15 07:28:50 +00001622 rc = SQLITE_IOERR_UNLOCK; /* This should never happen */
drh2b4b5962005-06-15 17:47:55 +00001623 }
drha6abd042004-06-09 17:37:22 +00001624 }
1625
drhbbd42a62004-05-22 17:41:58 +00001626 /* Decrement the count of locks against this same file. When the
1627 ** count reaches zero, close any other file descriptors whose close
1628 ** was deferred because of outstanding locks.
1629 */
drh054889e2005-11-30 03:20:31 +00001630 pOpen = pFile->pOpen;
drhbbd42a62004-05-22 17:41:58 +00001631 pOpen->nLock--;
1632 assert( pOpen->nLock>=0 );
1633 if( pOpen->nLock==0 && pOpen->nPending>0 ){
1634 int i;
1635 for(i=0; i<pOpen->nPending; i++){
1636 close(pOpen->aPending[i]);
1637 }
drh64b1bea2006-01-15 02:30:57 +00001638 free(pOpen->aPending);
drhbbd42a62004-05-22 17:41:58 +00001639 pOpen->nPending = 0;
1640 pOpen->aPending = 0;
1641 }
1642 }
drh66560ad2006-01-06 14:32:19 +00001643 sqlite3OsLeaveMutex();
drh054889e2005-11-30 03:20:31 +00001644 pFile->locktype = locktype;
drh9c105bb2004-10-02 20:38:28 +00001645 return rc;
drhbbd42a62004-05-22 17:41:58 +00001646}
1647
1648/*
danielk1977e3026632004-06-22 11:29:02 +00001649** Close a file.
1650*/
drh9cbe6352005-11-29 03:13:21 +00001651static int unixClose(OsFile **pId){
drh054889e2005-11-30 03:20:31 +00001652 unixFile *id = (unixFile*)*pId;
drh029b44b2006-01-15 00:13:15 +00001653
drh9cbe6352005-11-29 03:13:21 +00001654 if( !id ) return SQLITE_OK;
drh38322302006-01-15 02:43:16 +00001655 unixUnlock(*pId, NO_LOCK);
danielk1977e3026632004-06-22 11:29:02 +00001656 if( id->dirfd>=0 ) close(id->dirfd);
1657 id->dirfd = -1;
drh66560ad2006-01-06 14:32:19 +00001658 sqlite3OsEnterMutex();
danielk1977441b09a2006-01-05 13:48:29 +00001659
drh38322302006-01-15 02:43:16 +00001660 if( id->pOpen->nLock ){
danielk1977e3026632004-06-22 11:29:02 +00001661 /* If there are outstanding locks, do not actually close the file just
1662 ** yet because that would clear those locks. Instead, add the file
1663 ** descriptor to pOpen->aPending. It will be automatically closed when
1664 ** the last lock is cleared.
1665 */
1666 int *aNew;
1667 struct openCnt *pOpen = id->pOpen;
drh64b1bea2006-01-15 02:30:57 +00001668 aNew = realloc( pOpen->aPending, (pOpen->nPending+1)*sizeof(int) );
danielk1977e3026632004-06-22 11:29:02 +00001669 if( aNew==0 ){
1670 /* If a malloc fails, just leak the file descriptor */
1671 }else{
1672 pOpen->aPending = aNew;
drhad81e872005-08-21 21:45:01 +00001673 pOpen->aPending[pOpen->nPending] = id->h;
1674 pOpen->nPending++;
danielk1977e3026632004-06-22 11:29:02 +00001675 }
1676 }else{
1677 /* There are no outstanding locks so we can close the file immediately */
1678 close(id->h);
1679 }
1680 releaseLockInfo(id->pLock);
1681 releaseOpenCnt(id->pOpen);
danielk1977441b09a2006-01-05 13:48:29 +00001682
drh66560ad2006-01-06 14:32:19 +00001683 sqlite3OsLeaveMutex();
danielk1977e3026632004-06-22 11:29:02 +00001684 id->isOpen = 0;
1685 TRACE2("CLOSE %-3d\n", id->h);
1686 OpenCounter(-1);
danielk1977750b03e2006-02-14 10:48:39 +00001687 sqlite3ThreadSafeFree(id);
drh9cbe6352005-11-29 03:13:21 +00001688 *pId = 0;
drh02afc862006-01-20 18:10:57 +00001689 return SQLITE_OK;
danielk1977e3026632004-06-22 11:29:02 +00001690}
1691
drhbfe66312006-10-03 17:40:40 +00001692
1693#ifdef SQLITE_ENABLE_LOCKING_STYLE
1694#pragma mark AFP Support
1695
1696/*
1697 ** The afpLockingContext structure contains all afp lock specific state
1698 */
1699typedef struct afpLockingContext afpLockingContext;
1700struct afpLockingContext {
1701 unsigned long long sharedLockByte;
1702 char *filePath;
1703};
1704
1705struct ByteRangeLockPB2
1706{
1707 unsigned long long offset; /* offset to first byte to lock */
1708 unsigned long long length; /* nbr of bytes to lock */
1709 unsigned long long retRangeStart; /* nbr of 1st byte locked if successful */
1710 unsigned char unLockFlag; /* 1 = unlock, 0 = lock */
1711 unsigned char startEndFlag; /* 1=rel to end of fork, 0=rel to start */
1712 int fd; /* file desc to assoc this lock with */
1713};
1714
1715#define afpfsByteRangeLock2FSCTL _IOWR('z', 23, struct ByteRangeLockPB2)
1716
1717/* return 0 on success, 1 on failure. To match the behavior of the
1718 normal posix file locking (used in unixLock for example), we should
1719 provide 'richer' return codes - specifically to differentiate between
1720 'file busy' and 'file system error' results */
1721static int _AFPFSSetLock(const char *path, int fd, unsigned long long offset,
1722 unsigned long long length, int setLockFlag)
1723{
1724 struct ByteRangeLockPB2 pb;
1725 int err;
1726
1727 pb.unLockFlag = setLockFlag ? 0 : 1;
1728 pb.startEndFlag = 0;
1729 pb.offset = offset;
1730 pb.length = length;
1731 pb.fd = fd;
1732 TRACE5("AFPLOCK setting lock %s for %d in range %llx:%llx\n",
1733 (setLockFlag?"ON":"OFF"), fd, offset, length);
1734 err = fsctl(path, afpfsByteRangeLock2FSCTL, &pb, 0);
1735 if ( err==-1 ) {
1736 TRACE4("AFPLOCK failed to fsctl() '%s' %d %s\n", path, errno,
1737 strerror(errno));
1738 return 1; // error
1739 } else {
1740 return 0;
1741 }
1742}
1743
1744/*
1745 ** This routine checks if there is a RESERVED lock held on the specified
1746 ** file by this or any other process. If such a lock is held, return
1747 ** non-zero. If the file is unlocked or holds only SHARED locks, then
1748 ** return zero.
1749 */
1750static int afpUnixCheckReservedLock(OsFile *id){
1751 int r = 0;
1752 unixFile *pFile = (unixFile*)id;
1753
1754 assert( pFile );
1755 afpLockingContext *context = (afpLockingContext *) pFile->lockingContext;
1756
1757 /* Check if a thread in this process holds such a lock */
1758 if( pFile->locktype>SHARED_LOCK ){
1759 r = 1;
1760 }
1761
1762 /* Otherwise see if some other process holds it.
1763 */
1764 if ( !r ) {
1765 // lock the byte
1766 int failed = _AFPFSSetLock(context->filePath, pFile->h, RESERVED_BYTE, 1,1);
1767 if (failed) {
1768 /* if we failed to get the lock then someone else must have it */
1769 r = 1;
1770 } else {
1771 /* if we succeeded in taking the reserved lock, unlock it to restore
1772 ** the original state */
1773 _AFPFSSetLock(context->filePath, pFile->h, RESERVED_BYTE, 1, 0);
1774 }
1775 }
1776 TRACE3("TEST WR-LOCK %d %d\n", pFile->h, r);
1777
1778 return r;
1779}
1780
1781/* AFP-style locking following the behavior of unixLock, see the unixLock
1782** function comments for details of lock management. */
1783static int afpUnixLock(OsFile *id, int locktype)
1784{
1785 int rc = SQLITE_OK;
1786 unixFile *pFile = (unixFile*)id;
1787 afpLockingContext *context = (afpLockingContext *) pFile->lockingContext;
1788 int gotPendingLock = 0;
1789
1790 assert( pFile );
1791 TRACE5("LOCK %d %s was %s pid=%d\n", pFile->h,
1792 locktypeName(locktype), locktypeName(pFile->locktype), getpid());
1793 /* If there is already a lock of this type or more restrictive on the
1794 ** OsFile, do nothing. Don't use the afp_end_lock: exit path, as
1795 ** sqlite3OsEnterMutex() hasn't been called yet.
1796 */
1797 if( pFile->locktype>=locktype ){
1798 TRACE3("LOCK %d %s ok (already held)\n", pFile->h,
1799 locktypeName(locktype));
1800 return SQLITE_OK;
1801 }
1802
1803 /* Make sure the locking sequence is correct
1804 */
1805 assert( pFile->locktype!=NO_LOCK || locktype==SHARED_LOCK );
1806 assert( locktype!=PENDING_LOCK );
1807 assert( locktype!=RESERVED_LOCK || pFile->locktype==SHARED_LOCK );
1808
1809 /* This mutex is needed because pFile->pLock is shared across threads
1810 */
1811 sqlite3OsEnterMutex();
1812
1813 /* Make sure the current thread owns the pFile.
1814 */
1815 rc = transferOwnership(pFile);
1816 if( rc!=SQLITE_OK ){
1817 sqlite3OsLeaveMutex();
1818 return rc;
1819 }
1820
1821 /* A PENDING lock is needed before acquiring a SHARED lock and before
1822 ** acquiring an EXCLUSIVE lock. For the SHARED lock, the PENDING will
1823 ** be released.
1824 */
1825 if( locktype==SHARED_LOCK
1826 || (locktype==EXCLUSIVE_LOCK && pFile->locktype<PENDING_LOCK)
1827 ){
1828 int failed = _AFPFSSetLock(context->filePath, pFile->h,
1829 PENDING_BYTE, 1, 1);
1830 if (failed) {
1831 rc = SQLITE_BUSY;
1832 goto afp_end_lock;
1833 }
1834 }
1835
1836 /* If control gets to this point, then actually go ahead and make
1837 ** operating system calls for the specified lock.
1838 */
1839 if( locktype==SHARED_LOCK ){
1840 int lk, failed;
1841 int tries = 0;
1842
1843 /* Now get the read-lock */
1844 /* note that the quality of the randomness doesn't matter that much */
1845 lk = random();
1846 context->sharedLockByte = (lk & 0x7fffffff)%(SHARED_SIZE - 1);
1847 failed = _AFPFSSetLock(context->filePath, pFile->h,
1848 SHARED_FIRST+context->sharedLockByte, 1, 1);
1849
1850 /* Drop the temporary PENDING lock */
1851 if (_AFPFSSetLock(context->filePath, pFile->h, PENDING_BYTE, 1, 0)) {
1852 rc = SQLITE_IOERR_UNLOCK; /* This should never happen */
1853 goto afp_end_lock;
1854 }
1855
1856 if( failed ){
1857 rc = SQLITE_BUSY;
1858 } else {
1859 pFile->locktype = SHARED_LOCK;
1860 }
1861 }else{
1862 /* The request was for a RESERVED or EXCLUSIVE lock. It is
1863 ** assumed that there is a SHARED or greater lock on the file
1864 ** already.
1865 */
1866 int failed = 0;
1867 assert( 0!=pFile->locktype );
1868 if (locktype >= RESERVED_LOCK && pFile->locktype < RESERVED_LOCK) {
1869 /* Acquire a RESERVED lock */
1870 failed = _AFPFSSetLock(context->filePath, pFile->h, RESERVED_BYTE, 1,1);
1871 }
1872 if (!failed && locktype == EXCLUSIVE_LOCK) {
1873 /* Acquire an EXCLUSIVE lock */
1874
1875 /* Remove the shared lock before trying the range. we'll need to
1876 ** reestablish the shared lock if we can't get the afpUnixUnlock
1877 */
1878 if (!_AFPFSSetLock(context->filePath, pFile->h, SHARED_FIRST +
1879 context->sharedLockByte, 1, 0)) {
1880 /* now attemmpt to get the exclusive lock range */
1881 failed = _AFPFSSetLock(context->filePath, pFile->h, SHARED_FIRST,
1882 SHARED_SIZE, 1);
1883 if (failed && _AFPFSSetLock(context->filePath, pFile->h, SHARED_FIRST +
1884 context->sharedLockByte, 1, 1)) {
1885 rc = SQLITE_IOERR_RDLOCK; /* this should never happen */
1886 }
1887 } else {
1888 /* */
1889 rc = SQLITE_IOERR_UNLOCK; /* this should never happen */
1890 }
1891 }
1892 if( failed && rc == SQLITE_OK){
1893 rc = SQLITE_BUSY;
1894 }
1895 }
1896
1897 if( rc==SQLITE_OK ){
1898 pFile->locktype = locktype;
1899 }else if( locktype==EXCLUSIVE_LOCK ){
1900 pFile->locktype = PENDING_LOCK;
1901 }
1902
1903afp_end_lock:
1904 sqlite3OsLeaveMutex();
1905 TRACE4("LOCK %d %s %s\n", pFile->h, locktypeName(locktype),
1906 rc==SQLITE_OK ? "ok" : "failed");
1907 return rc;
1908}
1909
1910/*
1911 ** Lower the locking level on file descriptor pFile to locktype. locktype
1912 ** must be either NO_LOCK or SHARED_LOCK.
1913 **
1914 ** If the locking level of the file descriptor is already at or below
1915 ** the requested locking level, this routine is a no-op.
1916 */
1917static int afpUnixUnlock(OsFile *id, int locktype) {
1918 struct flock lock;
1919 int rc = SQLITE_OK;
1920 unixFile *pFile = (unixFile*)id;
1921 afpLockingContext *context = (afpLockingContext *) pFile->lockingContext;
1922
1923 assert( pFile );
1924 TRACE5("UNLOCK %d %d was %d pid=%d\n", pFile->h, locktype,
1925 pFile->locktype, getpid());
1926
1927 assert( locktype<=SHARED_LOCK );
1928 if( pFile->locktype<=locktype ){
1929 return SQLITE_OK;
1930 }
1931 if( CHECK_THREADID(pFile) ){
1932 return SQLITE_MISUSE;
1933 }
1934 sqlite3OsEnterMutex();
1935 if( pFile->locktype>SHARED_LOCK ){
1936 if( locktype==SHARED_LOCK ){
1937 int failed = 0;
1938
1939 /* unlock the exclusive range - then re-establish the shared lock */
1940 if (pFile->locktype==EXCLUSIVE_LOCK) {
1941 failed = _AFPFSSetLock(context->filePath, pFile->h, SHARED_FIRST,
1942 SHARED_SIZE, 0);
1943 if (!failed) {
1944 /* successfully removed the exclusive lock */
1945 if (_AFPFSSetLock(context->filePath, pFile->h, SHARED_FIRST+
1946 context->sharedLockByte, 1, 1)) {
1947 /* failed to re-establish our shared lock */
1948 rc = SQLITE_IOERR_RDLOCK; /* This should never happen */
1949 }
1950 } else {
1951 /* This should never happen - failed to unlock the exclusive range */
1952 rc = SQLITE_IOERR_UNLOCK;
1953 }
1954 }
1955 }
1956 if (rc == SQLITE_OK && pFile->locktype>=PENDING_LOCK) {
1957 if (_AFPFSSetLock(context->filePath, pFile->h, PENDING_BYTE, 1, 0)){
1958 /* failed to release the pending lock */
1959 rc = SQLITE_IOERR_UNLOCK; /* This should never happen */
1960 }
1961 }
1962 if (rc == SQLITE_OK && pFile->locktype>=RESERVED_LOCK) {
1963 if (_AFPFSSetLock(context->filePath, pFile->h, RESERVED_BYTE, 1, 0)) {
1964 /* failed to release the reserved lock */
1965 rc = SQLITE_IOERR_UNLOCK; /* This should never happen */
1966 }
1967 }
1968 }
1969 if( locktype==NO_LOCK ){
1970 int failed = _AFPFSSetLock(context->filePath, pFile->h,
1971 SHARED_FIRST + context->sharedLockByte, 1, 0);
1972 if (failed) {
1973 rc = SQLITE_IOERR_UNLOCK; /* This should never happen */
1974 }
1975 }
1976 if (rc == SQLITE_OK)
1977 pFile->locktype = locktype;
1978 sqlite3OsLeaveMutex();
1979 return rc;
1980}
1981
1982/*
1983 ** Close a file & cleanup AFP specific locking context
1984 */
1985static int afpUnixClose(OsFile **pId) {
1986 unixFile *id = (unixFile*)*pId;
1987
1988 if( !id ) return SQLITE_OK;
1989 afpUnixUnlock(*pId, NO_LOCK);
1990 /* free the AFP locking structure */
1991 if (id->lockingContext != NULL) {
1992 if (((afpLockingContext *)id->lockingContext)->filePath != NULL)
1993 sqlite3ThreadSafeFree(((afpLockingContext*)id->lockingContext)->filePath);
1994 sqlite3ThreadSafeFree(id->lockingContext);
1995 }
1996
1997 if( id->dirfd>=0 ) close(id->dirfd);
1998 id->dirfd = -1;
1999 close(id->h);
2000 id->isOpen = 0;
2001 TRACE2("CLOSE %-3d\n", id->h);
2002 OpenCounter(-1);
2003 sqlite3ThreadSafeFree(id);
2004 *pId = 0;
2005 return SQLITE_OK;
2006}
2007
2008
2009#pragma mark flock() style locking
2010
2011/*
2012 ** The flockLockingContext is not used
2013 */
2014typedef void flockLockingContext;
2015
2016static int flockUnixCheckReservedLock(OsFile *id) {
2017 unixFile *pFile = (unixFile*)id;
2018
2019 if (pFile->locktype == RESERVED_LOCK) {
2020 return 1; // already have a reserved lock
2021 } else {
2022 // attempt to get the lock
2023 int rc = flock(pFile->h, LOCK_EX | LOCK_NB);
2024 if (!rc) {
2025 // got the lock, unlock it
2026 flock(pFile->h, LOCK_UN);
2027 return 0; // no one has it reserved
2028 }
2029 return 1; // someone else might have it reserved
2030 }
2031}
2032
2033static int flockUnixLock(OsFile *id, int locktype) {
2034 unixFile *pFile = (unixFile*)id;
2035
2036 // if we already have a lock, it is exclusive.
2037 // Just adjust level and punt on outta here.
2038 if (pFile->locktype > NO_LOCK) {
2039 pFile->locktype = locktype;
2040 return SQLITE_OK;
2041 }
2042
2043 // grab an exclusive lock
2044 int rc = flock(pFile->h, LOCK_EX | LOCK_NB);
2045 if (rc) {
2046 // didn't get, must be busy
2047 return SQLITE_BUSY;
2048 } else {
2049 // got it, set the type and return ok
2050 pFile->locktype = locktype;
2051 return SQLITE_OK;
2052 }
2053}
2054
2055static int flockUnixUnlock(OsFile *id, int locktype) {
2056 unixFile *pFile = (unixFile*)id;
2057
2058 assert( locktype<=SHARED_LOCK );
2059
2060 // no-op if possible
2061 if( pFile->locktype==locktype ){
2062 return SQLITE_OK;
2063 }
2064
2065 // shared can just be set because we always have an exclusive
2066 if (locktype==SHARED_LOCK) {
2067 pFile->locktype = locktype;
2068 return SQLITE_OK;
2069 }
2070
2071 // no, really, unlock.
2072 int rc = flock(pFile->h, LOCK_UN);
2073 if (rc)
2074 return SQLITE_IOERR_UNLOCK;
2075 else {
2076 pFile->locktype = NO_LOCK;
2077 return SQLITE_OK;
2078 }
2079}
2080
2081/*
2082 ** Close a file.
2083 */
2084static int flockUnixClose(OsFile **pId) {
2085 unixFile *id = (unixFile*)*pId;
2086
2087 if( !id ) return SQLITE_OK;
2088 flockUnixUnlock(*pId, NO_LOCK);
2089
2090 if( id->dirfd>=0 ) close(id->dirfd);
2091 id->dirfd = -1;
2092 sqlite3OsEnterMutex();
2093
2094 close(id->h);
2095 sqlite3OsLeaveMutex();
2096 id->isOpen = 0;
2097 TRACE2("CLOSE %-3d\n", id->h);
2098 OpenCounter(-1);
2099 sqlite3ThreadSafeFree(id);
2100 *pId = 0;
2101 return SQLITE_OK;
2102}
2103
2104#pragma mark Old-School .lock file based locking
2105
2106/*
2107 ** The dotlockLockingContext structure contains all dotlock (.lock) lock
2108 ** specific state
2109 */
2110typedef struct dotlockLockingContext dotlockLockingContext;
2111struct dotlockLockingContext {
2112 char *lockPath;
2113};
2114
2115
2116static int dotlockUnixCheckReservedLock(OsFile *id) {
2117 unixFile *pFile = (unixFile*)id;
2118 dotlockLockingContext *context =
2119 (dotlockLockingContext *) pFile->lockingContext;
2120
2121 if (pFile->locktype == RESERVED_LOCK) {
2122 return 1; // already have a reserved lock
2123 } else {
2124 struct stat statBuf;
2125 if (lstat(context->lockPath,&statBuf) == 0)
2126 // file exists, someone else has the lock
2127 return 1;
2128 else
2129 // file does not exist, we could have it if we want it
2130 return 0;
2131 }
2132}
2133
2134static int dotlockUnixLock(OsFile *id, int locktype) {
2135 unixFile *pFile = (unixFile*)id;
2136 dotlockLockingContext *context =
2137 (dotlockLockingContext *) pFile->lockingContext;
2138
2139 // if we already have a lock, it is exclusive.
2140 // Just adjust level and punt on outta here.
2141 if (pFile->locktype > NO_LOCK) {
2142 pFile->locktype = locktype;
2143
2144 /* Always update the timestamp on the old file */
2145 utimes(context->lockPath,NULL);
2146 return SQLITE_OK;
2147 }
2148
2149 // check to see if lock file already exists
2150 struct stat statBuf;
2151 if (lstat(context->lockPath,&statBuf) == 0){
2152 return SQLITE_BUSY; // it does, busy
2153 }
2154
2155 // grab an exclusive lock
2156 int fd = open(context->lockPath,O_RDONLY|O_CREAT|O_EXCL,0600);
2157 if (fd < 0) {
2158 // failed to open/create the file, someone else may have stolen the lock
2159 return SQLITE_BUSY;
2160 }
2161 close(fd);
2162
2163 // got it, set the type and return ok
2164 pFile->locktype = locktype;
2165 return SQLITE_OK;
2166}
2167
2168static int dotlockUnixUnlock(OsFile *id, int locktype) {
2169 unixFile *pFile = (unixFile*)id;
2170 dotlockLockingContext *context =
2171 (dotlockLockingContext *) pFile->lockingContext;
2172
2173 assert( locktype<=SHARED_LOCK );
2174
2175 // no-op if possible
2176 if( pFile->locktype==locktype ){
2177 return SQLITE_OK;
2178 }
2179
2180 // shared can just be set because we always have an exclusive
2181 if (locktype==SHARED_LOCK) {
2182 pFile->locktype = locktype;
2183 return SQLITE_OK;
2184 }
2185
2186 // no, really, unlock.
2187 unlink(context->lockPath);
2188 pFile->locktype = NO_LOCK;
2189 return SQLITE_OK;
2190}
2191
2192/*
2193 ** Close a file.
2194 */
2195static int dotlockUnixClose(OsFile **pId) {
2196 unixFile *id = (unixFile*)*pId;
2197
2198 if( !id ) return SQLITE_OK;
2199 dotlockUnixUnlock(*pId, NO_LOCK);
2200 /* free the dotlock locking structure */
2201 if (id->lockingContext != NULL) {
2202 if (((dotlockLockingContext *)id->lockingContext)->lockPath != NULL)
2203 sqlite3ThreadSafeFree( ( (dotlockLockingContext *)
2204 id->lockingContext)->lockPath);
2205 sqlite3ThreadSafeFree(id->lockingContext);
2206 }
2207
2208 if( id->dirfd>=0 ) close(id->dirfd);
2209 id->dirfd = -1;
2210 sqlite3OsEnterMutex();
2211
2212 close(id->h);
2213
2214 sqlite3OsLeaveMutex();
2215 id->isOpen = 0;
2216 TRACE2("CLOSE %-3d\n", id->h);
2217 OpenCounter(-1);
2218 sqlite3ThreadSafeFree(id);
2219 *pId = 0;
2220 return SQLITE_OK;
2221}
2222
2223
2224#pragma mark No locking
2225
2226/*
2227 ** The nolockLockingContext is void
2228 */
2229typedef void nolockLockingContext;
2230
2231static int nolockUnixCheckReservedLock(OsFile *id) {
2232 return 0;
2233}
2234
2235static int nolockUnixLock(OsFile *id, int locktype) {
2236 return SQLITE_OK;
2237}
2238
2239static int nolockUnixUnlock(OsFile *id, int locktype) {
2240 return SQLITE_OK;
2241}
2242
2243/*
2244 ** Close a file.
2245 */
2246static int nolockUnixClose(OsFile **pId) {
2247 unixFile *id = (unixFile*)*pId;
2248
2249 if( !id ) return SQLITE_OK;
2250 if( id->dirfd>=0 ) close(id->dirfd);
2251 id->dirfd = -1;
2252 sqlite3OsEnterMutex();
2253
2254 close(id->h);
2255
2256 sqlite3OsLeaveMutex();
2257 id->isOpen = 0;
2258 TRACE2("CLOSE %-3d\n", id->h);
2259 OpenCounter(-1);
2260 sqlite3ThreadSafeFree(id);
2261 *pId = 0;
2262 return SQLITE_OK;
2263}
2264
2265#endif /* SQLITE_ENABLE_LOCKING_STYLE */
2266
danielk1977e3026632004-06-22 11:29:02 +00002267/*
drh0ccebe72005-06-07 22:22:50 +00002268** Turn a relative pathname into a full pathname. Return a pointer
2269** to the full pathname stored in space obtained from sqliteMalloc().
2270** The calling function is responsible for freeing this space once it
2271** is no longer needed.
2272*/
drh66560ad2006-01-06 14:32:19 +00002273char *sqlite3UnixFullPathname(const char *zRelative){
drh0ccebe72005-06-07 22:22:50 +00002274 char *zFull = 0;
2275 if( zRelative[0]=='/' ){
2276 sqlite3SetString(&zFull, zRelative, (char*)0);
2277 }else{
drh79158e12005-09-06 21:40:45 +00002278 char *zBuf = sqliteMalloc(5000);
2279 if( zBuf==0 ){
2280 return 0;
2281 }
drh0ccebe72005-06-07 22:22:50 +00002282 zBuf[0] = 0;
drh79158e12005-09-06 21:40:45 +00002283 sqlite3SetString(&zFull, getcwd(zBuf, 5000), "/", zRelative,
drh0ccebe72005-06-07 22:22:50 +00002284 (char*)0);
drh79158e12005-09-06 21:40:45 +00002285 sqliteFree(zBuf);
drh0ccebe72005-06-07 22:22:50 +00002286 }
drh4eb9a972006-02-13 18:42:21 +00002287
2288#if 0
drh89ea9312006-02-13 17:03:47 +00002289 /*
2290 ** Remove "/./" path elements and convert "/A/./" path elements
2291 ** to just "/".
2292 */
2293 if( zFull ){
drh4eb9a972006-02-13 18:42:21 +00002294 int i, j;
drh89ea9312006-02-13 17:03:47 +00002295 for(i=j=0; zFull[i]; i++){
2296 if( zFull[i]=='/' ){
2297 if( zFull[i+1]=='/' ) continue;
2298 if( zFull[i+1]=='.' && zFull[i+2]=='/' ){
2299 i += 1;
2300 continue;
2301 }
2302 if( zFull[i+1]=='.' && zFull[i+2]=='.' && zFull[i+3]=='/' ){
2303 while( j>0 && zFull[j-1]!='/' ){ j--; }
2304 i += 3;
2305 continue;
2306 }
2307 }
2308 zFull[j++] = zFull[i];
2309 }
2310 zFull[j] = 0;
2311 }
drh4eb9a972006-02-13 18:42:21 +00002312#endif
2313
drh0ccebe72005-06-07 22:22:50 +00002314 return zFull;
2315}
2316
drh18839212005-11-26 03:43:23 +00002317/*
drh9cbe6352005-11-29 03:13:21 +00002318** Change the value of the fullsync flag in the given file descriptor.
drh18839212005-11-26 03:43:23 +00002319*/
drh9cbe6352005-11-29 03:13:21 +00002320static void unixSetFullSync(OsFile *id, int v){
drh054889e2005-11-30 03:20:31 +00002321 ((unixFile*)id)->fullSync = v;
drh9cbe6352005-11-29 03:13:21 +00002322}
2323
2324/*
2325** Return the underlying file handle for an OsFile
2326*/
2327static int unixFileHandle(OsFile *id){
drh054889e2005-11-30 03:20:31 +00002328 return ((unixFile*)id)->h;
drh9cbe6352005-11-29 03:13:21 +00002329}
2330
2331/*
2332** Return an integer that indices the type of lock currently held
2333** by this handle. (Used for testing and analysis only.)
2334*/
2335static int unixLockState(OsFile *id){
drh054889e2005-11-30 03:20:31 +00002336 return ((unixFile*)id)->locktype;
drh18839212005-11-26 03:43:23 +00002337}
drh0ccebe72005-06-07 22:22:50 +00002338
drh9c06c952005-11-26 00:25:00 +00002339/*
drh054889e2005-11-30 03:20:31 +00002340** This vector defines all the methods that can operate on an OsFile
2341** for unix.
drh9c06c952005-11-26 00:25:00 +00002342*/
drh054889e2005-11-30 03:20:31 +00002343static const IoMethod sqlite3UnixIoMethod = {
drh9c06c952005-11-26 00:25:00 +00002344 unixClose,
drh054889e2005-11-30 03:20:31 +00002345 unixOpenDirectory,
drh9c06c952005-11-26 00:25:00 +00002346 unixRead,
2347 unixWrite,
2348 unixSeek,
drh9c06c952005-11-26 00:25:00 +00002349 unixTruncate,
drh054889e2005-11-30 03:20:31 +00002350 unixSync,
drh9cbe6352005-11-29 03:13:21 +00002351 unixSetFullSync,
2352 unixFileHandle,
drh054889e2005-11-30 03:20:31 +00002353 unixFileSize,
2354 unixLock,
2355 unixUnlock,
drh9cbe6352005-11-29 03:13:21 +00002356 unixLockState,
drh054889e2005-11-30 03:20:31 +00002357 unixCheckReservedLock,
danielk1977b4721172007-03-19 05:54:48 +00002358 osGenericSectorSize,
drh9c06c952005-11-26 00:25:00 +00002359};
2360
drhbfe66312006-10-03 17:40:40 +00002361#ifdef SQLITE_ENABLE_LOCKING_STYLE
drh054889e2005-11-30 03:20:31 +00002362/*
drhbfe66312006-10-03 17:40:40 +00002363 ** This vector defines all the methods that can operate on an OsFile
2364 ** for unix with AFP style file locking.
2365 */
2366static const IoMethod sqlite3AFPLockingUnixIoMethod = {
2367 afpUnixClose,
2368 unixOpenDirectory,
2369 unixRead,
2370 unixWrite,
2371 unixSeek,
2372 unixTruncate,
2373 unixSync,
2374 unixSetFullSync,
2375 unixFileHandle,
2376 unixFileSize,
2377 afpUnixLock,
2378 afpUnixUnlock,
2379 unixLockState,
2380 afpUnixCheckReservedLock,
danielk1977b4721172007-03-19 05:54:48 +00002381 osGenericSectorSize,
drhbfe66312006-10-03 17:40:40 +00002382};
2383
2384/*
2385 ** This vector defines all the methods that can operate on an OsFile
2386 ** for unix with flock() style file locking.
2387 */
2388static const IoMethod sqlite3FlockLockingUnixIoMethod = {
2389 flockUnixClose,
2390 unixOpenDirectory,
2391 unixRead,
2392 unixWrite,
2393 unixSeek,
2394 unixTruncate,
2395 unixSync,
2396 unixSetFullSync,
2397 unixFileHandle,
2398 unixFileSize,
2399 flockUnixLock,
2400 flockUnixUnlock,
2401 unixLockState,
2402 flockUnixCheckReservedLock,
danielk1977b4721172007-03-19 05:54:48 +00002403 osGenericSectorSize,
drhbfe66312006-10-03 17:40:40 +00002404};
2405
2406/*
2407 ** This vector defines all the methods that can operate on an OsFile
2408 ** for unix with dotlock style file locking.
2409 */
2410static const IoMethod sqlite3DotlockLockingUnixIoMethod = {
2411 dotlockUnixClose,
2412 unixOpenDirectory,
2413 unixRead,
2414 unixWrite,
2415 unixSeek,
2416 unixTruncate,
2417 unixSync,
2418 unixSetFullSync,
2419 unixFileHandle,
2420 unixFileSize,
2421 dotlockUnixLock,
2422 dotlockUnixUnlock,
2423 unixLockState,
2424 dotlockUnixCheckReservedLock,
danielk1977b4721172007-03-19 05:54:48 +00002425 osGenericSectorSize,
drhbfe66312006-10-03 17:40:40 +00002426};
2427
2428/*
2429 ** This vector defines all the methods that can operate on an OsFile
2430 ** for unix with dotlock style file locking.
2431 */
2432static const IoMethod sqlite3NolockLockingUnixIoMethod = {
2433 nolockUnixClose,
2434 unixOpenDirectory,
2435 unixRead,
2436 unixWrite,
2437 unixSeek,
2438 unixTruncate,
2439 unixSync,
2440 unixSetFullSync,
2441 unixFileHandle,
2442 unixFileSize,
2443 nolockUnixLock,
2444 nolockUnixUnlock,
2445 unixLockState,
2446 nolockUnixCheckReservedLock,
danielk1977b4721172007-03-19 05:54:48 +00002447 osGenericSectorSize,
drhbfe66312006-10-03 17:40:40 +00002448};
2449
2450#endif /* SQLITE_ENABLE_LOCKING_STYLE */
2451
2452/*
2453** Allocate memory for a new unixFile and initialize that unixFile.
2454** Write a pointer to the new unixFile into *pId.
2455** If we run out of memory, close the file and return an error.
drh054889e2005-11-30 03:20:31 +00002456*/
drhbfe66312006-10-03 17:40:40 +00002457#ifdef SQLITE_ENABLE_LOCKING_STYLE
2458/*
2459 ** When locking extensions are enabled, the filepath and locking style
2460 ** are needed to determine the unixFile pMethod to use for locking operations.
2461 ** The locking-style specific lockingContext data structure is created
2462 ** and assigned here also.
2463 */
2464static int allocateUnixFile(
2465 int h, /* Open file descriptor of file being opened */
2466 OsFile **pId, /* Write completed initialization here */
2467 const char *zFilename, /* Name of the file being opened */
2468 int delFlag /* Delete-on-or-before-close flag */
2469){
aswift108bc322006-10-11 17:19:46 +00002470 sqlite3LockingStyle lockingStyle;
drh054889e2005-11-30 03:20:31 +00002471 unixFile *pNew;
drhbfe66312006-10-03 17:40:40 +00002472 unixFile f;
2473 int rc;
2474
aswift448aa6f2006-11-11 01:31:58 +00002475 lockingStyle = sqlite3DetectLockingStyle(zFilename, h);
drhbfe66312006-10-03 17:40:40 +00002476 if ( lockingStyle == posixLockingStyle ) {
2477 sqlite3OsEnterMutex();
2478 rc = findLockInfo(h, &f.pLock, &f.pOpen);
2479 sqlite3OsLeaveMutex();
2480 if( rc ){
2481 close(h);
2482 unlink(zFilename);
2483 return SQLITE_NOMEM;
2484 }
2485 } else {
2486 // pLock and pOpen are only used for posix advisory locking
2487 f.pLock = NULL;
2488 f.pOpen = NULL;
2489 }
2490 if( delFlag ){
2491 unlink(zFilename);
2492 }
2493 f.dirfd = -1;
2494 f.fullSync = 0;
2495 f.locktype = 0;
2496 f.offset = 0;
2497 f.h = h;
2498 SET_THREADID(&f);
danielk1977750b03e2006-02-14 10:48:39 +00002499 pNew = sqlite3ThreadSafeMalloc( sizeof(unixFile) );
drh054889e2005-11-30 03:20:31 +00002500 if( pNew==0 ){
drhbfe66312006-10-03 17:40:40 +00002501 close(h);
drh029b44b2006-01-15 00:13:15 +00002502 sqlite3OsEnterMutex();
drhbfe66312006-10-03 17:40:40 +00002503 releaseLockInfo(f.pLock);
2504 releaseOpenCnt(f.pOpen);
drh029b44b2006-01-15 00:13:15 +00002505 sqlite3OsLeaveMutex();
drh054889e2005-11-30 03:20:31 +00002506 *pId = 0;
2507 return SQLITE_NOMEM;
2508 }else{
drhbfe66312006-10-03 17:40:40 +00002509 *pNew = f;
aswift108bc322006-10-11 17:19:46 +00002510 switch(lockingStyle) {
drhbfe66312006-10-03 17:40:40 +00002511 case afpLockingStyle:
2512 /* afp locking uses the file path so it needs to be included in
2513 ** the afpLockingContext */
2514 pNew->pMethod = &sqlite3AFPLockingUnixIoMethod;
2515 pNew->lockingContext =
2516 sqlite3ThreadSafeMalloc(sizeof(afpLockingContext));
2517 ((afpLockingContext *)pNew->lockingContext)->filePath =
2518 sqlite3ThreadSafeMalloc(strlen(zFilename) + 1);
2519 strcpy(((afpLockingContext *)pNew->lockingContext)->filePath,
2520 zFilename);
2521 srandomdev();
2522 break;
2523 case flockLockingStyle:
2524 /* flock locking doesn't need additional lockingContext information */
2525 pNew->pMethod = &sqlite3FlockLockingUnixIoMethod;
2526 break;
2527 case dotlockLockingStyle:
2528 /* dotlock locking uses the file path so it needs to be included in
2529 ** the dotlockLockingContext */
2530 pNew->pMethod = &sqlite3DotlockLockingUnixIoMethod;
2531 pNew->lockingContext = sqlite3ThreadSafeMalloc(
2532 sizeof(dotlockLockingContext));
2533 ((dotlockLockingContext *)pNew->lockingContext)->lockPath =
2534 sqlite3ThreadSafeMalloc(strlen(zFilename) + strlen(".lock") + 1);
2535 sprintf(((dotlockLockingContext *)pNew->lockingContext)->lockPath,
2536 "%s.lock", zFilename);
2537 break;
2538 case posixLockingStyle:
2539 /* posix locking doesn't need additional lockingContext information */
2540 pNew->pMethod = &sqlite3UnixIoMethod;
2541 break;
2542 case noLockingStyle:
2543 case unsupportedLockingStyle:
2544 default:
2545 pNew->pMethod = &sqlite3NolockLockingUnixIoMethod;
2546 }
2547 *pId = (OsFile*)pNew;
2548 OpenCounter(+1);
2549 return SQLITE_OK;
2550 }
2551}
2552#else /* SQLITE_ENABLE_LOCKING_STYLE */
2553static int allocateUnixFile(
2554 int h, /* Open file descriptor on file being opened */
2555 OsFile **pId, /* Write the resul unixFile structure here */
2556 const char *zFilename, /* Name of the file being opened */
2557 int delFlag /* If true, delete the file on or before closing */
2558){
2559 unixFile *pNew;
2560 unixFile f;
2561 int rc;
2562
2563 sqlite3OsEnterMutex();
2564 rc = findLockInfo(h, &f.pLock, &f.pOpen);
2565 sqlite3OsLeaveMutex();
2566 if( delFlag ){
2567 unlink(zFilename);
2568 }
2569 if( rc ){
2570 close(h);
2571 return SQLITE_NOMEM;
2572 }
2573 TRACE3("OPEN %-3d %s\n", h, zFilename);
2574 f.dirfd = -1;
2575 f.fullSync = 0;
2576 f.locktype = 0;
2577 f.offset = 0;
2578 f.h = h;
2579 SET_THREADID(&f);
2580 pNew = sqlite3ThreadSafeMalloc( sizeof(unixFile) );
2581 if( pNew==0 ){
2582 close(h);
2583 sqlite3OsEnterMutex();
2584 releaseLockInfo(f.pLock);
2585 releaseOpenCnt(f.pOpen);
2586 sqlite3OsLeaveMutex();
2587 *pId = 0;
2588 return SQLITE_NOMEM;
2589 }else{
2590 *pNew = f;
drh054889e2005-11-30 03:20:31 +00002591 pNew->pMethod = &sqlite3UnixIoMethod;
2592 *pId = (OsFile*)pNew;
2593 OpenCounter(+1);
2594 return SQLITE_OK;
2595 }
2596}
drhbfe66312006-10-03 17:40:40 +00002597#endif /* SQLITE_ENABLE_LOCKING_STYLE */
drh9c06c952005-11-26 00:25:00 +00002598
drh0ccebe72005-06-07 22:22:50 +00002599#endif /* SQLITE_OMIT_DISKIO */
2600/***************************************************************************
2601** Everything above deals with file I/O. Everything that follows deals
2602** with other miscellanous aspects of the operating system interface
2603****************************************************************************/
2604
2605
drh761df872006-12-21 01:29:22 +00002606#ifndef SQLITE_OMIT_LOAD_EXTENSION
2607/*
2608** Interfaces for opening a shared library, finding entry points
2609** within the shared library, and closing the shared library.
2610*/
2611#include <dlfcn.h>
2612void *sqlite3UnixDlopen(const char *zFilename){
2613 return dlopen(zFilename, RTLD_NOW | RTLD_GLOBAL);
2614}
2615void *sqlite3UnixDlsym(void *pHandle, const char *zSymbol){
2616 return dlsym(pHandle, zSymbol);
2617}
2618int sqlite3UnixDlclose(void *pHandle){
2619 return dlclose(pHandle);
2620}
2621#endif /* SQLITE_OMIT_LOAD_EXTENSION */
2622
drh0ccebe72005-06-07 22:22:50 +00002623/*
drhbbd42a62004-05-22 17:41:58 +00002624** Get information to seed the random number generator. The seed
2625** is written into the buffer zBuf[256]. The calling function must
2626** supply a sufficiently large buffer.
2627*/
drh66560ad2006-01-06 14:32:19 +00002628int sqlite3UnixRandomSeed(char *zBuf){
drhbbd42a62004-05-22 17:41:58 +00002629 /* We have to initialize zBuf to prevent valgrind from reporting
2630 ** errors. The reports issued by valgrind are incorrect - we would
2631 ** prefer that the randomness be increased by making use of the
2632 ** uninitialized space in zBuf - but valgrind errors tend to worry
2633 ** some users. Rather than argue, it seems easier just to initialize
2634 ** the whole array and silence valgrind, even if that means less randomness
2635 ** in the random seed.
2636 **
2637 ** When testing, initializing zBuf[] to zero is all we do. That means
drhf1a221e2006-01-15 17:27:17 +00002638 ** that we always use the same random number sequence. This makes the
drhbbd42a62004-05-22 17:41:58 +00002639 ** tests repeatable.
2640 */
2641 memset(zBuf, 0, 256);
2642#if !defined(SQLITE_TEST)
2643 {
drh842b8642005-01-21 17:53:17 +00002644 int pid, fd;
2645 fd = open("/dev/urandom", O_RDONLY);
2646 if( fd<0 ){
drh07397232006-01-06 14:46:46 +00002647 time_t t;
2648 time(&t);
2649 memcpy(zBuf, &t, sizeof(t));
drh842b8642005-01-21 17:53:17 +00002650 pid = getpid();
2651 memcpy(&zBuf[sizeof(time_t)], &pid, sizeof(pid));
2652 }else{
2653 read(fd, zBuf, 256);
2654 close(fd);
2655 }
drhbbd42a62004-05-22 17:41:58 +00002656 }
2657#endif
2658 return SQLITE_OK;
2659}
2660
2661/*
2662** Sleep for a little while. Return the amount of time slept.
drhf1a221e2006-01-15 17:27:17 +00002663** The argument is the number of milliseconds we want to sleep.
drhbbd42a62004-05-22 17:41:58 +00002664*/
drh66560ad2006-01-06 14:32:19 +00002665int sqlite3UnixSleep(int ms){
drhbbd42a62004-05-22 17:41:58 +00002666#if defined(HAVE_USLEEP) && HAVE_USLEEP
2667 usleep(ms*1000);
2668 return ms;
2669#else
2670 sleep((ms+999)/1000);
2671 return 1000*((ms+999)/1000);
2672#endif
2673}
2674
2675/*
drh5c111232006-02-10 04:33:12 +00002676** Static variables used for thread synchronization.
2677**
2678** inMutex the nesting depth of the recursive mutex. The thread
2679** holding mutexMain can read this variable at any time.
2680** But is must hold mutexAux to change this variable. Other
drh6a3d6702006-02-10 13:11:32 +00002681** threads must hold mutexAux to read the variable and can
2682** never write.
drh5c111232006-02-10 04:33:12 +00002683**
2684** mutexOwner The thread id of the thread holding mutexMain. Same
2685** access rules as for inMutex.
2686**
drh6a3d6702006-02-10 13:11:32 +00002687** mutexOwnerValid True if the value in mutexOwner is valid. The same
2688** access rules apply as for inMutex.
drh5c111232006-02-10 04:33:12 +00002689**
2690** mutexMain The main mutex. Hold this mutex in order to get exclusive
2691** access to SQLite data structures.
2692**
2693** mutexAux An auxiliary mutex needed to access variables defined above.
2694**
drh6a3d6702006-02-10 13:11:32 +00002695** Mutexes are always acquired in this order: mutexMain mutexAux. It
2696** is not necessary to acquire mutexMain in order to get mutexAux - just
2697** do not attempt to acquire them in the reverse order: mutexAux mutexMain.
2698** Either get the mutexes with mutexMain first or get mutexAux only.
2699**
2700** When running on a platform where the three variables inMutex, mutexOwner,
2701** and mutexOwnerValid can be set atomically, the mutexAux is not required.
2702** On many systems, all three are 32-bit integers and writing to a 32-bit
2703** integer is atomic. I think. But there are no guarantees. So it seems
2704** safer to protect them using mutexAux.
drhbbd42a62004-05-22 17:41:58 +00002705*/
2706static int inMutex = 0;
drh79069752004-05-22 21:30:40 +00002707#ifdef SQLITE_UNIX_THREADS
drh6a3d6702006-02-10 13:11:32 +00002708static pthread_t mutexOwner; /* Thread holding mutexMain */
drh5c111232006-02-10 04:33:12 +00002709static int mutexOwnerValid = 0; /* True if mutexOwner is valid */
2710static pthread_mutex_t mutexMain = PTHREAD_MUTEX_INITIALIZER; /* The mutex */
2711static pthread_mutex_t mutexAux = PTHREAD_MUTEX_INITIALIZER; /* Aux mutex */
drh79069752004-05-22 21:30:40 +00002712#endif
drhbbd42a62004-05-22 17:41:58 +00002713
2714/*
2715** The following pair of routine implement mutual exclusion for
2716** multi-threaded processes. Only a single thread is allowed to
2717** executed code that is surrounded by EnterMutex() and LeaveMutex().
2718**
2719** SQLite uses only a single Mutex. There is not much critical
2720** code and what little there is executes quickly and without blocking.
drhf1a221e2006-01-15 17:27:17 +00002721**
drh757b04e2006-01-18 17:25:45 +00002722** As of version 3.3.2, this mutex must be recursive.
drhbbd42a62004-05-22 17:41:58 +00002723*/
drh66560ad2006-01-06 14:32:19 +00002724void sqlite3UnixEnterMutex(){
drhbbd42a62004-05-22 17:41:58 +00002725#ifdef SQLITE_UNIX_THREADS
drh5c111232006-02-10 04:33:12 +00002726 pthread_mutex_lock(&mutexAux);
2727 if( !mutexOwnerValid || !pthread_equal(mutexOwner, pthread_self()) ){
2728 pthread_mutex_unlock(&mutexAux);
2729 pthread_mutex_lock(&mutexMain);
2730 assert( inMutex==0 );
2731 assert( !mutexOwnerValid );
2732 pthread_mutex_lock(&mutexAux);
drha3fad6f2006-01-18 14:06:37 +00002733 mutexOwner = pthread_self();
drh5c111232006-02-10 04:33:12 +00002734 mutexOwnerValid = 1;
drha3fad6f2006-01-18 14:06:37 +00002735 }
drha3fad6f2006-01-18 14:06:37 +00002736 inMutex++;
drh5c111232006-02-10 04:33:12 +00002737 pthread_mutex_unlock(&mutexAux);
2738#else
drhe9565a62006-02-11 02:03:52 +00002739 inMutex++;
drh5c111232006-02-10 04:33:12 +00002740#endif
drhbbd42a62004-05-22 17:41:58 +00002741}
drh66560ad2006-01-06 14:32:19 +00002742void sqlite3UnixLeaveMutex(){
drha3fad6f2006-01-18 14:06:37 +00002743 assert( inMutex>0 );
drhbbd42a62004-05-22 17:41:58 +00002744#ifdef SQLITE_UNIX_THREADS
drh5c111232006-02-10 04:33:12 +00002745 pthread_mutex_lock(&mutexAux);
drha3fad6f2006-01-18 14:06:37 +00002746 inMutex--;
drh5c111232006-02-10 04:33:12 +00002747 assert( pthread_equal(mutexOwner, pthread_self()) );
drha3fad6f2006-01-18 14:06:37 +00002748 if( inMutex==0 ){
drh5c111232006-02-10 04:33:12 +00002749 assert( mutexOwnerValid );
2750 mutexOwnerValid = 0;
2751 pthread_mutex_unlock(&mutexMain);
drha3fad6f2006-01-18 14:06:37 +00002752 }
drh5c111232006-02-10 04:33:12 +00002753 pthread_mutex_unlock(&mutexAux);
drha3fad6f2006-01-18 14:06:37 +00002754#else
2755 inMutex--;
drhbbd42a62004-05-22 17:41:58 +00002756#endif
2757}
2758
2759/*
drh757b04e2006-01-18 17:25:45 +00002760** Return TRUE if the mutex is currently held.
2761**
drh5c111232006-02-10 04:33:12 +00002762** If the thisThrd parameter is true, return true only if the
drh757b04e2006-01-18 17:25:45 +00002763** calling thread holds the mutex. If the parameter is false, return
2764** true if any thread holds the mutex.
drh88f474a2006-01-02 20:00:12 +00002765*/
drh5c111232006-02-10 04:33:12 +00002766int sqlite3UnixInMutex(int thisThrd){
drha3fad6f2006-01-18 14:06:37 +00002767#ifdef SQLITE_UNIX_THREADS
drh5c111232006-02-10 04:33:12 +00002768 int rc;
2769 pthread_mutex_lock(&mutexAux);
2770 rc = inMutex>0 && (thisThrd==0 || pthread_equal(mutexOwner,pthread_self()));
2771 pthread_mutex_unlock(&mutexAux);
2772 return rc;
drha3fad6f2006-01-18 14:06:37 +00002773#else
drh757b04e2006-01-18 17:25:45 +00002774 return inMutex>0;
drha3fad6f2006-01-18 14:06:37 +00002775#endif
drh88f474a2006-01-02 20:00:12 +00002776}
2777
2778/*
drhb4bc7052006-01-11 23:40:33 +00002779** Remember the number of thread-specific-data blocks allocated.
2780** Use this to verify that we are not leaking thread-specific-data.
2781** Ticket #1601
2782*/
2783#ifdef SQLITE_TEST
2784int sqlite3_tsd_count = 0;
2785# ifdef SQLITE_UNIX_THREADS
2786 static pthread_mutex_t tsd_counter_mutex = PTHREAD_MUTEX_INITIALIZER;
2787# define TSD_COUNTER(N) \
2788 pthread_mutex_lock(&tsd_counter_mutex); \
2789 sqlite3_tsd_count += N; \
2790 pthread_mutex_unlock(&tsd_counter_mutex);
2791# else
2792# define TSD_COUNTER(N) sqlite3_tsd_count += N
2793# endif
2794#else
2795# define TSD_COUNTER(N) /* no-op */
2796#endif
2797
drhb4bc7052006-01-11 23:40:33 +00002798/*
drhf1a221e2006-01-15 17:27:17 +00002799** If called with allocateFlag>0, then return a pointer to thread
drh6f7adc82006-01-11 21:41:20 +00002800** specific data for the current thread. Allocate and zero the
drhf1a221e2006-01-15 17:27:17 +00002801** thread-specific data if it does not already exist.
danielk197713a68c32005-12-15 10:11:30 +00002802**
drh6f7adc82006-01-11 21:41:20 +00002803** If called with allocateFlag==0, then check the current thread
drh70ff98a2006-01-12 01:25:18 +00002804** specific data. Return it if it exists. If it does not exist,
2805** then return NULL.
2806**
2807** If called with allocateFlag<0, check to see if the thread specific
2808** data is allocated and is all zero. If it is then deallocate it.
drh6f7adc82006-01-11 21:41:20 +00002809** Return a pointer to the thread specific data or NULL if it is
drh70ff98a2006-01-12 01:25:18 +00002810** unallocated or gets deallocated.
danielk197713a68c32005-12-15 10:11:30 +00002811*/
drh6f7adc82006-01-11 21:41:20 +00002812ThreadData *sqlite3UnixThreadSpecificData(int allocateFlag){
danielk19774d5238f2006-01-27 06:32:00 +00002813 static const ThreadData zeroData = {0}; /* Initializer to silence warnings
2814 ** from broken compilers */
danielk197713a68c32005-12-15 10:11:30 +00002815#ifdef SQLITE_UNIX_THREADS
2816 static pthread_key_t key;
2817 static int keyInit = 0;
drh6f7adc82006-01-11 21:41:20 +00002818 ThreadData *pTsd;
danielk197713a68c32005-12-15 10:11:30 +00002819
2820 if( !keyInit ){
drh66560ad2006-01-06 14:32:19 +00002821 sqlite3OsEnterMutex();
danielk197713a68c32005-12-15 10:11:30 +00002822 if( !keyInit ){
2823 int rc;
drh6f7adc82006-01-11 21:41:20 +00002824 rc = pthread_key_create(&key, 0);
danielk197713a68c32005-12-15 10:11:30 +00002825 if( rc ){
drh8c0ca7d2006-01-07 04:06:54 +00002826 sqlite3OsLeaveMutex();
danielk197713a68c32005-12-15 10:11:30 +00002827 return 0;
2828 }
2829 keyInit = 1;
2830 }
drh66560ad2006-01-06 14:32:19 +00002831 sqlite3OsLeaveMutex();
danielk197713a68c32005-12-15 10:11:30 +00002832 }
2833
drh3fbb0b12006-01-06 00:36:00 +00002834 pTsd = pthread_getspecific(key);
drh70ff98a2006-01-12 01:25:18 +00002835 if( allocateFlag>0 ){
drh6f7adc82006-01-11 21:41:20 +00002836 if( pTsd==0 ){
danielk197776e8d1a2006-01-18 18:22:43 +00002837 if( !sqlite3TestMallocFail() ){
2838 pTsd = sqlite3OsMalloc(sizeof(zeroData));
2839 }
2840#ifdef SQLITE_MEMDEBUG
2841 sqlite3_isFail = 0;
2842#endif
drh6f7adc82006-01-11 21:41:20 +00002843 if( pTsd ){
2844 *pTsd = zeroData;
2845 pthread_setspecific(key, pTsd);
drhb4bc7052006-01-11 23:40:33 +00002846 TSD_COUNTER(+1);
drh6f7adc82006-01-11 21:41:20 +00002847 }
danielk197713a68c32005-12-15 10:11:30 +00002848 }
drh70ff98a2006-01-12 01:25:18 +00002849 }else if( pTsd!=0 && allocateFlag<0
danielk19779e128002006-01-18 16:51:35 +00002850 && memcmp(pTsd, &zeroData, sizeof(ThreadData))==0 ){
drh6f7adc82006-01-11 21:41:20 +00002851 sqlite3OsFree(pTsd);
2852 pthread_setspecific(key, 0);
drhb4bc7052006-01-11 23:40:33 +00002853 TSD_COUNTER(-1);
drh6f7adc82006-01-11 21:41:20 +00002854 pTsd = 0;
danielk197713a68c32005-12-15 10:11:30 +00002855 }
2856 return pTsd;
2857#else
drh6f7adc82006-01-11 21:41:20 +00002858 static ThreadData *pTsd = 0;
drh70ff98a2006-01-12 01:25:18 +00002859 if( allocateFlag>0 ){
drh6f7adc82006-01-11 21:41:20 +00002860 if( pTsd==0 ){
danielk197776e8d1a2006-01-18 18:22:43 +00002861 if( !sqlite3TestMallocFail() ){
2862 pTsd = sqlite3OsMalloc( sizeof(zeroData) );
2863 }
2864#ifdef SQLITE_MEMDEBUG
2865 sqlite3_isFail = 0;
2866#endif
drh6f7adc82006-01-11 21:41:20 +00002867 if( pTsd ){
2868 *pTsd = zeroData;
drhb4bc7052006-01-11 23:40:33 +00002869 TSD_COUNTER(+1);
drh6f7adc82006-01-11 21:41:20 +00002870 }
drh3fbb0b12006-01-06 00:36:00 +00002871 }
drh70ff98a2006-01-12 01:25:18 +00002872 }else if( pTsd!=0 && allocateFlag<0
danielk19779e128002006-01-18 16:51:35 +00002873 && memcmp(pTsd, &zeroData, sizeof(ThreadData))==0 ){
drh6f7adc82006-01-11 21:41:20 +00002874 sqlite3OsFree(pTsd);
drhb4bc7052006-01-11 23:40:33 +00002875 TSD_COUNTER(-1);
drh6f7adc82006-01-11 21:41:20 +00002876 pTsd = 0;
danielk197713a68c32005-12-15 10:11:30 +00002877 }
drh3fbb0b12006-01-06 00:36:00 +00002878 return pTsd;
danielk197713a68c32005-12-15 10:11:30 +00002879#endif
2880}
2881
2882/*
drhbbd42a62004-05-22 17:41:58 +00002883** The following variable, if set to a non-zero value, becomes the result
drh66560ad2006-01-06 14:32:19 +00002884** returned from sqlite3OsCurrentTime(). This is used for testing.
drhbbd42a62004-05-22 17:41:58 +00002885*/
2886#ifdef SQLITE_TEST
2887int sqlite3_current_time = 0;
2888#endif
2889
2890/*
2891** Find the current time (in Universal Coordinated Time). Write the
2892** current time and date as a Julian Day number into *prNow and
2893** return 0. Return 1 if the time and date cannot be found.
2894*/
drh66560ad2006-01-06 14:32:19 +00002895int sqlite3UnixCurrentTime(double *prNow){
drh19e2d372005-08-29 23:00:03 +00002896#ifdef NO_GETTOD
drhbbd42a62004-05-22 17:41:58 +00002897 time_t t;
2898 time(&t);
2899 *prNow = t/86400.0 + 2440587.5;
drh19e2d372005-08-29 23:00:03 +00002900#else
2901 struct timeval sNow;
2902 struct timezone sTz; /* Not used */
2903 gettimeofday(&sNow, &sTz);
2904 *prNow = 2440587.5 + sNow.tv_sec/86400.0 + sNow.tv_usec/86400000000.0;
2905#endif
drhbbd42a62004-05-22 17:41:58 +00002906#ifdef SQLITE_TEST
2907 if( sqlite3_current_time ){
2908 *prNow = sqlite3_current_time/86400.0 + 2440587.5;
2909 }
2910#endif
2911 return 0;
2912}
2913
drhbbd42a62004-05-22 17:41:58 +00002914#endif /* OS_UNIX */