blob: 287a173c54806e8ff3f27a7e65fa6a7f6327a471 [file] [log] [blame]
drh437b9012007-08-28 16:34:42 +00001/*
2** 2007 August 28
3**
4** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
6**
7** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
10**
11*************************************************************************
12** This file contains the C functions that implement mutexes for pthreads
13**
14** $Id: mutex_unix.c,v 1.1 2007/08/28 16:34:43 drh Exp $
15*/
16#include "sqliteInt.h"
17
18/*
19** The code in this file is only used if we are compiling threadsafe
20** under unix with pthreads.
21**
22** Note that this implementation requires a version of pthreads that
23** supports recursive mutexes.
24*/
25#ifdef SQLITE_MUTEX_PTHREADS
26
27#include <pthread.h>
28
29/*
30** Each recursive mutex is an instance of the following structure.
31*/
32struct sqlite3_mutex {
33 pthread_mutex_t mutex; /* Mutex controlling the lock */
34 int id; /* Mutex type */
35 int nRef; /* Number of entrances */
36 pthread_t owner; /* Thread that is within this mutex */
37};
38
39/*
40** The sqlite3_mutex_alloc() routine allocates a new
41** mutex and returns a pointer to it. If it returns NULL
42** that means that a mutex could not be allocated. SQLite
43** will unwind its stack and return an error. The argument
44** to sqlite3_mutex_alloc() is one of these integer constants:
45**
46** <ul>
47** <li> SQLITE_MUTEX_FAST
48** <li> SQLITE_MUTEX_RECURSIVE
49** <li> SQLITE_MUTEX_STATIC_MASTER
50** <li> SQLITE_MUTEX_STATIC_MEM
51** <li> SQLITE_MUTEX_STATIC_MEM2
52** <li> SQLITE_MUTEX_STATIC_PRNG
53** <li> SQLITE_MUTEX_STATIC_LRU
54** </ul>
55**
56** The first two constants cause sqlite3_mutex_alloc() to create
57** a new mutex. The new mutex is recursive when SQLITE_MUTEX_RECURSIVE
58** is used but not necessarily so when SQLITE_MUTEX_FAST is used.
59** The mutex implementation does not need to make a distinction
60** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does
61** not want to. But SQLite will only request a recursive mutex in
62** cases where it really needs one. If a faster non-recursive mutex
63** implementation is available on the host platform, the mutex subsystem
64** might return such a mutex in response to SQLITE_MUTEX_FAST.
65**
66** The other allowed parameters to sqlite3_mutex_alloc() each return
67** a pointer to a static preexisting mutex. Three static mutexes are
68** used by the current version of SQLite. Future versions of SQLite
69** may add additional static mutexes. Static mutexes are for internal
70** use by SQLite only. Applications that use SQLite mutexes should
71** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or
72** SQLITE_MUTEX_RECURSIVE.
73**
74** Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST
75** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc()
76** returns a different mutex on every call. But for the static
77** mutex types, the same mutex is returned on every call that has
78** the same type number.
79*/
80sqlite3_mutex *sqlite3_mutex_alloc(int iType){
81 static sqlite3_mutex staticMutexes[] = {
82 { PTHREAD_MUTEX_INITIALIZER, },
83 { PTHREAD_MUTEX_INITIALIZER, },
84 { PTHREAD_MUTEX_INITIALIZER, },
85 { PTHREAD_MUTEX_INITIALIZER, },
86 { PTHREAD_MUTEX_INITIALIZER, },
87 };
88 sqlite3_mutex *p;
89 switch( iType ){
90 case SQLITE_MUTEX_RECURSIVE: {
91 p = sqlite3MallocZero( sizeof(*p) );
92 if( p ){
93 pthread_mutexattr_t recursiveAttr;
94 pthread_mutexattr_init(&recursiveAttr);
95 pthread_mutexattr_settype(&recursiveAttr, PTHREAD_MUTEX_RECURSIVE);
96 pthread_mutex_init(&p->mutex, &recursiveAttr);
97 pthread_mutexattr_destroy(&recursiveAttr);
98 p->id = iType;
99 }
100 break;
101 }
102 case SQLITE_MUTEX_FAST: {
103 p = sqlite3MallocZero( sizeof(*p) );
104 if( p ){
105 p->id = iType;
106 pthread_mutex_init(&p->mutex, 0);
107 }
108 break;
109 }
110 default: {
111 assert( iType-2 >= 0 );
112 assert( iType-2 < sizeof(staticMutexes)/sizeof(staticMutexes[0]) );
113 p = &staticMutexes[iType-2];
114 p->id = iType;
115 break;
116 }
117 }
118 return p;
119}
120
121
122/*
123** This routine deallocates a previously
124** allocated mutex. SQLite is careful to deallocate every
125** mutex that it allocates.
126*/
127void sqlite3_mutex_free(sqlite3_mutex *p){
128 assert( p );
129 assert( p->nRef==0 );
130 assert( p->id==SQLITE_MUTEX_FAST || p->id==SQLITE_MUTEX_RECURSIVE );
131 pthread_mutex_destroy(&p->mutex);
132 sqlite3_free(p);
133}
134
135/*
136** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt
137** to enter a mutex. If another thread is already within the mutex,
138** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return
139** SQLITE_BUSY. The sqlite3_mutex_try() interface returns SQLITE_OK
140** upon successful entry. Mutexes created using SQLITE_MUTEX_RECURSIVE can
141** be entered multiple times by the same thread. In such cases the,
142** mutex must be exited an equal number of times before another thread
143** can enter. If the same thread tries to enter any other kind of mutex
144** more than once, the behavior is undefined.
145*/
146void sqlite3_mutex_enter(sqlite3_mutex *p){
147 assert( p );
148 assert( p->id==SQLITE_MUTEX_RECURSIVE || sqlite3_mutex_notheld(p) );
149 pthread_mutex_lock(&p->mutex);
150 p->owner = pthread_self();
151 p->nRef++;
152}
153int sqlite3_mutex_try(sqlite3_mutex *p){
154 int rc;
155 assert( p );
156 assert( p->id==SQLITE_MUTEX_RECURSIVE || sqlite3_mutex_notheld(p) );
157 if( pthread_mutex_trylock(&p->mutex)==0 ){
158 p->owner = pthread_self();
159 p->nRef++;
160 rc = SQLITE_OK;
161 }else{
162 rc = SQLITE_BUSY;
163 }
164 return rc;
165}
166
167/*
168** The sqlite3_mutex_leave() routine exits a mutex that was
169** previously entered by the same thread. The behavior
170** is undefined if the mutex is not currently entered or
171** is not currently allocated. SQLite will never do either.
172*/
173void sqlite3_mutex_leave(sqlite3_mutex *p){
174 assert( p );
175 assert( sqlite3_mutex_held(p) );
176 p->nRef--;
177 assert( p->nRef==0 || p->id==SQLITE_MUTEX_RECURSIVE );
178 pthread_mutex_unlock(&p->mutex);
179}
180
181/*
182** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routine are
183** intended for use only inside assert() statements. On some platforms,
184** there might be race conditions that can cause these routines to
185** deliver incorrect results. In particular, if pthread_equal() is
186** not an atomic operation, then these routines might delivery
187** incorrect results. On most platforms, pthread_equal() is a
188** comparison of two integers and is therefore atomic. But we are
189** told that HPUX is not such a platform. If so, then these routines
190** will not always work correctly on HPUX.
191**
192** On those platforms where pthread_equal() is not atomic, SQLite
193** should be compiled without -DSQLITE_DEBUG and with -DNDEBUG to
194** make sure no assert() statements are evaluated and hence these
195** routines are never called.
196*/
197#ifndef NDEBUG
198int sqlite3_mutex_held(sqlite3_mutex *p){
199 return p==0 || (p->nRef!=0 && pthread_equal(p->owner, pthread_self()));
200}
201int sqlite3_mutex_notheld(sqlite3_mutex *p){
202 return p==0 || p->nRef==0 || pthread_equal(p->owner, pthread_self())==0;
203}
204#endif
205#endif /* SQLITE_MUTEX_PTHREAD */