blob: be3a30a97797f817b31c485f29aa850cee9c6b6a [file] [log] [blame]
drhbbd42a62004-05-22 17:41:58 +00001/*
2** 2004 May 22
3**
4** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
6**
7** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
10**
11******************************************************************************
12**
13** This file contains code that is specific to Unix systems.
14*/
drhbbd42a62004-05-22 17:41:58 +000015#include "sqliteInt.h"
drheb206252004-10-01 02:00:31 +000016#include "os.h"
17#if OS_UNIX /* This file is used on unix only */
drh66560ad2006-01-06 14:32:19 +000018
drhbfe66312006-10-03 17:40:40 +000019/* #define SQLITE_ENABLE_LOCKING_STYLE 0 */
20
drh9cbe6352005-11-29 03:13:21 +000021/*
22** These #defines should enable >2GB file support on Posix if the
23** underlying operating system supports it. If the OS lacks
drhf1a221e2006-01-15 17:27:17 +000024** large file support, these should be no-ops.
drh9cbe6352005-11-29 03:13:21 +000025**
26** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch
27** on the compiler command line. This is necessary if you are compiling
28** on a recent machine (ex: RedHat 7.2) but you want your code to work
29** on an older machine (ex: RedHat 6.0). If you compile on RedHat 7.2
30** without this option, LFS is enable. But LFS does not exist in the kernel
31** in RedHat 6.0, so the code won't work. Hence, for maximum binary
32** portability you should omit LFS.
drh9cbe6352005-11-29 03:13:21 +000033*/
34#ifndef SQLITE_DISABLE_LFS
35# define _LARGE_FILE 1
36# ifndef _FILE_OFFSET_BITS
37# define _FILE_OFFSET_BITS 64
38# endif
39# define _LARGEFILE_SOURCE 1
40#endif
drhbbd42a62004-05-22 17:41:58 +000041
drh9cbe6352005-11-29 03:13:21 +000042/*
43** standard include files.
44*/
45#include <sys/types.h>
46#include <sys/stat.h>
47#include <fcntl.h>
48#include <unistd.h>
drhbbd42a62004-05-22 17:41:58 +000049#include <time.h>
drh19e2d372005-08-29 23:00:03 +000050#include <sys/time.h>
drhbbd42a62004-05-22 17:41:58 +000051#include <errno.h>
drhbfe66312006-10-03 17:40:40 +000052#ifdef SQLITE_ENABLE_LOCKING_STYLE
53#include <sys/ioctl.h>
54#include <sys/param.h>
55#include <sys/mount.h>
56#endif /* SQLITE_ENABLE_LOCKING_STYLE */
drh9cbe6352005-11-29 03:13:21 +000057
58/*
drhf1a221e2006-01-15 17:27:17 +000059** If we are to be thread-safe, include the pthreads header and define
60** the SQLITE_UNIX_THREADS macro.
drh9cbe6352005-11-29 03:13:21 +000061*/
62#if defined(THREADSAFE) && THREADSAFE
63# include <pthread.h>
64# define SQLITE_UNIX_THREADS 1
65#endif
66
67/*
68** Default permissions when creating a new file
69*/
70#ifndef SQLITE_DEFAULT_FILE_PERMISSIONS
71# define SQLITE_DEFAULT_FILE_PERMISSIONS 0644
72#endif
73
74
75
76/*
drh054889e2005-11-30 03:20:31 +000077** The unixFile structure is subclass of OsFile specific for the unix
78** protability layer.
drh9cbe6352005-11-29 03:13:21 +000079*/
drh054889e2005-11-30 03:20:31 +000080typedef struct unixFile unixFile;
81struct unixFile {
82 IoMethod const *pMethod; /* Always the first entry */
drh9cbe6352005-11-29 03:13:21 +000083 struct openCnt *pOpen; /* Info about all open fd's on this inode */
84 struct lockInfo *pLock; /* Info about locks on this inode */
drhbfe66312006-10-03 17:40:40 +000085#ifdef SQLITE_ENABLE_LOCKING_STYLE
86 void *lockingContext; /* Locking style specific state */
87#endif /* SQLITE_ENABLE_LOCKING_STYLE */
drh9cbe6352005-11-29 03:13:21 +000088 int h; /* The file descriptor */
89 unsigned char locktype; /* The type of lock held on this fd */
90 unsigned char isOpen; /* True if needs to be closed */
91 unsigned char fullSync; /* Use F_FULLSYNC if available */
92 int dirfd; /* File descriptor for the directory */
drhb912b282006-03-23 22:42:20 +000093 i64 offset; /* Seek offset */
drh9cbe6352005-11-29 03:13:21 +000094#ifdef SQLITE_UNIX_THREADS
drhf1a221e2006-01-15 17:27:17 +000095 pthread_t tid; /* The thread that "owns" this OsFile */
drh9cbe6352005-11-29 03:13:21 +000096#endif
97};
98
drh66560ad2006-01-06 14:32:19 +000099/*
100** Provide the ability to override some OS-layer functions during
101** testing. This is used to simulate OS crashes to verify that
102** commits are atomic even in the event of an OS crash.
103*/
104#ifdef SQLITE_CRASH_TEST
105 extern int sqlite3CrashTestEnable;
106 extern int sqlite3CrashOpenReadWrite(const char*, OsFile**, int*);
107 extern int sqlite3CrashOpenExclusive(const char*, OsFile**, int);
108 extern int sqlite3CrashOpenReadOnly(const char*, OsFile**, int);
109# define CRASH_TEST_OVERRIDE(X,A,B,C) \
110 if(sqlite3CrashTestEnable){ return X(A,B,C); }
111#else
112# define CRASH_TEST_OVERRIDE(X,A,B,C) /* no-op */
113#endif
114
drh0ccebe72005-06-07 22:22:50 +0000115
116/*
drh198bf392006-01-06 21:52:49 +0000117** Include code that is common to all os_*.c files
118*/
119#include "os_common.h"
120
121/*
drh0ccebe72005-06-07 22:22:50 +0000122** Do not include any of the File I/O interface procedures if the
drhf1a221e2006-01-15 17:27:17 +0000123** SQLITE_OMIT_DISKIO macro is defined (indicating that the database
drh0ccebe72005-06-07 22:22:50 +0000124** will be in-memory only)
125*/
126#ifndef SQLITE_OMIT_DISKIO
127
128
129/*
130** Define various macros that are missing from some systems.
131*/
drhbbd42a62004-05-22 17:41:58 +0000132#ifndef O_LARGEFILE
133# define O_LARGEFILE 0
134#endif
135#ifdef SQLITE_DISABLE_LFS
136# undef O_LARGEFILE
137# define O_LARGEFILE 0
138#endif
139#ifndef O_NOFOLLOW
140# define O_NOFOLLOW 0
141#endif
142#ifndef O_BINARY
143# define O_BINARY 0
144#endif
145
146/*
147** The DJGPP compiler environment looks mostly like Unix, but it
148** lacks the fcntl() system call. So redefine fcntl() to be something
149** that always succeeds. This means that locking does not occur under
danielk197726c5d792005-11-25 09:01:23 +0000150** DJGPP. But it's DOS - what did you expect?
drhbbd42a62004-05-22 17:41:58 +0000151*/
152#ifdef __DJGPP__
153# define fcntl(A,B,C) 0
154#endif
155
156/*
drh2b4b5962005-06-15 17:47:55 +0000157** The threadid macro resolves to the thread-id or to 0. Used for
158** testing and debugging only.
159*/
160#ifdef SQLITE_UNIX_THREADS
161#define threadid pthread_self()
162#else
163#define threadid 0
164#endif
165
166/*
167** Set or check the OsFile.tid field. This field is set when an OsFile
168** is first opened. All subsequent uses of the OsFile verify that the
169** same thread is operating on the OsFile. Some operating systems do
170** not allow locks to be overridden by other threads and that restriction
171** means that sqlite3* database handles cannot be moved from one thread
172** to another. This logic makes sure a user does not try to do that
173** by mistake.
drhf1a221e2006-01-15 17:27:17 +0000174**
175** Version 3.3.1 (2006-01-15): OsFiles can be moved from one thread to
176** another as long as we are running on a system that supports threads
177** overriding each others locks (which now the most common behavior)
178** or if no locks are held. But the OsFile.pLock field needs to be
179** recomputed because its key includes the thread-id. See the
180** transferOwnership() function below for additional information
drh2b4b5962005-06-15 17:47:55 +0000181*/
drh029b44b2006-01-15 00:13:15 +0000182#if defined(SQLITE_UNIX_THREADS)
drh9cbe6352005-11-29 03:13:21 +0000183# define SET_THREADID(X) (X)->tid = pthread_self()
drh029b44b2006-01-15 00:13:15 +0000184# define CHECK_THREADID(X) (threadsOverrideEachOthersLocks==0 && \
185 !pthread_equal((X)->tid, pthread_self()))
drh2b4b5962005-06-15 17:47:55 +0000186#else
187# define SET_THREADID(X)
188# define CHECK_THREADID(X) 0
danielk197713adf8a2004-06-03 16:08:41 +0000189#endif
190
drhbbd42a62004-05-22 17:41:58 +0000191/*
192** Here is the dirt on POSIX advisory locks: ANSI STD 1003.1 (1996)
193** section 6.5.2.2 lines 483 through 490 specify that when a process
194** sets or clears a lock, that operation overrides any prior locks set
195** by the same process. It does not explicitly say so, but this implies
196** that it overrides locks set by the same process using a different
197** file descriptor. Consider this test case:
198**
199** int fd1 = open("./file1", O_RDWR|O_CREAT, 0644);
200** int fd2 = open("./file2", O_RDWR|O_CREAT, 0644);
201**
202** Suppose ./file1 and ./file2 are really the same file (because
203** one is a hard or symbolic link to the other) then if you set
204** an exclusive lock on fd1, then try to get an exclusive lock
205** on fd2, it works. I would have expected the second lock to
206** fail since there was already a lock on the file due to fd1.
207** But not so. Since both locks came from the same process, the
208** second overrides the first, even though they were on different
209** file descriptors opened on different file names.
210**
211** Bummer. If you ask me, this is broken. Badly broken. It means
212** that we cannot use POSIX locks to synchronize file access among
213** competing threads of the same process. POSIX locks will work fine
214** to synchronize access for threads in separate processes, but not
215** threads within the same process.
216**
217** To work around the problem, SQLite has to manage file locks internally
218** on its own. Whenever a new database is opened, we have to find the
219** specific inode of the database file (the inode is determined by the
220** st_dev and st_ino fields of the stat structure that fstat() fills in)
221** and check for locks already existing on that inode. When locks are
222** created or removed, we have to look at our own internal record of the
223** locks to see if another thread has previously set a lock on that same
224** inode.
225**
226** The OsFile structure for POSIX is no longer just an integer file
227** descriptor. It is now a structure that holds the integer file
228** descriptor and a pointer to a structure that describes the internal
229** locks on the corresponding inode. There is one locking structure
230** per inode, so if the same inode is opened twice, both OsFile structures
231** point to the same locking structure. The locking structure keeps
232** a reference count (so we will know when to delete it) and a "cnt"
233** field that tells us its internal lock status. cnt==0 means the
234** file is unlocked. cnt==-1 means the file has an exclusive lock.
235** cnt>0 means there are cnt shared locks on the file.
236**
237** Any attempt to lock or unlock a file first checks the locking
238** structure. The fcntl() system call is only invoked to set a
239** POSIX lock if the internal lock structure transitions between
240** a locked and an unlocked state.
241**
242** 2004-Jan-11:
243** More recent discoveries about POSIX advisory locks. (The more
244** I discover, the more I realize the a POSIX advisory locks are
245** an abomination.)
246**
247** If you close a file descriptor that points to a file that has locks,
248** all locks on that file that are owned by the current process are
249** released. To work around this problem, each OsFile structure contains
250** a pointer to an openCnt structure. There is one openCnt structure
251** per open inode, which means that multiple OsFiles can point to a single
252** openCnt. When an attempt is made to close an OsFile, if there are
253** other OsFiles open on the same inode that are holding locks, the call
254** to close() the file descriptor is deferred until all of the locks clear.
255** The openCnt structure keeps a list of file descriptors that need to
256** be closed and that list is walked (and cleared) when the last lock
257** clears.
258**
259** First, under Linux threads, because each thread has a separate
260** process ID, lock operations in one thread do not override locks
261** to the same file in other threads. Linux threads behave like
262** separate processes in this respect. But, if you close a file
263** descriptor in linux threads, all locks are cleared, even locks
264** on other threads and even though the other threads have different
265** process IDs. Linux threads is inconsistent in this respect.
266** (I'm beginning to think that linux threads is an abomination too.)
267** The consequence of this all is that the hash table for the lockInfo
268** structure has to include the process id as part of its key because
269** locks in different threads are treated as distinct. But the
270** openCnt structure should not include the process id in its
271** key because close() clears lock on all threads, not just the current
272** thread. Were it not for this goofiness in linux threads, we could
273** combine the lockInfo and openCnt structures into a single structure.
drh5fdae772004-06-29 03:29:00 +0000274**
275** 2004-Jun-28:
276** On some versions of linux, threads can override each others locks.
277** On others not. Sometimes you can change the behavior on the same
278** system by setting the LD_ASSUME_KERNEL environment variable. The
279** POSIX standard is silent as to which behavior is correct, as far
280** as I can tell, so other versions of unix might show the same
281** inconsistency. There is no little doubt in my mind that posix
282** advisory locks and linux threads are profoundly broken.
283**
284** To work around the inconsistencies, we have to test at runtime
285** whether or not threads can override each others locks. This test
286** is run once, the first time any lock is attempted. A static
287** variable is set to record the results of this test for future
288** use.
drhbbd42a62004-05-22 17:41:58 +0000289*/
290
291/*
292** An instance of the following structure serves as the key used
drh5fdae772004-06-29 03:29:00 +0000293** to locate a particular lockInfo structure given its inode.
294**
295** If threads cannot override each others locks, then we set the
296** lockKey.tid field to the thread ID. If threads can override
drhf1a221e2006-01-15 17:27:17 +0000297** each others locks then tid is always set to zero. tid is omitted
298** if we compile without threading support.
drhbbd42a62004-05-22 17:41:58 +0000299*/
300struct lockKey {
drh5fdae772004-06-29 03:29:00 +0000301 dev_t dev; /* Device number */
302 ino_t ino; /* Inode number */
303#ifdef SQLITE_UNIX_THREADS
drhd9cb6ac2005-10-20 07:28:17 +0000304 pthread_t tid; /* Thread ID or zero if threads can override each other */
drh5fdae772004-06-29 03:29:00 +0000305#endif
drhbbd42a62004-05-22 17:41:58 +0000306};
307
308/*
309** An instance of the following structure is allocated for each open
310** inode on each thread with a different process ID. (Threads have
311** different process IDs on linux, but not on most other unixes.)
312**
313** A single inode can have multiple file descriptors, so each OsFile
314** structure contains a pointer to an instance of this object and this
315** object keeps a count of the number of OsFiles pointing to it.
316*/
317struct lockInfo {
318 struct lockKey key; /* The lookup key */
drh2ac3ee92004-06-07 16:27:46 +0000319 int cnt; /* Number of SHARED locks held */
danielk19779a1d0ab2004-06-01 14:09:28 +0000320 int locktype; /* One of SHARED_LOCK, RESERVED_LOCK etc. */
drhbbd42a62004-05-22 17:41:58 +0000321 int nRef; /* Number of pointers to this structure */
322};
323
324/*
325** An instance of the following structure serves as the key used
326** to locate a particular openCnt structure given its inode. This
drh5fdae772004-06-29 03:29:00 +0000327** is the same as the lockKey except that the thread ID is omitted.
drhbbd42a62004-05-22 17:41:58 +0000328*/
329struct openKey {
330 dev_t dev; /* Device number */
331 ino_t ino; /* Inode number */
332};
333
334/*
335** An instance of the following structure is allocated for each open
336** inode. This structure keeps track of the number of locks on that
337** inode. If a close is attempted against an inode that is holding
338** locks, the close is deferred until all locks clear by adding the
339** file descriptor to be closed to the pending list.
340*/
341struct openCnt {
342 struct openKey key; /* The lookup key */
343 int nRef; /* Number of pointers to this structure */
344 int nLock; /* Number of outstanding locks */
345 int nPending; /* Number of pending close() operations */
346 int *aPending; /* Malloced space holding fd's awaiting a close() */
347};
348
349/*
drhf1a221e2006-01-15 17:27:17 +0000350** These hash tables map inodes and file descriptors (really, lockKey and
351** openKey structures) into lockInfo and openCnt structures. Access to
352** these hash tables must be protected by a mutex.
drhbbd42a62004-05-22 17:41:58 +0000353*/
danielk1977750b03e2006-02-14 10:48:39 +0000354static Hash lockHash = {SQLITE_HASH_BINARY, 0, 0, 0,
355 sqlite3ThreadSafeMalloc, sqlite3ThreadSafeFree, 0, 0};
356static Hash openHash = {SQLITE_HASH_BINARY, 0, 0, 0,
357 sqlite3ThreadSafeMalloc, sqlite3ThreadSafeFree, 0, 0};
drh5fdae772004-06-29 03:29:00 +0000358
drhbfe66312006-10-03 17:40:40 +0000359#ifdef SQLITE_ENABLE_LOCKING_STYLE
360/*
361** The locking styles are associated with the different file locking
362** capabilities supported by different file systems.
363**
364** POSIX locking style fully supports shared and exclusive byte-range locks
365** ADP locking only supports exclusive byte-range locks
366** FLOCK only supports a single file-global exclusive lock
367** DOTLOCK isn't a true locking style, it refers to the use of a special
368** file named the same as the database file with a '.lock' extension, this
369** can be used on file systems that do not offer any reliable file locking
370** NO locking means that no locking will be attempted, this is only used for
371** read-only file systems currently
372** UNSUPPORTED means that no locking will be attempted, this is only used for
373** file systems that are known to be unsupported
374*/
375typedef enum {
376 posixLockingStyle = 0, /* standard posix-advisory locks */
377 afpLockingStyle, /* use afp locks */
378 flockLockingStyle, /* use flock() */
379 dotlockLockingStyle, /* use <file>.lock files */
380 noLockingStyle, /* useful for read-only file system */
381 unsupportedLockingStyle /* indicates unsupported file system */
382} sqlite3LockingStyle;
383#endif /* SQLITE_ENABLE_LOCKING_STYLE */
384
drh5fdae772004-06-29 03:29:00 +0000385#ifdef SQLITE_UNIX_THREADS
386/*
387** This variable records whether or not threads can override each others
388** locks.
389**
390** 0: No. Threads cannot override each others locks.
391** 1: Yes. Threads can override each others locks.
392** -1: We don't know yet.
drhf1a221e2006-01-15 17:27:17 +0000393**
drh5062d3a2006-01-31 23:03:35 +0000394** On some systems, we know at compile-time if threads can override each
395** others locks. On those systems, the SQLITE_THREAD_OVERRIDE_LOCK macro
396** will be set appropriately. On other systems, we have to check at
397** runtime. On these latter systems, SQLTIE_THREAD_OVERRIDE_LOCK is
398** undefined.
399**
drhf1a221e2006-01-15 17:27:17 +0000400** This variable normally has file scope only. But during testing, we make
401** it a global so that the test code can change its value in order to verify
402** that the right stuff happens in either case.
drh5fdae772004-06-29 03:29:00 +0000403*/
drh5062d3a2006-01-31 23:03:35 +0000404#ifndef SQLITE_THREAD_OVERRIDE_LOCK
405# define SQLITE_THREAD_OVERRIDE_LOCK -1
406#endif
drh029b44b2006-01-15 00:13:15 +0000407#ifdef SQLITE_TEST
drh5062d3a2006-01-31 23:03:35 +0000408int threadsOverrideEachOthersLocks = SQLITE_THREAD_OVERRIDE_LOCK;
drh029b44b2006-01-15 00:13:15 +0000409#else
drh5062d3a2006-01-31 23:03:35 +0000410static int threadsOverrideEachOthersLocks = SQLITE_THREAD_OVERRIDE_LOCK;
drh029b44b2006-01-15 00:13:15 +0000411#endif
drh5fdae772004-06-29 03:29:00 +0000412
413/*
414** This structure holds information passed into individual test
415** threads by the testThreadLockingBehavior() routine.
416*/
417struct threadTestData {
418 int fd; /* File to be locked */
419 struct flock lock; /* The locking operation */
420 int result; /* Result of the locking operation */
421};
422
drh2b4b5962005-06-15 17:47:55 +0000423#ifdef SQLITE_LOCK_TRACE
424/*
425** Print out information about all locking operations.
426**
427** This routine is used for troubleshooting locks on multithreaded
428** platforms. Enable by compiling with the -DSQLITE_LOCK_TRACE
429** command-line option on the compiler. This code is normally
drhf1a221e2006-01-15 17:27:17 +0000430** turned off.
drh2b4b5962005-06-15 17:47:55 +0000431*/
432static int lockTrace(int fd, int op, struct flock *p){
433 char *zOpName, *zType;
434 int s;
435 int savedErrno;
436 if( op==F_GETLK ){
437 zOpName = "GETLK";
438 }else if( op==F_SETLK ){
439 zOpName = "SETLK";
440 }else{
441 s = fcntl(fd, op, p);
442 sqlite3DebugPrintf("fcntl unknown %d %d %d\n", fd, op, s);
443 return s;
444 }
445 if( p->l_type==F_RDLCK ){
446 zType = "RDLCK";
447 }else if( p->l_type==F_WRLCK ){
448 zType = "WRLCK";
449 }else if( p->l_type==F_UNLCK ){
450 zType = "UNLCK";
451 }else{
452 assert( 0 );
453 }
454 assert( p->l_whence==SEEK_SET );
455 s = fcntl(fd, op, p);
456 savedErrno = errno;
457 sqlite3DebugPrintf("fcntl %d %d %s %s %d %d %d %d\n",
458 threadid, fd, zOpName, zType, (int)p->l_start, (int)p->l_len,
459 (int)p->l_pid, s);
460 if( s && op==F_SETLK && (p->l_type==F_RDLCK || p->l_type==F_WRLCK) ){
461 struct flock l2;
462 l2 = *p;
463 fcntl(fd, F_GETLK, &l2);
464 if( l2.l_type==F_RDLCK ){
465 zType = "RDLCK";
466 }else if( l2.l_type==F_WRLCK ){
467 zType = "WRLCK";
468 }else if( l2.l_type==F_UNLCK ){
469 zType = "UNLCK";
470 }else{
471 assert( 0 );
472 }
473 sqlite3DebugPrintf("fcntl-failure-reason: %s %d %d %d\n",
474 zType, (int)l2.l_start, (int)l2.l_len, (int)l2.l_pid);
475 }
476 errno = savedErrno;
477 return s;
478}
479#define fcntl lockTrace
480#endif /* SQLITE_LOCK_TRACE */
481
drh5fdae772004-06-29 03:29:00 +0000482/*
483** The testThreadLockingBehavior() routine launches two separate
484** threads on this routine. This routine attempts to lock a file
485** descriptor then returns. The success or failure of that attempt
486** allows the testThreadLockingBehavior() procedure to determine
487** whether or not threads can override each others locks.
488*/
489static void *threadLockingTest(void *pArg){
490 struct threadTestData *pData = (struct threadTestData*)pArg;
491 pData->result = fcntl(pData->fd, F_SETLK, &pData->lock);
492 return pArg;
493}
494
495/*
496** This procedure attempts to determine whether or not threads
497** can override each others locks then sets the
498** threadsOverrideEachOthersLocks variable appropriately.
499*/
danielk19774d5238f2006-01-27 06:32:00 +0000500static void testThreadLockingBehavior(int fd_orig){
drh5fdae772004-06-29 03:29:00 +0000501 int fd;
502 struct threadTestData d[2];
503 pthread_t t[2];
504
505 fd = dup(fd_orig);
506 if( fd<0 ) return;
507 memset(d, 0, sizeof(d));
508 d[0].fd = fd;
509 d[0].lock.l_type = F_RDLCK;
510 d[0].lock.l_len = 1;
511 d[0].lock.l_start = 0;
512 d[0].lock.l_whence = SEEK_SET;
513 d[1] = d[0];
514 d[1].lock.l_type = F_WRLCK;
515 pthread_create(&t[0], 0, threadLockingTest, &d[0]);
516 pthread_create(&t[1], 0, threadLockingTest, &d[1]);
517 pthread_join(t[0], 0);
518 pthread_join(t[1], 0);
519 close(fd);
520 threadsOverrideEachOthersLocks = d[0].result==0 && d[1].result==0;
521}
522#endif /* SQLITE_UNIX_THREADS */
523
drhbbd42a62004-05-22 17:41:58 +0000524/*
525** Release a lockInfo structure previously allocated by findLockInfo().
526*/
527static void releaseLockInfo(struct lockInfo *pLock){
drh757b04e2006-01-18 17:25:45 +0000528 assert( sqlite3OsInMutex(1) );
drhbfe66312006-10-03 17:40:40 +0000529 if (pLock == NULL)
530 return;
drhbbd42a62004-05-22 17:41:58 +0000531 pLock->nRef--;
532 if( pLock->nRef==0 ){
533 sqlite3HashInsert(&lockHash, &pLock->key, sizeof(pLock->key), 0);
danielk1977750b03e2006-02-14 10:48:39 +0000534 sqlite3ThreadSafeFree(pLock);
drhbbd42a62004-05-22 17:41:58 +0000535 }
536}
537
538/*
539** Release a openCnt structure previously allocated by findLockInfo().
540*/
541static void releaseOpenCnt(struct openCnt *pOpen){
drh757b04e2006-01-18 17:25:45 +0000542 assert( sqlite3OsInMutex(1) );
drhbfe66312006-10-03 17:40:40 +0000543 if (pOpen == NULL)
544 return;
drhbbd42a62004-05-22 17:41:58 +0000545 pOpen->nRef--;
546 if( pOpen->nRef==0 ){
547 sqlite3HashInsert(&openHash, &pOpen->key, sizeof(pOpen->key), 0);
drh64b1bea2006-01-15 02:30:57 +0000548 free(pOpen->aPending);
danielk1977750b03e2006-02-14 10:48:39 +0000549 sqlite3ThreadSafeFree(pOpen);
drhbbd42a62004-05-22 17:41:58 +0000550 }
551}
552
drhbfe66312006-10-03 17:40:40 +0000553#ifdef SQLITE_ENABLE_LOCKING_STYLE
554/*
555** Tests a byte-range locking query to see if byte range locks are
556** supported, if not we fall back to dotlockLockingStyle.
557*/
558static sqlite3LockingStyle sqlite3TestLockingStyle(const char *filePath,
559 int fd) {
560 /* test byte-range lock using fcntl */
561 struct flock lockInfo;
562
563 lockInfo.l_len = 1;
564 lockInfo.l_start = 0;
565 lockInfo.l_whence = SEEK_SET;
566 lockInfo.l_type = F_RDLCK;
567
aswiftae0943b2007-01-31 23:37:07 +0000568 if (fcntl(fd, F_GETLK, &lockInfo) != -1) {
drhbfe66312006-10-03 17:40:40 +0000569 return posixLockingStyle;
570 }
571
572 /* testing for flock can give false positives. So if if the above test
573 ** fails, then we fall back to using dot-lock style locking.
574 */
575 return dotlockLockingStyle;
576}
577
578/*
579** Examines the f_fstypename entry in the statfs structure as returned by
580** stat() for the file system hosting the database file, assigns the
581** appropriate locking style based on it's value. These values and
582** assignments are based on Darwin/OSX behavior and have not been tested on
583** other systems.
584*/
585static sqlite3LockingStyle sqlite3DetectLockingStyle(const char *filePath,
586 int fd) {
587
588#ifdef SQLITE_FIXED_LOCKING_STYLE
589 return (sqlite3LockingStyle)SQLITE_FIXED_LOCKING_STYLE;
590#else
591 struct statfs fsInfo;
592
593 if (statfs(filePath, &fsInfo) == -1)
594 return sqlite3TestLockingStyle(filePath, fd);
595
596 if (fsInfo.f_flags & MNT_RDONLY)
597 return noLockingStyle;
598
599 if( (!strcmp(fsInfo.f_fstypename, "hfs")) ||
600 (!strcmp(fsInfo.f_fstypename, "ufs")) )
601 return posixLockingStyle;
602
603 if(!strcmp(fsInfo.f_fstypename, "afpfs"))
604 return afpLockingStyle;
605
606 if(!strcmp(fsInfo.f_fstypename, "nfs"))
607 return sqlite3TestLockingStyle(filePath, fd);
608
609 if(!strcmp(fsInfo.f_fstypename, "smbfs"))
610 return flockLockingStyle;
611
612 if(!strcmp(fsInfo.f_fstypename, "msdos"))
613 return dotlockLockingStyle;
614
615 if(!strcmp(fsInfo.f_fstypename, "webdav"))
616 return unsupportedLockingStyle;
617
618 return sqlite3TestLockingStyle(filePath, fd);
619#endif // SQLITE_FIXED_LOCKING_STYLE
620}
621
622#endif /* SQLITE_ENABLE_LOCKING_STYLE */
623
drhbbd42a62004-05-22 17:41:58 +0000624/*
625** Given a file descriptor, locate lockInfo and openCnt structures that
drh029b44b2006-01-15 00:13:15 +0000626** describes that file descriptor. Create new ones if necessary. The
627** return values might be uninitialized if an error occurs.
drhbbd42a62004-05-22 17:41:58 +0000628**
629** Return the number of errors.
630*/
drh38f82712004-06-18 17:10:16 +0000631static int findLockInfo(
drhbbd42a62004-05-22 17:41:58 +0000632 int fd, /* The file descriptor used in the key */
633 struct lockInfo **ppLock, /* Return the lockInfo structure here */
drh5fdae772004-06-29 03:29:00 +0000634 struct openCnt **ppOpen /* Return the openCnt structure here */
drhbbd42a62004-05-22 17:41:58 +0000635){
636 int rc;
637 struct lockKey key1;
638 struct openKey key2;
639 struct stat statbuf;
640 struct lockInfo *pLock;
641 struct openCnt *pOpen;
642 rc = fstat(fd, &statbuf);
643 if( rc!=0 ) return 1;
danielk1977441b09a2006-01-05 13:48:29 +0000644
drh757b04e2006-01-18 17:25:45 +0000645 assert( sqlite3OsInMutex(1) );
drhbbd42a62004-05-22 17:41:58 +0000646 memset(&key1, 0, sizeof(key1));
647 key1.dev = statbuf.st_dev;
648 key1.ino = statbuf.st_ino;
drh5fdae772004-06-29 03:29:00 +0000649#ifdef SQLITE_UNIX_THREADS
650 if( threadsOverrideEachOthersLocks<0 ){
651 testThreadLockingBehavior(fd);
652 }
653 key1.tid = threadsOverrideEachOthersLocks ? 0 : pthread_self();
654#endif
drhbbd42a62004-05-22 17:41:58 +0000655 memset(&key2, 0, sizeof(key2));
656 key2.dev = statbuf.st_dev;
657 key2.ino = statbuf.st_ino;
658 pLock = (struct lockInfo*)sqlite3HashFind(&lockHash, &key1, sizeof(key1));
659 if( pLock==0 ){
660 struct lockInfo *pOld;
danielk1977750b03e2006-02-14 10:48:39 +0000661 pLock = sqlite3ThreadSafeMalloc( sizeof(*pLock) );
danielk1977441b09a2006-01-05 13:48:29 +0000662 if( pLock==0 ){
663 rc = 1;
664 goto exit_findlockinfo;
665 }
drhbbd42a62004-05-22 17:41:58 +0000666 pLock->key = key1;
667 pLock->nRef = 1;
668 pLock->cnt = 0;
danielk19779a1d0ab2004-06-01 14:09:28 +0000669 pLock->locktype = 0;
drhbbd42a62004-05-22 17:41:58 +0000670 pOld = sqlite3HashInsert(&lockHash, &pLock->key, sizeof(key1), pLock);
671 if( pOld!=0 ){
672 assert( pOld==pLock );
danielk1977750b03e2006-02-14 10:48:39 +0000673 sqlite3ThreadSafeFree(pLock);
danielk1977441b09a2006-01-05 13:48:29 +0000674 rc = 1;
675 goto exit_findlockinfo;
drhbbd42a62004-05-22 17:41:58 +0000676 }
677 }else{
678 pLock->nRef++;
679 }
680 *ppLock = pLock;
drh029b44b2006-01-15 00:13:15 +0000681 if( ppOpen!=0 ){
682 pOpen = (struct openCnt*)sqlite3HashFind(&openHash, &key2, sizeof(key2));
drhbbd42a62004-05-22 17:41:58 +0000683 if( pOpen==0 ){
drh029b44b2006-01-15 00:13:15 +0000684 struct openCnt *pOld;
danielk1977750b03e2006-02-14 10:48:39 +0000685 pOpen = sqlite3ThreadSafeMalloc( sizeof(*pOpen) );
drh029b44b2006-01-15 00:13:15 +0000686 if( pOpen==0 ){
687 releaseLockInfo(pLock);
688 rc = 1;
689 goto exit_findlockinfo;
690 }
691 pOpen->key = key2;
692 pOpen->nRef = 1;
693 pOpen->nLock = 0;
694 pOpen->nPending = 0;
695 pOpen->aPending = 0;
696 pOld = sqlite3HashInsert(&openHash, &pOpen->key, sizeof(key2), pOpen);
697 if( pOld!=0 ){
698 assert( pOld==pOpen );
danielk1977750b03e2006-02-14 10:48:39 +0000699 sqlite3ThreadSafeFree(pOpen);
drh029b44b2006-01-15 00:13:15 +0000700 releaseLockInfo(pLock);
701 rc = 1;
702 goto exit_findlockinfo;
703 }
704 }else{
705 pOpen->nRef++;
drhbbd42a62004-05-22 17:41:58 +0000706 }
drh029b44b2006-01-15 00:13:15 +0000707 *ppOpen = pOpen;
drhbbd42a62004-05-22 17:41:58 +0000708 }
danielk1977441b09a2006-01-05 13:48:29 +0000709
710exit_findlockinfo:
danielk1977441b09a2006-01-05 13:48:29 +0000711 return rc;
drhbbd42a62004-05-22 17:41:58 +0000712}
713
drh64b1bea2006-01-15 02:30:57 +0000714#ifdef SQLITE_DEBUG
715/*
716** Helper function for printing out trace information from debugging
717** binaries. This returns the string represetation of the supplied
718** integer lock-type.
719*/
720static const char *locktypeName(int locktype){
721 switch( locktype ){
722 case NO_LOCK: return "NONE";
723 case SHARED_LOCK: return "SHARED";
724 case RESERVED_LOCK: return "RESERVED";
725 case PENDING_LOCK: return "PENDING";
726 case EXCLUSIVE_LOCK: return "EXCLUSIVE";
727 }
728 return "ERROR";
729}
730#endif
731
drhbbd42a62004-05-22 17:41:58 +0000732/*
drh029b44b2006-01-15 00:13:15 +0000733** If we are currently in a different thread than the thread that the
734** unixFile argument belongs to, then transfer ownership of the unixFile
735** over to the current thread.
736**
737** A unixFile is only owned by a thread on systems where one thread is
738** unable to override locks created by a different thread. RedHat9 is
739** an example of such a system.
740**
741** Ownership transfer is only allowed if the unixFile is currently unlocked.
742** If the unixFile is locked and an ownership is wrong, then return
drhf1a221e2006-01-15 17:27:17 +0000743** SQLITE_MISUSE. SQLITE_OK is returned if everything works.
drh029b44b2006-01-15 00:13:15 +0000744*/
745#ifdef SQLITE_UNIX_THREADS
746static int transferOwnership(unixFile *pFile){
drh64b1bea2006-01-15 02:30:57 +0000747 int rc;
drh029b44b2006-01-15 00:13:15 +0000748 pthread_t hSelf;
749 if( threadsOverrideEachOthersLocks ){
750 /* Ownership transfers not needed on this system */
751 return SQLITE_OK;
752 }
753 hSelf = pthread_self();
754 if( pthread_equal(pFile->tid, hSelf) ){
755 /* We are still in the same thread */
drh4f0c5872007-03-26 22:05:01 +0000756 OSTRACE1("No-transfer, same thread\n");
drh029b44b2006-01-15 00:13:15 +0000757 return SQLITE_OK;
758 }
759 if( pFile->locktype!=NO_LOCK ){
760 /* We cannot change ownership while we are holding a lock! */
761 return SQLITE_MISUSE;
762 }
drh4f0c5872007-03-26 22:05:01 +0000763 OSTRACE4("Transfer ownership of %d from %d to %d\n",
764 pFile->h, pFile->tid, hSelf);
drh029b44b2006-01-15 00:13:15 +0000765 pFile->tid = hSelf;
drhbfe66312006-10-03 17:40:40 +0000766 if (pFile->pLock != NULL) {
767 releaseLockInfo(pFile->pLock);
768 rc = findLockInfo(pFile->h, &pFile->pLock, 0);
drh4f0c5872007-03-26 22:05:01 +0000769 OSTRACE5("LOCK %d is now %s(%s,%d)\n", pFile->h,
drhbfe66312006-10-03 17:40:40 +0000770 locktypeName(pFile->locktype),
771 locktypeName(pFile->pLock->locktype), pFile->pLock->cnt);
772 return rc;
773 } else {
774 return SQLITE_OK;
775 }
drh029b44b2006-01-15 00:13:15 +0000776}
777#else
drhf1a221e2006-01-15 17:27:17 +0000778 /* On single-threaded builds, ownership transfer is a no-op */
drh029b44b2006-01-15 00:13:15 +0000779# define transferOwnership(X) SQLITE_OK
780#endif
781
782/*
drhbbd42a62004-05-22 17:41:58 +0000783** Delete the named file
784*/
drh66560ad2006-01-06 14:32:19 +0000785int sqlite3UnixDelete(const char *zFilename){
danielk1977979f38e2007-03-27 16:19:51 +0000786 SimulateIOError(return SQLITE_IOERR_DELETE);
drhbbd42a62004-05-22 17:41:58 +0000787 unlink(zFilename);
788 return SQLITE_OK;
789}
790
791/*
792** Return TRUE if the named file exists.
793*/
drh66560ad2006-01-06 14:32:19 +0000794int sqlite3UnixFileExists(const char *zFilename){
drhbbd42a62004-05-22 17:41:58 +0000795 return access(zFilename, 0)==0;
796}
797
drh054889e2005-11-30 03:20:31 +0000798/* Forward declaration */
drhbfe66312006-10-03 17:40:40 +0000799static int allocateUnixFile(
800 int h, /* File descriptor of the open file */
801 OsFile **pId, /* Write the real file descriptor here */
802 const char *zFilename, /* Name of the file being opened */
803 int delFlag /* If true, make sure the file deletes on close */
804);
drh9cbe6352005-11-29 03:13:21 +0000805
806/*
drhbbd42a62004-05-22 17:41:58 +0000807** Attempt to open a file for both reading and writing. If that
808** fails, try opening it read-only. If the file does not exist,
809** try to create it.
810**
811** On success, a handle for the open file is written to *id
812** and *pReadonly is set to 0 if the file was opened for reading and
813** writing or 1 if the file was opened read-only. The function returns
814** SQLITE_OK.
815**
816** On failure, the function returns SQLITE_CANTOPEN and leaves
817** *id and *pReadonly unchanged.
818*/
drh66560ad2006-01-06 14:32:19 +0000819int sqlite3UnixOpenReadWrite(
drhbbd42a62004-05-22 17:41:58 +0000820 const char *zFilename,
drh9cbe6352005-11-29 03:13:21 +0000821 OsFile **pId,
drhbbd42a62004-05-22 17:41:58 +0000822 int *pReadonly
823){
drhbfe66312006-10-03 17:40:40 +0000824 int h;
825
drh66560ad2006-01-06 14:32:19 +0000826 CRASH_TEST_OVERRIDE(sqlite3CrashOpenReadWrite, zFilename, pId, pReadonly);
drh9cbe6352005-11-29 03:13:21 +0000827 assert( 0==*pId );
drhbfe66312006-10-03 17:40:40 +0000828 h = open(zFilename, O_RDWR|O_CREAT|O_LARGEFILE|O_BINARY,
829 SQLITE_DEFAULT_FILE_PERMISSIONS);
830 if( h<0 ){
drh6458e392004-07-20 01:14:13 +0000831#ifdef EISDIR
832 if( errno==EISDIR ){
833 return SQLITE_CANTOPEN;
834 }
835#endif
drhbfe66312006-10-03 17:40:40 +0000836 h = open(zFilename, O_RDONLY|O_LARGEFILE|O_BINARY);
837 if( h<0 ){
drhbbd42a62004-05-22 17:41:58 +0000838 return SQLITE_CANTOPEN;
839 }
840 *pReadonly = 1;
841 }else{
842 *pReadonly = 0;
843 }
drhbfe66312006-10-03 17:40:40 +0000844 return allocateUnixFile(h, pId, zFilename, 0);
drhbbd42a62004-05-22 17:41:58 +0000845}
846
847
848/*
849** Attempt to open a new file for exclusive access by this process.
850** The file will be opened for both reading and writing. To avoid
851** a potential security problem, we do not allow the file to have
852** previously existed. Nor do we allow the file to be a symbolic
853** link.
854**
855** If delFlag is true, then make arrangements to automatically delete
856** the file when it is closed.
857**
858** On success, write the file handle into *id and return SQLITE_OK.
859**
860** On failure, return SQLITE_CANTOPEN.
861*/
drh66560ad2006-01-06 14:32:19 +0000862int sqlite3UnixOpenExclusive(const char *zFilename, OsFile **pId, int delFlag){
drhbfe66312006-10-03 17:40:40 +0000863 int h;
drh9cbe6352005-11-29 03:13:21 +0000864
drh66560ad2006-01-06 14:32:19 +0000865 CRASH_TEST_OVERRIDE(sqlite3CrashOpenExclusive, zFilename, pId, delFlag);
drh9cbe6352005-11-29 03:13:21 +0000866 assert( 0==*pId );
drhbfe66312006-10-03 17:40:40 +0000867 h = open(zFilename,
drhd6459672005-08-13 17:17:01 +0000868 O_RDWR|O_CREAT|O_EXCL|O_NOFOLLOW|O_LARGEFILE|O_BINARY,
drh3f56e6e2007-03-15 01:16:47 +0000869 delFlag ? 0600 : SQLITE_DEFAULT_FILE_PERMISSIONS);
drhbfe66312006-10-03 17:40:40 +0000870 if( h<0 ){
drhbbd42a62004-05-22 17:41:58 +0000871 return SQLITE_CANTOPEN;
872 }
drhbfe66312006-10-03 17:40:40 +0000873 return allocateUnixFile(h, pId, zFilename, delFlag);
drhbbd42a62004-05-22 17:41:58 +0000874}
875
876/*
877** Attempt to open a new file for read-only access.
878**
879** On success, write the file handle into *id and return SQLITE_OK.
880**
881** On failure, return SQLITE_CANTOPEN.
882*/
drh66560ad2006-01-06 14:32:19 +0000883int sqlite3UnixOpenReadOnly(const char *zFilename, OsFile **pId){
drhbfe66312006-10-03 17:40:40 +0000884 int h;
885
drh66560ad2006-01-06 14:32:19 +0000886 CRASH_TEST_OVERRIDE(sqlite3CrashOpenReadOnly, zFilename, pId, 0);
drh9cbe6352005-11-29 03:13:21 +0000887 assert( 0==*pId );
drhbfe66312006-10-03 17:40:40 +0000888 h = open(zFilename, O_RDONLY|O_LARGEFILE|O_BINARY);
889 if( h<0 ){
drhbbd42a62004-05-22 17:41:58 +0000890 return SQLITE_CANTOPEN;
891 }
drhbfe66312006-10-03 17:40:40 +0000892 return allocateUnixFile(h, pId, zFilename, 0);
drhbbd42a62004-05-22 17:41:58 +0000893}
894
895/*
896** Attempt to open a file descriptor for the directory that contains a
897** file. This file descriptor can be used to fsync() the directory
898** in order to make sure the creation of a new file is actually written
899** to disk.
900**
901** This routine is only meaningful for Unix. It is a no-op under
902** windows since windows does not support hard links.
903**
drhbfe66312006-10-03 17:40:40 +0000904** If FULL_FSYNC is enabled, this function is not longer useful,
905** a FULL_FSYNC sync applies to all pending disk operations.
906**
drh9cbe6352005-11-29 03:13:21 +0000907** On success, a handle for a previously open file at *id is
drhbbd42a62004-05-22 17:41:58 +0000908** updated with the new directory file descriptor and SQLITE_OK is
909** returned.
910**
911** On failure, the function returns SQLITE_CANTOPEN and leaves
912** *id unchanged.
913*/
drh9c06c952005-11-26 00:25:00 +0000914static int unixOpenDirectory(
drh054889e2005-11-30 03:20:31 +0000915 OsFile *id,
916 const char *zDirname
drhbbd42a62004-05-22 17:41:58 +0000917){
drh054889e2005-11-30 03:20:31 +0000918 unixFile *pFile = (unixFile*)id;
919 if( pFile==0 ){
drhbbd42a62004-05-22 17:41:58 +0000920 /* Do not open the directory if the corresponding file is not already
921 ** open. */
922 return SQLITE_CANTOPEN;
923 }
drh054889e2005-11-30 03:20:31 +0000924 SET_THREADID(pFile);
925 assert( pFile->dirfd<0 );
926 pFile->dirfd = open(zDirname, O_RDONLY|O_BINARY, 0);
927 if( pFile->dirfd<0 ){
drhbbd42a62004-05-22 17:41:58 +0000928 return SQLITE_CANTOPEN;
929 }
drh4f0c5872007-03-26 22:05:01 +0000930 OSTRACE3("OPENDIR %-3d %s\n", pFile->dirfd, zDirname);
drhbbd42a62004-05-22 17:41:58 +0000931 return SQLITE_OK;
932}
933
934/*
drhab3f9fe2004-08-14 17:10:10 +0000935** If the following global variable points to a string which is the
936** name of a directory, then that directory will be used to store
937** temporary files.
drhf1a221e2006-01-15 17:27:17 +0000938**
939** See also the "PRAGMA temp_store_directory" SQL command.
drhab3f9fe2004-08-14 17:10:10 +0000940*/
tpoindex9a09a3c2004-12-20 19:01:32 +0000941char *sqlite3_temp_directory = 0;
drhab3f9fe2004-08-14 17:10:10 +0000942
943/*
drhbbd42a62004-05-22 17:41:58 +0000944** Create a temporary file name in zBuf. zBuf must be big enough to
945** hold at least SQLITE_TEMPNAME_SIZE characters.
946*/
drh66560ad2006-01-06 14:32:19 +0000947int sqlite3UnixTempFileName(char *zBuf){
drhbbd42a62004-05-22 17:41:58 +0000948 static const char *azDirs[] = {
drhab3f9fe2004-08-14 17:10:10 +0000949 0,
drhbbd42a62004-05-22 17:41:58 +0000950 "/var/tmp",
951 "/usr/tmp",
952 "/tmp",
953 ".",
954 };
drh57196282004-10-06 15:41:16 +0000955 static const unsigned char zChars[] =
drhbbd42a62004-05-22 17:41:58 +0000956 "abcdefghijklmnopqrstuvwxyz"
957 "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
958 "0123456789";
959 int i, j;
960 struct stat buf;
961 const char *zDir = ".";
drheffd02b2004-08-29 23:42:13 +0000962 azDirs[0] = sqlite3_temp_directory;
drhbbd42a62004-05-22 17:41:58 +0000963 for(i=0; i<sizeof(azDirs)/sizeof(azDirs[0]); i++){
drhab3f9fe2004-08-14 17:10:10 +0000964 if( azDirs[i]==0 ) continue;
drhbbd42a62004-05-22 17:41:58 +0000965 if( stat(azDirs[i], &buf) ) continue;
966 if( !S_ISDIR(buf.st_mode) ) continue;
967 if( access(azDirs[i], 07) ) continue;
968 zDir = azDirs[i];
969 break;
970 }
971 do{
972 sprintf(zBuf, "%s/"TEMP_FILE_PREFIX, zDir);
973 j = strlen(zBuf);
974 sqlite3Randomness(15, &zBuf[j]);
975 for(i=0; i<15; i++, j++){
976 zBuf[j] = (char)zChars[ ((unsigned char)zBuf[j])%(sizeof(zChars)-1) ];
977 }
978 zBuf[j] = 0;
979 }while( access(zBuf,0)==0 );
980 return SQLITE_OK;
981}
982
983/*
tpoindex9a09a3c2004-12-20 19:01:32 +0000984** Check that a given pathname is a directory and is writable
985**
986*/
drh66560ad2006-01-06 14:32:19 +0000987int sqlite3UnixIsDirWritable(char *zBuf){
drh9c06c952005-11-26 00:25:00 +0000988#ifndef SQLITE_OMIT_PAGER_PRAGMAS
tpoindex9a09a3c2004-12-20 19:01:32 +0000989 struct stat buf;
990 if( zBuf==0 ) return 0;
drh268283b2005-01-08 15:44:25 +0000991 if( zBuf[0]==0 ) return 0;
tpoindex9a09a3c2004-12-20 19:01:32 +0000992 if( stat(zBuf, &buf) ) return 0;
993 if( !S_ISDIR(buf.st_mode) ) return 0;
994 if( access(zBuf, 07) ) return 0;
drh9c06c952005-11-26 00:25:00 +0000995#endif /* SQLITE_OMIT_PAGER_PRAGMAS */
tpoindex9a09a3c2004-12-20 19:01:32 +0000996 return 1;
997}
998
999/*
drhb912b282006-03-23 22:42:20 +00001000** Seek to the offset in id->offset then read cnt bytes into pBuf.
1001** Return the number of bytes actually read. Update the offset.
1002*/
1003static int seekAndRead(unixFile *id, void *pBuf, int cnt){
1004 int got;
drh8ebf6702007-02-06 11:11:08 +00001005 i64 newOffset;
drh15d00c42007-02-27 02:01:14 +00001006 TIMER_START;
drh8350a212007-03-22 15:22:06 +00001007#if defined(USE_PREAD)
drhb912b282006-03-23 22:42:20 +00001008 got = pread(id->h, pBuf, cnt, id->offset);
drh8350a212007-03-22 15:22:06 +00001009#elif defined(USE_PREAD64)
1010 got = pread64(id->h, pBuf, cnt, id->offset);
drhb912b282006-03-23 22:42:20 +00001011#else
drh8ebf6702007-02-06 11:11:08 +00001012 newOffset = lseek(id->h, id->offset, SEEK_SET);
1013 if( newOffset!=id->offset ){
1014 return -1;
1015 }
drhb912b282006-03-23 22:42:20 +00001016 got = read(id->h, pBuf, cnt);
1017#endif
drh15d00c42007-02-27 02:01:14 +00001018 TIMER_END;
drh4f0c5872007-03-26 22:05:01 +00001019 OSTRACE5("READ %-3d %5d %7lld %d\n", id->h, got, id->offset, TIMER_ELAPSED);
drhb912b282006-03-23 22:42:20 +00001020 if( got>0 ){
1021 id->offset += got;
1022 }
1023 return got;
1024}
1025
1026/*
drhbbd42a62004-05-22 17:41:58 +00001027** Read data from a file into a buffer. Return SQLITE_OK if all
1028** bytes were read successfully and SQLITE_IOERR if anything goes
1029** wrong.
1030*/
drh9c06c952005-11-26 00:25:00 +00001031static int unixRead(OsFile *id, void *pBuf, int amt){
drhbbd42a62004-05-22 17:41:58 +00001032 int got;
drh9cbe6352005-11-29 03:13:21 +00001033 assert( id );
drhb912b282006-03-23 22:42:20 +00001034 got = seekAndRead((unixFile*)id, pBuf, amt);
drh551b7732006-11-06 21:20:25 +00001035 SimulateIOError( got = -1 );
drhbbd42a62004-05-22 17:41:58 +00001036 if( got==amt ){
1037 return SQLITE_OK;
drh4ac285a2006-09-15 07:28:50 +00001038 }else if( got<0 ){
1039 return SQLITE_IOERR_READ;
drhbbd42a62004-05-22 17:41:58 +00001040 }else{
drhbafda092007-01-03 23:36:22 +00001041 memset(&((char*)pBuf)[got], 0, amt-got);
drh4ac285a2006-09-15 07:28:50 +00001042 return SQLITE_IOERR_SHORT_READ;
drhbbd42a62004-05-22 17:41:58 +00001043 }
1044}
1045
1046/*
drhb912b282006-03-23 22:42:20 +00001047** Seek to the offset in id->offset then read cnt bytes into pBuf.
1048** Return the number of bytes actually read. Update the offset.
1049*/
1050static int seekAndWrite(unixFile *id, const void *pBuf, int cnt){
1051 int got;
drh8ebf6702007-02-06 11:11:08 +00001052 i64 newOffset;
drh15d00c42007-02-27 02:01:14 +00001053 TIMER_START;
drh8350a212007-03-22 15:22:06 +00001054#if defined(USE_PREAD)
drhb912b282006-03-23 22:42:20 +00001055 got = pwrite(id->h, pBuf, cnt, id->offset);
drh8350a212007-03-22 15:22:06 +00001056#elif defined(USE_PREAD64)
1057 got = pwrite64(id->h, pBuf, cnt, id->offset);
drhb912b282006-03-23 22:42:20 +00001058#else
drh8ebf6702007-02-06 11:11:08 +00001059 newOffset = lseek(id->h, id->offset, SEEK_SET);
1060 if( newOffset!=id->offset ){
1061 return -1;
1062 }
drhb912b282006-03-23 22:42:20 +00001063 got = write(id->h, pBuf, cnt);
1064#endif
drh15d00c42007-02-27 02:01:14 +00001065 TIMER_END;
drh4f0c5872007-03-26 22:05:01 +00001066 OSTRACE5("WRITE %-3d %5d %7lld %d\n", id->h, got, id->offset, TIMER_ELAPSED);
drhb912b282006-03-23 22:42:20 +00001067 if( got>0 ){
1068 id->offset += got;
1069 }
1070 return got;
1071}
1072
1073
1074/*
drhbbd42a62004-05-22 17:41:58 +00001075** Write data from a buffer into a file. Return SQLITE_OK on success
1076** or some other error code on failure.
1077*/
drh9c06c952005-11-26 00:25:00 +00001078static int unixWrite(OsFile *id, const void *pBuf, int amt){
drhbbd42a62004-05-22 17:41:58 +00001079 int wrote = 0;
drh9cbe6352005-11-29 03:13:21 +00001080 assert( id );
drh4c7f9412005-02-03 00:29:47 +00001081 assert( amt>0 );
drhb912b282006-03-23 22:42:20 +00001082 while( amt>0 && (wrote = seekAndWrite((unixFile*)id, pBuf, amt))>0 ){
drhbbd42a62004-05-22 17:41:58 +00001083 amt -= wrote;
1084 pBuf = &((char*)pBuf)[wrote];
1085 }
drh59685932006-09-14 13:47:11 +00001086 SimulateIOError(( wrote=(-1), amt=1 ));
1087 SimulateDiskfullError(( wrote=0, amt=1 ));
drhbbd42a62004-05-22 17:41:58 +00001088 if( amt>0 ){
drh59685932006-09-14 13:47:11 +00001089 if( wrote<0 ){
drh4ac285a2006-09-15 07:28:50 +00001090 return SQLITE_IOERR_WRITE;
drh59685932006-09-14 13:47:11 +00001091 }else{
1092 return SQLITE_FULL;
1093 }
drhbbd42a62004-05-22 17:41:58 +00001094 }
1095 return SQLITE_OK;
1096}
1097
1098/*
1099** Move the read/write pointer in a file.
1100*/
drh9c06c952005-11-26 00:25:00 +00001101static int unixSeek(OsFile *id, i64 offset){
drh9cbe6352005-11-29 03:13:21 +00001102 assert( id );
drhb4746b92005-09-09 01:32:06 +00001103#ifdef SQLITE_TEST
drh59685932006-09-14 13:47:11 +00001104 if( offset ) SimulateDiskfullError(return SQLITE_FULL);
drhb4746b92005-09-09 01:32:06 +00001105#endif
drhb912b282006-03-23 22:42:20 +00001106 ((unixFile*)id)->offset = offset;
drhbbd42a62004-05-22 17:41:58 +00001107 return SQLITE_OK;
1108}
1109
drhb851b2c2005-03-10 14:11:12 +00001110#ifdef SQLITE_TEST
1111/*
1112** Count the number of fullsyncs and normal syncs. This is used to test
1113** that syncs and fullsyncs are occuring at the right times.
1114*/
1115int sqlite3_sync_count = 0;
1116int sqlite3_fullsync_count = 0;
1117#endif
1118
drhf2f23912005-10-05 10:29:36 +00001119/*
1120** Use the fdatasync() API only if the HAVE_FDATASYNC macro is defined.
1121** Otherwise use fsync() in its place.
1122*/
1123#ifndef HAVE_FDATASYNC
1124# define fdatasync fsync
1125#endif
1126
drhac530b12006-02-11 01:25:50 +00001127/*
1128** Define HAVE_FULLFSYNC to 0 or 1 depending on whether or not
1129** the F_FULLFSYNC macro is defined. F_FULLFSYNC is currently
1130** only available on Mac OS X. But that could change.
1131*/
1132#ifdef F_FULLFSYNC
1133# define HAVE_FULLFSYNC 1
1134#else
1135# define HAVE_FULLFSYNC 0
1136#endif
1137
drhb851b2c2005-03-10 14:11:12 +00001138
drhbbd42a62004-05-22 17:41:58 +00001139/*
drhdd809b02004-07-17 21:44:57 +00001140** The fsync() system call does not work as advertised on many
1141** unix systems. The following procedure is an attempt to make
1142** it work better.
drh1398ad32005-01-19 23:24:50 +00001143**
1144** The SQLITE_NO_SYNC macro disables all fsync()s. This is useful
1145** for testing when we want to run through the test suite quickly.
1146** You are strongly advised *not* to deploy with SQLITE_NO_SYNC
1147** enabled, however, since with SQLITE_NO_SYNC enabled, an OS crash
1148** or power failure will likely corrupt the database file.
drhdd809b02004-07-17 21:44:57 +00001149*/
drheb796a72005-09-08 12:38:41 +00001150static int full_fsync(int fd, int fullSync, int dataOnly){
drhdd809b02004-07-17 21:44:57 +00001151 int rc;
drhb851b2c2005-03-10 14:11:12 +00001152
1153 /* Record the number of times that we do a normal fsync() and
1154 ** FULLSYNC. This is used during testing to verify that this procedure
1155 ** gets called with the correct arguments.
1156 */
1157#ifdef SQLITE_TEST
1158 if( fullSync ) sqlite3_fullsync_count++;
1159 sqlite3_sync_count++;
1160#endif
1161
1162 /* If we compiled with the SQLITE_NO_SYNC flag, then syncing is a
1163 ** no-op
1164 */
1165#ifdef SQLITE_NO_SYNC
1166 rc = SQLITE_OK;
1167#else
1168
drhac530b12006-02-11 01:25:50 +00001169#if HAVE_FULLFSYNC
drhb851b2c2005-03-10 14:11:12 +00001170 if( fullSync ){
drhf30cc942005-03-11 17:52:34 +00001171 rc = fcntl(fd, F_FULLFSYNC, 0);
aswiftae0943b2007-01-31 23:37:07 +00001172 }else{
1173 rc = 1;
1174 }
1175 /* If the FULLFSYNC failed, fall back to attempting an fsync().
1176 * It shouldn't be possible for fullfsync to fail on the local
1177 * file system (on OSX), so failure indicates that FULLFSYNC
1178 * isn't supported for this file system. So, attempt an fsync
1179 * and (for now) ignore the overhead of a superfluous fcntl call.
1180 * It'd be better to detect fullfsync support once and avoid
1181 * the fcntl call every time sync is called.
1182 */
1183 if( rc ) rc = fsync(fd);
1184
1185#else
drheb796a72005-09-08 12:38:41 +00001186 if( dataOnly ){
1187 rc = fdatasync(fd);
drhf2f23912005-10-05 10:29:36 +00001188 }else{
drheb796a72005-09-08 12:38:41 +00001189 rc = fsync(fd);
1190 }
aswiftae0943b2007-01-31 23:37:07 +00001191#endif /* HAVE_FULLFSYNC */
drhb851b2c2005-03-10 14:11:12 +00001192#endif /* defined(SQLITE_NO_SYNC) */
1193
drhdd809b02004-07-17 21:44:57 +00001194 return rc;
1195}
1196
1197/*
drhbbd42a62004-05-22 17:41:58 +00001198** Make sure all writes to a particular file are committed to disk.
1199**
drheb796a72005-09-08 12:38:41 +00001200** If dataOnly==0 then both the file itself and its metadata (file
1201** size, access time, etc) are synced. If dataOnly!=0 then only the
1202** file data is synced.
1203**
drhbbd42a62004-05-22 17:41:58 +00001204** Under Unix, also make sure that the directory entry for the file
1205** has been created by fsync-ing the directory that contains the file.
1206** If we do not do this and we encounter a power failure, the directory
1207** entry for the journal might not exist after we reboot. The next
1208** SQLite to access the file will not know that the journal exists (because
1209** the directory entry for the journal was never created) and the transaction
1210** will not roll back - possibly leading to database corruption.
1211*/
drh9c06c952005-11-26 00:25:00 +00001212static int unixSync(OsFile *id, int dataOnly){
drh59685932006-09-14 13:47:11 +00001213 int rc;
drh054889e2005-11-30 03:20:31 +00001214 unixFile *pFile = (unixFile*)id;
1215 assert( pFile );
drh4f0c5872007-03-26 22:05:01 +00001216 OSTRACE2("SYNC %-3d\n", pFile->h);
drh59685932006-09-14 13:47:11 +00001217 rc = full_fsync(pFile->h, pFile->fullSync, dataOnly);
1218 SimulateIOError( rc=1 );
1219 if( rc ){
drh4ac285a2006-09-15 07:28:50 +00001220 return SQLITE_IOERR_FSYNC;
drhbbd42a62004-05-22 17:41:58 +00001221 }
drh054889e2005-11-30 03:20:31 +00001222 if( pFile->dirfd>=0 ){
drh4f0c5872007-03-26 22:05:01 +00001223 OSTRACE4("DIRSYNC %-3d (have_fullfsync=%d fullsync=%d)\n", pFile->dirfd,
drhac530b12006-02-11 01:25:50 +00001224 HAVE_FULLFSYNC, pFile->fullSync);
danielk1977d7c03f72005-11-25 10:38:22 +00001225#ifndef SQLITE_DISABLE_DIRSYNC
drhac530b12006-02-11 01:25:50 +00001226 /* The directory sync is only attempted if full_fsync is
1227 ** turned off or unavailable. If a full_fsync occurred above,
1228 ** then the directory sync is superfluous.
1229 */
1230 if( (!HAVE_FULLFSYNC || !pFile->fullSync) && full_fsync(pFile->dirfd,0,0) ){
1231 /*
1232 ** We have received multiple reports of fsync() returning
drh86631a52006-02-09 23:05:51 +00001233 ** errors when applied to directories on certain file systems.
1234 ** A failed directory sync is not a big deal. So it seems
1235 ** better to ignore the error. Ticket #1657
1236 */
1237 /* return SQLITE_IOERR; */
danielk19770964b232005-11-25 08:47:57 +00001238 }
danielk1977d7c03f72005-11-25 10:38:22 +00001239#endif
drh054889e2005-11-30 03:20:31 +00001240 close(pFile->dirfd); /* Only need to sync once, so close the directory */
1241 pFile->dirfd = -1; /* when we are done. */
drha2854222004-06-17 19:04:17 +00001242 }
drha2854222004-06-17 19:04:17 +00001243 return SQLITE_OK;
drhbbd42a62004-05-22 17:41:58 +00001244}
1245
1246/*
danielk1977962398d2004-06-14 09:35:16 +00001247** Sync the directory zDirname. This is a no-op on operating systems other
1248** than UNIX.
drhb851b2c2005-03-10 14:11:12 +00001249**
1250** This is used to make sure the master journal file has truely been deleted
1251** before making changes to individual journals on a multi-database commit.
drhf30cc942005-03-11 17:52:34 +00001252** The F_FULLFSYNC option is not needed here.
danielk1977962398d2004-06-14 09:35:16 +00001253*/
drh66560ad2006-01-06 14:32:19 +00001254int sqlite3UnixSyncDirectory(const char *zDirname){
danielk1977d7c03f72005-11-25 10:38:22 +00001255#ifdef SQLITE_DISABLE_DIRSYNC
1256 return SQLITE_OK;
1257#else
danielk1977962398d2004-06-14 09:35:16 +00001258 int fd;
1259 int r;
drh8e855772005-05-17 11:25:31 +00001260 fd = open(zDirname, O_RDONLY|O_BINARY, 0);
drh4f0c5872007-03-26 22:05:01 +00001261 OSTRACE3("DIRSYNC %-3d (%s)\n", fd, zDirname);
danielk1977962398d2004-06-14 09:35:16 +00001262 if( fd<0 ){
1263 return SQLITE_CANTOPEN;
1264 }
1265 r = fsync(fd);
1266 close(fd);
drh59685932006-09-14 13:47:11 +00001267 SimulateIOError( r=1 );
1268 if( r ){
drh4ac285a2006-09-15 07:28:50 +00001269 return SQLITE_IOERR_DIR_FSYNC;
drh59685932006-09-14 13:47:11 +00001270 }else{
1271 return SQLITE_OK;
1272 }
danielk1977d7c03f72005-11-25 10:38:22 +00001273#endif
danielk1977962398d2004-06-14 09:35:16 +00001274}
1275
1276/*
drhbbd42a62004-05-22 17:41:58 +00001277** Truncate an open file to a specified size
1278*/
drh9c06c952005-11-26 00:25:00 +00001279static int unixTruncate(OsFile *id, i64 nByte){
drh59685932006-09-14 13:47:11 +00001280 int rc;
drh9cbe6352005-11-29 03:13:21 +00001281 assert( id );
drh59685932006-09-14 13:47:11 +00001282 rc = ftruncate(((unixFile*)id)->h, nByte);
1283 SimulateIOError( rc=1 );
1284 if( rc ){
drh4ac285a2006-09-15 07:28:50 +00001285 return SQLITE_IOERR_TRUNCATE;
drh59685932006-09-14 13:47:11 +00001286 }else{
1287 return SQLITE_OK;
1288 }
drhbbd42a62004-05-22 17:41:58 +00001289}
1290
1291/*
1292** Determine the current size of a file in bytes
1293*/
drh9c06c952005-11-26 00:25:00 +00001294static int unixFileSize(OsFile *id, i64 *pSize){
drh59685932006-09-14 13:47:11 +00001295 int rc;
drhbbd42a62004-05-22 17:41:58 +00001296 struct stat buf;
drh9cbe6352005-11-29 03:13:21 +00001297 assert( id );
drh59685932006-09-14 13:47:11 +00001298 rc = fstat(((unixFile*)id)->h, &buf);
1299 SimulateIOError( rc=1 );
1300 if( rc!=0 ){
drh4ac285a2006-09-15 07:28:50 +00001301 return SQLITE_IOERR_FSTAT;
drhbbd42a62004-05-22 17:41:58 +00001302 }
1303 *pSize = buf.st_size;
1304 return SQLITE_OK;
1305}
1306
danielk19779a1d0ab2004-06-01 14:09:28 +00001307/*
danielk197713adf8a2004-06-03 16:08:41 +00001308** This routine checks if there is a RESERVED lock held on the specified
1309** file by this or any other process. If such a lock is held, return
drh2ac3ee92004-06-07 16:27:46 +00001310** non-zero. If the file is unlocked or holds only SHARED locks, then
1311** return zero.
danielk197713adf8a2004-06-03 16:08:41 +00001312*/
drh9c06c952005-11-26 00:25:00 +00001313static int unixCheckReservedLock(OsFile *id){
danielk197713adf8a2004-06-03 16:08:41 +00001314 int r = 0;
drh054889e2005-11-30 03:20:31 +00001315 unixFile *pFile = (unixFile*)id;
danielk197713adf8a2004-06-03 16:08:41 +00001316
drh054889e2005-11-30 03:20:31 +00001317 assert( pFile );
drh66560ad2006-01-06 14:32:19 +00001318 sqlite3OsEnterMutex(); /* Because pFile->pLock is shared across threads */
danielk197713adf8a2004-06-03 16:08:41 +00001319
1320 /* Check if a thread in this process holds such a lock */
drh054889e2005-11-30 03:20:31 +00001321 if( pFile->pLock->locktype>SHARED_LOCK ){
danielk197713adf8a2004-06-03 16:08:41 +00001322 r = 1;
1323 }
1324
drh2ac3ee92004-06-07 16:27:46 +00001325 /* Otherwise see if some other process holds it.
danielk197713adf8a2004-06-03 16:08:41 +00001326 */
1327 if( !r ){
1328 struct flock lock;
1329 lock.l_whence = SEEK_SET;
drh2ac3ee92004-06-07 16:27:46 +00001330 lock.l_start = RESERVED_BYTE;
1331 lock.l_len = 1;
1332 lock.l_type = F_WRLCK;
drh054889e2005-11-30 03:20:31 +00001333 fcntl(pFile->h, F_GETLK, &lock);
danielk197713adf8a2004-06-03 16:08:41 +00001334 if( lock.l_type!=F_UNLCK ){
1335 r = 1;
1336 }
1337 }
1338
drh66560ad2006-01-06 14:32:19 +00001339 sqlite3OsLeaveMutex();
drh4f0c5872007-03-26 22:05:01 +00001340 OSTRACE3("TEST WR-LOCK %d %d\n", pFile->h, r);
danielk197713adf8a2004-06-03 16:08:41 +00001341
1342 return r;
1343}
1344
1345/*
danielk19779a1d0ab2004-06-01 14:09:28 +00001346** Lock the file with the lock specified by parameter locktype - one
1347** of the following:
1348**
drh2ac3ee92004-06-07 16:27:46 +00001349** (1) SHARED_LOCK
1350** (2) RESERVED_LOCK
1351** (3) PENDING_LOCK
1352** (4) EXCLUSIVE_LOCK
1353**
drhb3e04342004-06-08 00:47:47 +00001354** Sometimes when requesting one lock state, additional lock states
1355** are inserted in between. The locking might fail on one of the later
1356** transitions leaving the lock state different from what it started but
1357** still short of its goal. The following chart shows the allowed
1358** transitions and the inserted intermediate states:
1359**
1360** UNLOCKED -> SHARED
1361** SHARED -> RESERVED
1362** SHARED -> (PENDING) -> EXCLUSIVE
1363** RESERVED -> (PENDING) -> EXCLUSIVE
1364** PENDING -> EXCLUSIVE
drh2ac3ee92004-06-07 16:27:46 +00001365**
drha6abd042004-06-09 17:37:22 +00001366** This routine will only increase a lock. Use the sqlite3OsUnlock()
1367** routine to lower a locking level.
danielk19779a1d0ab2004-06-01 14:09:28 +00001368*/
drh9c06c952005-11-26 00:25:00 +00001369static int unixLock(OsFile *id, int locktype){
danielk1977f42f25c2004-06-25 07:21:28 +00001370 /* The following describes the implementation of the various locks and
1371 ** lock transitions in terms of the POSIX advisory shared and exclusive
1372 ** lock primitives (called read-locks and write-locks below, to avoid
1373 ** confusion with SQLite lock names). The algorithms are complicated
1374 ** slightly in order to be compatible with windows systems simultaneously
1375 ** accessing the same database file, in case that is ever required.
1376 **
1377 ** Symbols defined in os.h indentify the 'pending byte' and the 'reserved
1378 ** byte', each single bytes at well known offsets, and the 'shared byte
1379 ** range', a range of 510 bytes at a well known offset.
1380 **
1381 ** To obtain a SHARED lock, a read-lock is obtained on the 'pending
1382 ** byte'. If this is successful, a random byte from the 'shared byte
1383 ** range' is read-locked and the lock on the 'pending byte' released.
1384 **
danielk197790ba3bd2004-06-25 08:32:25 +00001385 ** A process may only obtain a RESERVED lock after it has a SHARED lock.
1386 ** A RESERVED lock is implemented by grabbing a write-lock on the
1387 ** 'reserved byte'.
danielk1977f42f25c2004-06-25 07:21:28 +00001388 **
1389 ** A process may only obtain a PENDING lock after it has obtained a
danielk197790ba3bd2004-06-25 08:32:25 +00001390 ** SHARED lock. A PENDING lock is implemented by obtaining a write-lock
1391 ** on the 'pending byte'. This ensures that no new SHARED locks can be
1392 ** obtained, but existing SHARED locks are allowed to persist. A process
1393 ** does not have to obtain a RESERVED lock on the way to a PENDING lock.
1394 ** This property is used by the algorithm for rolling back a journal file
1395 ** after a crash.
danielk1977f42f25c2004-06-25 07:21:28 +00001396 **
danielk197790ba3bd2004-06-25 08:32:25 +00001397 ** An EXCLUSIVE lock, obtained after a PENDING lock is held, is
1398 ** implemented by obtaining a write-lock on the entire 'shared byte
1399 ** range'. Since all other locks require a read-lock on one of the bytes
1400 ** within this range, this ensures that no other locks are held on the
1401 ** database.
danielk1977f42f25c2004-06-25 07:21:28 +00001402 **
1403 ** The reason a single byte cannot be used instead of the 'shared byte
1404 ** range' is that some versions of windows do not support read-locks. By
1405 ** locking a random byte from a range, concurrent SHARED locks may exist
1406 ** even if the locking primitive used is always a write-lock.
1407 */
danielk19779a1d0ab2004-06-01 14:09:28 +00001408 int rc = SQLITE_OK;
drh054889e2005-11-30 03:20:31 +00001409 unixFile *pFile = (unixFile*)id;
1410 struct lockInfo *pLock = pFile->pLock;
danielk19779a1d0ab2004-06-01 14:09:28 +00001411 struct flock lock;
1412 int s;
1413
drh054889e2005-11-30 03:20:31 +00001414 assert( pFile );
drh4f0c5872007-03-26 22:05:01 +00001415 OSTRACE7("LOCK %d %s was %s(%s,%d) pid=%d\n", pFile->h,
drh054889e2005-11-30 03:20:31 +00001416 locktypeName(locktype), locktypeName(pFile->locktype),
1417 locktypeName(pLock->locktype), pLock->cnt , getpid());
danielk19779a1d0ab2004-06-01 14:09:28 +00001418
1419 /* If there is already a lock of this type or more restrictive on the
1420 ** OsFile, do nothing. Don't use the end_lock: exit path, as
drh66560ad2006-01-06 14:32:19 +00001421 ** sqlite3OsEnterMutex() hasn't been called yet.
danielk19779a1d0ab2004-06-01 14:09:28 +00001422 */
drh054889e2005-11-30 03:20:31 +00001423 if( pFile->locktype>=locktype ){
drh4f0c5872007-03-26 22:05:01 +00001424 OSTRACE3("LOCK %d %s ok (already held)\n", pFile->h,
drh054889e2005-11-30 03:20:31 +00001425 locktypeName(locktype));
danielk19779a1d0ab2004-06-01 14:09:28 +00001426 return SQLITE_OK;
1427 }
1428
drhb3e04342004-06-08 00:47:47 +00001429 /* Make sure the locking sequence is correct
drh2ac3ee92004-06-07 16:27:46 +00001430 */
drh054889e2005-11-30 03:20:31 +00001431 assert( pFile->locktype!=NO_LOCK || locktype==SHARED_LOCK );
drhb3e04342004-06-08 00:47:47 +00001432 assert( locktype!=PENDING_LOCK );
drh054889e2005-11-30 03:20:31 +00001433 assert( locktype!=RESERVED_LOCK || pFile->locktype==SHARED_LOCK );
drh2ac3ee92004-06-07 16:27:46 +00001434
drh054889e2005-11-30 03:20:31 +00001435 /* This mutex is needed because pFile->pLock is shared across threads
drhb3e04342004-06-08 00:47:47 +00001436 */
drh66560ad2006-01-06 14:32:19 +00001437 sqlite3OsEnterMutex();
danielk19779a1d0ab2004-06-01 14:09:28 +00001438
drh029b44b2006-01-15 00:13:15 +00001439 /* Make sure the current thread owns the pFile.
1440 */
1441 rc = transferOwnership(pFile);
1442 if( rc!=SQLITE_OK ){
1443 sqlite3OsLeaveMutex();
1444 return rc;
1445 }
drh64b1bea2006-01-15 02:30:57 +00001446 pLock = pFile->pLock;
drh029b44b2006-01-15 00:13:15 +00001447
danielk19779a1d0ab2004-06-01 14:09:28 +00001448 /* If some thread using this PID has a lock via a different OsFile*
1449 ** handle that precludes the requested lock, return BUSY.
1450 */
drh054889e2005-11-30 03:20:31 +00001451 if( (pFile->locktype!=pLock->locktype &&
drh2ac3ee92004-06-07 16:27:46 +00001452 (pLock->locktype>=PENDING_LOCK || locktype>SHARED_LOCK))
danielk19779a1d0ab2004-06-01 14:09:28 +00001453 ){
1454 rc = SQLITE_BUSY;
1455 goto end_lock;
1456 }
1457
1458 /* If a SHARED lock is requested, and some thread using this PID already
1459 ** has a SHARED or RESERVED lock, then increment reference counts and
1460 ** return SQLITE_OK.
1461 */
1462 if( locktype==SHARED_LOCK &&
1463 (pLock->locktype==SHARED_LOCK || pLock->locktype==RESERVED_LOCK) ){
1464 assert( locktype==SHARED_LOCK );
drh054889e2005-11-30 03:20:31 +00001465 assert( pFile->locktype==0 );
danielk1977ecb2a962004-06-02 06:30:16 +00001466 assert( pLock->cnt>0 );
drh054889e2005-11-30 03:20:31 +00001467 pFile->locktype = SHARED_LOCK;
danielk19779a1d0ab2004-06-01 14:09:28 +00001468 pLock->cnt++;
drh054889e2005-11-30 03:20:31 +00001469 pFile->pOpen->nLock++;
danielk19779a1d0ab2004-06-01 14:09:28 +00001470 goto end_lock;
1471 }
1472
danielk197713adf8a2004-06-03 16:08:41 +00001473 lock.l_len = 1L;
drh2b4b5962005-06-15 17:47:55 +00001474
danielk19779a1d0ab2004-06-01 14:09:28 +00001475 lock.l_whence = SEEK_SET;
1476
drh3cde3bb2004-06-12 02:17:14 +00001477 /* A PENDING lock is needed before acquiring a SHARED lock and before
1478 ** acquiring an EXCLUSIVE lock. For the SHARED lock, the PENDING will
1479 ** be released.
danielk19779a1d0ab2004-06-01 14:09:28 +00001480 */
drh3cde3bb2004-06-12 02:17:14 +00001481 if( locktype==SHARED_LOCK
drh054889e2005-11-30 03:20:31 +00001482 || (locktype==EXCLUSIVE_LOCK && pFile->locktype<PENDING_LOCK)
drh3cde3bb2004-06-12 02:17:14 +00001483 ){
danielk1977489468c2004-06-28 08:25:47 +00001484 lock.l_type = (locktype==SHARED_LOCK?F_RDLCK:F_WRLCK);
drh2ac3ee92004-06-07 16:27:46 +00001485 lock.l_start = PENDING_BYTE;
drh054889e2005-11-30 03:20:31 +00001486 s = fcntl(pFile->h, F_SETLK, &lock);
danielk19779a1d0ab2004-06-01 14:09:28 +00001487 if( s ){
1488 rc = (errno==EINVAL) ? SQLITE_NOLFS : SQLITE_BUSY;
1489 goto end_lock;
1490 }
drh3cde3bb2004-06-12 02:17:14 +00001491 }
1492
1493
1494 /* If control gets to this point, then actually go ahead and make
1495 ** operating system calls for the specified lock.
1496 */
1497 if( locktype==SHARED_LOCK ){
1498 assert( pLock->cnt==0 );
1499 assert( pLock->locktype==0 );
danielk19779a1d0ab2004-06-01 14:09:28 +00001500
drh2ac3ee92004-06-07 16:27:46 +00001501 /* Now get the read-lock */
1502 lock.l_start = SHARED_FIRST;
1503 lock.l_len = SHARED_SIZE;
drh054889e2005-11-30 03:20:31 +00001504 s = fcntl(pFile->h, F_SETLK, &lock);
drh2ac3ee92004-06-07 16:27:46 +00001505
1506 /* Drop the temporary PENDING lock */
1507 lock.l_start = PENDING_BYTE;
1508 lock.l_len = 1L;
danielk19779a1d0ab2004-06-01 14:09:28 +00001509 lock.l_type = F_UNLCK;
drh054889e2005-11-30 03:20:31 +00001510 if( fcntl(pFile->h, F_SETLK, &lock)!=0 ){
drh4ac285a2006-09-15 07:28:50 +00001511 rc = SQLITE_IOERR_UNLOCK; /* This should never happen */
drh2b4b5962005-06-15 17:47:55 +00001512 goto end_lock;
1513 }
danielk19779a1d0ab2004-06-01 14:09:28 +00001514 if( s ){
drhbbd42a62004-05-22 17:41:58 +00001515 rc = (errno==EINVAL) ? SQLITE_NOLFS : SQLITE_BUSY;
1516 }else{
drh054889e2005-11-30 03:20:31 +00001517 pFile->locktype = SHARED_LOCK;
1518 pFile->pOpen->nLock++;
danielk19779a1d0ab2004-06-01 14:09:28 +00001519 pLock->cnt = 1;
drhbbd42a62004-05-22 17:41:58 +00001520 }
drh3cde3bb2004-06-12 02:17:14 +00001521 }else if( locktype==EXCLUSIVE_LOCK && pLock->cnt>1 ){
1522 /* We are trying for an exclusive lock but another thread in this
1523 ** same process is still holding a shared lock. */
1524 rc = SQLITE_BUSY;
drhbbd42a62004-05-22 17:41:58 +00001525 }else{
drh3cde3bb2004-06-12 02:17:14 +00001526 /* The request was for a RESERVED or EXCLUSIVE lock. It is
danielk19779a1d0ab2004-06-01 14:09:28 +00001527 ** assumed that there is a SHARED or greater lock on the file
1528 ** already.
1529 */
drh054889e2005-11-30 03:20:31 +00001530 assert( 0!=pFile->locktype );
danielk19779a1d0ab2004-06-01 14:09:28 +00001531 lock.l_type = F_WRLCK;
1532 switch( locktype ){
1533 case RESERVED_LOCK:
drh2ac3ee92004-06-07 16:27:46 +00001534 lock.l_start = RESERVED_BYTE;
danielk19779a1d0ab2004-06-01 14:09:28 +00001535 break;
danielk19779a1d0ab2004-06-01 14:09:28 +00001536 case EXCLUSIVE_LOCK:
drh2ac3ee92004-06-07 16:27:46 +00001537 lock.l_start = SHARED_FIRST;
1538 lock.l_len = SHARED_SIZE;
danielk19779a1d0ab2004-06-01 14:09:28 +00001539 break;
1540 default:
1541 assert(0);
1542 }
drh054889e2005-11-30 03:20:31 +00001543 s = fcntl(pFile->h, F_SETLK, &lock);
danielk19779a1d0ab2004-06-01 14:09:28 +00001544 if( s ){
1545 rc = (errno==EINVAL) ? SQLITE_NOLFS : SQLITE_BUSY;
1546 }
drhbbd42a62004-05-22 17:41:58 +00001547 }
danielk19779a1d0ab2004-06-01 14:09:28 +00001548
danielk1977ecb2a962004-06-02 06:30:16 +00001549 if( rc==SQLITE_OK ){
drh054889e2005-11-30 03:20:31 +00001550 pFile->locktype = locktype;
danielk1977ecb2a962004-06-02 06:30:16 +00001551 pLock->locktype = locktype;
drh3cde3bb2004-06-12 02:17:14 +00001552 }else if( locktype==EXCLUSIVE_LOCK ){
drh054889e2005-11-30 03:20:31 +00001553 pFile->locktype = PENDING_LOCK;
drh3cde3bb2004-06-12 02:17:14 +00001554 pLock->locktype = PENDING_LOCK;
danielk1977ecb2a962004-06-02 06:30:16 +00001555 }
danielk19779a1d0ab2004-06-01 14:09:28 +00001556
1557end_lock:
drh66560ad2006-01-06 14:32:19 +00001558 sqlite3OsLeaveMutex();
drh4f0c5872007-03-26 22:05:01 +00001559 OSTRACE4("LOCK %d %s %s\n", pFile->h, locktypeName(locktype),
danielk19772b444852004-06-29 07:45:33 +00001560 rc==SQLITE_OK ? "ok" : "failed");
drhbbd42a62004-05-22 17:41:58 +00001561 return rc;
1562}
1563
1564/*
drh054889e2005-11-30 03:20:31 +00001565** Lower the locking level on file descriptor pFile to locktype. locktype
drha6abd042004-06-09 17:37:22 +00001566** must be either NO_LOCK or SHARED_LOCK.
1567**
1568** If the locking level of the file descriptor is already at or below
1569** the requested locking level, this routine is a no-op.
drhbbd42a62004-05-22 17:41:58 +00001570*/
drh9c06c952005-11-26 00:25:00 +00001571static int unixUnlock(OsFile *id, int locktype){
drha6abd042004-06-09 17:37:22 +00001572 struct lockInfo *pLock;
1573 struct flock lock;
drh9c105bb2004-10-02 20:38:28 +00001574 int rc = SQLITE_OK;
drh054889e2005-11-30 03:20:31 +00001575 unixFile *pFile = (unixFile*)id;
drha6abd042004-06-09 17:37:22 +00001576
drh054889e2005-11-30 03:20:31 +00001577 assert( pFile );
drh4f0c5872007-03-26 22:05:01 +00001578 OSTRACE7("UNLOCK %d %d was %d(%d,%d) pid=%d\n", pFile->h, locktype,
drh054889e2005-11-30 03:20:31 +00001579 pFile->locktype, pFile->pLock->locktype, pFile->pLock->cnt, getpid());
drha6abd042004-06-09 17:37:22 +00001580
1581 assert( locktype<=SHARED_LOCK );
drh054889e2005-11-30 03:20:31 +00001582 if( pFile->locktype<=locktype ){
drha6abd042004-06-09 17:37:22 +00001583 return SQLITE_OK;
1584 }
drhf1a221e2006-01-15 17:27:17 +00001585 if( CHECK_THREADID(pFile) ){
1586 return SQLITE_MISUSE;
1587 }
drh66560ad2006-01-06 14:32:19 +00001588 sqlite3OsEnterMutex();
drh054889e2005-11-30 03:20:31 +00001589 pLock = pFile->pLock;
drha6abd042004-06-09 17:37:22 +00001590 assert( pLock->cnt!=0 );
drh054889e2005-11-30 03:20:31 +00001591 if( pFile->locktype>SHARED_LOCK ){
1592 assert( pLock->locktype==pFile->locktype );
drh9c105bb2004-10-02 20:38:28 +00001593 if( locktype==SHARED_LOCK ){
1594 lock.l_type = F_RDLCK;
1595 lock.l_whence = SEEK_SET;
1596 lock.l_start = SHARED_FIRST;
1597 lock.l_len = SHARED_SIZE;
drh054889e2005-11-30 03:20:31 +00001598 if( fcntl(pFile->h, F_SETLK, &lock)!=0 ){
drh9c105bb2004-10-02 20:38:28 +00001599 /* This should never happen */
drh4ac285a2006-09-15 07:28:50 +00001600 rc = SQLITE_IOERR_RDLOCK;
drh9c105bb2004-10-02 20:38:28 +00001601 }
1602 }
drhbbd42a62004-05-22 17:41:58 +00001603 lock.l_type = F_UNLCK;
1604 lock.l_whence = SEEK_SET;
drha6abd042004-06-09 17:37:22 +00001605 lock.l_start = PENDING_BYTE;
1606 lock.l_len = 2L; assert( PENDING_BYTE+1==RESERVED_BYTE );
drh054889e2005-11-30 03:20:31 +00001607 if( fcntl(pFile->h, F_SETLK, &lock)==0 ){
drh2b4b5962005-06-15 17:47:55 +00001608 pLock->locktype = SHARED_LOCK;
1609 }else{
drh4ac285a2006-09-15 07:28:50 +00001610 rc = SQLITE_IOERR_UNLOCK; /* This should never happen */
drh2b4b5962005-06-15 17:47:55 +00001611 }
drhbbd42a62004-05-22 17:41:58 +00001612 }
drha6abd042004-06-09 17:37:22 +00001613 if( locktype==NO_LOCK ){
1614 struct openCnt *pOpen;
danielk1977ecb2a962004-06-02 06:30:16 +00001615
drha6abd042004-06-09 17:37:22 +00001616 /* Decrement the shared lock counter. Release the lock using an
1617 ** OS call only when all threads in this same process have released
1618 ** the lock.
1619 */
1620 pLock->cnt--;
1621 if( pLock->cnt==0 ){
1622 lock.l_type = F_UNLCK;
1623 lock.l_whence = SEEK_SET;
1624 lock.l_start = lock.l_len = 0L;
drh054889e2005-11-30 03:20:31 +00001625 if( fcntl(pFile->h, F_SETLK, &lock)==0 ){
drh2b4b5962005-06-15 17:47:55 +00001626 pLock->locktype = NO_LOCK;
1627 }else{
drh4ac285a2006-09-15 07:28:50 +00001628 rc = SQLITE_IOERR_UNLOCK; /* This should never happen */
drh2b4b5962005-06-15 17:47:55 +00001629 }
drha6abd042004-06-09 17:37:22 +00001630 }
1631
drhbbd42a62004-05-22 17:41:58 +00001632 /* Decrement the count of locks against this same file. When the
1633 ** count reaches zero, close any other file descriptors whose close
1634 ** was deferred because of outstanding locks.
1635 */
drh054889e2005-11-30 03:20:31 +00001636 pOpen = pFile->pOpen;
drhbbd42a62004-05-22 17:41:58 +00001637 pOpen->nLock--;
1638 assert( pOpen->nLock>=0 );
1639 if( pOpen->nLock==0 && pOpen->nPending>0 ){
1640 int i;
1641 for(i=0; i<pOpen->nPending; i++){
1642 close(pOpen->aPending[i]);
1643 }
drh64b1bea2006-01-15 02:30:57 +00001644 free(pOpen->aPending);
drhbbd42a62004-05-22 17:41:58 +00001645 pOpen->nPending = 0;
1646 pOpen->aPending = 0;
1647 }
1648 }
drh66560ad2006-01-06 14:32:19 +00001649 sqlite3OsLeaveMutex();
drh054889e2005-11-30 03:20:31 +00001650 pFile->locktype = locktype;
drh9c105bb2004-10-02 20:38:28 +00001651 return rc;
drhbbd42a62004-05-22 17:41:58 +00001652}
1653
1654/*
danielk1977e3026632004-06-22 11:29:02 +00001655** Close a file.
1656*/
drh9cbe6352005-11-29 03:13:21 +00001657static int unixClose(OsFile **pId){
drh054889e2005-11-30 03:20:31 +00001658 unixFile *id = (unixFile*)*pId;
drh029b44b2006-01-15 00:13:15 +00001659
drh9cbe6352005-11-29 03:13:21 +00001660 if( !id ) return SQLITE_OK;
drh38322302006-01-15 02:43:16 +00001661 unixUnlock(*pId, NO_LOCK);
danielk1977e3026632004-06-22 11:29:02 +00001662 if( id->dirfd>=0 ) close(id->dirfd);
1663 id->dirfd = -1;
drh66560ad2006-01-06 14:32:19 +00001664 sqlite3OsEnterMutex();
danielk1977441b09a2006-01-05 13:48:29 +00001665
drh38322302006-01-15 02:43:16 +00001666 if( id->pOpen->nLock ){
danielk1977e3026632004-06-22 11:29:02 +00001667 /* If there are outstanding locks, do not actually close the file just
1668 ** yet because that would clear those locks. Instead, add the file
1669 ** descriptor to pOpen->aPending. It will be automatically closed when
1670 ** the last lock is cleared.
1671 */
1672 int *aNew;
1673 struct openCnt *pOpen = id->pOpen;
drh64b1bea2006-01-15 02:30:57 +00001674 aNew = realloc( pOpen->aPending, (pOpen->nPending+1)*sizeof(int) );
danielk1977e3026632004-06-22 11:29:02 +00001675 if( aNew==0 ){
1676 /* If a malloc fails, just leak the file descriptor */
1677 }else{
1678 pOpen->aPending = aNew;
drhad81e872005-08-21 21:45:01 +00001679 pOpen->aPending[pOpen->nPending] = id->h;
1680 pOpen->nPending++;
danielk1977e3026632004-06-22 11:29:02 +00001681 }
1682 }else{
1683 /* There are no outstanding locks so we can close the file immediately */
1684 close(id->h);
1685 }
1686 releaseLockInfo(id->pLock);
1687 releaseOpenCnt(id->pOpen);
danielk1977441b09a2006-01-05 13:48:29 +00001688
drh66560ad2006-01-06 14:32:19 +00001689 sqlite3OsLeaveMutex();
danielk1977e3026632004-06-22 11:29:02 +00001690 id->isOpen = 0;
drh4f0c5872007-03-26 22:05:01 +00001691 OSTRACE2("CLOSE %-3d\n", id->h);
danielk1977e3026632004-06-22 11:29:02 +00001692 OpenCounter(-1);
danielk1977750b03e2006-02-14 10:48:39 +00001693 sqlite3ThreadSafeFree(id);
drh9cbe6352005-11-29 03:13:21 +00001694 *pId = 0;
drh02afc862006-01-20 18:10:57 +00001695 return SQLITE_OK;
danielk1977e3026632004-06-22 11:29:02 +00001696}
1697
drhbfe66312006-10-03 17:40:40 +00001698
1699#ifdef SQLITE_ENABLE_LOCKING_STYLE
1700#pragma mark AFP Support
1701
1702/*
1703 ** The afpLockingContext structure contains all afp lock specific state
1704 */
1705typedef struct afpLockingContext afpLockingContext;
1706struct afpLockingContext {
1707 unsigned long long sharedLockByte;
1708 char *filePath;
1709};
1710
1711struct ByteRangeLockPB2
1712{
1713 unsigned long long offset; /* offset to first byte to lock */
1714 unsigned long long length; /* nbr of bytes to lock */
1715 unsigned long long retRangeStart; /* nbr of 1st byte locked if successful */
1716 unsigned char unLockFlag; /* 1 = unlock, 0 = lock */
1717 unsigned char startEndFlag; /* 1=rel to end of fork, 0=rel to start */
1718 int fd; /* file desc to assoc this lock with */
1719};
1720
1721#define afpfsByteRangeLock2FSCTL _IOWR('z', 23, struct ByteRangeLockPB2)
1722
1723/* return 0 on success, 1 on failure. To match the behavior of the
1724 normal posix file locking (used in unixLock for example), we should
1725 provide 'richer' return codes - specifically to differentiate between
1726 'file busy' and 'file system error' results */
1727static int _AFPFSSetLock(const char *path, int fd, unsigned long long offset,
1728 unsigned long long length, int setLockFlag)
1729{
1730 struct ByteRangeLockPB2 pb;
1731 int err;
1732
1733 pb.unLockFlag = setLockFlag ? 0 : 1;
1734 pb.startEndFlag = 0;
1735 pb.offset = offset;
1736 pb.length = length;
1737 pb.fd = fd;
drh4f0c5872007-03-26 22:05:01 +00001738 OSTRACE5("AFPLOCK setting lock %s for %d in range %llx:%llx\n",
drhbfe66312006-10-03 17:40:40 +00001739 (setLockFlag?"ON":"OFF"), fd, offset, length);
1740 err = fsctl(path, afpfsByteRangeLock2FSCTL, &pb, 0);
1741 if ( err==-1 ) {
drh4f0c5872007-03-26 22:05:01 +00001742 OSTRACE4("AFPLOCK failed to fsctl() '%s' %d %s\n", path, errno,
drhbfe66312006-10-03 17:40:40 +00001743 strerror(errno));
1744 return 1; // error
1745 } else {
1746 return 0;
1747 }
1748}
1749
1750/*
1751 ** This routine checks if there is a RESERVED lock held on the specified
1752 ** file by this or any other process. If such a lock is held, return
1753 ** non-zero. If the file is unlocked or holds only SHARED locks, then
1754 ** return zero.
1755 */
1756static int afpUnixCheckReservedLock(OsFile *id){
1757 int r = 0;
1758 unixFile *pFile = (unixFile*)id;
1759
1760 assert( pFile );
1761 afpLockingContext *context = (afpLockingContext *) pFile->lockingContext;
1762
1763 /* Check if a thread in this process holds such a lock */
1764 if( pFile->locktype>SHARED_LOCK ){
1765 r = 1;
1766 }
1767
1768 /* Otherwise see if some other process holds it.
1769 */
1770 if ( !r ) {
1771 // lock the byte
1772 int failed = _AFPFSSetLock(context->filePath, pFile->h, RESERVED_BYTE, 1,1);
1773 if (failed) {
1774 /* if we failed to get the lock then someone else must have it */
1775 r = 1;
1776 } else {
1777 /* if we succeeded in taking the reserved lock, unlock it to restore
1778 ** the original state */
1779 _AFPFSSetLock(context->filePath, pFile->h, RESERVED_BYTE, 1, 0);
1780 }
1781 }
drh4f0c5872007-03-26 22:05:01 +00001782 OSTRACE3("TEST WR-LOCK %d %d\n", pFile->h, r);
drhbfe66312006-10-03 17:40:40 +00001783
1784 return r;
1785}
1786
1787/* AFP-style locking following the behavior of unixLock, see the unixLock
1788** function comments for details of lock management. */
1789static int afpUnixLock(OsFile *id, int locktype)
1790{
1791 int rc = SQLITE_OK;
1792 unixFile *pFile = (unixFile*)id;
1793 afpLockingContext *context = (afpLockingContext *) pFile->lockingContext;
1794 int gotPendingLock = 0;
1795
1796 assert( pFile );
drh4f0c5872007-03-26 22:05:01 +00001797 OSTRACE5("LOCK %d %s was %s pid=%d\n", pFile->h,
drhbfe66312006-10-03 17:40:40 +00001798 locktypeName(locktype), locktypeName(pFile->locktype), getpid());
1799 /* If there is already a lock of this type or more restrictive on the
1800 ** OsFile, do nothing. Don't use the afp_end_lock: exit path, as
1801 ** sqlite3OsEnterMutex() hasn't been called yet.
1802 */
1803 if( pFile->locktype>=locktype ){
drh4f0c5872007-03-26 22:05:01 +00001804 OSTRACE3("LOCK %d %s ok (already held)\n", pFile->h,
drhbfe66312006-10-03 17:40:40 +00001805 locktypeName(locktype));
1806 return SQLITE_OK;
1807 }
1808
1809 /* Make sure the locking sequence is correct
1810 */
1811 assert( pFile->locktype!=NO_LOCK || locktype==SHARED_LOCK );
1812 assert( locktype!=PENDING_LOCK );
1813 assert( locktype!=RESERVED_LOCK || pFile->locktype==SHARED_LOCK );
1814
1815 /* This mutex is needed because pFile->pLock is shared across threads
1816 */
1817 sqlite3OsEnterMutex();
1818
1819 /* Make sure the current thread owns the pFile.
1820 */
1821 rc = transferOwnership(pFile);
1822 if( rc!=SQLITE_OK ){
1823 sqlite3OsLeaveMutex();
1824 return rc;
1825 }
1826
1827 /* A PENDING lock is needed before acquiring a SHARED lock and before
1828 ** acquiring an EXCLUSIVE lock. For the SHARED lock, the PENDING will
1829 ** be released.
1830 */
1831 if( locktype==SHARED_LOCK
1832 || (locktype==EXCLUSIVE_LOCK && pFile->locktype<PENDING_LOCK)
1833 ){
1834 int failed = _AFPFSSetLock(context->filePath, pFile->h,
1835 PENDING_BYTE, 1, 1);
1836 if (failed) {
1837 rc = SQLITE_BUSY;
1838 goto afp_end_lock;
1839 }
1840 }
1841
1842 /* If control gets to this point, then actually go ahead and make
1843 ** operating system calls for the specified lock.
1844 */
1845 if( locktype==SHARED_LOCK ){
1846 int lk, failed;
1847 int tries = 0;
1848
1849 /* Now get the read-lock */
1850 /* note that the quality of the randomness doesn't matter that much */
1851 lk = random();
1852 context->sharedLockByte = (lk & 0x7fffffff)%(SHARED_SIZE - 1);
1853 failed = _AFPFSSetLock(context->filePath, pFile->h,
1854 SHARED_FIRST+context->sharedLockByte, 1, 1);
1855
1856 /* Drop the temporary PENDING lock */
1857 if (_AFPFSSetLock(context->filePath, pFile->h, PENDING_BYTE, 1, 0)) {
1858 rc = SQLITE_IOERR_UNLOCK; /* This should never happen */
1859 goto afp_end_lock;
1860 }
1861
1862 if( failed ){
1863 rc = SQLITE_BUSY;
1864 } else {
1865 pFile->locktype = SHARED_LOCK;
1866 }
1867 }else{
1868 /* The request was for a RESERVED or EXCLUSIVE lock. It is
1869 ** assumed that there is a SHARED or greater lock on the file
1870 ** already.
1871 */
1872 int failed = 0;
1873 assert( 0!=pFile->locktype );
1874 if (locktype >= RESERVED_LOCK && pFile->locktype < RESERVED_LOCK) {
1875 /* Acquire a RESERVED lock */
1876 failed = _AFPFSSetLock(context->filePath, pFile->h, RESERVED_BYTE, 1,1);
1877 }
1878 if (!failed && locktype == EXCLUSIVE_LOCK) {
1879 /* Acquire an EXCLUSIVE lock */
1880
1881 /* Remove the shared lock before trying the range. we'll need to
1882 ** reestablish the shared lock if we can't get the afpUnixUnlock
1883 */
1884 if (!_AFPFSSetLock(context->filePath, pFile->h, SHARED_FIRST +
1885 context->sharedLockByte, 1, 0)) {
1886 /* now attemmpt to get the exclusive lock range */
1887 failed = _AFPFSSetLock(context->filePath, pFile->h, SHARED_FIRST,
1888 SHARED_SIZE, 1);
1889 if (failed && _AFPFSSetLock(context->filePath, pFile->h, SHARED_FIRST +
1890 context->sharedLockByte, 1, 1)) {
1891 rc = SQLITE_IOERR_RDLOCK; /* this should never happen */
1892 }
1893 } else {
1894 /* */
1895 rc = SQLITE_IOERR_UNLOCK; /* this should never happen */
1896 }
1897 }
1898 if( failed && rc == SQLITE_OK){
1899 rc = SQLITE_BUSY;
1900 }
1901 }
1902
1903 if( rc==SQLITE_OK ){
1904 pFile->locktype = locktype;
1905 }else if( locktype==EXCLUSIVE_LOCK ){
1906 pFile->locktype = PENDING_LOCK;
1907 }
1908
1909afp_end_lock:
1910 sqlite3OsLeaveMutex();
drh4f0c5872007-03-26 22:05:01 +00001911 OSTRACE4("LOCK %d %s %s\n", pFile->h, locktypeName(locktype),
drhbfe66312006-10-03 17:40:40 +00001912 rc==SQLITE_OK ? "ok" : "failed");
1913 return rc;
1914}
1915
1916/*
1917 ** Lower the locking level on file descriptor pFile to locktype. locktype
1918 ** must be either NO_LOCK or SHARED_LOCK.
1919 **
1920 ** If the locking level of the file descriptor is already at or below
1921 ** the requested locking level, this routine is a no-op.
1922 */
1923static int afpUnixUnlock(OsFile *id, int locktype) {
1924 struct flock lock;
1925 int rc = SQLITE_OK;
1926 unixFile *pFile = (unixFile*)id;
1927 afpLockingContext *context = (afpLockingContext *) pFile->lockingContext;
1928
1929 assert( pFile );
drh4f0c5872007-03-26 22:05:01 +00001930 OSTRACE5("UNLOCK %d %d was %d pid=%d\n", pFile->h, locktype,
drhbfe66312006-10-03 17:40:40 +00001931 pFile->locktype, getpid());
1932
1933 assert( locktype<=SHARED_LOCK );
1934 if( pFile->locktype<=locktype ){
1935 return SQLITE_OK;
1936 }
1937 if( CHECK_THREADID(pFile) ){
1938 return SQLITE_MISUSE;
1939 }
1940 sqlite3OsEnterMutex();
1941 if( pFile->locktype>SHARED_LOCK ){
1942 if( locktype==SHARED_LOCK ){
1943 int failed = 0;
1944
1945 /* unlock the exclusive range - then re-establish the shared lock */
1946 if (pFile->locktype==EXCLUSIVE_LOCK) {
1947 failed = _AFPFSSetLock(context->filePath, pFile->h, SHARED_FIRST,
1948 SHARED_SIZE, 0);
1949 if (!failed) {
1950 /* successfully removed the exclusive lock */
1951 if (_AFPFSSetLock(context->filePath, pFile->h, SHARED_FIRST+
1952 context->sharedLockByte, 1, 1)) {
1953 /* failed to re-establish our shared lock */
1954 rc = SQLITE_IOERR_RDLOCK; /* This should never happen */
1955 }
1956 } else {
1957 /* This should never happen - failed to unlock the exclusive range */
1958 rc = SQLITE_IOERR_UNLOCK;
1959 }
1960 }
1961 }
1962 if (rc == SQLITE_OK && pFile->locktype>=PENDING_LOCK) {
1963 if (_AFPFSSetLock(context->filePath, pFile->h, PENDING_BYTE, 1, 0)){
1964 /* failed to release the pending lock */
1965 rc = SQLITE_IOERR_UNLOCK; /* This should never happen */
1966 }
1967 }
1968 if (rc == SQLITE_OK && pFile->locktype>=RESERVED_LOCK) {
1969 if (_AFPFSSetLock(context->filePath, pFile->h, RESERVED_BYTE, 1, 0)) {
1970 /* failed to release the reserved lock */
1971 rc = SQLITE_IOERR_UNLOCK; /* This should never happen */
1972 }
1973 }
1974 }
1975 if( locktype==NO_LOCK ){
1976 int failed = _AFPFSSetLock(context->filePath, pFile->h,
1977 SHARED_FIRST + context->sharedLockByte, 1, 0);
1978 if (failed) {
1979 rc = SQLITE_IOERR_UNLOCK; /* This should never happen */
1980 }
1981 }
1982 if (rc == SQLITE_OK)
1983 pFile->locktype = locktype;
1984 sqlite3OsLeaveMutex();
1985 return rc;
1986}
1987
1988/*
1989 ** Close a file & cleanup AFP specific locking context
1990 */
1991static int afpUnixClose(OsFile **pId) {
1992 unixFile *id = (unixFile*)*pId;
1993
1994 if( !id ) return SQLITE_OK;
1995 afpUnixUnlock(*pId, NO_LOCK);
1996 /* free the AFP locking structure */
1997 if (id->lockingContext != NULL) {
1998 if (((afpLockingContext *)id->lockingContext)->filePath != NULL)
1999 sqlite3ThreadSafeFree(((afpLockingContext*)id->lockingContext)->filePath);
2000 sqlite3ThreadSafeFree(id->lockingContext);
2001 }
2002
2003 if( id->dirfd>=0 ) close(id->dirfd);
2004 id->dirfd = -1;
2005 close(id->h);
2006 id->isOpen = 0;
drh4f0c5872007-03-26 22:05:01 +00002007 OSTRACE2("CLOSE %-3d\n", id->h);
drhbfe66312006-10-03 17:40:40 +00002008 OpenCounter(-1);
2009 sqlite3ThreadSafeFree(id);
2010 *pId = 0;
2011 return SQLITE_OK;
2012}
2013
2014
2015#pragma mark flock() style locking
2016
2017/*
2018 ** The flockLockingContext is not used
2019 */
2020typedef void flockLockingContext;
2021
2022static int flockUnixCheckReservedLock(OsFile *id) {
2023 unixFile *pFile = (unixFile*)id;
2024
2025 if (pFile->locktype == RESERVED_LOCK) {
2026 return 1; // already have a reserved lock
2027 } else {
2028 // attempt to get the lock
2029 int rc = flock(pFile->h, LOCK_EX | LOCK_NB);
2030 if (!rc) {
2031 // got the lock, unlock it
2032 flock(pFile->h, LOCK_UN);
2033 return 0; // no one has it reserved
2034 }
2035 return 1; // someone else might have it reserved
2036 }
2037}
2038
2039static int flockUnixLock(OsFile *id, int locktype) {
2040 unixFile *pFile = (unixFile*)id;
2041
2042 // if we already have a lock, it is exclusive.
2043 // Just adjust level and punt on outta here.
2044 if (pFile->locktype > NO_LOCK) {
2045 pFile->locktype = locktype;
2046 return SQLITE_OK;
2047 }
2048
2049 // grab an exclusive lock
2050 int rc = flock(pFile->h, LOCK_EX | LOCK_NB);
2051 if (rc) {
2052 // didn't get, must be busy
2053 return SQLITE_BUSY;
2054 } else {
2055 // got it, set the type and return ok
2056 pFile->locktype = locktype;
2057 return SQLITE_OK;
2058 }
2059}
2060
2061static int flockUnixUnlock(OsFile *id, int locktype) {
2062 unixFile *pFile = (unixFile*)id;
2063
2064 assert( locktype<=SHARED_LOCK );
2065
2066 // no-op if possible
2067 if( pFile->locktype==locktype ){
2068 return SQLITE_OK;
2069 }
2070
2071 // shared can just be set because we always have an exclusive
2072 if (locktype==SHARED_LOCK) {
2073 pFile->locktype = locktype;
2074 return SQLITE_OK;
2075 }
2076
2077 // no, really, unlock.
2078 int rc = flock(pFile->h, LOCK_UN);
2079 if (rc)
2080 return SQLITE_IOERR_UNLOCK;
2081 else {
2082 pFile->locktype = NO_LOCK;
2083 return SQLITE_OK;
2084 }
2085}
2086
2087/*
2088 ** Close a file.
2089 */
2090static int flockUnixClose(OsFile **pId) {
2091 unixFile *id = (unixFile*)*pId;
2092
2093 if( !id ) return SQLITE_OK;
2094 flockUnixUnlock(*pId, NO_LOCK);
2095
2096 if( id->dirfd>=0 ) close(id->dirfd);
2097 id->dirfd = -1;
2098 sqlite3OsEnterMutex();
2099
2100 close(id->h);
2101 sqlite3OsLeaveMutex();
2102 id->isOpen = 0;
drh4f0c5872007-03-26 22:05:01 +00002103 OSTRACE2("CLOSE %-3d\n", id->h);
drhbfe66312006-10-03 17:40:40 +00002104 OpenCounter(-1);
2105 sqlite3ThreadSafeFree(id);
2106 *pId = 0;
2107 return SQLITE_OK;
2108}
2109
2110#pragma mark Old-School .lock file based locking
2111
2112/*
2113 ** The dotlockLockingContext structure contains all dotlock (.lock) lock
2114 ** specific state
2115 */
2116typedef struct dotlockLockingContext dotlockLockingContext;
2117struct dotlockLockingContext {
2118 char *lockPath;
2119};
2120
2121
2122static int dotlockUnixCheckReservedLock(OsFile *id) {
2123 unixFile *pFile = (unixFile*)id;
2124 dotlockLockingContext *context =
2125 (dotlockLockingContext *) pFile->lockingContext;
2126
2127 if (pFile->locktype == RESERVED_LOCK) {
2128 return 1; // already have a reserved lock
2129 } else {
2130 struct stat statBuf;
2131 if (lstat(context->lockPath,&statBuf) == 0)
2132 // file exists, someone else has the lock
2133 return 1;
2134 else
2135 // file does not exist, we could have it if we want it
2136 return 0;
2137 }
2138}
2139
2140static int dotlockUnixLock(OsFile *id, int locktype) {
2141 unixFile *pFile = (unixFile*)id;
2142 dotlockLockingContext *context =
2143 (dotlockLockingContext *) pFile->lockingContext;
2144
2145 // if we already have a lock, it is exclusive.
2146 // Just adjust level and punt on outta here.
2147 if (pFile->locktype > NO_LOCK) {
2148 pFile->locktype = locktype;
2149
2150 /* Always update the timestamp on the old file */
2151 utimes(context->lockPath,NULL);
2152 return SQLITE_OK;
2153 }
2154
2155 // check to see if lock file already exists
2156 struct stat statBuf;
2157 if (lstat(context->lockPath,&statBuf) == 0){
2158 return SQLITE_BUSY; // it does, busy
2159 }
2160
2161 // grab an exclusive lock
2162 int fd = open(context->lockPath,O_RDONLY|O_CREAT|O_EXCL,0600);
2163 if (fd < 0) {
2164 // failed to open/create the file, someone else may have stolen the lock
2165 return SQLITE_BUSY;
2166 }
2167 close(fd);
2168
2169 // got it, set the type and return ok
2170 pFile->locktype = locktype;
2171 return SQLITE_OK;
2172}
2173
2174static int dotlockUnixUnlock(OsFile *id, int locktype) {
2175 unixFile *pFile = (unixFile*)id;
2176 dotlockLockingContext *context =
2177 (dotlockLockingContext *) pFile->lockingContext;
2178
2179 assert( locktype<=SHARED_LOCK );
2180
2181 // no-op if possible
2182 if( pFile->locktype==locktype ){
2183 return SQLITE_OK;
2184 }
2185
2186 // shared can just be set because we always have an exclusive
2187 if (locktype==SHARED_LOCK) {
2188 pFile->locktype = locktype;
2189 return SQLITE_OK;
2190 }
2191
2192 // no, really, unlock.
2193 unlink(context->lockPath);
2194 pFile->locktype = NO_LOCK;
2195 return SQLITE_OK;
2196}
2197
2198/*
2199 ** Close a file.
2200 */
2201static int dotlockUnixClose(OsFile **pId) {
2202 unixFile *id = (unixFile*)*pId;
2203
2204 if( !id ) return SQLITE_OK;
2205 dotlockUnixUnlock(*pId, NO_LOCK);
2206 /* free the dotlock locking structure */
2207 if (id->lockingContext != NULL) {
2208 if (((dotlockLockingContext *)id->lockingContext)->lockPath != NULL)
2209 sqlite3ThreadSafeFree( ( (dotlockLockingContext *)
2210 id->lockingContext)->lockPath);
2211 sqlite3ThreadSafeFree(id->lockingContext);
2212 }
2213
2214 if( id->dirfd>=0 ) close(id->dirfd);
2215 id->dirfd = -1;
2216 sqlite3OsEnterMutex();
2217
2218 close(id->h);
2219
2220 sqlite3OsLeaveMutex();
2221 id->isOpen = 0;
drh4f0c5872007-03-26 22:05:01 +00002222 OSTRACE2("CLOSE %-3d\n", id->h);
drhbfe66312006-10-03 17:40:40 +00002223 OpenCounter(-1);
2224 sqlite3ThreadSafeFree(id);
2225 *pId = 0;
2226 return SQLITE_OK;
2227}
2228
2229
2230#pragma mark No locking
2231
2232/*
2233 ** The nolockLockingContext is void
2234 */
2235typedef void nolockLockingContext;
2236
2237static int nolockUnixCheckReservedLock(OsFile *id) {
2238 return 0;
2239}
2240
2241static int nolockUnixLock(OsFile *id, int locktype) {
2242 return SQLITE_OK;
2243}
2244
2245static int nolockUnixUnlock(OsFile *id, int locktype) {
2246 return SQLITE_OK;
2247}
2248
2249/*
2250 ** Close a file.
2251 */
2252static int nolockUnixClose(OsFile **pId) {
2253 unixFile *id = (unixFile*)*pId;
2254
2255 if( !id ) return SQLITE_OK;
2256 if( id->dirfd>=0 ) close(id->dirfd);
2257 id->dirfd = -1;
2258 sqlite3OsEnterMutex();
2259
2260 close(id->h);
2261
2262 sqlite3OsLeaveMutex();
2263 id->isOpen = 0;
drh4f0c5872007-03-26 22:05:01 +00002264 OSTRACE2("CLOSE %-3d\n", id->h);
drhbfe66312006-10-03 17:40:40 +00002265 OpenCounter(-1);
2266 sqlite3ThreadSafeFree(id);
2267 *pId = 0;
2268 return SQLITE_OK;
2269}
2270
2271#endif /* SQLITE_ENABLE_LOCKING_STYLE */
2272
danielk1977e3026632004-06-22 11:29:02 +00002273/*
drh0ccebe72005-06-07 22:22:50 +00002274** Turn a relative pathname into a full pathname. Return a pointer
2275** to the full pathname stored in space obtained from sqliteMalloc().
2276** The calling function is responsible for freeing this space once it
2277** is no longer needed.
2278*/
drh66560ad2006-01-06 14:32:19 +00002279char *sqlite3UnixFullPathname(const char *zRelative){
drh0ccebe72005-06-07 22:22:50 +00002280 char *zFull = 0;
2281 if( zRelative[0]=='/' ){
2282 sqlite3SetString(&zFull, zRelative, (char*)0);
2283 }else{
drh79158e12005-09-06 21:40:45 +00002284 char *zBuf = sqliteMalloc(5000);
2285 if( zBuf==0 ){
2286 return 0;
2287 }
drh0ccebe72005-06-07 22:22:50 +00002288 zBuf[0] = 0;
drh79158e12005-09-06 21:40:45 +00002289 sqlite3SetString(&zFull, getcwd(zBuf, 5000), "/", zRelative,
drh0ccebe72005-06-07 22:22:50 +00002290 (char*)0);
drh79158e12005-09-06 21:40:45 +00002291 sqliteFree(zBuf);
drh0ccebe72005-06-07 22:22:50 +00002292 }
drh4eb9a972006-02-13 18:42:21 +00002293
2294#if 0
drh89ea9312006-02-13 17:03:47 +00002295 /*
2296 ** Remove "/./" path elements and convert "/A/./" path elements
2297 ** to just "/".
2298 */
2299 if( zFull ){
drh4eb9a972006-02-13 18:42:21 +00002300 int i, j;
drh89ea9312006-02-13 17:03:47 +00002301 for(i=j=0; zFull[i]; i++){
2302 if( zFull[i]=='/' ){
2303 if( zFull[i+1]=='/' ) continue;
2304 if( zFull[i+1]=='.' && zFull[i+2]=='/' ){
2305 i += 1;
2306 continue;
2307 }
2308 if( zFull[i+1]=='.' && zFull[i+2]=='.' && zFull[i+3]=='/' ){
2309 while( j>0 && zFull[j-1]!='/' ){ j--; }
2310 i += 3;
2311 continue;
2312 }
2313 }
2314 zFull[j++] = zFull[i];
2315 }
2316 zFull[j] = 0;
2317 }
drh4eb9a972006-02-13 18:42:21 +00002318#endif
2319
drh0ccebe72005-06-07 22:22:50 +00002320 return zFull;
2321}
2322
drh18839212005-11-26 03:43:23 +00002323/*
drh9cbe6352005-11-29 03:13:21 +00002324** Change the value of the fullsync flag in the given file descriptor.
drh18839212005-11-26 03:43:23 +00002325*/
drh9cbe6352005-11-29 03:13:21 +00002326static void unixSetFullSync(OsFile *id, int v){
drh054889e2005-11-30 03:20:31 +00002327 ((unixFile*)id)->fullSync = v;
drh9cbe6352005-11-29 03:13:21 +00002328}
2329
2330/*
2331** Return the underlying file handle for an OsFile
2332*/
2333static int unixFileHandle(OsFile *id){
drh054889e2005-11-30 03:20:31 +00002334 return ((unixFile*)id)->h;
drh9cbe6352005-11-29 03:13:21 +00002335}
2336
2337/*
2338** Return an integer that indices the type of lock currently held
2339** by this handle. (Used for testing and analysis only.)
2340*/
2341static int unixLockState(OsFile *id){
drh054889e2005-11-30 03:20:31 +00002342 return ((unixFile*)id)->locktype;
drh18839212005-11-26 03:43:23 +00002343}
drh0ccebe72005-06-07 22:22:50 +00002344
drh9c06c952005-11-26 00:25:00 +00002345/*
danielk1977a3d4c882007-03-23 10:08:38 +00002346** Return the sector size in bytes of the underlying block device for
2347** the specified file. This is almost always 512 bytes, but may be
2348** larger for some devices.
2349**
2350** SQLite code assumes this function cannot fail. It also assumes that
2351** if two files are created in the same file-system directory (i.e.
2352** a database and it's journal file) that the sector size will be the
2353** same for both.
2354*/
2355static int unixSectorSize(OsFile *id){
2356 return PAGER_SECTOR_SIZE;
2357}
2358
2359/*
drh054889e2005-11-30 03:20:31 +00002360** This vector defines all the methods that can operate on an OsFile
2361** for unix.
drh9c06c952005-11-26 00:25:00 +00002362*/
drh054889e2005-11-30 03:20:31 +00002363static const IoMethod sqlite3UnixIoMethod = {
drh9c06c952005-11-26 00:25:00 +00002364 unixClose,
drh054889e2005-11-30 03:20:31 +00002365 unixOpenDirectory,
drh9c06c952005-11-26 00:25:00 +00002366 unixRead,
2367 unixWrite,
2368 unixSeek,
drh9c06c952005-11-26 00:25:00 +00002369 unixTruncate,
drh054889e2005-11-30 03:20:31 +00002370 unixSync,
drh9cbe6352005-11-29 03:13:21 +00002371 unixSetFullSync,
2372 unixFileHandle,
drh054889e2005-11-30 03:20:31 +00002373 unixFileSize,
2374 unixLock,
2375 unixUnlock,
drh9cbe6352005-11-29 03:13:21 +00002376 unixLockState,
drh054889e2005-11-30 03:20:31 +00002377 unixCheckReservedLock,
danielk1977a3d4c882007-03-23 10:08:38 +00002378 unixSectorSize,
drh9c06c952005-11-26 00:25:00 +00002379};
2380
drhbfe66312006-10-03 17:40:40 +00002381#ifdef SQLITE_ENABLE_LOCKING_STYLE
drh054889e2005-11-30 03:20:31 +00002382/*
drhbfe66312006-10-03 17:40:40 +00002383 ** This vector defines all the methods that can operate on an OsFile
2384 ** for unix with AFP style file locking.
2385 */
2386static const IoMethod sqlite3AFPLockingUnixIoMethod = {
2387 afpUnixClose,
2388 unixOpenDirectory,
2389 unixRead,
2390 unixWrite,
2391 unixSeek,
2392 unixTruncate,
2393 unixSync,
2394 unixSetFullSync,
2395 unixFileHandle,
2396 unixFileSize,
2397 afpUnixLock,
2398 afpUnixUnlock,
2399 unixLockState,
2400 afpUnixCheckReservedLock,
danielk1977a3d4c882007-03-23 10:08:38 +00002401 unixSectorSize,
drhbfe66312006-10-03 17:40:40 +00002402};
2403
2404/*
2405 ** This vector defines all the methods that can operate on an OsFile
2406 ** for unix with flock() style file locking.
2407 */
2408static const IoMethod sqlite3FlockLockingUnixIoMethod = {
2409 flockUnixClose,
2410 unixOpenDirectory,
2411 unixRead,
2412 unixWrite,
2413 unixSeek,
2414 unixTruncate,
2415 unixSync,
2416 unixSetFullSync,
2417 unixFileHandle,
2418 unixFileSize,
2419 flockUnixLock,
2420 flockUnixUnlock,
2421 unixLockState,
2422 flockUnixCheckReservedLock,
danielk1977a3d4c882007-03-23 10:08:38 +00002423 unixSectorSize,
drhbfe66312006-10-03 17:40:40 +00002424};
2425
2426/*
2427 ** This vector defines all the methods that can operate on an OsFile
2428 ** for unix with dotlock style file locking.
2429 */
2430static const IoMethod sqlite3DotlockLockingUnixIoMethod = {
2431 dotlockUnixClose,
2432 unixOpenDirectory,
2433 unixRead,
2434 unixWrite,
2435 unixSeek,
2436 unixTruncate,
2437 unixSync,
2438 unixSetFullSync,
2439 unixFileHandle,
2440 unixFileSize,
2441 dotlockUnixLock,
2442 dotlockUnixUnlock,
2443 unixLockState,
2444 dotlockUnixCheckReservedLock,
danielk1977a3d4c882007-03-23 10:08:38 +00002445 unixSectorSize,
drhbfe66312006-10-03 17:40:40 +00002446};
2447
2448/*
2449 ** This vector defines all the methods that can operate on an OsFile
2450 ** for unix with dotlock style file locking.
2451 */
2452static const IoMethod sqlite3NolockLockingUnixIoMethod = {
2453 nolockUnixClose,
2454 unixOpenDirectory,
2455 unixRead,
2456 unixWrite,
2457 unixSeek,
2458 unixTruncate,
2459 unixSync,
2460 unixSetFullSync,
2461 unixFileHandle,
2462 unixFileSize,
2463 nolockUnixLock,
2464 nolockUnixUnlock,
2465 unixLockState,
2466 nolockUnixCheckReservedLock,
danielk1977a3d4c882007-03-23 10:08:38 +00002467 unixSectorSize,
drhbfe66312006-10-03 17:40:40 +00002468};
2469
2470#endif /* SQLITE_ENABLE_LOCKING_STYLE */
2471
2472/*
2473** Allocate memory for a new unixFile and initialize that unixFile.
2474** Write a pointer to the new unixFile into *pId.
2475** If we run out of memory, close the file and return an error.
drh054889e2005-11-30 03:20:31 +00002476*/
drhbfe66312006-10-03 17:40:40 +00002477#ifdef SQLITE_ENABLE_LOCKING_STYLE
2478/*
2479 ** When locking extensions are enabled, the filepath and locking style
2480 ** are needed to determine the unixFile pMethod to use for locking operations.
2481 ** The locking-style specific lockingContext data structure is created
2482 ** and assigned here also.
2483 */
2484static int allocateUnixFile(
2485 int h, /* Open file descriptor of file being opened */
2486 OsFile **pId, /* Write completed initialization here */
2487 const char *zFilename, /* Name of the file being opened */
2488 int delFlag /* Delete-on-or-before-close flag */
2489){
aswift108bc322006-10-11 17:19:46 +00002490 sqlite3LockingStyle lockingStyle;
drh054889e2005-11-30 03:20:31 +00002491 unixFile *pNew;
drhbfe66312006-10-03 17:40:40 +00002492 unixFile f;
2493 int rc;
2494
aswift448aa6f2006-11-11 01:31:58 +00002495 lockingStyle = sqlite3DetectLockingStyle(zFilename, h);
drhbfe66312006-10-03 17:40:40 +00002496 if ( lockingStyle == posixLockingStyle ) {
2497 sqlite3OsEnterMutex();
2498 rc = findLockInfo(h, &f.pLock, &f.pOpen);
2499 sqlite3OsLeaveMutex();
2500 if( rc ){
2501 close(h);
2502 unlink(zFilename);
2503 return SQLITE_NOMEM;
2504 }
2505 } else {
2506 // pLock and pOpen are only used for posix advisory locking
2507 f.pLock = NULL;
2508 f.pOpen = NULL;
2509 }
2510 if( delFlag ){
2511 unlink(zFilename);
2512 }
2513 f.dirfd = -1;
2514 f.fullSync = 0;
2515 f.locktype = 0;
2516 f.offset = 0;
2517 f.h = h;
2518 SET_THREADID(&f);
danielk1977750b03e2006-02-14 10:48:39 +00002519 pNew = sqlite3ThreadSafeMalloc( sizeof(unixFile) );
drh054889e2005-11-30 03:20:31 +00002520 if( pNew==0 ){
drhbfe66312006-10-03 17:40:40 +00002521 close(h);
drh029b44b2006-01-15 00:13:15 +00002522 sqlite3OsEnterMutex();
drhbfe66312006-10-03 17:40:40 +00002523 releaseLockInfo(f.pLock);
2524 releaseOpenCnt(f.pOpen);
drh029b44b2006-01-15 00:13:15 +00002525 sqlite3OsLeaveMutex();
drh054889e2005-11-30 03:20:31 +00002526 *pId = 0;
2527 return SQLITE_NOMEM;
2528 }else{
drhbfe66312006-10-03 17:40:40 +00002529 *pNew = f;
aswift108bc322006-10-11 17:19:46 +00002530 switch(lockingStyle) {
drhbfe66312006-10-03 17:40:40 +00002531 case afpLockingStyle:
2532 /* afp locking uses the file path so it needs to be included in
2533 ** the afpLockingContext */
2534 pNew->pMethod = &sqlite3AFPLockingUnixIoMethod;
2535 pNew->lockingContext =
2536 sqlite3ThreadSafeMalloc(sizeof(afpLockingContext));
2537 ((afpLockingContext *)pNew->lockingContext)->filePath =
2538 sqlite3ThreadSafeMalloc(strlen(zFilename) + 1);
2539 strcpy(((afpLockingContext *)pNew->lockingContext)->filePath,
2540 zFilename);
2541 srandomdev();
2542 break;
2543 case flockLockingStyle:
2544 /* flock locking doesn't need additional lockingContext information */
2545 pNew->pMethod = &sqlite3FlockLockingUnixIoMethod;
2546 break;
2547 case dotlockLockingStyle:
2548 /* dotlock locking uses the file path so it needs to be included in
2549 ** the dotlockLockingContext */
2550 pNew->pMethod = &sqlite3DotlockLockingUnixIoMethod;
2551 pNew->lockingContext = sqlite3ThreadSafeMalloc(
2552 sizeof(dotlockLockingContext));
2553 ((dotlockLockingContext *)pNew->lockingContext)->lockPath =
2554 sqlite3ThreadSafeMalloc(strlen(zFilename) + strlen(".lock") + 1);
2555 sprintf(((dotlockLockingContext *)pNew->lockingContext)->lockPath,
2556 "%s.lock", zFilename);
2557 break;
2558 case posixLockingStyle:
2559 /* posix locking doesn't need additional lockingContext information */
2560 pNew->pMethod = &sqlite3UnixIoMethod;
2561 break;
2562 case noLockingStyle:
2563 case unsupportedLockingStyle:
2564 default:
2565 pNew->pMethod = &sqlite3NolockLockingUnixIoMethod;
2566 }
2567 *pId = (OsFile*)pNew;
2568 OpenCounter(+1);
2569 return SQLITE_OK;
2570 }
2571}
2572#else /* SQLITE_ENABLE_LOCKING_STYLE */
2573static int allocateUnixFile(
2574 int h, /* Open file descriptor on file being opened */
2575 OsFile **pId, /* Write the resul unixFile structure here */
2576 const char *zFilename, /* Name of the file being opened */
2577 int delFlag /* If true, delete the file on or before closing */
2578){
2579 unixFile *pNew;
2580 unixFile f;
2581 int rc;
2582
2583 sqlite3OsEnterMutex();
2584 rc = findLockInfo(h, &f.pLock, &f.pOpen);
2585 sqlite3OsLeaveMutex();
2586 if( delFlag ){
2587 unlink(zFilename);
2588 }
2589 if( rc ){
2590 close(h);
2591 return SQLITE_NOMEM;
2592 }
drh4f0c5872007-03-26 22:05:01 +00002593 OSTRACE3("OPEN %-3d %s\n", h, zFilename);
drhbfe66312006-10-03 17:40:40 +00002594 f.dirfd = -1;
2595 f.fullSync = 0;
2596 f.locktype = 0;
2597 f.offset = 0;
2598 f.h = h;
2599 SET_THREADID(&f);
2600 pNew = sqlite3ThreadSafeMalloc( sizeof(unixFile) );
2601 if( pNew==0 ){
2602 close(h);
2603 sqlite3OsEnterMutex();
2604 releaseLockInfo(f.pLock);
2605 releaseOpenCnt(f.pOpen);
2606 sqlite3OsLeaveMutex();
2607 *pId = 0;
2608 return SQLITE_NOMEM;
2609 }else{
2610 *pNew = f;
drh054889e2005-11-30 03:20:31 +00002611 pNew->pMethod = &sqlite3UnixIoMethod;
2612 *pId = (OsFile*)pNew;
2613 OpenCounter(+1);
2614 return SQLITE_OK;
2615 }
2616}
drhbfe66312006-10-03 17:40:40 +00002617#endif /* SQLITE_ENABLE_LOCKING_STYLE */
drh9c06c952005-11-26 00:25:00 +00002618
drh0ccebe72005-06-07 22:22:50 +00002619#endif /* SQLITE_OMIT_DISKIO */
2620/***************************************************************************
2621** Everything above deals with file I/O. Everything that follows deals
2622** with other miscellanous aspects of the operating system interface
2623****************************************************************************/
2624
2625
drh761df872006-12-21 01:29:22 +00002626#ifndef SQLITE_OMIT_LOAD_EXTENSION
2627/*
2628** Interfaces for opening a shared library, finding entry points
2629** within the shared library, and closing the shared library.
2630*/
2631#include <dlfcn.h>
2632void *sqlite3UnixDlopen(const char *zFilename){
2633 return dlopen(zFilename, RTLD_NOW | RTLD_GLOBAL);
2634}
2635void *sqlite3UnixDlsym(void *pHandle, const char *zSymbol){
2636 return dlsym(pHandle, zSymbol);
2637}
2638int sqlite3UnixDlclose(void *pHandle){
2639 return dlclose(pHandle);
2640}
2641#endif /* SQLITE_OMIT_LOAD_EXTENSION */
2642
drh0ccebe72005-06-07 22:22:50 +00002643/*
drhbbd42a62004-05-22 17:41:58 +00002644** Get information to seed the random number generator. The seed
2645** is written into the buffer zBuf[256]. The calling function must
2646** supply a sufficiently large buffer.
2647*/
drh66560ad2006-01-06 14:32:19 +00002648int sqlite3UnixRandomSeed(char *zBuf){
drhbbd42a62004-05-22 17:41:58 +00002649 /* We have to initialize zBuf to prevent valgrind from reporting
2650 ** errors. The reports issued by valgrind are incorrect - we would
2651 ** prefer that the randomness be increased by making use of the
2652 ** uninitialized space in zBuf - but valgrind errors tend to worry
2653 ** some users. Rather than argue, it seems easier just to initialize
2654 ** the whole array and silence valgrind, even if that means less randomness
2655 ** in the random seed.
2656 **
2657 ** When testing, initializing zBuf[] to zero is all we do. That means
drhf1a221e2006-01-15 17:27:17 +00002658 ** that we always use the same random number sequence. This makes the
drhbbd42a62004-05-22 17:41:58 +00002659 ** tests repeatable.
2660 */
2661 memset(zBuf, 0, 256);
2662#if !defined(SQLITE_TEST)
2663 {
drh842b8642005-01-21 17:53:17 +00002664 int pid, fd;
2665 fd = open("/dev/urandom", O_RDONLY);
2666 if( fd<0 ){
drh07397232006-01-06 14:46:46 +00002667 time_t t;
2668 time(&t);
2669 memcpy(zBuf, &t, sizeof(t));
drh842b8642005-01-21 17:53:17 +00002670 pid = getpid();
2671 memcpy(&zBuf[sizeof(time_t)], &pid, sizeof(pid));
2672 }else{
2673 read(fd, zBuf, 256);
2674 close(fd);
2675 }
drhbbd42a62004-05-22 17:41:58 +00002676 }
2677#endif
2678 return SQLITE_OK;
2679}
2680
2681/*
2682** Sleep for a little while. Return the amount of time slept.
drhf1a221e2006-01-15 17:27:17 +00002683** The argument is the number of milliseconds we want to sleep.
drhbbd42a62004-05-22 17:41:58 +00002684*/
drh66560ad2006-01-06 14:32:19 +00002685int sqlite3UnixSleep(int ms){
drhbbd42a62004-05-22 17:41:58 +00002686#if defined(HAVE_USLEEP) && HAVE_USLEEP
2687 usleep(ms*1000);
2688 return ms;
2689#else
2690 sleep((ms+999)/1000);
2691 return 1000*((ms+999)/1000);
2692#endif
2693}
2694
2695/*
drh5c111232006-02-10 04:33:12 +00002696** Static variables used for thread synchronization.
2697**
2698** inMutex the nesting depth of the recursive mutex. The thread
2699** holding mutexMain can read this variable at any time.
2700** But is must hold mutexAux to change this variable. Other
drh6a3d6702006-02-10 13:11:32 +00002701** threads must hold mutexAux to read the variable and can
2702** never write.
drh5c111232006-02-10 04:33:12 +00002703**
2704** mutexOwner The thread id of the thread holding mutexMain. Same
2705** access rules as for inMutex.
2706**
drh6a3d6702006-02-10 13:11:32 +00002707** mutexOwnerValid True if the value in mutexOwner is valid. The same
2708** access rules apply as for inMutex.
drh5c111232006-02-10 04:33:12 +00002709**
2710** mutexMain The main mutex. Hold this mutex in order to get exclusive
2711** access to SQLite data structures.
2712**
2713** mutexAux An auxiliary mutex needed to access variables defined above.
2714**
drh6a3d6702006-02-10 13:11:32 +00002715** Mutexes are always acquired in this order: mutexMain mutexAux. It
2716** is not necessary to acquire mutexMain in order to get mutexAux - just
2717** do not attempt to acquire them in the reverse order: mutexAux mutexMain.
2718** Either get the mutexes with mutexMain first or get mutexAux only.
2719**
2720** When running on a platform where the three variables inMutex, mutexOwner,
2721** and mutexOwnerValid can be set atomically, the mutexAux is not required.
2722** On many systems, all three are 32-bit integers and writing to a 32-bit
2723** integer is atomic. I think. But there are no guarantees. So it seems
2724** safer to protect them using mutexAux.
drhbbd42a62004-05-22 17:41:58 +00002725*/
2726static int inMutex = 0;
drh79069752004-05-22 21:30:40 +00002727#ifdef SQLITE_UNIX_THREADS
drh6a3d6702006-02-10 13:11:32 +00002728static pthread_t mutexOwner; /* Thread holding mutexMain */
drh5c111232006-02-10 04:33:12 +00002729static int mutexOwnerValid = 0; /* True if mutexOwner is valid */
2730static pthread_mutex_t mutexMain = PTHREAD_MUTEX_INITIALIZER; /* The mutex */
2731static pthread_mutex_t mutexAux = PTHREAD_MUTEX_INITIALIZER; /* Aux mutex */
drh79069752004-05-22 21:30:40 +00002732#endif
drhbbd42a62004-05-22 17:41:58 +00002733
2734/*
2735** The following pair of routine implement mutual exclusion for
2736** multi-threaded processes. Only a single thread is allowed to
2737** executed code that is surrounded by EnterMutex() and LeaveMutex().
2738**
2739** SQLite uses only a single Mutex. There is not much critical
2740** code and what little there is executes quickly and without blocking.
drhf1a221e2006-01-15 17:27:17 +00002741**
drh757b04e2006-01-18 17:25:45 +00002742** As of version 3.3.2, this mutex must be recursive.
drhbbd42a62004-05-22 17:41:58 +00002743*/
drh66560ad2006-01-06 14:32:19 +00002744void sqlite3UnixEnterMutex(){
drhbbd42a62004-05-22 17:41:58 +00002745#ifdef SQLITE_UNIX_THREADS
drh5c111232006-02-10 04:33:12 +00002746 pthread_mutex_lock(&mutexAux);
2747 if( !mutexOwnerValid || !pthread_equal(mutexOwner, pthread_self()) ){
2748 pthread_mutex_unlock(&mutexAux);
2749 pthread_mutex_lock(&mutexMain);
2750 assert( inMutex==0 );
2751 assert( !mutexOwnerValid );
2752 pthread_mutex_lock(&mutexAux);
drha3fad6f2006-01-18 14:06:37 +00002753 mutexOwner = pthread_self();
drh5c111232006-02-10 04:33:12 +00002754 mutexOwnerValid = 1;
drha3fad6f2006-01-18 14:06:37 +00002755 }
drha3fad6f2006-01-18 14:06:37 +00002756 inMutex++;
drh5c111232006-02-10 04:33:12 +00002757 pthread_mutex_unlock(&mutexAux);
2758#else
drhe9565a62006-02-11 02:03:52 +00002759 inMutex++;
drh5c111232006-02-10 04:33:12 +00002760#endif
drhbbd42a62004-05-22 17:41:58 +00002761}
drh66560ad2006-01-06 14:32:19 +00002762void sqlite3UnixLeaveMutex(){
drha3fad6f2006-01-18 14:06:37 +00002763 assert( inMutex>0 );
drhbbd42a62004-05-22 17:41:58 +00002764#ifdef SQLITE_UNIX_THREADS
drh5c111232006-02-10 04:33:12 +00002765 pthread_mutex_lock(&mutexAux);
drha3fad6f2006-01-18 14:06:37 +00002766 inMutex--;
drh5c111232006-02-10 04:33:12 +00002767 assert( pthread_equal(mutexOwner, pthread_self()) );
drha3fad6f2006-01-18 14:06:37 +00002768 if( inMutex==0 ){
drh5c111232006-02-10 04:33:12 +00002769 assert( mutexOwnerValid );
2770 mutexOwnerValid = 0;
2771 pthread_mutex_unlock(&mutexMain);
drha3fad6f2006-01-18 14:06:37 +00002772 }
drh5c111232006-02-10 04:33:12 +00002773 pthread_mutex_unlock(&mutexAux);
drha3fad6f2006-01-18 14:06:37 +00002774#else
2775 inMutex--;
drhbbd42a62004-05-22 17:41:58 +00002776#endif
2777}
2778
2779/*
drh757b04e2006-01-18 17:25:45 +00002780** Return TRUE if the mutex is currently held.
2781**
drh5c111232006-02-10 04:33:12 +00002782** If the thisThrd parameter is true, return true only if the
drh757b04e2006-01-18 17:25:45 +00002783** calling thread holds the mutex. If the parameter is false, return
2784** true if any thread holds the mutex.
drh88f474a2006-01-02 20:00:12 +00002785*/
drh5c111232006-02-10 04:33:12 +00002786int sqlite3UnixInMutex(int thisThrd){
drha3fad6f2006-01-18 14:06:37 +00002787#ifdef SQLITE_UNIX_THREADS
drh5c111232006-02-10 04:33:12 +00002788 int rc;
2789 pthread_mutex_lock(&mutexAux);
2790 rc = inMutex>0 && (thisThrd==0 || pthread_equal(mutexOwner,pthread_self()));
2791 pthread_mutex_unlock(&mutexAux);
2792 return rc;
drha3fad6f2006-01-18 14:06:37 +00002793#else
drh757b04e2006-01-18 17:25:45 +00002794 return inMutex>0;
drha3fad6f2006-01-18 14:06:37 +00002795#endif
drh88f474a2006-01-02 20:00:12 +00002796}
2797
2798/*
drhb4bc7052006-01-11 23:40:33 +00002799** Remember the number of thread-specific-data blocks allocated.
2800** Use this to verify that we are not leaking thread-specific-data.
2801** Ticket #1601
2802*/
2803#ifdef SQLITE_TEST
2804int sqlite3_tsd_count = 0;
2805# ifdef SQLITE_UNIX_THREADS
2806 static pthread_mutex_t tsd_counter_mutex = PTHREAD_MUTEX_INITIALIZER;
2807# define TSD_COUNTER(N) \
2808 pthread_mutex_lock(&tsd_counter_mutex); \
2809 sqlite3_tsd_count += N; \
2810 pthread_mutex_unlock(&tsd_counter_mutex);
2811# else
2812# define TSD_COUNTER(N) sqlite3_tsd_count += N
2813# endif
2814#else
2815# define TSD_COUNTER(N) /* no-op */
2816#endif
2817
drhb4bc7052006-01-11 23:40:33 +00002818/*
drhf1a221e2006-01-15 17:27:17 +00002819** If called with allocateFlag>0, then return a pointer to thread
drh6f7adc82006-01-11 21:41:20 +00002820** specific data for the current thread. Allocate and zero the
drhf1a221e2006-01-15 17:27:17 +00002821** thread-specific data if it does not already exist.
danielk197713a68c32005-12-15 10:11:30 +00002822**
drh6f7adc82006-01-11 21:41:20 +00002823** If called with allocateFlag==0, then check the current thread
drh70ff98a2006-01-12 01:25:18 +00002824** specific data. Return it if it exists. If it does not exist,
2825** then return NULL.
2826**
2827** If called with allocateFlag<0, check to see if the thread specific
2828** data is allocated and is all zero. If it is then deallocate it.
drh6f7adc82006-01-11 21:41:20 +00002829** Return a pointer to the thread specific data or NULL if it is
drh70ff98a2006-01-12 01:25:18 +00002830** unallocated or gets deallocated.
danielk197713a68c32005-12-15 10:11:30 +00002831*/
drh6f7adc82006-01-11 21:41:20 +00002832ThreadData *sqlite3UnixThreadSpecificData(int allocateFlag){
danielk19774d5238f2006-01-27 06:32:00 +00002833 static const ThreadData zeroData = {0}; /* Initializer to silence warnings
2834 ** from broken compilers */
danielk197713a68c32005-12-15 10:11:30 +00002835#ifdef SQLITE_UNIX_THREADS
2836 static pthread_key_t key;
2837 static int keyInit = 0;
drh6f7adc82006-01-11 21:41:20 +00002838 ThreadData *pTsd;
danielk197713a68c32005-12-15 10:11:30 +00002839
2840 if( !keyInit ){
drh66560ad2006-01-06 14:32:19 +00002841 sqlite3OsEnterMutex();
danielk197713a68c32005-12-15 10:11:30 +00002842 if( !keyInit ){
2843 int rc;
drh6f7adc82006-01-11 21:41:20 +00002844 rc = pthread_key_create(&key, 0);
danielk197713a68c32005-12-15 10:11:30 +00002845 if( rc ){
drh8c0ca7d2006-01-07 04:06:54 +00002846 sqlite3OsLeaveMutex();
danielk197713a68c32005-12-15 10:11:30 +00002847 return 0;
2848 }
2849 keyInit = 1;
2850 }
drh66560ad2006-01-06 14:32:19 +00002851 sqlite3OsLeaveMutex();
danielk197713a68c32005-12-15 10:11:30 +00002852 }
2853
drh3fbb0b12006-01-06 00:36:00 +00002854 pTsd = pthread_getspecific(key);
drh70ff98a2006-01-12 01:25:18 +00002855 if( allocateFlag>0 ){
drh6f7adc82006-01-11 21:41:20 +00002856 if( pTsd==0 ){
danielk197776e8d1a2006-01-18 18:22:43 +00002857 if( !sqlite3TestMallocFail() ){
2858 pTsd = sqlite3OsMalloc(sizeof(zeroData));
2859 }
2860#ifdef SQLITE_MEMDEBUG
2861 sqlite3_isFail = 0;
2862#endif
drh6f7adc82006-01-11 21:41:20 +00002863 if( pTsd ){
2864 *pTsd = zeroData;
2865 pthread_setspecific(key, pTsd);
drhb4bc7052006-01-11 23:40:33 +00002866 TSD_COUNTER(+1);
drh6f7adc82006-01-11 21:41:20 +00002867 }
danielk197713a68c32005-12-15 10:11:30 +00002868 }
drh70ff98a2006-01-12 01:25:18 +00002869 }else if( pTsd!=0 && allocateFlag<0
danielk19779e128002006-01-18 16:51:35 +00002870 && memcmp(pTsd, &zeroData, sizeof(ThreadData))==0 ){
drh6f7adc82006-01-11 21:41:20 +00002871 sqlite3OsFree(pTsd);
2872 pthread_setspecific(key, 0);
drhb4bc7052006-01-11 23:40:33 +00002873 TSD_COUNTER(-1);
drh6f7adc82006-01-11 21:41:20 +00002874 pTsd = 0;
danielk197713a68c32005-12-15 10:11:30 +00002875 }
2876 return pTsd;
2877#else
drh6f7adc82006-01-11 21:41:20 +00002878 static ThreadData *pTsd = 0;
drh70ff98a2006-01-12 01:25:18 +00002879 if( allocateFlag>0 ){
drh6f7adc82006-01-11 21:41:20 +00002880 if( pTsd==0 ){
danielk197776e8d1a2006-01-18 18:22:43 +00002881 if( !sqlite3TestMallocFail() ){
2882 pTsd = sqlite3OsMalloc( sizeof(zeroData) );
2883 }
2884#ifdef SQLITE_MEMDEBUG
2885 sqlite3_isFail = 0;
2886#endif
drh6f7adc82006-01-11 21:41:20 +00002887 if( pTsd ){
2888 *pTsd = zeroData;
drhb4bc7052006-01-11 23:40:33 +00002889 TSD_COUNTER(+1);
drh6f7adc82006-01-11 21:41:20 +00002890 }
drh3fbb0b12006-01-06 00:36:00 +00002891 }
drh70ff98a2006-01-12 01:25:18 +00002892 }else if( pTsd!=0 && allocateFlag<0
danielk19779e128002006-01-18 16:51:35 +00002893 && memcmp(pTsd, &zeroData, sizeof(ThreadData))==0 ){
drh6f7adc82006-01-11 21:41:20 +00002894 sqlite3OsFree(pTsd);
drhb4bc7052006-01-11 23:40:33 +00002895 TSD_COUNTER(-1);
drh6f7adc82006-01-11 21:41:20 +00002896 pTsd = 0;
danielk197713a68c32005-12-15 10:11:30 +00002897 }
drh3fbb0b12006-01-06 00:36:00 +00002898 return pTsd;
danielk197713a68c32005-12-15 10:11:30 +00002899#endif
2900}
2901
2902/*
drhbbd42a62004-05-22 17:41:58 +00002903** The following variable, if set to a non-zero value, becomes the result
drh66560ad2006-01-06 14:32:19 +00002904** returned from sqlite3OsCurrentTime(). This is used for testing.
drhbbd42a62004-05-22 17:41:58 +00002905*/
2906#ifdef SQLITE_TEST
2907int sqlite3_current_time = 0;
2908#endif
2909
2910/*
2911** Find the current time (in Universal Coordinated Time). Write the
2912** current time and date as a Julian Day number into *prNow and
2913** return 0. Return 1 if the time and date cannot be found.
2914*/
drh66560ad2006-01-06 14:32:19 +00002915int sqlite3UnixCurrentTime(double *prNow){
drh19e2d372005-08-29 23:00:03 +00002916#ifdef NO_GETTOD
drhbbd42a62004-05-22 17:41:58 +00002917 time_t t;
2918 time(&t);
2919 *prNow = t/86400.0 + 2440587.5;
drh19e2d372005-08-29 23:00:03 +00002920#else
2921 struct timeval sNow;
2922 struct timezone sTz; /* Not used */
2923 gettimeofday(&sNow, &sTz);
2924 *prNow = 2440587.5 + sNow.tv_sec/86400.0 + sNow.tv_usec/86400000000.0;
2925#endif
drhbbd42a62004-05-22 17:41:58 +00002926#ifdef SQLITE_TEST
2927 if( sqlite3_current_time ){
2928 *prNow = sqlite3_current_time/86400.0 + 2440587.5;
2929 }
2930#endif
2931 return 0;
2932}
2933
drhbbd42a62004-05-22 17:41:58 +00002934#endif /* OS_UNIX */