blob: d79b7fb562214ce3deb73acf47563950a4e53a8f [file] [log] [blame]
dan1da40a32009-09-19 17:00:31 +00001/*
2**
3** The author disclaims copyright to this source code. In place of
4** a legal notice, here is a blessing:
5**
6** May you do good and not evil.
7** May you find forgiveness for yourself and forgive others.
8** May you share freely, never taking more than you give.
9**
10*************************************************************************
11** This file contains code used by the compiler to add foreign key
12** support to compiled SQL statements.
13*/
14#include "sqliteInt.h"
15
16#ifndef SQLITE_OMIT_FOREIGN_KEY
dan75cbd982009-09-21 16:06:03 +000017#ifndef SQLITE_OMIT_TRIGGER
dan1da40a32009-09-19 17:00:31 +000018
19/*
20** Deferred and Immediate FKs
21** --------------------------
22**
23** Foreign keys in SQLite come in two flavours: deferred and immediate.
24** If an immediate foreign key constraint is violated, an OP_Halt is
25** executed and the current statement transaction rolled back. If a
26** deferred foreign key constraint is violated, no action is taken
27** immediately. However if the application attempts to commit the
28** transaction before fixing the constraint violation, the attempt fails.
29**
30** Deferred constraints are implemented using a simple counter associated
31** with the database handle. The counter is set to zero each time a
32** database transaction is opened. Each time a statement is executed
33** that causes a foreign key violation, the counter is incremented. Each
34** time a statement is executed that removes an existing violation from
35** the database, the counter is decremented. When the transaction is
36** committed, the commit fails if the current value of the counter is
37** greater than zero. This scheme has two big drawbacks:
38**
39** * When a commit fails due to a deferred foreign key constraint,
40** there is no way to tell which foreign constraint is not satisfied,
41** or which row it is not satisfied for.
42**
43** * If the database contains foreign key violations when the
44** transaction is opened, this may cause the mechanism to malfunction.
45**
46** Despite these problems, this approach is adopted as it seems simpler
47** than the alternatives.
48**
49** INSERT operations:
50**
dan8099ce62009-09-23 08:43:35 +000051** I.1) For each FK for which the table is the child table, search
52** the parent table for a match. If none is found, throw an
dan1da40a32009-09-19 17:00:31 +000053** exception for an immediate FK, or increment the counter for a
54** deferred FK.
55**
dan8099ce62009-09-23 08:43:35 +000056** I.2) For each deferred FK for which the table is the parent table,
57** search the child table for rows that correspond to the new
58** row in the parent table. Decrement the counter for each row
dan1da40a32009-09-19 17:00:31 +000059** found (as the constraint is now satisfied).
60**
61** DELETE operations:
62**
dan8099ce62009-09-23 08:43:35 +000063** D.1) For each deferred FK for which the table is the child table,
64** search the parent table for a row that corresponds to the
65** deleted row in the child table. If such a row is not found,
dan1da40a32009-09-19 17:00:31 +000066** decrement the counter.
67**
dan8099ce62009-09-23 08:43:35 +000068** D.2) For each FK for which the table is the parent table, search
69** the child table for rows that correspond to the deleted row
70** in the parent table. For each found, throw an exception for an
dan1da40a32009-09-19 17:00:31 +000071** immediate FK, or increment the counter for a deferred FK.
72**
73** UPDATE operations:
74**
75** An UPDATE command requires that all 4 steps above are taken, but only
76** for FK constraints for which the affected columns are actually
77** modified (values must be compared at runtime).
78**
79** Note that I.1 and D.1 are very similar operations, as are I.2 and D.2.
80** This simplifies the implementation a bit.
81**
82** For the purposes of immediate FK constraints, the OR REPLACE conflict
83** resolution is considered to delete rows before the new row is inserted.
84** If a delete caused by OR REPLACE violates an FK constraint, an exception
85** is thrown, even if the FK constraint would be satisfied after the new
86** row is inserted.
87**
88** TODO: How should dropping a table be handled? How should renaming a
89** table be handled?
dan8099ce62009-09-23 08:43:35 +000090**
91**
dan1da40a32009-09-19 17:00:31 +000092** Query API Notes
93** ---------------
94**
95** Before coding an UPDATE or DELETE row operation, the code-generator
96** for those two operations needs to know whether or not the operation
97** requires any FK processing and, if so, which columns of the original
98** row are required by the FK processing VDBE code (i.e. if FKs were
99** implemented using triggers, which of the old.* columns would be
100** accessed). No information is required by the code-generator before
dan8099ce62009-09-23 08:43:35 +0000101** coding an INSERT operation. The functions used by the UPDATE/DELETE
102** generation code to query for this information are:
dan1da40a32009-09-19 17:00:31 +0000103**
dan8099ce62009-09-23 08:43:35 +0000104** sqlite3FkRequired() - Test to see if FK processing is required.
105** sqlite3FkOldmask() - Query for the set of required old.* columns.
106**
107**
108** Externally accessible module functions
109** --------------------------------------
110**
111** sqlite3FkCheck() - Check for foreign key violations.
112** sqlite3FkActions() - Code triggers for ON UPDATE/ON DELETE actions.
113** sqlite3FkDelete() - Delete an FKey structure.
dan1da40a32009-09-19 17:00:31 +0000114*/
115
116/*
117** VDBE Calling Convention
118** -----------------------
119**
120** Example:
121**
122** For the following INSERT statement:
123**
124** CREATE TABLE t1(a, b INTEGER PRIMARY KEY, c);
125** INSERT INTO t1 VALUES(1, 2, 3.1);
126**
127** Register (x): 2 (type integer)
128** Register (x+1): 1 (type integer)
129** Register (x+2): NULL (type NULL)
130** Register (x+3): 3.1 (type real)
131*/
132
133/*
dan8099ce62009-09-23 08:43:35 +0000134** A foreign key constraint requires that the key columns in the parent
dan1da40a32009-09-19 17:00:31 +0000135** table are collectively subject to a UNIQUE or PRIMARY KEY constraint.
dan8099ce62009-09-23 08:43:35 +0000136** Given that pParent is the parent table for foreign key constraint pFKey,
137** search the schema a unique index on the parent key columns.
dan1da40a32009-09-19 17:00:31 +0000138**
dan8099ce62009-09-23 08:43:35 +0000139** If successful, zero is returned. If the parent key is an INTEGER PRIMARY
140** KEY column, then output variable *ppIdx is set to NULL. Otherwise, *ppIdx
141** is set to point to the unique index.
142**
143** If the parent key consists of a single column (the foreign key constraint
144** is not a composite foreign key), output variable *paiCol is set to NULL.
145** Otherwise, it is set to point to an allocated array of size N, where
146** N is the number of columns in the parent key. The first element of the
147** array is the index of the child table column that is mapped by the FK
148** constraint to the parent table column stored in the left-most column
149** of index *ppIdx. The second element of the array is the index of the
150** child table column that corresponds to the second left-most column of
151** *ppIdx, and so on.
152**
153** If the required index cannot be found, either because:
154**
155** 1) The named parent key columns do not exist, or
156**
157** 2) The named parent key columns do exist, but are not subject to a
158** UNIQUE or PRIMARY KEY constraint, or
159**
160** 3) No parent key columns were provided explicitly as part of the
161** foreign key definition, and the parent table does not have a
162** PRIMARY KEY, or
163**
164** 4) No parent key columns were provided explicitly as part of the
165** foreign key definition, and the PRIMARY KEY of the parent table
166** consists of a a different number of columns to the child key in
167** the child table.
168**
169** then non-zero is returned, and a "foreign key mismatch" error loaded
170** into pParse. If an OOM error occurs, non-zero is returned and the
171** pParse->db->mallocFailed flag is set.
dan1da40a32009-09-19 17:00:31 +0000172*/
173static int locateFkeyIndex(
174 Parse *pParse, /* Parse context to store any error in */
dan8099ce62009-09-23 08:43:35 +0000175 Table *pParent, /* Parent table of FK constraint pFKey */
dan1da40a32009-09-19 17:00:31 +0000176 FKey *pFKey, /* Foreign key to find index for */
dan8099ce62009-09-23 08:43:35 +0000177 Index **ppIdx, /* OUT: Unique index on parent table */
dan1da40a32009-09-19 17:00:31 +0000178 int **paiCol /* OUT: Map of index columns in pFKey */
179){
dan8099ce62009-09-23 08:43:35 +0000180 Index *pIdx = 0; /* Value to return via *ppIdx */
181 int *aiCol = 0; /* Value to return via *paiCol */
182 int nCol = pFKey->nCol; /* Number of columns in parent key */
183 char *zKey = pFKey->aCol[0].zCol; /* Name of left-most parent key column */
dan1da40a32009-09-19 17:00:31 +0000184
185 /* The caller is responsible for zeroing output parameters. */
186 assert( ppIdx && *ppIdx==0 );
187 assert( !paiCol || *paiCol==0 );
188
189 /* If this is a non-composite (single column) foreign key, check if it
dan8099ce62009-09-23 08:43:35 +0000190 ** maps to the INTEGER PRIMARY KEY of table pParent. If so, leave *ppIdx
dan1da40a32009-09-19 17:00:31 +0000191 ** and *paiCol set to zero and return early.
192 **
193 ** Otherwise, for a composite foreign key (more than one column), allocate
194 ** space for the aiCol array (returned via output parameter *paiCol).
195 ** Non-composite foreign keys do not require the aiCol array.
196 */
197 if( nCol==1 ){
198 /* The FK maps to the IPK if any of the following are true:
199 **
dand981d442009-09-23 13:59:17 +0000200 ** 1) There is an INTEGER PRIMARY KEY column and the FK is implicitly
201 ** mapped to the primary key of table pParent, or
202 ** 2) The FK is explicitly mapped to a column declared as INTEGER
dan1da40a32009-09-19 17:00:31 +0000203 ** PRIMARY KEY.
204 */
dan8099ce62009-09-23 08:43:35 +0000205 if( pParent->iPKey>=0 ){
206 if( !zKey ) return 0;
207 if( !sqlite3StrICmp(pParent->aCol[pParent->iPKey].zName, zKey) ) return 0;
dan1da40a32009-09-19 17:00:31 +0000208 }
209 }else if( paiCol ){
210 assert( nCol>1 );
211 aiCol = (int *)sqlite3DbMallocRaw(pParse->db, nCol*sizeof(int));
212 if( !aiCol ) return 1;
213 *paiCol = aiCol;
214 }
215
dan8099ce62009-09-23 08:43:35 +0000216 for(pIdx=pParent->pIndex; pIdx; pIdx=pIdx->pNext){
dan1da40a32009-09-19 17:00:31 +0000217 if( pIdx->nColumn==nCol && pIdx->onError!=OE_None ){
218 /* pIdx is a UNIQUE index (or a PRIMARY KEY) and has the right number
219 ** of columns. If each indexed column corresponds to a foreign key
220 ** column of pFKey, then this index is a winner. */
221
dan8099ce62009-09-23 08:43:35 +0000222 if( zKey==0 ){
223 /* If zKey is NULL, then this foreign key is implicitly mapped to
224 ** the PRIMARY KEY of table pParent. The PRIMARY KEY index may be
dan1da40a32009-09-19 17:00:31 +0000225 ** identified by the test (Index.autoIndex==2). */
226 if( pIdx->autoIndex==2 ){
227 if( aiCol ) memcpy(aiCol, pIdx->aiColumn, sizeof(int)*nCol);
228 break;
229 }
230 }else{
dan8099ce62009-09-23 08:43:35 +0000231 /* If zKey is non-NULL, then this foreign key was declared to
232 ** map to an explicit list of columns in table pParent. Check if this
dan1da40a32009-09-19 17:00:31 +0000233 ** index matches those columns. */
234 int i, j;
235 for(i=0; i<nCol; i++){
dan8099ce62009-09-23 08:43:35 +0000236 char *zIdxCol = pParent->aCol[pIdx->aiColumn[i]].zName;
dan1da40a32009-09-19 17:00:31 +0000237 for(j=0; j<nCol; j++){
238 if( sqlite3StrICmp(pFKey->aCol[j].zCol, zIdxCol)==0 ){
239 if( aiCol ) aiCol[i] = pFKey->aCol[j].iFrom;
240 break;
241 }
242 }
243 if( j==nCol ) break;
244 }
245 if( i==nCol ) break; /* pIdx is usable */
246 }
247 }
248 }
249
250 if( pParse && !pIdx ){
251 sqlite3ErrorMsg(pParse, "foreign key mismatch");
252 sqlite3DbFree(pParse->db, aiCol);
253 return 1;
254 }
255
256 *ppIdx = pIdx;
257 return 0;
258}
259
dan8099ce62009-09-23 08:43:35 +0000260/*
261** This function is called when a row is inserted into the child table of
262** foreign key constraint pFKey and, if pFKey is deferred, when a row is
263** deleted from the child table of pFKey. If an SQL UPDATE is executed on
264** the child table of pFKey, this function is invoked twice for each row
265** affected - once to "delete" the old row, and then again to "insert" the
266** new row.
267**
268** Each time it is called, this function generates VDBE code to locate the
269** row in the parent table that corresponds to the row being inserted into
270** or deleted from the child table. If the parent row can be found, no
271** special action is taken. Otherwise, if the parent row can *not* be
272** found in the parent table:
273**
274** Operation | FK type | Action taken
275** --------------------------------------------------------------------------
276** INSERT immediate Throw a "foreign key constraint failed" exception.
277**
278** INSERT deferred Increment the "deferred constraint counter".
279**
280** DELETE deferred Decrement the "deferred constraint counter".
281**
282** This function is never called for a delete on the child table of an
283** immediate foreign key constraint. These operations are identified in
284** the comment at the top of this file (fkey.c) as "I.1" and "D.1".
285*/
286static void fkLookupParent(
dan1da40a32009-09-19 17:00:31 +0000287 Parse *pParse, /* Parse context */
288 int iDb, /* Index of database housing pTab */
dan8099ce62009-09-23 08:43:35 +0000289 Table *pTab, /* Parent table of FK pFKey */
290 Index *pIdx, /* Unique index on parent key columns in pTab */
291 FKey *pFKey, /* Foreign key constraint */
292 int *aiCol, /* Map from parent key columns to child table columns */
293 int regData, /* Address of array containing child table row */
dan32b09f22009-09-23 17:29:59 +0000294 int nIncr /* Increment constraint counter by this */
dan1da40a32009-09-19 17:00:31 +0000295){
dan8099ce62009-09-23 08:43:35 +0000296 int i; /* Iterator variable */
297 Vdbe *v = sqlite3GetVdbe(pParse); /* Vdbe to add code to */
298 int iCur = pParse->nTab - 1; /* Cursor number to use */
299 int iOk = sqlite3VdbeMakeLabel(v); /* jump here if parent key found */
dan1da40a32009-09-19 17:00:31 +0000300
dan8099ce62009-09-23 08:43:35 +0000301 /* Check if any of the key columns in the child table row are
dan1da40a32009-09-19 17:00:31 +0000302 ** NULL. If any are, then the constraint is satisfied. No need
dan8099ce62009-09-23 08:43:35 +0000303 ** to search for a matching row in the parent table. */
dan1da40a32009-09-19 17:00:31 +0000304 for(i=0; i<pFKey->nCol; i++){
dan36062642009-09-21 18:56:23 +0000305 int iReg = aiCol[i] + regData + 1;
dan1da40a32009-09-19 17:00:31 +0000306 sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iOk);
307 }
308
309 if( pIdx==0 ){
dan8099ce62009-09-23 08:43:35 +0000310 /* If pIdx is NULL, then the parent key is the INTEGER PRIMARY KEY
311 ** column of the parent table (table pTab). */
dan1da40a32009-09-19 17:00:31 +0000312 int iReg = pFKey->aCol[0].iFrom + regData + 1;
313 sqlite3OpenTable(pParse, iCur, iDb, pTab, OP_OpenRead);
314 sqlite3VdbeAddOp3(v, OP_NotExists, iCur, 0, iReg);
315 sqlite3VdbeAddOp2(v, OP_Goto, 0, iOk);
316 sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2);
317 }else{
318 int regRec = sqlite3GetTempReg(pParse);
319 KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx);
320
321 sqlite3VdbeAddOp3(v, OP_OpenRead, iCur, pIdx->tnum, iDb);
322 sqlite3VdbeChangeP4(v, -1, (char*)pKey, P4_KEYINFO_HANDOFF);
323
dan36062642009-09-21 18:56:23 +0000324 if( pFKey->nCol>1 ){
dan1da40a32009-09-19 17:00:31 +0000325 int nCol = pFKey->nCol;
326 int regTemp = sqlite3GetTempRange(pParse, nCol);
327 for(i=0; i<nCol; i++){
328 sqlite3VdbeAddOp2(v, OP_SCopy, aiCol[i]+1+regData, regTemp+i);
329 }
330 sqlite3VdbeAddOp3(v, OP_MakeRecord, regTemp, nCol, regRec);
331 sqlite3ReleaseTempRange(pParse, regTemp, nCol);
332 }else{
dan36062642009-09-21 18:56:23 +0000333 int iReg = aiCol[0] + regData + 1;
dan1da40a32009-09-19 17:00:31 +0000334 sqlite3VdbeAddOp3(v, OP_MakeRecord, iReg, 1, regRec);
335 sqlite3IndexAffinityStr(v, pIdx);
336 }
337
338 sqlite3VdbeAddOp3(v, OP_Found, iCur, iOk, regRec);
339 sqlite3ReleaseTempReg(pParse, regRec);
340 }
341
dan32b09f22009-09-23 17:29:59 +0000342 if( !pFKey->isDeferred && !pParse->pToplevel && !pParse->isMultiWrite ){
343 /* Special case: If this is an INSERT statement that will insert exactly
344 ** one row into the table, raise a constraint immediately instead of
345 ** incrementing a counter. This is necessary as the VM code is being
346 ** generated for will not open a statement transaction. */
347 assert( nIncr==1 );
dan1da40a32009-09-19 17:00:31 +0000348 sqlite3HaltConstraint(
349 pParse, OE_Abort, "foreign key constraint failed", P4_STATIC
350 );
dan32b09f22009-09-23 17:29:59 +0000351 }else{
352 if( nIncr>0 && pFKey->isDeferred==0 ){
353 sqlite3ParseToplevel(pParse)->mayAbort = 1;
354 }
355 sqlite3VdbeAddOp2(v, OP_FkCounter, nIncr, pFKey->isDeferred);
dan1da40a32009-09-19 17:00:31 +0000356 }
357
358 sqlite3VdbeResolveLabel(v, iOk);
359}
360
dan8099ce62009-09-23 08:43:35 +0000361/*
362** This function is called to generate code executed when a row is deleted
363** from the parent table of foreign key constraint pFKey and, if pFKey is
364** deferred, when a row is inserted into the same table. When generating
365** code for an SQL UPDATE operation, this function may be called twice -
366** once to "delete" the old row and once to "insert" the new row.
367**
368** The code generated by this function scans through the rows in the child
369** table that correspond to the parent table row being deleted or inserted.
370** For each child row found, one of the following actions is taken:
371**
372** Operation | FK type | Action taken
373** --------------------------------------------------------------------------
374** DELETE immediate Throw a "foreign key constraint failed" exception.
375**
376** DELETE deferred Increment the "deferred constraint counter".
377** Or, if the ON (UPDATE|DELETE) action is RESTRICT,
378** throw a "foreign key constraint failed" exception.
379**
380** INSERT deferred Decrement the "deferred constraint counter".
381**
382** This function is never called for an INSERT operation on the parent table
383** of an immediate foreign key constraint. These operations are identified in
384** the comment at the top of this file (fkey.c) as "I.2" and "D.2".
385*/
386static void fkScanChildren(
dan1da40a32009-09-19 17:00:31 +0000387 Parse *pParse, /* Parse context */
388 SrcList *pSrc, /* SrcList containing the table to scan */
389 Index *pIdx, /* Foreign key index */
390 FKey *pFKey, /* Foreign key relationship */
dan8099ce62009-09-23 08:43:35 +0000391 int *aiCol, /* Map from pIdx cols to child table cols */
dan1da40a32009-09-19 17:00:31 +0000392 int regData, /* Referenced table data starts here */
393 int nIncr /* Amount to increment deferred counter by */
394){
395 sqlite3 *db = pParse->db; /* Database handle */
396 int i; /* Iterator variable */
397 Expr *pWhere = 0; /* WHERE clause to scan with */
398 NameContext sNameContext; /* Context used to resolve WHERE clause */
399 WhereInfo *pWInfo; /* Context used by sqlite3WhereXXX() */
400
401 for(i=0; i<pFKey->nCol; i++){
dan8099ce62009-09-23 08:43:35 +0000402 Expr *pLeft; /* Value from parent table row */
403 Expr *pRight; /* Column ref to child table */
dan1da40a32009-09-19 17:00:31 +0000404 Expr *pEq; /* Expression (pLeft = pRight) */
dan8099ce62009-09-23 08:43:35 +0000405 int iCol; /* Index of column in child table */
406 const char *zCol; /* Name of column in child table */
dan1da40a32009-09-19 17:00:31 +0000407
408 pLeft = sqlite3Expr(db, TK_REGISTER, 0);
409 if( pLeft ){
410 pLeft->iTable = (pIdx ? (regData+pIdx->aiColumn[i]+1) : regData);
411 }
412 iCol = aiCol ? aiCol[i] : pFKey->aCol[0].iFrom;
dana8f0bf62009-09-23 12:06:52 +0000413 assert( iCol>=0 );
414 zCol = pFKey->pFrom->aCol[iCol].zName;
dan1da40a32009-09-19 17:00:31 +0000415 pRight = sqlite3Expr(db, TK_ID, zCol);
416 pEq = sqlite3PExpr(pParse, TK_EQ, pLeft, pRight, 0);
417 pWhere = sqlite3ExprAnd(db, pWhere, pEq);
418 }
419
420 /* Resolve the references in the WHERE clause. */
421 memset(&sNameContext, 0, sizeof(NameContext));
422 sNameContext.pSrcList = pSrc;
423 sNameContext.pParse = pParse;
424 sqlite3ResolveExprNames(&sNameContext, pWhere);
425
426 /* Create VDBE to loop through the entries in pSrc that match the WHERE
427 ** clause. If the constraint is not deferred, throw an exception for
428 ** each row found. Otherwise, for deferred constraints, increment the
429 ** deferred constraint counter by nIncr for each row selected. */
430 pWInfo = sqlite3WhereBegin(pParse, pSrc, pWhere, 0, 0);
dan32b09f22009-09-23 17:29:59 +0000431 if( nIncr==0 ){
432 /* A RESTRICT Action. */
dan1da40a32009-09-19 17:00:31 +0000433 sqlite3HaltConstraint(
434 pParse, OE_Abort, "foreign key constraint failed", P4_STATIC
435 );
dan32b09f22009-09-23 17:29:59 +0000436 }else{
437 if( nIncr>0 && pFKey->isDeferred==0 ){
438 sqlite3ParseToplevel(pParse)->mayAbort = 1;
439 }
440 sqlite3VdbeAddOp2(pParse->pVdbe, OP_FkCounter, nIncr, pFKey->isDeferred);
dan1da40a32009-09-19 17:00:31 +0000441 }
danf59c5ca2009-09-22 16:55:38 +0000442 if( pWInfo ){
443 sqlite3WhereEnd(pWInfo);
444 }
dan1da40a32009-09-19 17:00:31 +0000445
446 /* Clean up the WHERE clause constructed above. */
447 sqlite3ExprDelete(db, pWhere);
448}
449
450/*
451** This function returns a pointer to the head of a linked list of FK
dan8099ce62009-09-23 08:43:35 +0000452** constraints for which table pTab is the parent table. For example,
dan1da40a32009-09-19 17:00:31 +0000453** given the following schema:
454**
455** CREATE TABLE t1(a PRIMARY KEY);
456** CREATE TABLE t2(b REFERENCES t1(a);
457**
458** Calling this function with table "t1" as an argument returns a pointer
459** to the FKey structure representing the foreign key constraint on table
460** "t2". Calling this function with "t2" as the argument would return a
dan8099ce62009-09-23 08:43:35 +0000461** NULL pointer (as there are no FK constraints for which t2 is the parent
462** table).
dan1da40a32009-09-19 17:00:31 +0000463*/
464static FKey *fkRefering(Table *pTab){
465 int nName = sqlite3Strlen30(pTab->zName);
466 return (FKey *)sqlite3HashFind(&pTab->pSchema->fkeyHash, pTab->zName, nName);
467}
468
dan8099ce62009-09-23 08:43:35 +0000469/*
470** The second argument is a Trigger structure allocated by the
471** fkActionTrigger() routine. This function deletes the Trigger structure
472** and all of its sub-components.
473**
474** The Trigger structure or any of its sub-components may be allocated from
475** the lookaside buffer belonging to database handle dbMem.
476*/
dan75cbd982009-09-21 16:06:03 +0000477static void fkTriggerDelete(sqlite3 *dbMem, Trigger *p){
478 if( p ){
479 TriggerStep *pStep = p->step_list;
480 sqlite3ExprDelete(dbMem, pStep->pWhere);
481 sqlite3ExprListDelete(dbMem, pStep->pExprList);
drh788536b2009-09-23 03:01:58 +0000482 sqlite3ExprDelete(dbMem, p->pWhen);
dan75cbd982009-09-21 16:06:03 +0000483 sqlite3DbFree(dbMem, p);
484 }
485}
486
dan8099ce62009-09-23 08:43:35 +0000487/*
488** This function is called when inserting, deleting or updating a row of
489** table pTab to generate VDBE code to perform foreign key constraint
490** processing for the operation.
491**
492** For a DELETE operation, parameter regOld is passed the index of the
493** first register in an array of (pTab->nCol+1) registers containing the
494** rowid of the row being deleted, followed by each of the column values
495** of the row being deleted, from left to right. Parameter regNew is passed
496** zero in this case.
497**
498** For an UPDATE operation, regOld is the first in an array of (pTab->nCol+1)
499** registers containing the old rowid and column values of the row being
500** updated, and regNew is the first in an array of the same size containing
501** the corresponding new values. Parameter pChanges is passed the list of
502** columns being updated by the statement.
503**
504** For an INSERT operation, regOld is passed zero and regNew is passed the
505** first register of an array of (pTab->nCol+1) registers containing the new
506** row data.
507**
508** If an error occurs, an error message is left in the pParse structure.
509*/
dan1da40a32009-09-19 17:00:31 +0000510void sqlite3FkCheck(
511 Parse *pParse, /* Parse context */
512 Table *pTab, /* Row is being deleted from this table */
513 ExprList *pChanges, /* Changed columns if this is an UPDATE */
514 int regOld, /* Previous row data is stored here */
515 int regNew /* New row data is stored here */
516){
517 sqlite3 *db = pParse->db; /* Database handle */
518 Vdbe *v; /* VM to write code to */
519 FKey *pFKey; /* Used to iterate through FKs */
520 int iDb; /* Index of database containing pTab */
521 const char *zDb; /* Name of database containing pTab */
522
523 assert( ( pChanges && regOld && regNew) /* UPDATE operation */
524 || (!pChanges && !regOld && regNew) /* INSERT operation */
525 || (!pChanges && regOld && !regNew) /* DELETE operation */
526 );
527
528 /* If foreign-keys are disabled, this function is a no-op. */
529 if( (db->flags&SQLITE_ForeignKeys)==0 ) return;
530
531 v = sqlite3GetVdbe(pParse);
532 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
533 zDb = db->aDb[iDb].zName;
534
dan8099ce62009-09-23 08:43:35 +0000535 /* Loop through all the foreign key constraints for which pTab is the
536 ** child table (the table that the foreign key definition is part of). */
dan1da40a32009-09-19 17:00:31 +0000537 for(pFKey=pTab->pFKey; pFKey; pFKey=pFKey->pNextFrom){
dan8099ce62009-09-23 08:43:35 +0000538 Table *pTo; /* Parent table of foreign key pFKey */
dan1da40a32009-09-19 17:00:31 +0000539 Index *pIdx = 0; /* Index on key columns in pTo */
dan36062642009-09-21 18:56:23 +0000540 int *aiFree = 0;
541 int *aiCol;
542 int iCol;
543 int i;
dan1da40a32009-09-19 17:00:31 +0000544
dan8099ce62009-09-23 08:43:35 +0000545 /* Find the parent table of this foreign key. Also find a unique index
546 ** on the parent key columns in the parent table. If either of these
547 ** schema items cannot be located, set an error in pParse and return
548 ** early. */
dan1da40a32009-09-19 17:00:31 +0000549 pTo = sqlite3LocateTable(pParse, 0, pFKey->zTo, zDb);
dan36062642009-09-21 18:56:23 +0000550 if( !pTo || locateFkeyIndex(pParse, pTo, pFKey, &pIdx, &aiFree) ) return;
551 assert( pFKey->nCol==1 || (aiFree && pIdx) );
dan1da40a32009-09-19 17:00:31 +0000552
553 /* If the key does not overlap with the pChanges list, skip this FK. */
554 if( pChanges ){
555 /* TODO */
556 }
557
dan36062642009-09-21 18:56:23 +0000558 if( aiFree ){
559 aiCol = aiFree;
560 }else{
561 iCol = pFKey->aCol[0].iFrom;
562 aiCol = &iCol;
563 }
564 for(i=0; i<pFKey->nCol; i++){
565 if( aiCol[i]==pTab->iPKey ){
566 aiCol[i] = -1;
567 }
568 }
569
dan8099ce62009-09-23 08:43:35 +0000570 /* Take a shared-cache advisory read-lock on the parent table. Allocate
571 ** a cursor to use to search the unique index on the parent key columns
572 ** in the parent table. */
dan1da40a32009-09-19 17:00:31 +0000573 sqlite3TableLock(pParse, iDb, pTo->tnum, 0, pTo->zName);
574 pParse->nTab++;
575
dan32b09f22009-09-23 17:29:59 +0000576 if( regOld!=0 ){
577 /* A row is being removed from the child table. Search for the parent.
578 ** If the parent does not exist, removing the child row resolves an
579 ** outstanding foreign key constraint violation. */
dan8099ce62009-09-23 08:43:35 +0000580 fkLookupParent(pParse, iDb, pTo, pIdx, pFKey, aiCol, regOld, -1);
dan1da40a32009-09-19 17:00:31 +0000581 }
582 if( regNew!=0 ){
dan32b09f22009-09-23 17:29:59 +0000583 /* A row is being added to the child table. If a parent row cannot
584 ** be found, adding the child row has violated the FK constraint. */
dan8099ce62009-09-23 08:43:35 +0000585 fkLookupParent(pParse, iDb, pTo, pIdx, pFKey, aiCol, regNew, +1);
dan1da40a32009-09-19 17:00:31 +0000586 }
587
dan36062642009-09-21 18:56:23 +0000588 sqlite3DbFree(db, aiFree);
dan1da40a32009-09-19 17:00:31 +0000589 }
590
591 /* Loop through all the foreign key constraints that refer to this table */
592 for(pFKey = fkRefering(pTab); pFKey; pFKey=pFKey->pNextTo){
593 int iGoto; /* Address of OP_Goto instruction */
594 Index *pIdx = 0; /* Foreign key index for pFKey */
595 SrcList *pSrc;
596 int *aiCol = 0;
597
dan32b09f22009-09-23 17:29:59 +0000598 if( !pFKey->isDeferred && !pParse->pToplevel && !pParse->isMultiWrite ){
599 assert( regOld==0 && regNew!=0 );
600 /* Inserting a single row into a parent table cannot cause an immediate
601 ** foreign key violation. So do nothing in this case. */
602 return;
dan1da40a32009-09-19 17:00:31 +0000603 }
604
605 if( locateFkeyIndex(pParse, pTab, pFKey, &pIdx, &aiCol) ) return;
606 assert( aiCol || pFKey->nCol==1 );
607
dan8099ce62009-09-23 08:43:35 +0000608 /* Check if this update statement has modified any of the child key
609 ** columns for this foreign key constraint. If it has not, there is
610 ** no need to search the child table for rows in violation. This is
dan1da40a32009-09-19 17:00:31 +0000611 ** just an optimization. Things would work fine without this check. */
612 if( pChanges ){
613 /* TODO */
614 }
615
616 /* Create a SrcList structure containing a single table (the table
617 ** the foreign key that refers to this table is attached to). This
618 ** is required for the sqlite3WhereXXX() interface. */
619 pSrc = sqlite3SrcListAppend(db, 0, 0, 0);
danf59c5ca2009-09-22 16:55:38 +0000620 if( pSrc ){
621 pSrc->a->pTab = pFKey->pFrom;
622 pSrc->a->pTab->nRef++;
623 pSrc->a->iCursor = pParse->nTab++;
624
625 /* If this is an UPDATE, and none of the columns associated with this
dan8099ce62009-09-23 08:43:35 +0000626 ** FK have been modified, do not scan the child table. Unlike the
627 ** compile-time test implemented above, this is not just an
danf59c5ca2009-09-22 16:55:38 +0000628 ** optimization. It is required so that immediate foreign keys do not
629 ** throw exceptions when the user executes a statement like:
630 **
631 ** UPDATE refd_table SET refd_column = refd_column
632 */
633 if( pChanges ){
634 int i;
635 int iJump = sqlite3VdbeCurrentAddr(v) + pFKey->nCol + 1;
636 for(i=0; i<pFKey->nCol; i++){
637 int iOff = (pIdx ? pIdx->aiColumn[i] : -1) + 1;
638 sqlite3VdbeAddOp3(v, OP_Ne, regOld+iOff, iJump, regNew+iOff);
639 }
640 iGoto = sqlite3VdbeAddOp0(v, OP_Goto);
dan1da40a32009-09-19 17:00:31 +0000641 }
danf59c5ca2009-09-22 16:55:38 +0000642
dan32b09f22009-09-23 17:29:59 +0000643 if( regNew!=0 ){
dan8099ce62009-09-23 08:43:35 +0000644 fkScanChildren(pParse, pSrc, pIdx, pFKey, aiCol, regNew, -1);
danf59c5ca2009-09-22 16:55:38 +0000645 }
646 if( regOld!=0 ){
647 /* If there is a RESTRICT action configured for the current operation
dan8099ce62009-09-23 08:43:35 +0000648 ** on the parent table of this FK, then throw an exception
danf59c5ca2009-09-22 16:55:38 +0000649 ** immediately if the FK constraint is violated, even if this is a
650 ** deferred trigger. That's what RESTRICT means. To defer checking
651 ** the constraint, the FK should specify NO ACTION (represented
652 ** using OE_None). NO ACTION is the default. */
dan8099ce62009-09-23 08:43:35 +0000653 fkScanChildren(pParse, pSrc, pIdx, pFKey, aiCol, regOld,
654 pFKey->aAction[pChanges!=0]!=OE_Restrict
danf59c5ca2009-09-22 16:55:38 +0000655 );
656 }
657
658 if( pChanges ){
659 sqlite3VdbeJumpHere(v, iGoto);
660 }
661 sqlite3SrcListDelete(db, pSrc);
dan1da40a32009-09-19 17:00:31 +0000662 }
dan1da40a32009-09-19 17:00:31 +0000663 sqlite3DbFree(db, aiCol);
664 }
665}
666
667#define COLUMN_MASK(x) (((x)>31) ? 0xffffffff : ((u32)1<<(x)))
668
669/*
670** This function is called before generating code to update or delete a
671** row contained in table pTab. If the operation is an update, then
672** pChanges is a pointer to the list of columns to modify. If this is a
673** delete, then pChanges is NULL.
674*/
675u32 sqlite3FkOldmask(
676 Parse *pParse, /* Parse context */
677 Table *pTab, /* Table being modified */
678 ExprList *pChanges /* Non-NULL for UPDATE operations */
679){
680 u32 mask = 0;
681 if( pParse->db->flags&SQLITE_ForeignKeys ){
682 FKey *p;
683 int i;
684 for(p=pTab->pFKey; p; p=p->pNextFrom){
dan32b09f22009-09-23 17:29:59 +0000685 for(i=0; i<p->nCol; i++) mask |= COLUMN_MASK(p->aCol[i].iFrom);
dan1da40a32009-09-19 17:00:31 +0000686 }
687 for(p=fkRefering(pTab); p; p=p->pNextTo){
688 Index *pIdx = 0;
689 locateFkeyIndex(0, pTab, p, &pIdx, 0);
690 if( pIdx ){
691 for(i=0; i<pIdx->nColumn; i++) mask |= COLUMN_MASK(pIdx->aiColumn[i]);
692 }
693 }
694 }
695 return mask;
696}
697
698/*
699** This function is called before generating code to update or delete a
700** row contained in table pTab. If the operation is an update, then
701** pChanges is a pointer to the list of columns to modify. If this is a
702** delete, then pChanges is NULL.
703**
704** If any foreign key processing will be required, this function returns
705** true. If there is no foreign key related processing, this function
706** returns false.
707*/
708int sqlite3FkRequired(
709 Parse *pParse, /* Parse context */
710 Table *pTab, /* Table being modified */
711 ExprList *pChanges /* Non-NULL for UPDATE operations */
712){
713 if( pParse->db->flags&SQLITE_ForeignKeys ){
dan32b09f22009-09-23 17:29:59 +0000714 if( fkRefering(pTab) || pTab->pFKey ) return 1;
dan1da40a32009-09-19 17:00:31 +0000715 }
716 return 0;
717}
718
dan8099ce62009-09-23 08:43:35 +0000719/*
720** This function is called when an UPDATE or DELETE operation is being
721** compiled on table pTab, which is the parent table of foreign-key pFKey.
722** If the current operation is an UPDATE, then the pChanges parameter is
723** passed a pointer to the list of columns being modified. If it is a
724** DELETE, pChanges is passed a NULL pointer.
725**
726** It returns a pointer to a Trigger structure containing a trigger
727** equivalent to the ON UPDATE or ON DELETE action specified by pFKey.
728** If the action is "NO ACTION" or "RESTRICT", then a NULL pointer is
729** returned (these actions require no special handling by the triggers
730** sub-system, code for them is created by fkScanChildren()).
731**
732** For example, if pFKey is the foreign key and pTab is table "p" in
733** the following schema:
734**
735** CREATE TABLE p(pk PRIMARY KEY);
736** CREATE TABLE c(ck REFERENCES p ON DELETE CASCADE);
737**
738** then the returned trigger structure is equivalent to:
739**
740** CREATE TRIGGER ... DELETE ON p BEGIN
741** DELETE FROM c WHERE ck = old.pk;
742** END;
743**
744** The returned pointer is cached as part of the foreign key object. It
745** is eventually freed along with the rest of the foreign key object by
746** sqlite3FkDelete().
747*/
dan1da40a32009-09-19 17:00:31 +0000748static Trigger *fkActionTrigger(
dan8099ce62009-09-23 08:43:35 +0000749 Parse *pParse, /* Parse context */
dan1da40a32009-09-19 17:00:31 +0000750 Table *pTab, /* Table being updated or deleted from */
751 FKey *pFKey, /* Foreign key to get action for */
752 ExprList *pChanges /* Change-list for UPDATE, NULL for DELETE */
753){
754 sqlite3 *db = pParse->db; /* Database handle */
dan29c7f9c2009-09-22 15:53:47 +0000755 int action; /* One of OE_None, OE_Cascade etc. */
756 Trigger *pTrigger; /* Trigger definition to return */
dan8099ce62009-09-23 08:43:35 +0000757 int iAction = (pChanges!=0); /* 1 for UPDATE, 0 for DELETE */
dan1da40a32009-09-19 17:00:31 +0000758
dan8099ce62009-09-23 08:43:35 +0000759 action = pFKey->aAction[iAction];
760 pTrigger = pFKey->apTrigger[iAction];
dan1da40a32009-09-19 17:00:31 +0000761
762 assert( OE_SetNull>OE_Restrict && OE_SetDflt>OE_Restrict );
763 assert( OE_Cascade>OE_Restrict && OE_None<OE_Restrict );
764
765 if( action>OE_Restrict && !pTrigger ){
dan29c7f9c2009-09-22 15:53:47 +0000766 u8 enableLookaside; /* Copy of db->lookaside.bEnabled */
dan8099ce62009-09-23 08:43:35 +0000767 char const *zFrom; /* Name of child table */
dan1da40a32009-09-19 17:00:31 +0000768 int nFrom; /* Length in bytes of zFrom */
dan29c7f9c2009-09-22 15:53:47 +0000769 Index *pIdx = 0; /* Parent key index for this FK */
770 int *aiCol = 0; /* child table cols -> parent key cols */
771 TriggerStep *pStep; /* First (only) step of trigger program */
772 Expr *pWhere = 0; /* WHERE clause of trigger step */
773 ExprList *pList = 0; /* Changes list if ON UPDATE CASCADE */
774 int i; /* Iterator variable */
drh788536b2009-09-23 03:01:58 +0000775 Expr *pWhen = 0; /* WHEN clause for the trigger */
dan1da40a32009-09-19 17:00:31 +0000776
777 if( locateFkeyIndex(pParse, pTab, pFKey, &pIdx, &aiCol) ) return 0;
778 assert( aiCol || pFKey->nCol==1 );
779
dan1da40a32009-09-19 17:00:31 +0000780 for(i=0; i<pFKey->nCol; i++){
dan1da40a32009-09-19 17:00:31 +0000781 Token tOld = { "old", 3 }; /* Literal "old" token */
782 Token tNew = { "new", 3 }; /* Literal "new" token */
dan8099ce62009-09-23 08:43:35 +0000783 Token tFromCol; /* Name of column in child table */
784 Token tToCol; /* Name of column in parent table */
785 int iFromCol; /* Idx of column in child table */
dan29c7f9c2009-09-22 15:53:47 +0000786 Expr *pEq; /* tFromCol = OLD.tToCol */
dan1da40a32009-09-19 17:00:31 +0000787
788 iFromCol = aiCol ? aiCol[i] : pFKey->aCol[0].iFrom;
dana8f0bf62009-09-23 12:06:52 +0000789 assert( iFromCol>=0 );
dan1da40a32009-09-19 17:00:31 +0000790 tToCol.z = pIdx ? pTab->aCol[pIdx->aiColumn[i]].zName : "oid";
dana8f0bf62009-09-23 12:06:52 +0000791 tFromCol.z = pFKey->pFrom->aCol[iFromCol].zName;
dan1da40a32009-09-19 17:00:31 +0000792
793 tToCol.n = sqlite3Strlen30(tToCol.z);
794 tFromCol.n = sqlite3Strlen30(tFromCol.z);
795
796 /* Create the expression "zFromCol = OLD.zToCol" */
797 pEq = sqlite3PExpr(pParse, TK_EQ,
798 sqlite3PExpr(pParse, TK_ID, 0, 0, &tFromCol),
799 sqlite3PExpr(pParse, TK_DOT,
800 sqlite3PExpr(pParse, TK_ID, 0, 0, &tOld),
801 sqlite3PExpr(pParse, TK_ID, 0, 0, &tToCol)
802 , 0)
803 , 0);
dan29c7f9c2009-09-22 15:53:47 +0000804 pWhere = sqlite3ExprAnd(db, pWhere, pEq);
dan1da40a32009-09-19 17:00:31 +0000805
drh788536b2009-09-23 03:01:58 +0000806 /* For ON UPDATE, construct the next term of the WHEN clause.
807 ** The final WHEN clause will be like this:
808 **
809 ** WHEN NOT(old.col1 IS new.col1 AND ... AND old.colN IS new.colN)
810 */
811 if( pChanges ){
812 pEq = sqlite3PExpr(pParse, TK_IS,
813 sqlite3PExpr(pParse, TK_DOT,
814 sqlite3PExpr(pParse, TK_ID, 0, 0, &tOld),
815 sqlite3PExpr(pParse, TK_ID, 0, 0, &tToCol),
816 0),
817 sqlite3PExpr(pParse, TK_DOT,
818 sqlite3PExpr(pParse, TK_ID, 0, 0, &tNew),
819 sqlite3PExpr(pParse, TK_ID, 0, 0, &tToCol),
820 0),
821 0);
822 pWhen = sqlite3ExprAnd(db, pWhen, pEq);
823 }
824
dan1da40a32009-09-19 17:00:31 +0000825 if( action!=OE_Cascade || pChanges ){
826 Expr *pNew;
827 if( action==OE_Cascade ){
828 pNew = sqlite3PExpr(pParse, TK_DOT,
829 sqlite3PExpr(pParse, TK_ID, 0, 0, &tNew),
830 sqlite3PExpr(pParse, TK_ID, 0, 0, &tToCol)
831 , 0);
832 }else if( action==OE_SetDflt ){
dan934ce302009-09-22 16:08:58 +0000833 Expr *pDflt = pFKey->pFrom->aCol[iFromCol].pDflt;
dan1da40a32009-09-19 17:00:31 +0000834 if( pDflt ){
835 pNew = sqlite3ExprDup(db, pDflt, 0);
836 }else{
837 pNew = sqlite3PExpr(pParse, TK_NULL, 0, 0, 0);
838 }
839 }else{
840 pNew = sqlite3PExpr(pParse, TK_NULL, 0, 0, 0);
841 }
842 pList = sqlite3ExprListAppend(pParse, pList, pNew);
843 sqlite3ExprListSetName(pParse, pList, &tFromCol, 0);
844 }
845 }
dan29c7f9c2009-09-22 15:53:47 +0000846 sqlite3DbFree(db, aiCol);
dan1da40a32009-09-19 17:00:31 +0000847
dan29c7f9c2009-09-22 15:53:47 +0000848 /* If pTab->dbMem==0, then the table may be part of a shared-schema.
849 ** Disable the lookaside buffer before allocating space for the
850 ** trigger definition in this case. */
851 enableLookaside = db->lookaside.bEnabled;
852 if( pTab->dbMem==0 ){
853 db->lookaside.bEnabled = 0;
854 }
855
856 zFrom = pFKey->pFrom->zName;
857 nFrom = sqlite3Strlen30(zFrom);
858 pTrigger = (Trigger *)sqlite3DbMallocZero(db,
859 sizeof(Trigger) + /* struct Trigger */
860 sizeof(TriggerStep) + /* Single step in trigger program */
861 nFrom + 1 /* Space for pStep->target.z */
862 );
863 if( pTrigger ){
864 pStep = pTrigger->step_list = (TriggerStep *)&pTrigger[1];
865 pStep->target.z = (char *)&pStep[1];
866 pStep->target.n = nFrom;
867 memcpy((char *)pStep->target.z, zFrom, nFrom);
868
869 pStep->pWhere = sqlite3ExprDup(db, pWhere, EXPRDUP_REDUCE);
870 pStep->pExprList = sqlite3ExprListDup(db, pList, EXPRDUP_REDUCE);
drh788536b2009-09-23 03:01:58 +0000871 if( pWhen ){
872 pWhen = sqlite3PExpr(pParse, TK_NOT, pWhen, 0, 0);
873 pTrigger->pWhen = sqlite3ExprDup(db, pWhen, EXPRDUP_REDUCE);
874 }
dan29c7f9c2009-09-22 15:53:47 +0000875 }
876
877 /* Re-enable the lookaside buffer, if it was disabled earlier. */
878 db->lookaside.bEnabled = enableLookaside;
879
drh788536b2009-09-23 03:01:58 +0000880 sqlite3ExprDelete(db, pWhere);
881 sqlite3ExprDelete(db, pWhen);
882 sqlite3ExprListDelete(db, pList);
dan29c7f9c2009-09-22 15:53:47 +0000883 if( db->mallocFailed==1 ){
884 fkTriggerDelete(db, pTrigger);
885 return 0;
886 }
dan1da40a32009-09-19 17:00:31 +0000887
888 pStep->op = (action!=OE_Cascade || pChanges) ? TK_UPDATE : TK_DELETE;
889 pStep->pTrig = pTrigger;
890 pTrigger->pSchema = pTab->pSchema;
891 pTrigger->pTabSchema = pTab->pSchema;
dan8099ce62009-09-23 08:43:35 +0000892 pFKey->apTrigger[iAction] = pTrigger;
893 pTrigger->op = (pChanges ? TK_UPDATE : TK_DELETE);
dan1da40a32009-09-19 17:00:31 +0000894 }
895
896 return pTrigger;
897}
898
dan1da40a32009-09-19 17:00:31 +0000899/*
900** This function is called when deleting or updating a row to implement
901** any required CASCADE, SET NULL or SET DEFAULT actions.
902*/
903void sqlite3FkActions(
904 Parse *pParse, /* Parse context */
905 Table *pTab, /* Table being updated or deleted from */
906 ExprList *pChanges, /* Change-list for UPDATE, NULL for DELETE */
907 int regOld /* Address of array containing old row */
908){
909 /* If foreign-key support is enabled, iterate through all FKs that
910 ** refer to table pTab. If there is an action associated with the FK
911 ** for this operation (either update or delete), invoke the associated
912 ** trigger sub-program. */
913 if( pParse->db->flags&SQLITE_ForeignKeys ){
914 FKey *pFKey; /* Iterator variable */
915 for(pFKey = fkRefering(pTab); pFKey; pFKey=pFKey->pNextTo){
916 Trigger *pAction = fkActionTrigger(pParse, pTab, pFKey, pChanges);
917 if( pAction ){
918 sqlite3CodeRowTriggerDirect(pParse, pAction, pTab, regOld, OE_Abort, 0);
919 }
920 }
921 }
922}
923
dan75cbd982009-09-21 16:06:03 +0000924#endif /* ifndef SQLITE_OMIT_TRIGGER */
925
dan1da40a32009-09-19 17:00:31 +0000926/*
927** Free all memory associated with foreign key definitions attached to
928** table pTab. Remove the deleted foreign keys from the Schema.fkeyHash
929** hash table.
930*/
931void sqlite3FkDelete(Table *pTab){
932 FKey *pFKey; /* Iterator variable */
933 FKey *pNext; /* Copy of pFKey->pNextFrom */
934
935 for(pFKey=pTab->pFKey; pFKey; pFKey=pNext){
936
937 /* Remove the FK from the fkeyHash hash table. */
938 if( pFKey->pPrevTo ){
939 pFKey->pPrevTo->pNextTo = pFKey->pNextTo;
940 }else{
941 void *data = (void *)pFKey->pNextTo;
942 const char *z = (data ? pFKey->pNextTo->zTo : pFKey->zTo);
943 sqlite3HashInsert(&pTab->pSchema->fkeyHash, z, sqlite3Strlen30(z), data);
944 }
945 if( pFKey->pNextTo ){
946 pFKey->pNextTo->pPrevTo = pFKey->pPrevTo;
947 }
948
949 /* Delete any triggers created to implement actions for this FK. */
dan75cbd982009-09-21 16:06:03 +0000950#ifndef SQLITE_OMIT_TRIGGER
dan8099ce62009-09-23 08:43:35 +0000951 fkTriggerDelete(pTab->dbMem, pFKey->apTrigger[0]);
952 fkTriggerDelete(pTab->dbMem, pFKey->apTrigger[1]);
dan75cbd982009-09-21 16:06:03 +0000953#endif
dan1da40a32009-09-19 17:00:31 +0000954
955 /* Delete the memory allocated for the FK structure. */
956 pNext = pFKey->pNextFrom;
957 sqlite3DbFree(pTab->dbMem, pFKey);
958 }
959}
dan75cbd982009-09-21 16:06:03 +0000960#endif /* ifndef SQLITE_OMIT_FOREIGN_KEY */