| /* |
| ** 2001 September 15 |
| ** |
| ** The author disclaims copyright to this source code. In place of |
| ** a legal notice, here is a blessing: |
| ** |
| ** May you do good and not evil. |
| ** May you find forgiveness for yourself and forgive others. |
| ** May you share freely, never taking more than you give. |
| ** |
| ************************************************************************* |
| ** This module contains C code that generates VDBE code used to process |
| ** the WHERE clause of SQL statements. This module is responsible for |
| ** generating the code that loops through a table looking for applicable |
| ** rows. Indices are selected and used to speed the search when doing |
| ** so is applicable. Because this module is responsible for selecting |
| ** indices, you might also think of this module as the "query optimizer". |
| ** |
| ** $Id: where.c,v 1.333 2008/12/05 17:17:08 drh Exp $ |
| */ |
| #include "sqliteInt.h" |
| |
| /* |
| ** Trace output macros |
| */ |
| #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG) |
| int sqlite3WhereTrace = 0; |
| #endif |
| #if 0 |
| # define WHERETRACE(X) if(sqlite3WhereTrace) sqlite3DebugPrintf X |
| #else |
| # define WHERETRACE(X) |
| #endif |
| |
| /* Forward reference |
| */ |
| typedef struct WhereClause WhereClause; |
| typedef struct ExprMaskSet ExprMaskSet; |
| |
| /* |
| ** The query generator uses an array of instances of this structure to |
| ** help it analyze the subexpressions of the WHERE clause. Each WHERE |
| ** clause subexpression is separated from the others by AND operators. |
| ** (Note: the same data structure is also reused to hold a group of terms |
| ** separated by OR operators. But at the top-level, everything is AND |
| ** separated.) |
| ** |
| ** All WhereTerms are collected into a single WhereClause structure. |
| ** The following identity holds: |
| ** |
| ** WhereTerm.pWC->a[WhereTerm.idx] == WhereTerm |
| ** |
| ** When a term is of the form: |
| ** |
| ** X <op> <expr> |
| ** |
| ** where X is a column name and <op> is one of certain operators, |
| ** then WhereTerm.leftCursor and WhereTerm.leftColumn record the |
| ** cursor number and column number for X. WhereTerm.operator records |
| ** the <op> using a bitmask encoding defined by WO_xxx below. The |
| ** use of a bitmask encoding for the operator allows us to search |
| ** quickly for terms that match any of several different operators. |
| ** |
| ** prereqRight and prereqAll record sets of cursor numbers, |
| ** but they do so indirectly. A single ExprMaskSet structure translates |
| ** cursor number into bits and the translated bit is stored in the prereq |
| ** fields. The translation is used in order to maximize the number of |
| ** bits that will fit in a Bitmask. The VDBE cursor numbers might be |
| ** spread out over the non-negative integers. For example, the cursor |
| ** numbers might be 3, 8, 9, 10, 20, 23, 41, and 45. The ExprMaskSet |
| ** translates these sparse cursor numbers into consecutive integers |
| ** beginning with 0 in order to make the best possible use of the available |
| ** bits in the Bitmask. So, in the example above, the cursor numbers |
| ** would be mapped into integers 0 through 7. |
| ** |
| ** The number of terms in a join is limited by the number of bits |
| ** in prereqRight and prereqAll. The default is 64 bits, hence SQLite |
| ** is only able to process joins with 64 or fewer tables. |
| */ |
| typedef struct WhereTerm WhereTerm; |
| struct WhereTerm { |
| Expr *pExpr; /* Pointer to the subexpression that is this term */ |
| i16 iParent; /* Disable pWC->a[iParent] when this term disabled */ |
| i16 leftCursor; /* Cursor number of X in "X <op> <expr>" */ |
| i16 leftColumn; /* Column number of X in "X <op> <expr>" */ |
| u16 eOperator; /* A WO_xx value describing <op> */ |
| u8 wtFlags; /* TERM_xxx bit flags. See below */ |
| u8 nChild; /* Number of children that must disable us */ |
| WhereClause *pWC; /* The clause this term is part of */ |
| Bitmask prereqRight; /* Bitmask of tables used by pExpr->pRight */ |
| Bitmask prereqAll; /* Bitmask of tables referenced by pExpr */ |
| }; |
| |
| /* |
| ** Allowed values of WhereTerm.wtFlags |
| */ |
| #define TERM_DYNAMIC 0x01 /* Need to call sqlite3ExprDelete(db, pExpr) */ |
| #define TERM_VIRTUAL 0x02 /* Added by the optimizer. Do not code */ |
| #define TERM_CODED 0x04 /* This term is already coded */ |
| #define TERM_COPIED 0x08 /* Has a child */ |
| #define TERM_OR_OK 0x10 /* Used during OR-clause processing */ |
| |
| /* |
| ** An instance of the following structure holds all information about a |
| ** WHERE clause. Mostly this is a container for one or more WhereTerms. |
| */ |
| struct WhereClause { |
| Parse *pParse; /* The parser context */ |
| ExprMaskSet *pMaskSet; /* Mapping of table indices to bitmasks */ |
| int nTerm; /* Number of terms */ |
| int nSlot; /* Number of entries in a[] */ |
| WhereTerm *a; /* Each a[] describes a term of the WHERE cluase */ |
| WhereTerm aStatic[10]; /* Initial static space for a[] */ |
| }; |
| |
| /* |
| ** An instance of the following structure keeps track of a mapping |
| ** between VDBE cursor numbers and bits of the bitmasks in WhereTerm. |
| ** |
| ** The VDBE cursor numbers are small integers contained in |
| ** SrcList_item.iCursor and Expr.iTable fields. For any given WHERE |
| ** clause, the cursor numbers might not begin with 0 and they might |
| ** contain gaps in the numbering sequence. But we want to make maximum |
| ** use of the bits in our bitmasks. This structure provides a mapping |
| ** from the sparse cursor numbers into consecutive integers beginning |
| ** with 0. |
| ** |
| ** If ExprMaskSet.ix[A]==B it means that The A-th bit of a Bitmask |
| ** corresponds VDBE cursor number B. The A-th bit of a bitmask is 1<<A. |
| ** |
| ** For example, if the WHERE clause expression used these VDBE |
| ** cursors: 4, 5, 8, 29, 57, 73. Then the ExprMaskSet structure |
| ** would map those cursor numbers into bits 0 through 5. |
| ** |
| ** Note that the mapping is not necessarily ordered. In the example |
| ** above, the mapping might go like this: 4->3, 5->1, 8->2, 29->0, |
| ** 57->5, 73->4. Or one of 719 other combinations might be used. It |
| ** does not really matter. What is important is that sparse cursor |
| ** numbers all get mapped into bit numbers that begin with 0 and contain |
| ** no gaps. |
| */ |
| struct ExprMaskSet { |
| int n; /* Number of assigned cursor values */ |
| int ix[BMS]; /* Cursor assigned to each bit */ |
| }; |
| |
| |
| /* |
| ** Bitmasks for the operators that indices are able to exploit. An |
| ** OR-ed combination of these values can be used when searching for |
| ** terms in the where clause. |
| */ |
| #define WO_IN 0x001 |
| #define WO_EQ 0x002 |
| #define WO_LT (WO_EQ<<(TK_LT-TK_EQ)) |
| #define WO_LE (WO_EQ<<(TK_LE-TK_EQ)) |
| #define WO_GT (WO_EQ<<(TK_GT-TK_EQ)) |
| #define WO_GE (WO_EQ<<(TK_GE-TK_EQ)) |
| #define WO_MATCH 0x040 |
| #define WO_ISNULL 0x080 |
| #define WO_OR 0x100 |
| |
| /* |
| ** Value for wsFlags returned by bestIndex(). These flags determine which |
| ** search strategies are appropriate. |
| ** |
| ** The least significant 12 bits is reserved as a mask for WO_ values above. |
| ** The WhereLevel.wtFlags field is usually set to WO_IN|WO_EQ|WO_ISNULL. |
| ** But if the table is the right table of a left join, WhereLevel.wtFlags |
| ** is set to WO_IN|WO_EQ. The WhereLevel.wtFlags field can then be used as |
| ** the "op" parameter to findTerm when we are resolving equality constraints. |
| ** ISNULL constraints will then not be used on the right table of a left |
| ** join. Tickets #2177 and #2189. |
| */ |
| #define WHERE_ROWID_EQ 0x00001000 /* rowid=EXPR or rowid IN (...) */ |
| #define WHERE_ROWID_RANGE 0x00002000 /* rowid<EXPR and/or rowid>EXPR */ |
| #define WHERE_COLUMN_EQ 0x00010000 /* x=EXPR or x IN (...) */ |
| #define WHERE_COLUMN_RANGE 0x00020000 /* x<EXPR and/or x>EXPR */ |
| #define WHERE_COLUMN_IN 0x00040000 /* x IN (...) */ |
| #define WHERE_TOP_LIMIT 0x00100000 /* x<EXPR or x<=EXPR constraint */ |
| #define WHERE_BTM_LIMIT 0x00200000 /* x>EXPR or x>=EXPR constraint */ |
| #define WHERE_IDX_ONLY 0x00800000 /* Use index only - omit table */ |
| #define WHERE_ORDERBY 0x01000000 /* Output will appear in correct order */ |
| #define WHERE_REVERSE 0x02000000 /* Scan in reverse order */ |
| #define WHERE_UNIQUE 0x04000000 /* Selects no more than one row */ |
| #define WHERE_VIRTUALTABLE 0x08000000 /* Use virtual-table processing */ |
| #define WHERE_MULTI_OR 0x10000000 /* OR using multiple indices */ |
| |
| /* |
| ** Initialize a preallocated WhereClause structure. |
| */ |
| static void whereClauseInit( |
| WhereClause *pWC, /* The WhereClause to be initialized */ |
| Parse *pParse, /* The parsing context */ |
| ExprMaskSet *pMaskSet /* Mapping from table indices to bitmasks */ |
| ){ |
| pWC->pParse = pParse; |
| pWC->pMaskSet = pMaskSet; |
| pWC->nTerm = 0; |
| pWC->nSlot = ArraySize(pWC->aStatic); |
| pWC->a = pWC->aStatic; |
| } |
| |
| /* |
| ** Deallocate a WhereClause structure. The WhereClause structure |
| ** itself is not freed. This routine is the inverse of whereClauseInit(). |
| */ |
| static void whereClauseClear(WhereClause *pWC){ |
| int i; |
| WhereTerm *a; |
| sqlite3 *db = pWC->pParse->db; |
| for(i=pWC->nTerm-1, a=pWC->a; i>=0; i--, a++){ |
| if( a->wtFlags & TERM_DYNAMIC ){ |
| sqlite3ExprDelete(db, a->pExpr); |
| } |
| } |
| if( pWC->a!=pWC->aStatic ){ |
| sqlite3DbFree(db, pWC->a); |
| } |
| } |
| |
| /* |
| ** Add a single new WhereTerm entry to the WhereClause object pWC. |
| ** The new WhereTerm object is constructed from Expr p and with wtFlags. |
| ** The index in pWC->a[] of the new WhereTerm is returned on success. |
| ** 0 is returned if the new WhereTerm could not be added due to a memory |
| ** allocation error. The memory allocation failure will be recorded in |
| ** the db->mallocFailed flag so that higher-level functions can detect it. |
| ** |
| ** This routine will increase the size of the pWC->a[] array as necessary. |
| ** |
| ** If the wtFlags argument includes TERM_DYNAMIC, then responsibility |
| ** for freeing the expression p is assumed by the WhereClause object pWC. |
| ** This is true even if this routine fails to allocate a new WhereTerm. |
| ** |
| ** WARNING: This routine might reallocate the space used to store |
| ** WhereTerms. All pointers to WhereTerms should be invalidated after |
| ** calling this routine. Such pointers may be reinitialized by referencing |
| ** the pWC->a[] array. |
| */ |
| static int whereClauseInsert(WhereClause *pWC, Expr *p, int wtFlags){ |
| WhereTerm *pTerm; |
| int idx; |
| if( pWC->nTerm>=pWC->nSlot ){ |
| WhereTerm *pOld = pWC->a; |
| sqlite3 *db = pWC->pParse->db; |
| pWC->a = sqlite3DbMallocRaw(db, sizeof(pWC->a[0])*pWC->nSlot*2 ); |
| if( pWC->a==0 ){ |
| if( wtFlags & TERM_DYNAMIC ){ |
| sqlite3ExprDelete(db, p); |
| } |
| pWC->a = pOld; |
| return 0; |
| } |
| memcpy(pWC->a, pOld, sizeof(pWC->a[0])*pWC->nTerm); |
| if( pOld!=pWC->aStatic ){ |
| sqlite3DbFree(db, pOld); |
| } |
| pWC->nSlot = sqlite3DbMallocSize(db, pWC->a)/sizeof(pWC->a[0]); |
| } |
| pTerm = &pWC->a[idx = pWC->nTerm++]; |
| pTerm->pExpr = p; |
| pTerm->wtFlags = wtFlags; |
| pTerm->pWC = pWC; |
| pTerm->iParent = -1; |
| return idx; |
| } |
| |
| /* |
| ** This routine identifies subexpressions in the WHERE clause where |
| ** each subexpression is separated by the AND operator or some other |
| ** operator specified in the op parameter. The WhereClause structure |
| ** is filled with pointers to subexpressions. For example: |
| ** |
| ** WHERE a=='hello' AND coalesce(b,11)<10 AND (c+12!=d OR c==22) |
| ** \________/ \_______________/ \________________/ |
| ** slot[0] slot[1] slot[2] |
| ** |
| ** The original WHERE clause in pExpr is unaltered. All this routine |
| ** does is make slot[] entries point to substructure within pExpr. |
| ** |
| ** In the previous sentence and in the diagram, "slot[]" refers to |
| ** the WhereClause.a[] array. The slot[] array grows as needed to contain |
| ** all terms of the WHERE clause. |
| */ |
| static void whereSplit(WhereClause *pWC, Expr *pExpr, int op){ |
| if( pExpr==0 ) return; |
| if( pExpr->op!=op ){ |
| whereClauseInsert(pWC, pExpr, 0); |
| }else{ |
| whereSplit(pWC, pExpr->pLeft, op); |
| whereSplit(pWC, pExpr->pRight, op); |
| } |
| } |
| |
| /* |
| ** Initialize an expression mask set |
| */ |
| #define initMaskSet(P) memset(P, 0, sizeof(*P)) |
| |
| /* |
| ** Return the bitmask for the given cursor number. Return 0 if |
| ** iCursor is not in the set. |
| */ |
| static Bitmask getMask(ExprMaskSet *pMaskSet, int iCursor){ |
| int i; |
| for(i=0; i<pMaskSet->n; i++){ |
| if( pMaskSet->ix[i]==iCursor ){ |
| return ((Bitmask)1)<<i; |
| } |
| } |
| return 0; |
| } |
| |
| /* |
| ** Create a new mask for cursor iCursor. |
| ** |
| ** There is one cursor per table in the FROM clause. The number of |
| ** tables in the FROM clause is limited by a test early in the |
| ** sqlite3WhereBegin() routine. So we know that the pMaskSet->ix[] |
| ** array will never overflow. |
| */ |
| static void createMask(ExprMaskSet *pMaskSet, int iCursor){ |
| assert( pMaskSet->n < ArraySize(pMaskSet->ix) ); |
| pMaskSet->ix[pMaskSet->n++] = iCursor; |
| } |
| |
| /* |
| ** This routine walks (recursively) an expression tree and generates |
| ** a bitmask indicating which tables are used in that expression |
| ** tree. |
| ** |
| ** In order for this routine to work, the calling function must have |
| ** previously invoked sqlite3ResolveExprNames() on the expression. See |
| ** the header comment on that routine for additional information. |
| ** The sqlite3ResolveExprNames() routines looks for column names and |
| ** sets their opcodes to TK_COLUMN and their Expr.iTable fields to |
| ** the VDBE cursor number of the table. This routine just has to |
| ** translate the cursor numbers into bitmask values and OR all |
| ** the bitmasks together. |
| */ |
| static Bitmask exprListTableUsage(ExprMaskSet*, ExprList*); |
| static Bitmask exprSelectTableUsage(ExprMaskSet*, Select*); |
| static Bitmask exprTableUsage(ExprMaskSet *pMaskSet, Expr *p){ |
| Bitmask mask = 0; |
| if( p==0 ) return 0; |
| if( p->op==TK_COLUMN ){ |
| mask = getMask(pMaskSet, p->iTable); |
| return mask; |
| } |
| mask = exprTableUsage(pMaskSet, p->pRight); |
| mask |= exprTableUsage(pMaskSet, p->pLeft); |
| mask |= exprListTableUsage(pMaskSet, p->pList); |
| mask |= exprSelectTableUsage(pMaskSet, p->pSelect); |
| return mask; |
| } |
| static Bitmask exprListTableUsage(ExprMaskSet *pMaskSet, ExprList *pList){ |
| int i; |
| Bitmask mask = 0; |
| if( pList ){ |
| for(i=0; i<pList->nExpr; i++){ |
| mask |= exprTableUsage(pMaskSet, pList->a[i].pExpr); |
| } |
| } |
| return mask; |
| } |
| static Bitmask exprSelectTableUsage(ExprMaskSet *pMaskSet, Select *pS){ |
| Bitmask mask = 0; |
| while( pS ){ |
| mask |= exprListTableUsage(pMaskSet, pS->pEList); |
| mask |= exprListTableUsage(pMaskSet, pS->pGroupBy); |
| mask |= exprListTableUsage(pMaskSet, pS->pOrderBy); |
| mask |= exprTableUsage(pMaskSet, pS->pWhere); |
| mask |= exprTableUsage(pMaskSet, pS->pHaving); |
| pS = pS->pPrior; |
| } |
| return mask; |
| } |
| |
| /* |
| ** Return TRUE if the given operator is one of the operators that is |
| ** allowed for an indexable WHERE clause term. The allowed operators are |
| ** "=", "<", ">", "<=", ">=", and "IN". |
| */ |
| static int allowedOp(int op){ |
| assert( TK_GT>TK_EQ && TK_GT<TK_GE ); |
| assert( TK_LT>TK_EQ && TK_LT<TK_GE ); |
| assert( TK_LE>TK_EQ && TK_LE<TK_GE ); |
| assert( TK_GE==TK_EQ+4 ); |
| return op==TK_IN || (op>=TK_EQ && op<=TK_GE) || op==TK_ISNULL; |
| } |
| |
| /* |
| ** Swap two objects of type TYPE. |
| */ |
| #define SWAP(TYPE,A,B) {TYPE t=A; A=B; B=t;} |
| |
| /* |
| ** Commute a comparison operator. Expressions of the form "X op Y" |
| ** are converted into "Y op X". |
| ** |
| ** If a collation sequence is associated with either the left or right |
| ** side of the comparison, it remains associated with the same side after |
| ** the commutation. So "Y collate NOCASE op X" becomes |
| ** "X collate NOCASE op Y". This is because any collation sequence on |
| ** the left hand side of a comparison overrides any collation sequence |
| ** attached to the right. For the same reason the EP_ExpCollate flag |
| ** is not commuted. |
| */ |
| static void exprCommute(Parse *pParse, Expr *pExpr){ |
| u16 expRight = (pExpr->pRight->flags & EP_ExpCollate); |
| u16 expLeft = (pExpr->pLeft->flags & EP_ExpCollate); |
| assert( allowedOp(pExpr->op) && pExpr->op!=TK_IN ); |
| pExpr->pRight->pColl = sqlite3ExprCollSeq(pParse, pExpr->pRight); |
| pExpr->pLeft->pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft); |
| SWAP(CollSeq*,pExpr->pRight->pColl,pExpr->pLeft->pColl); |
| pExpr->pRight->flags = (pExpr->pRight->flags & ~EP_ExpCollate) | expLeft; |
| pExpr->pLeft->flags = (pExpr->pLeft->flags & ~EP_ExpCollate) | expRight; |
| SWAP(Expr*,pExpr->pRight,pExpr->pLeft); |
| if( pExpr->op>=TK_GT ){ |
| assert( TK_LT==TK_GT+2 ); |
| assert( TK_GE==TK_LE+2 ); |
| assert( TK_GT>TK_EQ ); |
| assert( TK_GT<TK_LE ); |
| assert( pExpr->op>=TK_GT && pExpr->op<=TK_GE ); |
| pExpr->op = ((pExpr->op-TK_GT)^2)+TK_GT; |
| } |
| } |
| |
| /* |
| ** Translate from TK_xx operator to WO_xx bitmask. |
| */ |
| static int operatorMask(int op){ |
| int c; |
| assert( allowedOp(op) ); |
| if( op==TK_IN ){ |
| c = WO_IN; |
| }else if( op==TK_ISNULL ){ |
| c = WO_ISNULL; |
| }else if( op==TK_OR ){ |
| c = WO_OR; |
| }else{ |
| c = WO_EQ<<(op-TK_EQ); |
| } |
| assert( op!=TK_ISNULL || c==WO_ISNULL ); |
| assert( op!=TK_OR || c==WO_OR ); |
| assert( op!=TK_IN || c==WO_IN ); |
| assert( op!=TK_EQ || c==WO_EQ ); |
| assert( op!=TK_LT || c==WO_LT ); |
| assert( op!=TK_LE || c==WO_LE ); |
| assert( op!=TK_GT || c==WO_GT ); |
| assert( op!=TK_GE || c==WO_GE ); |
| return c; |
| } |
| |
| /* |
| ** Search for a term in the WHERE clause that is of the form "X <op> <expr>" |
| ** where X is a reference to the iColumn of table iCur and <op> is one of |
| ** the WO_xx operator codes specified by the op parameter. |
| ** Return a pointer to the term. Return 0 if not found. |
| */ |
| static WhereTerm *findTerm( |
| WhereClause *pWC, /* The WHERE clause to be searched */ |
| int iCur, /* Cursor number of LHS */ |
| int iColumn, /* Column number of LHS */ |
| Bitmask notReady, /* RHS must not overlap with this mask */ |
| u16 op, /* Mask of WO_xx values describing operator */ |
| Index *pIdx /* Must be compatible with this index, if not NULL */ |
| ){ |
| WhereTerm *pTerm; |
| int k; |
| assert( iCur>=0 ); |
| for(pTerm=pWC->a, k=pWC->nTerm; k; k--, pTerm++){ |
| if( pTerm->leftCursor==iCur |
| && (pTerm->prereqRight & notReady)==0 |
| && pTerm->leftColumn==iColumn |
| && (pTerm->eOperator & op)!=0 |
| ){ |
| if( pIdx && pTerm->eOperator!=WO_ISNULL ){ |
| Expr *pX = pTerm->pExpr; |
| CollSeq *pColl; |
| char idxaff; |
| int j; |
| Parse *pParse = pWC->pParse; |
| |
| idxaff = pIdx->pTable->aCol[iColumn].affinity; |
| if( !sqlite3IndexAffinityOk(pX, idxaff) ) continue; |
| |
| /* Figure out the collation sequence required from an index for |
| ** it to be useful for optimising expression pX. Store this |
| ** value in variable pColl. |
| */ |
| assert(pX->pLeft); |
| pColl = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight); |
| if( !pColl ){ |
| pColl = pParse->db->pDfltColl; |
| } |
| |
| for(j=0; pIdx->aiColumn[j]!=iColumn; j++){ |
| if( NEVER(j>=pIdx->nColumn) ) return 0; |
| } |
| if( sqlite3StrICmp(pColl->zName, pIdx->azColl[j]) ) continue; |
| } |
| return pTerm; |
| } |
| } |
| return 0; |
| } |
| |
| /* Forward reference */ |
| static void exprAnalyze(SrcList*, WhereClause*, int); |
| |
| /* |
| ** Call exprAnalyze on all terms in a WHERE clause. |
| ** |
| ** |
| */ |
| static void exprAnalyzeAll( |
| SrcList *pTabList, /* the FROM clause */ |
| WhereClause *pWC /* the WHERE clause to be analyzed */ |
| ){ |
| int i; |
| for(i=pWC->nTerm-1; i>=0; i--){ |
| exprAnalyze(pTabList, pWC, i); |
| } |
| } |
| |
| #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION |
| /* |
| ** Check to see if the given expression is a LIKE or GLOB operator that |
| ** can be optimized using inequality constraints. Return TRUE if it is |
| ** so and false if not. |
| ** |
| ** In order for the operator to be optimizible, the RHS must be a string |
| ** literal that does not begin with a wildcard. |
| */ |
| static int isLikeOrGlob( |
| Parse *pParse, /* Parsing and code generating context */ |
| Expr *pExpr, /* Test this expression */ |
| int *pnPattern, /* Number of non-wildcard prefix characters */ |
| int *pisComplete, /* True if the only wildcard is % in the last character */ |
| int *pnoCase /* True if uppercase is equivalent to lowercase */ |
| ){ |
| const char *z; |
| Expr *pRight, *pLeft; |
| ExprList *pList; |
| int c, cnt; |
| char wc[3]; |
| CollSeq *pColl; |
| sqlite3 *db = pParse->db; |
| |
| if( !sqlite3IsLikeFunction(db, pExpr, pnoCase, wc) ){ |
| return 0; |
| } |
| #ifdef SQLITE_EBCDIC |
| if( *pnoCase ) return 0; |
| #endif |
| pList = pExpr->pList; |
| pRight = pList->a[0].pExpr; |
| if( pRight->op!=TK_STRING |
| && (pRight->op!=TK_REGISTER || pRight->iColumn!=TK_STRING) ){ |
| return 0; |
| } |
| pLeft = pList->a[1].pExpr; |
| if( pLeft->op!=TK_COLUMN ){ |
| return 0; |
| } |
| pColl = sqlite3ExprCollSeq(pParse, pLeft); |
| assert( pColl!=0 || pLeft->iColumn==-1 ); |
| if( pColl==0 ){ |
| /* No collation is defined for the ROWID. Use the default. */ |
| pColl = db->pDfltColl; |
| } |
| if( (pColl->type!=SQLITE_COLL_BINARY || *pnoCase) && |
| (pColl->type!=SQLITE_COLL_NOCASE || !*pnoCase) ){ |
| return 0; |
| } |
| sqlite3DequoteExpr(db, pRight); |
| z = (char *)pRight->token.z; |
| cnt = 0; |
| if( z ){ |
| while( (c=z[cnt])!=0 && c!=wc[0] && c!=wc[1] && c!=wc[2] ){ cnt++; } |
| } |
| if( cnt==0 || 255==(u8)z[cnt] ){ |
| return 0; |
| } |
| *pisComplete = z[cnt]==wc[0] && z[cnt+1]==0; |
| *pnPattern = cnt; |
| return 1; |
| } |
| #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */ |
| |
| |
| #ifndef SQLITE_OMIT_VIRTUALTABLE |
| /* |
| ** Check to see if the given expression is of the form |
| ** |
| ** column MATCH expr |
| ** |
| ** If it is then return TRUE. If not, return FALSE. |
| */ |
| static int isMatchOfColumn( |
| Expr *pExpr /* Test this expression */ |
| ){ |
| ExprList *pList; |
| |
| if( pExpr->op!=TK_FUNCTION ){ |
| return 0; |
| } |
| if( pExpr->token.n!=5 || |
| sqlite3StrNICmp((const char*)pExpr->token.z,"match",5)!=0 ){ |
| return 0; |
| } |
| pList = pExpr->pList; |
| if( pList->nExpr!=2 ){ |
| return 0; |
| } |
| if( pList->a[1].pExpr->op != TK_COLUMN ){ |
| return 0; |
| } |
| return 1; |
| } |
| #endif /* SQLITE_OMIT_VIRTUALTABLE */ |
| |
| /* |
| ** If the pBase expression originated in the ON or USING clause of |
| ** a join, then transfer the appropriate markings over to derived. |
| */ |
| static void transferJoinMarkings(Expr *pDerived, Expr *pBase){ |
| pDerived->flags |= pBase->flags & EP_FromJoin; |
| pDerived->iRightJoinTable = pBase->iRightJoinTable; |
| } |
| |
| #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY) |
| /* |
| ** Return TRUE if the given term of an OR clause can be converted |
| ** into an IN clause. The iCursor and iColumn define the left-hand |
| ** side of the IN clause. |
| ** |
| ** The context is that we have multiple OR-connected equality terms |
| ** like this: |
| ** |
| ** a=<expr1> OR a=<expr2> OR b=<expr3> OR ... |
| ** |
| ** The pOrTerm input to this routine corresponds to a single term of |
| ** this OR clause. In order for the term to be a candidate for |
| ** conversion to an IN operator, the following must be true: |
| ** |
| ** * The left-hand side of the term must be the column which |
| ** is identified by iCursor and iColumn. |
| ** |
| ** * If the right-hand side is also a column, then the affinities |
| ** of both right and left sides must be such that no type |
| ** conversions are required on the right. (Ticket #2249) |
| ** |
| ** If both of these conditions are true, then return true. Otherwise |
| ** return false. |
| */ |
| static int orTermIsOptCandidate(WhereTerm *pOrTerm, int iCursor, int iColumn){ |
| int affLeft, affRight; |
| assert( pOrTerm->eOperator==WO_EQ ); |
| if( pOrTerm->leftCursor!=iCursor ){ |
| return 0; |
| } |
| if( pOrTerm->leftColumn!=iColumn ){ |
| return 0; |
| } |
| affRight = sqlite3ExprAffinity(pOrTerm->pExpr->pRight); |
| if( affRight==0 ){ |
| return 1; |
| } |
| affLeft = sqlite3ExprAffinity(pOrTerm->pExpr->pLeft); |
| if( affRight!=affLeft ){ |
| return 0; |
| } |
| return 1; |
| } |
| |
| /* |
| ** Return true if the given term of an OR clause can be ignored during |
| ** a check to make sure all OR terms are candidates for optimization. |
| ** In other words, return true if a call to the orTermIsOptCandidate() |
| ** above returned false but it is not necessary to disqualify the |
| ** optimization. |
| ** |
| ** Suppose the original OR phrase was this: |
| ** |
| ** a=4 OR a=11 OR a=b |
| ** |
| ** During analysis, the third term gets flipped around and duplicate |
| ** so that we are left with this: |
| ** |
| ** a=4 OR a=11 OR a=b OR b=a |
| ** |
| ** Since the last two terms are duplicates, only one of them |
| ** has to qualify in order for the whole phrase to qualify. When |
| ** this routine is called, we know that pOrTerm did not qualify. |
| ** This routine merely checks to see if pOrTerm has a duplicate that |
| ** might qualify. If there is a duplicate that has not yet been |
| ** disqualified, then return true. If there are no duplicates, or |
| ** the duplicate has also been disqualified, return false. |
| */ |
| static int orTermHasOkDuplicate(WhereClause *pOr, WhereTerm *pOrTerm){ |
| if( pOrTerm->wtFlags & TERM_COPIED ){ |
| /* This is the original term. The duplicate is to the left had |
| ** has not yet been analyzed and thus has not yet been disqualified. */ |
| return 1; |
| } |
| if( (pOrTerm->wtFlags & TERM_VIRTUAL)!=0 |
| && (pOr->a[pOrTerm->iParent].wtFlags & TERM_OR_OK)!=0 ){ |
| /* This is a duplicate term. The original qualified so this one |
| ** does not have to. */ |
| return 1; |
| } |
| /* This is either a singleton term or else it is a duplicate for |
| ** which the original did not qualify. Either way we are done for. */ |
| return 0; |
| } |
| #endif /* !SQLITE_OMIT_OR_OPTIMIZATION && !SQLITE_OMIT_SUBQUERY */ |
| |
| /* |
| ** The input to this routine is an WhereTerm structure with only the |
| ** "pExpr" field filled in. The job of this routine is to analyze the |
| ** subexpression and populate all the other fields of the WhereTerm |
| ** structure. |
| ** |
| ** If the expression is of the form "<expr> <op> X" it gets commuted |
| ** to the standard form of "X <op> <expr>". If the expression is of |
| ** the form "X <op> Y" where both X and Y are columns, then the original |
| ** expression is unchanged and a new virtual expression of the form |
| ** "Y <op> X" is added to the WHERE clause and analyzed separately. |
| */ |
| static void exprAnalyze( |
| SrcList *pSrc, /* the FROM clause */ |
| WhereClause *pWC, /* the WHERE clause */ |
| int idxTerm /* Index of the term to be analyzed */ |
| ){ |
| WhereTerm *pTerm; |
| ExprMaskSet *pMaskSet; |
| Expr *pExpr; |
| Bitmask prereqLeft; |
| Bitmask prereqAll; |
| Bitmask extraRight = 0; |
| int nPattern; |
| int isComplete; |
| int noCase; |
| int op; |
| Parse *pParse = pWC->pParse; |
| sqlite3 *db = pParse->db; |
| |
| if( db->mallocFailed ){ |
| return; |
| } |
| pTerm = &pWC->a[idxTerm]; |
| pMaskSet = pWC->pMaskSet; |
| pExpr = pTerm->pExpr; |
| prereqLeft = exprTableUsage(pMaskSet, pExpr->pLeft); |
| op = pExpr->op; |
| if( op==TK_IN ){ |
| assert( pExpr->pRight==0 ); |
| pTerm->prereqRight = exprListTableUsage(pMaskSet, pExpr->pList) |
| | exprSelectTableUsage(pMaskSet, pExpr->pSelect); |
| }else if( op==TK_ISNULL ){ |
| pTerm->prereqRight = 0; |
| }else{ |
| pTerm->prereqRight = exprTableUsage(pMaskSet, pExpr->pRight); |
| } |
| prereqAll = exprTableUsage(pMaskSet, pExpr); |
| if( ExprHasProperty(pExpr, EP_FromJoin) ){ |
| Bitmask x = getMask(pMaskSet, pExpr->iRightJoinTable); |
| prereqAll |= x; |
| extraRight = x-1; /* ON clause terms may not be used with an index |
| ** on left table of a LEFT JOIN. Ticket #3015 */ |
| } |
| pTerm->prereqAll = prereqAll; |
| pTerm->leftCursor = -1; |
| pTerm->iParent = -1; |
| pTerm->eOperator = 0; |
| if( allowedOp(op) && (pTerm->prereqRight & prereqLeft)==0 ){ |
| Expr *pLeft = pExpr->pLeft; |
| Expr *pRight = pExpr->pRight; |
| if( pLeft->op==TK_COLUMN ){ |
| pTerm->leftCursor = pLeft->iTable; |
| pTerm->leftColumn = pLeft->iColumn; |
| pTerm->eOperator = operatorMask(op); |
| } |
| if( pRight && pRight->op==TK_COLUMN ){ |
| WhereTerm *pNew; |
| Expr *pDup; |
| if( pTerm->leftCursor>=0 ){ |
| int idxNew; |
| pDup = sqlite3ExprDup(db, pExpr); |
| if( db->mallocFailed ){ |
| sqlite3ExprDelete(db, pDup); |
| return; |
| } |
| idxNew = whereClauseInsert(pWC, pDup, TERM_VIRTUAL|TERM_DYNAMIC); |
| if( idxNew==0 ) return; |
| pNew = &pWC->a[idxNew]; |
| pNew->iParent = idxTerm; |
| pTerm = &pWC->a[idxTerm]; |
| pTerm->nChild = 1; |
| pTerm->wtFlags |= TERM_COPIED; |
| }else{ |
| pDup = pExpr; |
| pNew = pTerm; |
| } |
| exprCommute(pParse, pDup); |
| pLeft = pDup->pLeft; |
| pNew->leftCursor = pLeft->iTable; |
| pNew->leftColumn = pLeft->iColumn; |
| pNew->prereqRight = prereqLeft; |
| pNew->prereqAll = prereqAll; |
| pNew->eOperator = operatorMask(pDup->op); |
| } |
| } |
| |
| #ifndef SQLITE_OMIT_BETWEEN_OPTIMIZATION |
| /* If a term is the BETWEEN operator, create two new virtual terms |
| ** that define the range that the BETWEEN implements. |
| */ |
| else if( pExpr->op==TK_BETWEEN ){ |
| ExprList *pList = pExpr->pList; |
| int i; |
| static const u8 ops[] = {TK_GE, TK_LE}; |
| assert( pList!=0 ); |
| assert( pList->nExpr==2 ); |
| for(i=0; i<2; i++){ |
| Expr *pNewExpr; |
| int idxNew; |
| pNewExpr = sqlite3Expr(db, ops[i], sqlite3ExprDup(db, pExpr->pLeft), |
| sqlite3ExprDup(db, pList->a[i].pExpr), 0); |
| idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC); |
| testcase( idxNew==0 ); |
| exprAnalyze(pSrc, pWC, idxNew); |
| pTerm = &pWC->a[idxTerm]; |
| pWC->a[idxNew].iParent = idxTerm; |
| } |
| pTerm->nChild = 2; |
| } |
| #endif /* SQLITE_OMIT_BETWEEN_OPTIMIZATION */ |
| |
| #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY) |
| /* Attempt to convert OR-connected terms into an IN operator so that |
| ** they can make use of indices. Example: |
| ** |
| ** x = expr1 OR expr2 = x OR x = expr3 |
| ** |
| ** is converted into |
| ** |
| ** x IN (expr1,expr2,expr3) |
| ** |
| ** This optimization must be omitted if OMIT_SUBQUERY is defined because |
| ** the compiler for the the IN operator is part of sub-queries. |
| */ |
| else if( pExpr->op==TK_OR ){ |
| int ok; |
| int i, j; |
| int iColumn, iCursor; |
| WhereClause sOr; |
| WhereTerm *pOrTerm; |
| |
| assert( (pTerm->wtFlags & TERM_DYNAMIC)==0 ); |
| whereClauseInit(&sOr, pWC->pParse, pMaskSet); |
| whereSplit(&sOr, pExpr, TK_OR); |
| exprAnalyzeAll(pSrc, &sOr); |
| assert( sOr.nTerm>=2 ); |
| j = 0; |
| if( db->mallocFailed ) goto or_not_possible; |
| do{ |
| assert( j<sOr.nTerm ); |
| iColumn = sOr.a[j].leftColumn; |
| iCursor = sOr.a[j].leftCursor; |
| ok = iCursor>=0; |
| for(i=sOr.nTerm-1, pOrTerm=sOr.a; i>=0 && ok; i--, pOrTerm++){ |
| if( pOrTerm->eOperator!=WO_EQ ){ |
| goto or_not_possible; |
| } |
| if( orTermIsOptCandidate(pOrTerm, iCursor, iColumn) ){ |
| pOrTerm->wtFlags |= TERM_OR_OK; |
| }else if( orTermHasOkDuplicate(&sOr, pOrTerm) ){ |
| pOrTerm->wtFlags &= ~TERM_OR_OK; |
| }else{ |
| ok = 0; |
| } |
| } |
| }while( !ok && (sOr.a[j++].wtFlags & TERM_COPIED)!=0 && j<2 ); |
| if( ok ){ |
| ExprList *pList = 0; |
| Expr *pNew, *pDup; |
| Expr *pLeft = 0; |
| for(i=sOr.nTerm-1, pOrTerm=sOr.a; i>=0; i--, pOrTerm++){ |
| if( (pOrTerm->wtFlags & TERM_OR_OK)==0 ) continue; |
| pDup = sqlite3ExprDup(db, pOrTerm->pExpr->pRight); |
| pList = sqlite3ExprListAppend(pWC->pParse, pList, pDup, 0); |
| pLeft = pOrTerm->pExpr->pLeft; |
| } |
| assert( pLeft!=0 ); |
| pDup = sqlite3ExprDup(db, pLeft); |
| pNew = sqlite3Expr(db, TK_IN, pDup, 0, 0); |
| if( pNew ){ |
| int idxNew; |
| transferJoinMarkings(pNew, pExpr); |
| pNew->pList = pList; |
| idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC); |
| testcase( idxNew==0 ); |
| exprAnalyze(pSrc, pWC, idxNew); |
| pTerm = &pWC->a[idxTerm]; |
| pWC->a[idxNew].iParent = idxTerm; |
| pTerm->nChild = 1; |
| }else{ |
| sqlite3ExprListDelete(db, pList); |
| } |
| } |
| or_not_possible: |
| whereClauseClear(&sOr); |
| } |
| #endif /* SQLITE_OMIT_OR_OPTIMIZATION */ |
| |
| #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION |
| /* Add constraints to reduce the search space on a LIKE or GLOB |
| ** operator. |
| ** |
| ** A like pattern of the form "x LIKE 'abc%'" is changed into constraints |
| ** |
| ** x>='abc' AND x<'abd' AND x LIKE 'abc%' |
| ** |
| ** The last character of the prefix "abc" is incremented to form the |
| ** termination condition "abd". |
| */ |
| if( isLikeOrGlob(pParse, pExpr, &nPattern, &isComplete, &noCase) ){ |
| Expr *pLeft, *pRight; |
| Expr *pStr1, *pStr2; |
| Expr *pNewExpr1, *pNewExpr2; |
| int idxNew1, idxNew2; |
| |
| pLeft = pExpr->pList->a[1].pExpr; |
| pRight = pExpr->pList->a[0].pExpr; |
| pStr1 = sqlite3PExpr(pParse, TK_STRING, 0, 0, 0); |
| if( pStr1 ){ |
| sqlite3TokenCopy(db, &pStr1->token, &pRight->token); |
| pStr1->token.n = nPattern; |
| pStr1->flags = EP_Dequoted; |
| } |
| pStr2 = sqlite3ExprDup(db, pStr1); |
| if( !db->mallocFailed ){ |
| u8 c, *pC; |
| assert( pStr2->token.dyn ); |
| pC = (u8*)&pStr2->token.z[nPattern-1]; |
| c = *pC; |
| if( noCase ){ |
| if( c=='@' ) isComplete = 0; |
| c = sqlite3UpperToLower[c]; |
| } |
| *pC = c + 1; |
| } |
| pNewExpr1 = sqlite3PExpr(pParse, TK_GE, sqlite3ExprDup(db,pLeft), pStr1, 0); |
| idxNew1 = whereClauseInsert(pWC, pNewExpr1, TERM_VIRTUAL|TERM_DYNAMIC); |
| testcase( idxNew1==0 ); |
| exprAnalyze(pSrc, pWC, idxNew1); |
| pNewExpr2 = sqlite3PExpr(pParse, TK_LT, sqlite3ExprDup(db,pLeft), pStr2, 0); |
| idxNew2 = whereClauseInsert(pWC, pNewExpr2, TERM_VIRTUAL|TERM_DYNAMIC); |
| testcase( idxNew2==0 ); |
| exprAnalyze(pSrc, pWC, idxNew2); |
| pTerm = &pWC->a[idxTerm]; |
| if( isComplete ){ |
| pWC->a[idxNew1].iParent = idxTerm; |
| pWC->a[idxNew2].iParent = idxTerm; |
| pTerm->nChild = 2; |
| } |
| } |
| #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */ |
| |
| #ifndef SQLITE_OMIT_VIRTUALTABLE |
| /* Add a WO_MATCH auxiliary term to the constraint set if the |
| ** current expression is of the form: column MATCH expr. |
| ** This information is used by the xBestIndex methods of |
| ** virtual tables. The native query optimizer does not attempt |
| ** to do anything with MATCH functions. |
| */ |
| if( isMatchOfColumn(pExpr) ){ |
| int idxNew; |
| Expr *pRight, *pLeft; |
| WhereTerm *pNewTerm; |
| Bitmask prereqColumn, prereqExpr; |
| |
| pRight = pExpr->pList->a[0].pExpr; |
| pLeft = pExpr->pList->a[1].pExpr; |
| prereqExpr = exprTableUsage(pMaskSet, pRight); |
| prereqColumn = exprTableUsage(pMaskSet, pLeft); |
| if( (prereqExpr & prereqColumn)==0 ){ |
| Expr *pNewExpr; |
| pNewExpr = sqlite3Expr(db, TK_MATCH, 0, sqlite3ExprDup(db, pRight), 0); |
| idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC); |
| testcase( idxNew==0 ); |
| pNewTerm = &pWC->a[idxNew]; |
| pNewTerm->prereqRight = prereqExpr; |
| pNewTerm->leftCursor = pLeft->iTable; |
| pNewTerm->leftColumn = pLeft->iColumn; |
| pNewTerm->eOperator = WO_MATCH; |
| pNewTerm->iParent = idxTerm; |
| pTerm = &pWC->a[idxTerm]; |
| pTerm->nChild = 1; |
| pTerm->wtFlags |= TERM_COPIED; |
| pNewTerm->prereqAll = pTerm->prereqAll; |
| } |
| } |
| #endif /* SQLITE_OMIT_VIRTUALTABLE */ |
| |
| /* Prevent ON clause terms of a LEFT JOIN from being used to drive |
| ** an index for tables to the left of the join. |
| */ |
| pTerm->prereqRight |= extraRight; |
| } |
| |
| /* |
| ** Return TRUE if any of the expressions in pList->a[iFirst...] contain |
| ** a reference to any table other than the iBase table. |
| */ |
| static int referencesOtherTables( |
| ExprList *pList, /* Search expressions in ths list */ |
| ExprMaskSet *pMaskSet, /* Mapping from tables to bitmaps */ |
| int iFirst, /* Be searching with the iFirst-th expression */ |
| int iBase /* Ignore references to this table */ |
| ){ |
| Bitmask allowed = ~getMask(pMaskSet, iBase); |
| while( iFirst<pList->nExpr ){ |
| if( (exprTableUsage(pMaskSet, pList->a[iFirst++].pExpr)&allowed)!=0 ){ |
| return 1; |
| } |
| } |
| return 0; |
| } |
| |
| |
| /* |
| ** This routine decides if pIdx can be used to satisfy the ORDER BY |
| ** clause. If it can, it returns 1. If pIdx cannot satisfy the |
| ** ORDER BY clause, this routine returns 0. |
| ** |
| ** pOrderBy is an ORDER BY clause from a SELECT statement. pTab is the |
| ** left-most table in the FROM clause of that same SELECT statement and |
| ** the table has a cursor number of "base". pIdx is an index on pTab. |
| ** |
| ** nEqCol is the number of columns of pIdx that are used as equality |
| ** constraints. Any of these columns may be missing from the ORDER BY |
| ** clause and the match can still be a success. |
| ** |
| ** All terms of the ORDER BY that match against the index must be either |
| ** ASC or DESC. (Terms of the ORDER BY clause past the end of a UNIQUE |
| ** index do not need to satisfy this constraint.) The *pbRev value is |
| ** set to 1 if the ORDER BY clause is all DESC and it is set to 0 if |
| ** the ORDER BY clause is all ASC. |
| */ |
| static int isSortingIndex( |
| Parse *pParse, /* Parsing context */ |
| ExprMaskSet *pMaskSet, /* Mapping from table indices to bitmaps */ |
| Index *pIdx, /* The index we are testing */ |
| int base, /* Cursor number for the table to be sorted */ |
| ExprList *pOrderBy, /* The ORDER BY clause */ |
| int nEqCol, /* Number of index columns with == constraints */ |
| int *pbRev /* Set to 1 if ORDER BY is DESC */ |
| ){ |
| int i, j; /* Loop counters */ |
| int sortOrder = 0; /* XOR of index and ORDER BY sort direction */ |
| int nTerm; /* Number of ORDER BY terms */ |
| struct ExprList_item *pTerm; /* A term of the ORDER BY clause */ |
| sqlite3 *db = pParse->db; |
| |
| assert( pOrderBy!=0 ); |
| nTerm = pOrderBy->nExpr; |
| assert( nTerm>0 ); |
| |
| /* Match terms of the ORDER BY clause against columns of |
| ** the index. |
| ** |
| ** Note that indices have pIdx->nColumn regular columns plus |
| ** one additional column containing the rowid. The rowid column |
| ** of the index is also allowed to match against the ORDER BY |
| ** clause. |
| */ |
| for(i=j=0, pTerm=pOrderBy->a; j<nTerm && i<=pIdx->nColumn; i++){ |
| Expr *pExpr; /* The expression of the ORDER BY pTerm */ |
| CollSeq *pColl; /* The collating sequence of pExpr */ |
| int termSortOrder; /* Sort order for this term */ |
| int iColumn; /* The i-th column of the index. -1 for rowid */ |
| int iSortOrder; /* 1 for DESC, 0 for ASC on the i-th index term */ |
| const char *zColl; /* Name of the collating sequence for i-th index term */ |
| |
| pExpr = pTerm->pExpr; |
| if( pExpr->op!=TK_COLUMN || pExpr->iTable!=base ){ |
| /* Can not use an index sort on anything that is not a column in the |
| ** left-most table of the FROM clause */ |
| break; |
| } |
| pColl = sqlite3ExprCollSeq(pParse, pExpr); |
| if( !pColl ){ |
| pColl = db->pDfltColl; |
| } |
| if( i<pIdx->nColumn ){ |
| iColumn = pIdx->aiColumn[i]; |
| if( iColumn==pIdx->pTable->iPKey ){ |
| iColumn = -1; |
| } |
| iSortOrder = pIdx->aSortOrder[i]; |
| zColl = pIdx->azColl[i]; |
| }else{ |
| iColumn = -1; |
| iSortOrder = 0; |
| zColl = pColl->zName; |
| } |
| if( pExpr->iColumn!=iColumn || sqlite3StrICmp(pColl->zName, zColl) ){ |
| /* Term j of the ORDER BY clause does not match column i of the index */ |
| if( i<nEqCol ){ |
| /* If an index column that is constrained by == fails to match an |
| ** ORDER BY term, that is OK. Just ignore that column of the index |
| */ |
| continue; |
| }else if( i==pIdx->nColumn ){ |
| /* Index column i is the rowid. All other terms match. */ |
| break; |
| }else{ |
| /* If an index column fails to match and is not constrained by == |
| ** then the index cannot satisfy the ORDER BY constraint. |
| */ |
| return 0; |
| } |
| } |
| assert( pIdx->aSortOrder!=0 ); |
| assert( pTerm->sortOrder==0 || pTerm->sortOrder==1 ); |
| assert( iSortOrder==0 || iSortOrder==1 ); |
| termSortOrder = iSortOrder ^ pTerm->sortOrder; |
| if( i>nEqCol ){ |
| if( termSortOrder!=sortOrder ){ |
| /* Indices can only be used if all ORDER BY terms past the |
| ** equality constraints are all either DESC or ASC. */ |
| return 0; |
| } |
| }else{ |
| sortOrder = termSortOrder; |
| } |
| j++; |
| pTerm++; |
| if( iColumn<0 && !referencesOtherTables(pOrderBy, pMaskSet, j, base) ){ |
| /* If the indexed column is the primary key and everything matches |
| ** so far and none of the ORDER BY terms to the right reference other |
| ** tables in the join, then we are assured that the index can be used |
| ** to sort because the primary key is unique and so none of the other |
| ** columns will make any difference |
| */ |
| j = nTerm; |
| } |
| } |
| |
| *pbRev = sortOrder!=0; |
| if( j>=nTerm ){ |
| /* All terms of the ORDER BY clause are covered by this index so |
| ** this index can be used for sorting. */ |
| return 1; |
| } |
| if( pIdx->onError!=OE_None && i==pIdx->nColumn |
| && !referencesOtherTables(pOrderBy, pMaskSet, j, base) ){ |
| /* All terms of this index match some prefix of the ORDER BY clause |
| ** and the index is UNIQUE and no terms on the tail of the ORDER BY |
| ** clause reference other tables in a join. If this is all true then |
| ** the order by clause is superfluous. */ |
| return 1; |
| } |
| return 0; |
| } |
| |
| /* |
| ** Check table to see if the ORDER BY clause in pOrderBy can be satisfied |
| ** by sorting in order of ROWID. Return true if so and set *pbRev to be |
| ** true for reverse ROWID and false for forward ROWID order. |
| */ |
| static int sortableByRowid( |
| int base, /* Cursor number for table to be sorted */ |
| ExprList *pOrderBy, /* The ORDER BY clause */ |
| ExprMaskSet *pMaskSet, /* Mapping from tables to bitmaps */ |
| int *pbRev /* Set to 1 if ORDER BY is DESC */ |
| ){ |
| Expr *p; |
| |
| assert( pOrderBy!=0 ); |
| assert( pOrderBy->nExpr>0 ); |
| p = pOrderBy->a[0].pExpr; |
| if( p->op==TK_COLUMN && p->iTable==base && p->iColumn==-1 |
| && !referencesOtherTables(pOrderBy, pMaskSet, 1, base) ){ |
| *pbRev = pOrderBy->a[0].sortOrder; |
| return 1; |
| } |
| return 0; |
| } |
| |
| /* |
| ** Prepare a crude estimate of the logarithm of the input value. |
| ** The results need not be exact. This is only used for estimating |
| ** the total cost of performing operations with O(logN) or O(NlogN) |
| ** complexity. Because N is just a guess, it is no great tragedy if |
| ** logN is a little off. |
| */ |
| static double estLog(double N){ |
| double logN = 1; |
| double x = 10; |
| while( N>x ){ |
| logN += 1; |
| x *= 10; |
| } |
| return logN; |
| } |
| |
| /* |
| ** Two routines for printing the content of an sqlite3_index_info |
| ** structure. Used for testing and debugging only. If neither |
| ** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines |
| ** are no-ops. |
| */ |
| #if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(SQLITE_DEBUG) |
| static void TRACE_IDX_INPUTS(sqlite3_index_info *p){ |
| int i; |
| if( !sqlite3WhereTrace ) return; |
| for(i=0; i<p->nConstraint; i++){ |
| sqlite3DebugPrintf(" constraint[%d]: col=%d termid=%d op=%d usabled=%d\n", |
| i, |
| p->aConstraint[i].iColumn, |
| p->aConstraint[i].iTermOffset, |
| p->aConstraint[i].op, |
| p->aConstraint[i].usable); |
| } |
| for(i=0; i<p->nOrderBy; i++){ |
| sqlite3DebugPrintf(" orderby[%d]: col=%d desc=%d\n", |
| i, |
| p->aOrderBy[i].iColumn, |
| p->aOrderBy[i].desc); |
| } |
| } |
| static void TRACE_IDX_OUTPUTS(sqlite3_index_info *p){ |
| int i; |
| if( !sqlite3WhereTrace ) return; |
| for(i=0; i<p->nConstraint; i++){ |
| sqlite3DebugPrintf(" usage[%d]: argvIdx=%d omit=%d\n", |
| i, |
| p->aConstraintUsage[i].argvIndex, |
| p->aConstraintUsage[i].omit); |
| } |
| sqlite3DebugPrintf(" idxNum=%d\n", p->idxNum); |
| sqlite3DebugPrintf(" idxStr=%s\n", p->idxStr); |
| sqlite3DebugPrintf(" orderByConsumed=%d\n", p->orderByConsumed); |
| sqlite3DebugPrintf(" estimatedCost=%g\n", p->estimatedCost); |
| } |
| #else |
| #define TRACE_IDX_INPUTS(A) |
| #define TRACE_IDX_OUTPUTS(A) |
| #endif |
| |
| #ifndef SQLITE_OMIT_VIRTUALTABLE |
| /* |
| ** Compute the best index for a virtual table. |
| ** |
| ** The best index is computed by the xBestIndex method of the virtual |
| ** table module. This routine is really just a wrapper that sets up |
| ** the sqlite3_index_info structure that is used to communicate with |
| ** xBestIndex. |
| ** |
| ** In a join, this routine might be called multiple times for the |
| ** same virtual table. The sqlite3_index_info structure is created |
| ** and initialized on the first invocation and reused on all subsequent |
| ** invocations. The sqlite3_index_info structure is also used when |
| ** code is generated to access the virtual table. The whereInfoDelete() |
| ** routine takes care of freeing the sqlite3_index_info structure after |
| ** everybody has finished with it. |
| */ |
| static double bestVirtualIndex( |
| Parse *pParse, /* The parsing context */ |
| WhereClause *pWC, /* The WHERE clause */ |
| struct SrcList_item *pSrc, /* The FROM clause term to search */ |
| Bitmask notReady, /* Mask of cursors that are not available */ |
| ExprList *pOrderBy, /* The order by clause */ |
| int orderByUsable, /* True if we can potential sort */ |
| sqlite3_index_info **ppIdxInfo /* Index information passed to xBestIndex */ |
| ){ |
| Table *pTab = pSrc->pTab; |
| sqlite3_vtab *pVtab = pTab->pVtab; |
| sqlite3_index_info *pIdxInfo; |
| struct sqlite3_index_constraint *pIdxCons; |
| struct sqlite3_index_orderby *pIdxOrderBy; |
| struct sqlite3_index_constraint_usage *pUsage; |
| WhereTerm *pTerm; |
| int i, j; |
| int nOrderBy; |
| int rc; |
| |
| /* If the sqlite3_index_info structure has not been previously |
| ** allocated and initialized for this virtual table, then allocate |
| ** and initialize it now |
| */ |
| pIdxInfo = *ppIdxInfo; |
| if( pIdxInfo==0 ){ |
| WhereTerm *pTerm; |
| int nTerm; |
| WHERETRACE(("Recomputing index info for %s...\n", pTab->zName)); |
| |
| /* Count the number of possible WHERE clause constraints referring |
| ** to this virtual table */ |
| for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ |
| if( pTerm->leftCursor != pSrc->iCursor ) continue; |
| assert( (pTerm->eOperator&(pTerm->eOperator-1))==0 ); |
| testcase( pTerm->eOperator==WO_IN ); |
| testcase( pTerm->eOperator==WO_ISNULL ); |
| if( pTerm->eOperator & (WO_IN|WO_ISNULL) ) continue; |
| nTerm++; |
| } |
| |
| /* If the ORDER BY clause contains only columns in the current |
| ** virtual table then allocate space for the aOrderBy part of |
| ** the sqlite3_index_info structure. |
| */ |
| nOrderBy = 0; |
| if( pOrderBy ){ |
| for(i=0; i<pOrderBy->nExpr; i++){ |
| Expr *pExpr = pOrderBy->a[i].pExpr; |
| if( pExpr->op!=TK_COLUMN || pExpr->iTable!=pSrc->iCursor ) break; |
| } |
| if( i==pOrderBy->nExpr ){ |
| nOrderBy = pOrderBy->nExpr; |
| } |
| } |
| |
| /* Allocate the sqlite3_index_info structure |
| */ |
| pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo) |
| + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm |
| + sizeof(*pIdxOrderBy)*nOrderBy ); |
| if( pIdxInfo==0 ){ |
| sqlite3ErrorMsg(pParse, "out of memory"); |
| return 0.0; |
| } |
| *ppIdxInfo = pIdxInfo; |
| |
| /* Initialize the structure. The sqlite3_index_info structure contains |
| ** many fields that are declared "const" to prevent xBestIndex from |
| ** changing them. We have to do some funky casting in order to |
| ** initialize those fields. |
| */ |
| pIdxCons = (struct sqlite3_index_constraint*)&pIdxInfo[1]; |
| pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm]; |
| pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy]; |
| *(int*)&pIdxInfo->nConstraint = nTerm; |
| *(int*)&pIdxInfo->nOrderBy = nOrderBy; |
| *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint = pIdxCons; |
| *(struct sqlite3_index_orderby**)&pIdxInfo->aOrderBy = pIdxOrderBy; |
| *(struct sqlite3_index_constraint_usage**)&pIdxInfo->aConstraintUsage = |
| pUsage; |
| |
| for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ |
| if( pTerm->leftCursor != pSrc->iCursor ) continue; |
| assert( (pTerm->eOperator&(pTerm->eOperator-1))==0 ); |
| testcase( pTerm->eOperator==WO_IN ); |
| testcase( pTerm->eOperator==WO_ISNULL ); |
| if( pTerm->eOperator & (WO_IN|WO_ISNULL) ) continue; |
| pIdxCons[j].iColumn = pTerm->leftColumn; |
| pIdxCons[j].iTermOffset = i; |
| pIdxCons[j].op = pTerm->eOperator; |
| /* The direct assignment in the previous line is possible only because |
| ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical. The |
| ** following asserts verify this fact. */ |
| assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ ); |
| assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT ); |
| assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE ); |
| assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT ); |
| assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE ); |
| assert( WO_MATCH==SQLITE_INDEX_CONSTRAINT_MATCH ); |
| assert( pTerm->eOperator & (WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_MATCH) ); |
| j++; |
| } |
| for(i=0; i<nOrderBy; i++){ |
| Expr *pExpr = pOrderBy->a[i].pExpr; |
| pIdxOrderBy[i].iColumn = pExpr->iColumn; |
| pIdxOrderBy[i].desc = pOrderBy->a[i].sortOrder; |
| } |
| } |
| |
| /* At this point, the sqlite3_index_info structure that pIdxInfo points |
| ** to will have been initialized, either during the current invocation or |
| ** during some prior invocation. Now we just have to customize the |
| ** details of pIdxInfo for the current invocation and pass it to |
| ** xBestIndex. |
| */ |
| |
| /* The module name must be defined. Also, by this point there must |
| ** be a pointer to an sqlite3_vtab structure. Otherwise |
| ** sqlite3ViewGetColumnNames() would have picked up the error. |
| */ |
| assert( pTab->azModuleArg && pTab->azModuleArg[0] ); |
| assert( pVtab ); |
| #if 0 |
| if( pTab->pVtab==0 ){ |
| sqlite3ErrorMsg(pParse, "undefined module %s for table %s", |
| pTab->azModuleArg[0], pTab->zName); |
| return 0.0; |
| } |
| #endif |
| |
| /* Set the aConstraint[].usable fields and initialize all |
| ** output variables to zero. |
| ** |
| ** aConstraint[].usable is true for constraints where the right-hand |
| ** side contains only references to tables to the left of the current |
| ** table. In other words, if the constraint is of the form: |
| ** |
| ** column = expr |
| ** |
| ** and we are evaluating a join, then the constraint on column is |
| ** only valid if all tables referenced in expr occur to the left |
| ** of the table containing column. |
| ** |
| ** The aConstraints[] array contains entries for all constraints |
| ** on the current table. That way we only have to compute it once |
| ** even though we might try to pick the best index multiple times. |
| ** For each attempt at picking an index, the order of tables in the |
| ** join might be different so we have to recompute the usable flag |
| ** each time. |
| */ |
| pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint; |
| pUsage = pIdxInfo->aConstraintUsage; |
| for(i=0; i<pIdxInfo->nConstraint; i++, pIdxCons++){ |
| j = pIdxCons->iTermOffset; |
| pTerm = &pWC->a[j]; |
| pIdxCons->usable = (pTerm->prereqRight & notReady)==0; |
| } |
| memset(pUsage, 0, sizeof(pUsage[0])*pIdxInfo->nConstraint); |
| if( pIdxInfo->needToFreeIdxStr ){ |
| sqlite3_free(pIdxInfo->idxStr); |
| } |
| pIdxInfo->idxStr = 0; |
| pIdxInfo->idxNum = 0; |
| pIdxInfo->needToFreeIdxStr = 0; |
| pIdxInfo->orderByConsumed = 0; |
| pIdxInfo->estimatedCost = SQLITE_BIG_DBL / 2.0; |
| nOrderBy = pIdxInfo->nOrderBy; |
| if( pIdxInfo->nOrderBy && !orderByUsable ){ |
| *(int*)&pIdxInfo->nOrderBy = 0; |
| } |
| |
| (void)sqlite3SafetyOff(pParse->db); |
| WHERETRACE(("xBestIndex for %s\n", pTab->zName)); |
| TRACE_IDX_INPUTS(pIdxInfo); |
| rc = pVtab->pModule->xBestIndex(pVtab, pIdxInfo); |
| TRACE_IDX_OUTPUTS(pIdxInfo); |
| (void)sqlite3SafetyOn(pParse->db); |
| |
| if( rc!=SQLITE_OK ){ |
| if( rc==SQLITE_NOMEM ){ |
| pParse->db->mallocFailed = 1; |
| }else if( !pVtab->zErrMsg ){ |
| sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc)); |
| }else{ |
| sqlite3ErrorMsg(pParse, "%s", pVtab->zErrMsg); |
| } |
| } |
| sqlite3DbFree(pParse->db, pVtab->zErrMsg); |
| pVtab->zErrMsg = 0; |
| |
| for(i=0; i<pIdxInfo->nConstraint; i++){ |
| if( !pIdxInfo->aConstraint[i].usable && pUsage[i].argvIndex>0 ){ |
| sqlite3ErrorMsg(pParse, |
| "table %s: xBestIndex returned an invalid plan", pTab->zName); |
| return 0.0; |
| } |
| } |
| |
| *(int*)&pIdxInfo->nOrderBy = nOrderBy; |
| return pIdxInfo->estimatedCost; |
| } |
| #endif /* SQLITE_OMIT_VIRTUALTABLE */ |
| |
| /* |
| ** Find the best index for accessing a particular table. Return a pointer |
| ** to the index, flags that describe how the index should be used, the |
| ** number of equality constraints, and the "cost" for this index. |
| ** |
| ** The lowest cost index wins. The cost is an estimate of the amount of |
| ** CPU and disk I/O need to process the request using the selected index. |
| ** Factors that influence cost include: |
| ** |
| ** * The estimated number of rows that will be retrieved. (The |
| ** fewer the better.) |
| ** |
| ** * Whether or not sorting must occur. |
| ** |
| ** * Whether or not there must be separate lookups in the |
| ** index and in the main table. |
| ** |
| ** If there was an INDEXED BY clause attached to the table in the SELECT |
| ** statement, then this function only considers strategies using the |
| ** named index. If one cannot be found, then the returned cost is |
| ** SQLITE_BIG_DBL. If a strategy can be found that uses the named index, |
| ** then the cost is calculated in the usual way. |
| ** |
| ** If a NOT INDEXED clause was attached to the table in the SELECT |
| ** statement, then no indexes are considered. However, the selected |
| ** stategy may still take advantage of the tables built-in rowid |
| ** index. |
| */ |
| static double bestIndex( |
| Parse *pParse, /* The parsing context */ |
| WhereClause *pWC, /* The WHERE clause */ |
| struct SrcList_item *pSrc, /* The FROM clause term to search */ |
| Bitmask notReady, /* Mask of cursors that are not available */ |
| ExprList *pOrderBy, /* The order by clause */ |
| Index **ppIndex, /* Make *ppIndex point to the best index */ |
| int *pWsFlags, /* Put wsFlags describing scan strategy here */ |
| int *pnEq /* Put the number of == or IN constraints here */ |
| ){ |
| WhereTerm *pTerm; |
| Index *bestIdx = 0; /* Index that gives the lowest cost */ |
| double lowestCost; /* The cost of using bestIdx */ |
| int bestWsFlags = 0; /* Flags associated with bestIdx */ |
| int bestNEq = 0; /* Best value for nEq */ |
| int iCur = pSrc->iCursor; /* The cursor of the table to be accessed */ |
| Index *pProbe; /* An index we are evaluating */ |
| int rev; /* True to scan in reverse order */ |
| int wsFlags; /* Flags associated with pProbe */ |
| int nEq; /* Number of == or IN constraints */ |
| int eqTermMask; /* Mask of valid equality operators */ |
| double cost; /* Cost of using pProbe */ |
| |
| WHERETRACE(("bestIndex: tbl=%s notReady=%llx\n", pSrc->pTab->zName,notReady)); |
| lowestCost = SQLITE_BIG_DBL; |
| pProbe = pSrc->pTab->pIndex; |
| if( pSrc->notIndexed ){ |
| pProbe = 0; |
| } |
| |
| /* If the table has no indices and there are no terms in the where |
| ** clause that refer to the ROWID, then we will never be able to do |
| ** anything other than a full table scan on this table. We might as |
| ** well put it first in the join order. That way, perhaps it can be |
| ** referenced by other tables in the join. |
| */ |
| if( pProbe==0 && |
| findTerm(pWC, iCur, -1, 0, WO_EQ|WO_IN|WO_LT|WO_LE|WO_GT|WO_GE,0)==0 && |
| (pOrderBy==0 || !sortableByRowid(iCur, pOrderBy, pWC->pMaskSet, &rev)) ){ |
| *pWsFlags = 0; |
| *ppIndex = 0; |
| *pnEq = 0; |
| return 0.0; |
| } |
| |
| /* Check for a rowid=EXPR or rowid IN (...) constraints. If there was |
| ** an INDEXED BY clause attached to this table, skip this step. |
| */ |
| if( !pSrc->pIndex ){ |
| pTerm = findTerm(pWC, iCur, -1, notReady, WO_EQ|WO_IN, 0); |
| if( pTerm ){ |
| Expr *pExpr; |
| *ppIndex = 0; |
| bestWsFlags = WHERE_ROWID_EQ; |
| if( pTerm->eOperator & WO_EQ ){ |
| /* Rowid== is always the best pick. Look no further. Because only |
| ** a single row is generated, output is always in sorted order */ |
| *pWsFlags = WHERE_ROWID_EQ | WHERE_UNIQUE; |
| *pnEq = 1; |
| WHERETRACE(("... best is rowid\n")); |
| return 0.0; |
| }else if( (pExpr = pTerm->pExpr)->pList!=0 ){ |
| /* Rowid IN (LIST): cost is NlogN where N is the number of list |
| ** elements. */ |
| lowestCost = pExpr->pList->nExpr; |
| lowestCost *= estLog(lowestCost); |
| }else{ |
| /* Rowid IN (SELECT): cost is NlogN where N is the number of rows |
| ** in the result of the inner select. We have no way to estimate |
| ** that value so make a wild guess. */ |
| lowestCost = 200; |
| } |
| WHERETRACE(("... rowid IN cost: %.9g\n", lowestCost)); |
| } |
| |
| /* Estimate the cost of a table scan. If we do not know how many |
| ** entries are in the table, use 1 million as a guess. |
| */ |
| cost = pProbe ? pProbe->aiRowEst[0] : 1000000; |
| WHERETRACE(("... table scan base cost: %.9g\n", cost)); |
| wsFlags = WHERE_ROWID_RANGE; |
| |
| /* Check for constraints on a range of rowids in a table scan. |
| */ |
| pTerm = findTerm(pWC, iCur, -1, notReady, WO_LT|WO_LE|WO_GT|WO_GE, 0); |
| if( pTerm ){ |
| if( findTerm(pWC, iCur, -1, notReady, WO_LT|WO_LE, 0) ){ |
| wsFlags |= WHERE_TOP_LIMIT; |
| cost /= 3; /* Guess that rowid<EXPR eliminates two-thirds or rows */ |
| } |
| if( findTerm(pWC, iCur, -1, notReady, WO_GT|WO_GE, 0) ){ |
| wsFlags |= WHERE_BTM_LIMIT; |
| cost /= 3; /* Guess that rowid>EXPR eliminates two-thirds of rows */ |
| } |
| WHERETRACE(("... rowid range reduces cost to %.9g\n", cost)); |
| }else{ |
| wsFlags = 0; |
| } |
| |
| /* If the table scan does not satisfy the ORDER BY clause, increase |
| ** the cost by NlogN to cover the expense of sorting. */ |
| if( pOrderBy ){ |
| if( sortableByRowid(iCur, pOrderBy, pWC->pMaskSet, &rev) ){ |
| wsFlags |= WHERE_ORDERBY|WHERE_ROWID_RANGE; |
| if( rev ){ |
| wsFlags |= WHERE_REVERSE; |
| } |
| }else{ |
| cost += cost*estLog(cost); |
| WHERETRACE(("... sorting increases cost to %.9g\n", cost)); |
| } |
| } |
| if( cost<lowestCost ){ |
| lowestCost = cost; |
| bestWsFlags = wsFlags; |
| } |
| } |
| |
| /* If the pSrc table is the right table of a LEFT JOIN then we may not |
| ** use an index to satisfy IS NULL constraints on that table. This is |
| ** because columns might end up being NULL if the table does not match - |
| ** a circumstance which the index cannot help us discover. Ticket #2177. |
| */ |
| if( (pSrc->jointype & JT_LEFT)!=0 ){ |
| eqTermMask = WO_EQ|WO_IN; |
| }else{ |
| eqTermMask = WO_EQ|WO_IN|WO_ISNULL; |
| } |
| |
| /* Look at each index. |
| */ |
| if( pSrc->pIndex ){ |
| pProbe = pSrc->pIndex; |
| } |
| for(; pProbe; pProbe=(pSrc->pIndex ? 0 : pProbe->pNext)){ |
| int i; /* Loop counter */ |
| double inMultiplier = 1; |
| |
| WHERETRACE(("... index %s:\n", pProbe->zName)); |
| |
| /* Count the number of columns in the index that are satisfied |
| ** by x=EXPR constraints or x IN (...) constraints. |
| */ |
| wsFlags = 0; |
| for(i=0; i<pProbe->nColumn; i++){ |
| int j = pProbe->aiColumn[i]; |
| pTerm = findTerm(pWC, iCur, j, notReady, eqTermMask, pProbe); |
| if( pTerm==0 ) break; |
| wsFlags |= WHERE_COLUMN_EQ; |
| if( pTerm->eOperator & WO_IN ){ |
| Expr *pExpr = pTerm->pExpr; |
| wsFlags |= WHERE_COLUMN_IN; |
| if( pExpr->pSelect!=0 ){ |
| inMultiplier *= 25; |
| }else if( ALWAYS(pExpr->pList) ){ |
| inMultiplier *= pExpr->pList->nExpr + 1; |
| } |
| } |
| } |
| cost = pProbe->aiRowEst[i] * inMultiplier * estLog(inMultiplier); |
| nEq = i; |
| if( pProbe->onError!=OE_None && (wsFlags & WHERE_COLUMN_IN)==0 |
| && nEq==pProbe->nColumn ){ |
| wsFlags |= WHERE_UNIQUE; |
| } |
| WHERETRACE(("...... nEq=%d inMult=%.9g cost=%.9g\n",nEq,inMultiplier,cost)); |
| |
| /* Look for range constraints |
| */ |
| if( nEq<pProbe->nColumn ){ |
| int j = pProbe->aiColumn[nEq]; |
| pTerm = findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE|WO_GT|WO_GE, pProbe); |
| if( pTerm ){ |
| wsFlags |= WHERE_COLUMN_RANGE; |
| if( findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE, pProbe) ){ |
| wsFlags |= WHERE_TOP_LIMIT; |
| cost /= 3; |
| } |
| if( findTerm(pWC, iCur, j, notReady, WO_GT|WO_GE, pProbe) ){ |
| wsFlags |= WHERE_BTM_LIMIT; |
| cost /= 3; |
| } |
| WHERETRACE(("...... range reduces cost to %.9g\n", cost)); |
| } |
| } |
| |
| /* Add the additional cost of sorting if that is a factor. |
| */ |
| if( pOrderBy ){ |
| if( (wsFlags & WHERE_COLUMN_IN)==0 && |
| isSortingIndex(pParse,pWC->pMaskSet,pProbe,iCur,pOrderBy,nEq,&rev) ){ |
| if( wsFlags==0 ){ |
| wsFlags = WHERE_COLUMN_RANGE; |
| } |
| wsFlags |= WHERE_ORDERBY; |
| if( rev ){ |
| wsFlags |= WHERE_REVERSE; |
| } |
| }else{ |
| cost += cost*estLog(cost); |
| WHERETRACE(("...... orderby increases cost to %.9g\n", cost)); |
| } |
| } |
| |
| /* Check to see if we can get away with using just the index without |
| ** ever reading the table. If that is the case, then halve the |
| ** cost of this index. |
| */ |
| if( wsFlags && pSrc->colUsed < (((Bitmask)1)<<(BMS-1)) ){ |
| Bitmask m = pSrc->colUsed; |
| int j; |
| for(j=0; j<pProbe->nColumn; j++){ |
| int x = pProbe->aiColumn[j]; |
| if( x<BMS-1 ){ |
| m &= ~(((Bitmask)1)<<x); |
| } |
| } |
| if( m==0 ){ |
| wsFlags |= WHERE_IDX_ONLY; |
| cost /= 2; |
| WHERETRACE(("...... idx-only reduces cost to %.9g\n", cost)); |
| } |
| } |
| |
| /* If this index has achieved the lowest cost so far, then use it. |
| */ |
| if( wsFlags && cost < lowestCost ){ |
| bestIdx = pProbe; |
| lowestCost = cost; |
| bestWsFlags = wsFlags; |
| bestNEq = nEq; |
| } |
| } |
| |
| /* Report the best result |
| */ |
| *ppIndex = bestIdx; |
| WHERETRACE(("best index is %s, cost=%.9g, wsFlags=%x, nEq=%d\n", |
| bestIdx ? bestIdx->zName : "(none)", lowestCost, bestWsFlags, bestNEq)); |
| *pWsFlags = bestWsFlags | eqTermMask; |
| *pnEq = bestNEq; |
| return lowestCost; |
| } |
| |
| |
| /* |
| ** Disable a term in the WHERE clause. Except, do not disable the term |
| ** if it controls a LEFT OUTER JOIN and it did not originate in the ON |
| ** or USING clause of that join. |
| ** |
| ** Consider the term t2.z='ok' in the following queries: |
| ** |
| ** (1) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok' |
| ** (2) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok' |
| ** (3) SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok' |
| ** |
| ** The t2.z='ok' is disabled in the in (2) because it originates |
| ** in the ON clause. The term is disabled in (3) because it is not part |
| ** of a LEFT OUTER JOIN. In (1), the term is not disabled. |
| ** |
| ** Disabling a term causes that term to not be tested in the inner loop |
| ** of the join. Disabling is an optimization. When terms are satisfied |
| ** by indices, we disable them to prevent redundant tests in the inner |
| ** loop. We would get the correct results if nothing were ever disabled, |
| ** but joins might run a little slower. The trick is to disable as much |
| ** as we can without disabling too much. If we disabled in (1), we'd get |
| ** the wrong answer. See ticket #813. |
| */ |
| static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){ |
| if( pTerm |
| && ALWAYS((pTerm->wtFlags & TERM_CODED)==0) |
| && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin)) |
| ){ |
| pTerm->wtFlags |= TERM_CODED; |
| if( pTerm->iParent>=0 ){ |
| WhereTerm *pOther = &pTerm->pWC->a[pTerm->iParent]; |
| if( (--pOther->nChild)==0 ){ |
| disableTerm(pLevel, pOther); |
| } |
| } |
| } |
| } |
| |
| /* |
| ** Apply the affinities associated with the first n columns of index |
| ** pIdx to the values in the n registers starting at base. |
| */ |
| static void codeApplyAffinity(Parse *pParse, int base, int n, Index *pIdx){ |
| if( n>0 ){ |
| Vdbe *v = pParse->pVdbe; |
| assert( v!=0 ); |
| sqlite3VdbeAddOp2(v, OP_Affinity, base, n); |
| sqlite3IndexAffinityStr(v, pIdx); |
| sqlite3ExprCacheAffinityChange(pParse, base, n); |
| } |
| } |
| |
| |
| /* |
| ** Generate code for a single equality term of the WHERE clause. An equality |
| ** term can be either X=expr or X IN (...). pTerm is the term to be |
| ** coded. |
| ** |
| ** The current value for the constraint is left in register iReg. |
| ** |
| ** For a constraint of the form X=expr, the expression is evaluated and its |
| ** result is left on the stack. For constraints of the form X IN (...) |
| ** this routine sets up a loop that will iterate over all values of X. |
| */ |
| static int codeEqualityTerm( |
| Parse *pParse, /* The parsing context */ |
| WhereTerm *pTerm, /* The term of the WHERE clause to be coded */ |
| WhereLevel *pLevel, /* When level of the FROM clause we are working on */ |
| int iTarget /* Attempt to leave results in this register */ |
| ){ |
| Expr *pX = pTerm->pExpr; |
| Vdbe *v = pParse->pVdbe; |
| int iReg; /* Register holding results */ |
| |
| assert( iTarget>0 ); |
| if( pX->op==TK_EQ ){ |
| iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget); |
| }else if( pX->op==TK_ISNULL ){ |
| iReg = iTarget; |
| sqlite3VdbeAddOp2(v, OP_Null, 0, iReg); |
| #ifndef SQLITE_OMIT_SUBQUERY |
| }else{ |
| int eType; |
| int iTab; |
| struct InLoop *pIn; |
| |
| assert( pX->op==TK_IN ); |
| iReg = iTarget; |
| eType = sqlite3FindInIndex(pParse, pX, 0); |
| iTab = pX->iTable; |
| sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); |
| VdbeComment((v, "%.*s", pX->span.n, pX->span.z)); |
| if( pLevel->nIn==0 ){ |
| pLevel->nxt = sqlite3VdbeMakeLabel(v); |
| } |
| pLevel->nIn++; |
| pLevel->aInLoop = sqlite3DbReallocOrFree(pParse->db, pLevel->aInLoop, |
| sizeof(pLevel->aInLoop[0])*pLevel->nIn); |
| pIn = pLevel->aInLoop; |
| if( pIn ){ |
| pIn += pLevel->nIn - 1; |
| pIn->iCur = iTab; |
| if( eType==IN_INDEX_ROWID ){ |
| pIn->topAddr = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iReg); |
| }else{ |
| pIn->topAddr = sqlite3VdbeAddOp3(v, OP_Column, iTab, 0, iReg); |
| } |
| sqlite3VdbeAddOp1(v, OP_IsNull, iReg); |
| }else{ |
| pLevel->nIn = 0; |
| } |
| #endif |
| } |
| disableTerm(pLevel, pTerm); |
| return iReg; |
| } |
| |
| /* |
| ** Generate code that will evaluate all == and IN constraints for an |
| ** index. The values for all constraints are left on the stack. |
| ** |
| ** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c). |
| ** Suppose the WHERE clause is this: a==5 AND b IN (1,2,3) AND c>5 AND c<10 |
| ** The index has as many as three equality constraints, but in this |
| ** example, the third "c" value is an inequality. So only two |
| ** constraints are coded. This routine will generate code to evaluate |
| ** a==5 and b IN (1,2,3). The current values for a and b will be left |
| ** on the stack - a is the deepest and b the shallowest. |
| ** |
| ** In the example above nEq==2. But this subroutine works for any value |
| ** of nEq including 0. If nEq==0, this routine is nearly a no-op. |
| ** The only thing it does is allocate the pLevel->iMem memory cell. |
| ** |
| ** This routine always allocates at least one memory cell and puts |
| ** the address of that memory cell in pLevel->iMem. The code that |
| ** calls this routine will use pLevel->iMem to store the termination |
| ** key value of the loop. If one or more IN operators appear, then |
| ** this routine allocates an additional nEq memory cells for internal |
| ** use. |
| */ |
| static int codeAllEqualityTerms( |
| Parse *pParse, /* Parsing context */ |
| WhereLevel *pLevel, /* Which nested loop of the FROM we are coding */ |
| WhereClause *pWC, /* The WHERE clause */ |
| Bitmask notReady, /* Which parts of FROM have not yet been coded */ |
| int nExtraReg /* Number of extra registers to allocate */ |
| ){ |
| int nEq = pLevel->nEq; /* The number of == or IN constraints to code */ |
| Vdbe *v = pParse->pVdbe; /* The virtual machine under construction */ |
| Index *pIdx = pLevel->pIdx; /* The index being used for this loop */ |
| int iCur = pLevel->iTabCur; /* The cursor of the table */ |
| WhereTerm *pTerm; /* A single constraint term */ |
| int j; /* Loop counter */ |
| int regBase; /* Base register */ |
| |
| /* Figure out how many memory cells we will need then allocate them. |
| ** We always need at least one used to store the loop terminator |
| ** value. If there are IN operators we'll need one for each == or |
| ** IN constraint. |
| */ |
| pLevel->iMem = pParse->nMem + 1; |
| regBase = pParse->nMem + 2; |
| pParse->nMem += pLevel->nEq + 2 + nExtraReg; |
| |
| /* Evaluate the equality constraints |
| */ |
| assert( pIdx->nColumn>=nEq ); |
| for(j=0; j<nEq; j++){ |
| int r1; |
| int k = pIdx->aiColumn[j]; |
| pTerm = findTerm(pWC, iCur, k, notReady, pLevel->wsFlags, pIdx); |
| if( NEVER(pTerm==0) ) break; |
| assert( (pTerm->wtFlags & TERM_CODED)==0 ); |
| r1 = codeEqualityTerm(pParse, pTerm, pLevel, regBase+j); |
| if( r1!=regBase+j ){ |
| sqlite3VdbeAddOp2(v, OP_SCopy, r1, regBase+j); |
| } |
| testcase( pTerm->eOperator & WO_ISNULL ); |
| testcase( pTerm->eOperator & WO_IN ); |
| if( (pTerm->eOperator & (WO_ISNULL|WO_IN))==0 ){ |
| sqlite3VdbeAddOp2(v, OP_IsNull, regBase+j, pLevel->brk); |
| } |
| } |
| return regBase; |
| } |
| |
| #if defined(SQLITE_TEST) |
| /* |
| ** The following variable holds a text description of query plan generated |
| ** by the most recent call to sqlite3WhereBegin(). Each call to WhereBegin |
| ** overwrites the previous. This information is used for testing and |
| ** analysis only. |
| */ |
| char sqlite3_query_plan[BMS*2*40]; /* Text of the join */ |
| static int nQPlan = 0; /* Next free slow in _query_plan[] */ |
| |
| #endif /* SQLITE_TEST */ |
| |
| |
| /* |
| ** Free a WhereInfo structure |
| */ |
| static void whereInfoFree(sqlite3 *db, WhereInfo *pWInfo){ |
| if( pWInfo ){ |
| int i; |
| for(i=0; i<pWInfo->nLevel; i++){ |
| sqlite3_index_info *pInfo = pWInfo->a[i].pIdxInfo; |
| if( pInfo ){ |
| assert( pInfo->needToFreeIdxStr==0 ); |
| sqlite3DbFree(db, pInfo); |
| } |
| } |
| sqlite3DbFree(db, pWInfo); |
| } |
| } |
| |
| |
| /* |
| ** Generate the beginning of the loop used for WHERE clause processing. |
| ** The return value is a pointer to an opaque structure that contains |
| ** information needed to terminate the loop. Later, the calling routine |
| ** should invoke sqlite3WhereEnd() with the return value of this function |
| ** in order to complete the WHERE clause processing. |
| ** |
| ** If an error occurs, this routine returns NULL. |
| ** |
| ** The basic idea is to do a nested loop, one loop for each table in |
| ** the FROM clause of a select. (INSERT and UPDATE statements are the |
| ** same as a SELECT with only a single table in the FROM clause.) For |
| ** example, if the SQL is this: |
| ** |
| ** SELECT * FROM t1, t2, t3 WHERE ...; |
| ** |
| ** Then the code generated is conceptually like the following: |
| ** |
| ** foreach row1 in t1 do \ Code generated |
| ** foreach row2 in t2 do |-- by sqlite3WhereBegin() |
| ** foreach row3 in t3 do / |
| ** ... |
| ** end \ Code generated |
| ** end |-- by sqlite3WhereEnd() |
| ** end / |
| ** |
| ** Note that the loops might not be nested in the order in which they |
| ** appear in the FROM clause if a different order is better able to make |
| ** use of indices. Note also that when the IN operator appears in |
| ** the WHERE clause, it might result in additional nested loops for |
| ** scanning through all values on the right-hand side of the IN. |
| ** |
| ** There are Btree cursors associated with each table. t1 uses cursor |
| ** number pTabList->a[0].iCursor. t2 uses the cursor pTabList->a[1].iCursor. |
| ** And so forth. This routine generates code to open those VDBE cursors |
| ** and sqlite3WhereEnd() generates the code to close them. |
| ** |
| ** The code that sqlite3WhereBegin() generates leaves the cursors named |
| ** in pTabList pointing at their appropriate entries. The [...] code |
| ** can use OP_Column and OP_Rowid opcodes on these cursors to extract |
| ** data from the various tables of the loop. |
| ** |
| ** If the WHERE clause is empty, the foreach loops must each scan their |
| ** entire tables. Thus a three-way join is an O(N^3) operation. But if |
| ** the tables have indices and there are terms in the WHERE clause that |
| ** refer to those indices, a complete table scan can be avoided and the |
| ** code will run much faster. Most of the work of this routine is checking |
| ** to see if there are indices that can be used to speed up the loop. |
| ** |
| ** Terms of the WHERE clause are also used to limit which rows actually |
| ** make it to the "..." in the middle of the loop. After each "foreach", |
| ** terms of the WHERE clause that use only terms in that loop and outer |
| ** loops are evaluated and if false a jump is made around all subsequent |
| ** inner loops (or around the "..." if the test occurs within the inner- |
| ** most loop) |
| ** |
| ** OUTER JOINS |
| ** |
| ** An outer join of tables t1 and t2 is conceptally coded as follows: |
| ** |
| ** foreach row1 in t1 do |
| ** flag = 0 |
| ** foreach row2 in t2 do |
| ** start: |
| ** ... |
| ** flag = 1 |
| ** end |
| ** if flag==0 then |
| ** move the row2 cursor to a null row |
| ** goto start |
| ** fi |
| ** end |
| ** |
| ** ORDER BY CLAUSE PROCESSING |
| ** |
| ** *ppOrderBy is a pointer to the ORDER BY clause of a SELECT statement, |
| ** if there is one. If there is no ORDER BY clause or if this routine |
| ** is called from an UPDATE or DELETE statement, then ppOrderBy is NULL. |
| ** |
| ** If an index can be used so that the natural output order of the table |
| ** scan is correct for the ORDER BY clause, then that index is used and |
| ** *ppOrderBy is set to NULL. This is an optimization that prevents an |
| ** unnecessary sort of the result set if an index appropriate for the |
| ** ORDER BY clause already exists. |
| ** |
| ** If the where clause loops cannot be arranged to provide the correct |
| ** output order, then the *ppOrderBy is unchanged. |
| */ |
| WhereInfo *sqlite3WhereBegin( |
| Parse *pParse, /* The parser context */ |
| SrcList *pTabList, /* A list of all tables to be scanned */ |
| Expr *pWhere, /* The WHERE clause */ |
| ExprList **ppOrderBy, /* An ORDER BY clause, or NULL */ |
| u8 wctrlFlags /* One of the WHERE_* flags defined in sqliteInt.h */ |
| ){ |
| int i; /* Loop counter */ |
| WhereInfo *pWInfo; /* Will become the return value of this function */ |
| Vdbe *v = pParse->pVdbe; /* The virtual database engine */ |
| int brk, cont = 0; /* Addresses used during code generation */ |
| Bitmask notReady; /* Cursors that are not yet positioned */ |
| WhereTerm *pTerm; /* A single term in the WHERE clause */ |
| ExprMaskSet maskSet; /* The expression mask set */ |
| WhereClause wc; /* The WHERE clause is divided into these terms */ |
| struct SrcList_item *pTabItem; /* A single entry from pTabList */ |
| WhereLevel *pLevel; /* A single level in the pWInfo list */ |
| int iFrom; /* First unused FROM clause element */ |
| int andFlags; /* AND-ed combination of all wc.a[].wtFlags */ |
| sqlite3 *db; /* Database connection */ |
| ExprList *pOrderBy = 0; |
| |
| /* The number of tables in the FROM clause is limited by the number of |
| ** bits in a Bitmask |
| */ |
| if( pTabList->nSrc>BMS ){ |
| sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS); |
| return 0; |
| } |
| |
| if( ppOrderBy ){ |
| pOrderBy = *ppOrderBy; |
| } |
| |
| /* Split the WHERE clause into separate subexpressions where each |
| ** subexpression is separated by an AND operator. |
| */ |
| initMaskSet(&maskSet); |
| whereClauseInit(&wc, pParse, &maskSet); |
| sqlite3ExprCodeConstants(pParse, pWhere); |
| whereSplit(&wc, pWhere, TK_AND); |
| |
| /* Allocate and initialize the WhereInfo structure that will become the |
| ** return value. |
| */ |
| db = pParse->db; |
| pWInfo = sqlite3DbMallocZero(db, |
| sizeof(WhereInfo) + pTabList->nSrc*sizeof(WhereLevel)); |
| if( db->mallocFailed ){ |
| goto whereBeginError; |
| } |
| pWInfo->nLevel = pTabList->nSrc; |
| pWInfo->pParse = pParse; |
| pWInfo->pTabList = pTabList; |
| pWInfo->iBreak = sqlite3VdbeMakeLabel(v); |
| |
| /* Special case: a WHERE clause that is constant. Evaluate the |
| ** expression and either jump over all of the code or fall thru. |
| */ |
| if( pWhere && (pTabList->nSrc==0 || sqlite3ExprIsConstantNotJoin(pWhere)) ){ |
| sqlite3ExprIfFalse(pParse, pWhere, pWInfo->iBreak, SQLITE_JUMPIFNULL); |
| pWhere = 0; |
| } |
| |
| /* Assign a bit from the bitmask to every term in the FROM clause. |
| ** |
| ** When assigning bitmask values to FROM clause cursors, it must be |
| ** the case that if X is the bitmask for the N-th FROM clause term then |
| ** the bitmask for all FROM clause terms to the left of the N-th term |
| ** is (X-1). An expression from the ON clause of a LEFT JOIN can use |
| ** its Expr.iRightJoinTable value to find the bitmask of the right table |
| ** of the join. Subtracting one from the right table bitmask gives a |
| ** bitmask for all tables to the left of the join. Knowing the bitmask |
| ** for all tables to the left of a left join is important. Ticket #3015. |
| */ |
| for(i=0; i<pTabList->nSrc; i++){ |
| createMask(&maskSet, pTabList->a[i].iCursor); |
| } |
| #ifndef NDEBUG |
| { |
| Bitmask toTheLeft = 0; |
| for(i=0; i<pTabList->nSrc; i++){ |
| Bitmask m = getMask(&maskSet, pTabList->a[i].iCursor); |
| assert( (m-1)==toTheLeft ); |
| toTheLeft |= m; |
| } |
| } |
| #endif |
| |
| /* Analyze all of the subexpressions. Note that exprAnalyze() might |
| ** add new virtual terms onto the end of the WHERE clause. We do not |
| ** want to analyze these virtual terms, so start analyzing at the end |
| ** and work forward so that the added virtual terms are never processed. |
| */ |
| exprAnalyzeAll(pTabList, &wc); |
| if( db->mallocFailed ){ |
| goto whereBeginError; |
| } |
| |
| /* Chose the best index to use for each table in the FROM clause. |
| ** |
| ** This loop fills in the following fields: |
| ** |
| ** pWInfo->a[].pIdx The index to use for this level of the loop. |
| ** pWInfo->a[].wsFlags WHERE_xxx flags associated with pIdx |
| ** pWInfo->a[].nEq The number of == and IN constraints |
| ** pWInfo->a[].iFrom Which term of the FROM clause is being coded |
| ** pWInfo->a[].iTabCur The VDBE cursor for the database table |
| ** pWInfo->a[].iIdxCur The VDBE cursor for the index |
| ** |
| ** This loop also figures out the nesting order of tables in the FROM |
| ** clause. |
| */ |
| notReady = ~(Bitmask)0; |
| pTabItem = pTabList->a; |
| pLevel = pWInfo->a; |
| andFlags = ~0; |
| WHERETRACE(("*** Optimizer Start ***\n")); |
| for(i=iFrom=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){ |
| Index *pIdx; /* Index for FROM table at pTabItem */ |
| int wsFlags; /* Flags describing scan strategy */ |
| int nEq; /* Number of == or IN constraints */ |
| double cost; /* The cost for pIdx */ |
| int j; /* For looping over FROM tables */ |
| Index *pBest = 0; /* The best index seen so far */ |
| int bestWsFlags = 0; /* Flags associated with pBest */ |
| int bestNEq = 0; /* nEq associated with pBest */ |
| double lowestCost; /* Cost of the pBest */ |
| int bestJ = 0; /* The value of j */ |
| Bitmask m; /* Bitmask value for j or bestJ */ |
| int once = 0; /* True when first table is seen */ |
| sqlite3_index_info *pIndex; /* Current virtual index */ |
| |
| lowestCost = SQLITE_BIG_DBL; |
| for(j=iFrom, pTabItem=&pTabList->a[j]; j<pTabList->nSrc; j++, pTabItem++){ |
| int doNotReorder; /* True if this table should not be reordered */ |
| |
| doNotReorder = (pTabItem->jointype & (JT_LEFT|JT_CROSS))!=0; |
| if( once && doNotReorder ) break; |
| m = getMask(&maskSet, pTabItem->iCursor); |
| if( (m & notReady)==0 ){ |
| if( j==iFrom ) iFrom++; |
| continue; |
| } |
| assert( pTabItem->pTab ); |
| #ifndef SQLITE_OMIT_VIRTUALTABLE |
| if( IsVirtual(pTabItem->pTab) ){ |
| sqlite3_index_info **ppIdxInfo = &pWInfo->a[j].pIdxInfo; |
| cost = bestVirtualIndex(pParse, &wc, pTabItem, notReady, |
| ppOrderBy ? *ppOrderBy : 0, i==0, |
| ppIdxInfo); |
| wsFlags = WHERE_VIRTUALTABLE; |
| pIndex = *ppIdxInfo; |
| if( pIndex && pIndex->orderByConsumed ){ |
| wsFlags = WHERE_VIRTUALTABLE | WHERE_ORDERBY; |
| } |
| pIdx = 0; |
| nEq = 0; |
| if( (SQLITE_BIG_DBL/2.0)<cost ){ |
| /* The cost is not allowed to be larger than SQLITE_BIG_DBL (the |
| ** inital value of lowestCost in this loop. If it is, then |
| ** the (cost<lowestCost) test below will never be true and |
| ** pLevel->pBestIdx never set. |
| */ |
| cost = (SQLITE_BIG_DBL/2.0); |
| } |
| }else |
| #endif |
| { |
| cost = bestIndex(pParse, &wc, pTabItem, notReady, |
| (i==0 && ppOrderBy) ? *ppOrderBy : 0, |
| &pIdx, &wsFlags, &nEq); |
| pIndex = 0; |
| } |
| if( cost<lowestCost ){ |
| once = 1; |
| lowestCost = cost; |
| pBest = pIdx; |
| bestWsFlags = wsFlags; |
| bestNEq = nEq; |
| bestJ = j; |
| pLevel->pBestIdx = pIndex; |
| } |
| if( doNotReorder ) break; |
| } |
| WHERETRACE(("*** Optimizer selects table %d for loop %d\n", bestJ, |
| pLevel-pWInfo->a)); |
| if( (bestWsFlags & WHERE_ORDERBY)!=0 ){ |
| *ppOrderBy = 0; |
| } |
| andFlags &= bestWsFlags; |
| pLevel->wsFlags = bestWsFlags; |
| pLevel->pIdx = pBest; |
| pLevel->nEq = bestNEq; |
| pLevel->aInLoop = 0; |
| pLevel->nIn = 0; |
| if( pBest ){ |
| pLevel->iIdxCur = pParse->nTab++; |
| }else{ |
| pLevel->iIdxCur = -1; |
| } |
| notReady &= ~getMask(&maskSet, pTabList->a[bestJ].iCursor); |
| pLevel->iFrom = bestJ; |
| |
| /* Check that if the table scanned by this loop iteration had an |
| ** INDEXED BY clause attached to it, that the named index is being |
| ** used for the scan. If not, then query compilation has failed. |
| ** Return an error. |
| */ |
| pIdx = pTabList->a[bestJ].pIndex; |
| assert( !pIdx || !pBest || pIdx==pBest ); |
| if( pIdx && pBest!=pIdx ){ |
| sqlite3ErrorMsg(pParse, "cannot use index: %s", pIdx->zName); |
| goto whereBeginError; |
| } |
| } |
| WHERETRACE(("*** Optimizer Finished ***\n")); |
| |
| /* If the total query only selects a single row, then the ORDER BY |
| ** clause is irrelevant. |
| */ |
| if( (andFlags & WHERE_UNIQUE)!=0 && ppOrderBy ){ |
| *ppOrderBy = 0; |
| } |
| |
| /* If the caller is an UPDATE or DELETE statement that is requesting |
| ** to use a one-pass algorithm, determine if this is appropriate. |
| ** The one-pass algorithm only works if the WHERE clause constraints |
| ** the statement to update a single row. |
| */ |
| assert( (wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || pWInfo->nLevel==1 ); |
| if( (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 && (andFlags & WHERE_UNIQUE)!=0 ){ |
| pWInfo->okOnePass = 1; |
| pWInfo->a[0].wsFlags &= ~WHERE_IDX_ONLY; |
| } |
| |
| /* Open all tables in the pTabList and any indices selected for |
| ** searching those tables. |
| */ |
| sqlite3CodeVerifySchema(pParse, -1); /* Insert the cookie verifier Goto */ |
| for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){ |
| Table *pTab; /* Table to open */ |
| Index *pIx; /* Index used to access pTab (if any) */ |
| int iDb; /* Index of database containing table/index */ |
| int iIdxCur = pLevel->iIdxCur; |
| |
| #ifndef SQLITE_OMIT_EXPLAIN |
| if( pParse->explain==2 ){ |
| char *zMsg; |
| struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom]; |
| zMsg = sqlite3MPrintf(db, "TABLE %s", pItem->zName); |
| if( pItem->zAlias ){ |
| zMsg = sqlite3MAppendf(db, zMsg, "%s AS %s", zMsg, pItem->zAlias); |
| } |
| if( (pIx = pLevel->pIdx)!=0 ){ |
| zMsg = sqlite3MAppendf(db, zMsg, "%s WITH INDEX %s", zMsg, pIx->zName); |
| }else if( pLevel->wsFlags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){ |
| zMsg = sqlite3MAppendf(db, zMsg, "%s USING PRIMARY KEY", zMsg); |
| } |
| #ifndef SQLITE_OMIT_VIRTUALTABLE |
| else if( pLevel->pBestIdx ){ |
| sqlite3_index_info *pBestIdx = pLevel->pBestIdx; |
| zMsg = sqlite3MAppendf(db, zMsg, "%s VIRTUAL TABLE INDEX %d:%s", zMsg, |
| pBestIdx->idxNum, pBestIdx->idxStr); |
| } |
| #endif |
| if( pLevel->wsFlags & WHERE_ORDERBY ){ |
| zMsg = sqlite3MAppendf(db, zMsg, "%s ORDER BY", zMsg); |
| } |
| sqlite3VdbeAddOp4(v, OP_Explain, i, pLevel->iFrom, 0, zMsg, P4_DYNAMIC); |
| } |
| #endif /* SQLITE_OMIT_EXPLAIN */ |
| pTabItem = &pTabList->a[pLevel->iFrom]; |
| pTab = pTabItem->pTab; |
| iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); |
| if( (pTab->tabFlags & TF_Ephemeral)!=0 || pTab->pSelect ) continue; |
| #ifndef SQLITE_OMIT_VIRTUALTABLE |
| if( pLevel->pBestIdx ){ |
| int iCur = pTabItem->iCursor; |
| sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0, |
| (const char*)pTab->pVtab, P4_VTAB); |
| }else |
| #endif |
| if( (pLevel->wsFlags & WHERE_IDX_ONLY)==0 ){ |
| int op = pWInfo->okOnePass ? OP_OpenWrite : OP_OpenRead; |
| sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op); |
| if( !pWInfo->okOnePass && pTab->nCol<BMS ){ |
| Bitmask b = pTabItem->colUsed; |
| int n = 0; |
| for(; b; b=b>>1, n++){} |
| sqlite3VdbeChangeP2(v, sqlite3VdbeCurrentAddr(v)-2, n); |
| assert( n<=pTab->nCol ); |
| } |
| }else{ |
| sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); |
| } |
| pLevel->iTabCur = pTabItem->iCursor; |
| if( (pIx = pLevel->pIdx)!=0 ){ |
| KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIx); |
| assert( pIx->pSchema==pTab->pSchema ); |
| sqlite3VdbeAddOp2(v, OP_SetNumColumns, 0, pIx->nColumn+1); |
| sqlite3VdbeAddOp4(v, OP_OpenRead, iIdxCur, pIx->tnum, iDb, |
| (char*)pKey, P4_KEYINFO_HANDOFF); |
| VdbeComment((v, "%s", pIx->zName)); |
| } |
| sqlite3CodeVerifySchema(pParse, iDb); |
| } |
| pWInfo->iTop = sqlite3VdbeCurrentAddr(v); |
| |
| /* Generate the code to do the search. Each iteration of the for |
| ** loop below generates code for a single nested loop of the VM |
| ** program. |
| */ |
| notReady = ~(Bitmask)0; |
| for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){ |
| int j, k; |
| int iCur = pTabItem->iCursor; /* The VDBE cursor for the table */ |
| Index *pIdx; /* The index we will be using */ |
| int nxt; /* Where to jump to continue with the next IN case */ |
| int iIdxCur; /* The VDBE cursor for the index */ |
| int omitTable; /* True if we use the index only */ |
| int bRev; /* True if we need to scan in reverse order */ |
| |
| pTabItem = &pTabList->a[pLevel->iFrom]; |
| iCur = pTabItem->iCursor; |
| pIdx = pLevel->pIdx; |
| iIdxCur = pLevel->iIdxCur; |
| bRev = (pLevel->wsFlags & WHERE_REVERSE)!=0; |
| omitTable = (pLevel->wsFlags & WHERE_IDX_ONLY)!=0; |
| |
| /* Create labels for the "break" and "continue" instructions |
| ** for the current loop. Jump to brk to break out of a loop. |
| ** Jump to cont to go immediately to the next iteration of the |
| ** loop. |
| ** |
| ** When there is an IN operator, we also have a "nxt" label that |
| ** means to continue with the next IN value combination. When |
| ** there are no IN operators in the constraints, the "nxt" label |
| ** is the same as "brk". |
| */ |
| brk = pLevel->brk = pLevel->nxt = sqlite3VdbeMakeLabel(v); |
| cont = pLevel->cont = sqlite3VdbeMakeLabel(v); |
| |
| /* If this is the right table of a LEFT OUTER JOIN, allocate and |
| ** initialize a memory cell that records if this table matches any |
| ** row of the left table of the join. |
| */ |
| if( pLevel->iFrom>0 && (pTabItem[0].jointype & JT_LEFT)!=0 ){ |
| pLevel->iLeftJoin = ++pParse->nMem; |
| sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin); |
| VdbeComment((v, "init LEFT JOIN no-match flag")); |
| } |
| |
| #ifndef SQLITE_OMIT_VIRTUALTABLE |
| if( pLevel->pBestIdx ){ |
| /* Case 0: The table is a virtual-table. Use the VFilter and VNext |
| ** to access the data. |
| */ |
| int j; |
| int iReg; /* P3 Value for OP_VFilter */ |
| sqlite3_index_info *pBestIdx = pLevel->pBestIdx; |
| int nConstraint = pBestIdx->nConstraint; |
| struct sqlite3_index_constraint_usage *aUsage = |
| pBestIdx->aConstraintUsage; |
| const struct sqlite3_index_constraint *aConstraint = |
| pBestIdx->aConstraint; |
| |
| iReg = sqlite3GetTempRange(pParse, nConstraint+2); |
| pParse->disableColCache++; |
| for(j=1; j<=nConstraint; j++){ |
| int k; |
| for(k=0; k<nConstraint; k++){ |
| if( aUsage[k].argvIndex==j ){ |
| int iTerm = aConstraint[k].iTermOffset; |
| assert( pParse->disableColCache ); |
| sqlite3ExprCode(pParse, wc.a[iTerm].pExpr->pRight, iReg+j+1); |
| break; |
| } |
| } |
| if( k==nConstraint ) break; |
| } |
| assert( pParse->disableColCache ); |
| pParse->disableColCache--; |
| sqlite3VdbeAddOp2(v, OP_Integer, pBestIdx->idxNum, iReg); |
| sqlite3VdbeAddOp2(v, OP_Integer, j-1, iReg+1); |
| sqlite3VdbeAddOp4(v, OP_VFilter, iCur, brk, iReg, pBestIdx->idxStr, |
| pBestIdx->needToFreeIdxStr ? P4_MPRINTF : P4_STATIC); |
| sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2); |
| pBestIdx->needToFreeIdxStr = 0; |
| for(j=0; j<nConstraint; j++){ |
| if( aUsage[j].omit ){ |
| int iTerm = aConstraint[j].iTermOffset; |
| disableTerm(pLevel, &wc.a[iTerm]); |
| } |
| } |
| pLevel->op = OP_VNext; |
| pLevel->p1 = iCur; |
| pLevel->p2 = sqlite3VdbeCurrentAddr(v); |
| }else |
| #endif /* SQLITE_OMIT_VIRTUALTABLE */ |
| |
| if( pLevel->wsFlags & WHERE_ROWID_EQ ){ |
| /* Case 1: We can directly reference a single row using an |
| ** equality comparison against the ROWID field. Or |
| ** we reference multiple rows using a "rowid IN (...)" |
| ** construct. |
| */ |
| int r1; |
| int rtmp = sqlite3GetTempReg(pParse); |
| pTerm = findTerm(&wc, iCur, -1, notReady, WO_EQ|WO_IN, 0); |
| assert( pTerm!=0 ); |
| assert( pTerm->pExpr!=0 ); |
| assert( pTerm->leftCursor==iCur ); |
| assert( omitTable==0 ); |
| r1 = codeEqualityTerm(pParse, pTerm, pLevel, rtmp); |
| nxt = pLevel->nxt; |
| sqlite3VdbeAddOp2(v, OP_MustBeInt, r1, nxt); |
| sqlite3VdbeAddOp3(v, OP_NotExists, iCur, nxt, r1); |
| sqlite3ReleaseTempReg(pParse, rtmp); |
| VdbeComment((v, "pk")); |
| pLevel->op = OP_Noop; |
| }else if( pLevel->wsFlags & WHERE_ROWID_RANGE ){ |
| /* Case 2: We have an inequality comparison against the ROWID field. |
| */ |
| int testOp = OP_Noop; |
| int start; |
| WhereTerm *pStart, *pEnd; |
| |
| assert( omitTable==0 ); |
| pStart = findTerm(&wc, iCur, -1, notReady, WO_GT|WO_GE, 0); |
| pEnd = findTerm(&wc, iCur, -1, notReady, WO_LT|WO_LE, 0); |
| if( bRev ){ |
| pTerm = pStart; |
| pStart = pEnd; |
| pEnd = pTerm; |
| } |
| if( pStart ){ |
| Expr *pX; |
| int r1; |
| pX = pStart->pExpr; |
| assert( pX!=0 ); |
| assert( pStart->leftCursor==iCur ); |
| |
| /* The ForceInt instruction may modify the register that it operates |
| ** on. For example it may replace a real value with an integer one, |
| ** or if p3 is true it may increment the register value. For this |
| ** reason we need to make sure that register r1 is really a newly |
| ** allocated temporary register, and not part of the column-cache. |
| ** For this reason we cannot use sqlite3ExprCodeTemp() here. |
| */ |
| r1 = sqlite3GetTempReg(pParse); |
| sqlite3ExprCode(pParse, pX->pRight, r1); |
| |
| sqlite3VdbeAddOp3(v, OP_ForceInt, r1, brk, |
| pX->op==TK_LE || pX->op==TK_GT); |
| sqlite3VdbeAddOp3(v, bRev ? OP_MoveLt : OP_MoveGe, iCur, brk, r1); |
| VdbeComment((v, "pk")); |
| sqlite3ReleaseTempReg(pParse, r1); |
| disableTerm(pLevel, pStart); |
| }else{ |
| sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, brk); |
| } |
| if( pEnd ){ |
| Expr *pX; |
| pX = pEnd->pExpr; |
| assert( pX!=0 ); |
| assert( pEnd->leftCursor==iCur ); |
| pLevel->iMem = ++pParse->nMem; |
| sqlite3ExprCode(pParse, pX->pRight, pLevel->iMem); |
| if( pX->op==TK_LT || pX->op==TK_GT ){ |
| testOp = bRev ? OP_Le : OP_Ge; |
| }else{ |
| testOp = bRev ? OP_Lt : OP_Gt; |
| } |
| disableTerm(pLevel, pEnd); |
| } |
| start = sqlite3VdbeCurrentAddr(v); |
| pLevel->op = bRev ? OP_Prev : OP_Next; |
| pLevel->p1 = iCur; |
| pLevel->p2 = start; |
| if( testOp!=OP_Noop ){ |
| int r1 = sqlite3GetTempReg(pParse); |
| sqlite3VdbeAddOp2(v, OP_Rowid, iCur, r1); |
| /* sqlite3VdbeAddOp2(v, OP_SCopy, pLevel->iMem, 0); */ |
| sqlite3VdbeAddOp3(v, testOp, pLevel->iMem, brk, r1); |
| sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL); |
| sqlite3ReleaseTempReg(pParse, r1); |
| } |
| }else if( pLevel->wsFlags & (WHERE_COLUMN_RANGE|WHERE_COLUMN_EQ) ){ |
| /* Case 3: A scan using an index. |
| ** |
| ** The WHERE clause may contain zero or more equality |
| ** terms ("==" or "IN" operators) that refer to the N |
| ** left-most columns of the index. It may also contain |
| ** inequality constraints (>, <, >= or <=) on the indexed |
| ** column that immediately follows the N equalities. Only |
| ** the right-most column can be an inequality - the rest must |
| ** use the "==" and "IN" operators. For example, if the |
| ** index is on (x,y,z), then the following clauses are all |
| ** optimized: |
| ** |
| ** x=5 |
| ** x=5 AND y=10 |
| ** x=5 AND y<10 |
| ** x=5 AND y>5 AND y<10 |
| ** x=5 AND y=5 AND z<=10 |
| ** |
| ** The z<10 term of the following cannot be used, only |
| ** the x=5 term: |
| ** |
| ** x=5 AND z<10 |
| ** |
| ** N may be zero if there are inequality constraints. |
| ** If there are no inequality constraints, then N is at |
| ** least one. |
| ** |
| ** This case is also used when there are no WHERE clause |
| ** constraints but an index is selected anyway, in order |
| ** to force the output order to conform to an ORDER BY. |
| */ |
| int aStartOp[] = { |
| 0, |
| 0, |
| OP_Rewind, /* 2: (!start_constraints && startEq && !bRev) */ |
| OP_Last, /* 3: (!start_constraints && startEq && bRev) */ |
| OP_MoveGt, /* 4: (start_constraints && !startEq && !bRev) */ |
| OP_MoveLt, /* 5: (start_constraints && !startEq && bRev) */ |
| OP_MoveGe, /* 6: (start_constraints && startEq && !bRev) */ |
| OP_MoveLe /* 7: (start_constraints && startEq && bRev) */ |
| }; |
| int aEndOp[] = { |
| OP_Noop, /* 0: (!end_constraints) */ |
| OP_IdxGE, /* 1: (end_constraints && !bRev) */ |
| OP_IdxLT /* 2: (end_constraints && bRev) */ |
| }; |
| int nEq = pLevel->nEq; |
| int isMinQuery = 0; /* If this is an optimized SELECT min(x).. */ |
| int regBase; /* Base register holding constraint values */ |
| int r1; /* Temp register */ |
| WhereTerm *pRangeStart = 0; /* Inequality constraint at range start */ |
| WhereTerm *pRangeEnd = 0; /* Inequality constraint at range end */ |
| int startEq; /* True if range start uses ==, >= or <= */ |
| int endEq; /* True if range end uses ==, >= or <= */ |
| int start_constraints; /* Start of range is constrained */ |
| int k = pIdx->aiColumn[nEq]; /* Column for inequality constraints */ |
| int nConstraint; /* Number of constraint terms */ |
| int op; |
| |
| /* Generate code to evaluate all constraint terms using == or IN |
| ** and store the values of those terms in an array of registers |
| ** starting at regBase. |
| */ |
| regBase = codeAllEqualityTerms(pParse, pLevel, &wc, notReady, 2); |
| nxt = pLevel->nxt; |
| |
| /* If this loop satisfies a sort order (pOrderBy) request that |
| ** was passed to this function to implement a "SELECT min(x) ..." |
| ** query, then the caller will only allow the loop to run for |
| ** a single iteration. This means that the first row returned |
| ** should not have a NULL value stored in 'x'. If column 'x' is |
| ** the first one after the nEq equality constraints in the index, |
| ** this requires some special handling. |
| */ |
| if( (wctrlFlags&WHERE_ORDERBY_MIN)!=0 |
| && (pLevel->wsFlags&WHERE_ORDERBY) |
| && (pIdx->nColumn>nEq) |
| ){ |
| assert( pOrderBy->nExpr==1 ); |
| assert( pOrderBy->a[0].pExpr->iColumn==pIdx->aiColumn[nEq] ); |
| isMinQuery = 1; |
| } |
| |
| /* Find any inequality constraint terms for the start and end |
| ** of the range. |
| */ |
| if( pLevel->wsFlags & WHERE_TOP_LIMIT ){ |
| pRangeEnd = findTerm(&wc, iCur, k, notReady, (WO_LT|WO_LE), pIdx); |
| } |
| if( pLevel->wsFlags & WHERE_BTM_LIMIT ){ |
| pRangeStart = findTerm(&wc, iCur, k, notReady, (WO_GT|WO_GE), pIdx); |
| } |
| |
| /* If we are doing a reverse order scan on an ascending index, or |
| ** a forward order scan on a descending index, interchange the |
| ** start and end terms (pRangeStart and pRangeEnd). |
| */ |
| if( bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC) ){ |
| SWAP(WhereTerm *, pRangeEnd, pRangeStart); |
| } |
| |
| testcase( pRangeStart && pRangeStart->eOperator & WO_LE ); |
| testcase( pRangeStart && pRangeStart->eOperator & WO_GE ); |
| testcase( pRangeEnd && pRangeEnd->eOperator & WO_LE ); |
| testcase( pRangeEnd && pRangeEnd->eOperator & WO_GE ); |
| startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE); |
| endEq = !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE); |
| start_constraints = pRangeStart || nEq>0; |
| |
| /* Seek the index cursor to the start of the range. */ |
| nConstraint = nEq; |
| if( pRangeStart ){ |
| int dcc = pParse->disableColCache; |
| if( pRangeEnd ){ |
| pParse->disableColCache++; |
| } |
| sqlite3ExprCode(pParse, pRangeStart->pExpr->pRight, regBase+nEq); |
| pParse->disableColCache = dcc; |
| sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, nxt); |
| nConstraint++; |
| }else if( isMinQuery ){ |
| sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq); |
| nConstraint++; |
| startEq = 0; |
| start_constraints = 1; |
| } |
| codeApplyAffinity(pParse, regBase, nConstraint, pIdx); |
| op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev]; |
| assert( op!=0 ); |
| testcase( op==OP_Rewind ); |
| testcase( op==OP_Last ); |
| testcase( op==OP_MoveGt ); |
| testcase( op==OP_MoveGe ); |
| testcase( op==OP_MoveLe ); |
| testcase( op==OP_MoveLt ); |
| sqlite3VdbeAddOp4(v, op, iIdxCur, nxt, regBase, |
| SQLITE_INT_TO_PTR(nConstraint), P4_INT32); |
| |
| /* Load the value for the inequality constraint at the end of the |
| ** range (if any). |
| */ |
| nConstraint = nEq; |
| if( pRangeEnd ){ |
| sqlite3ExprCode(pParse, pRangeEnd->pExpr->pRight, regBase+nEq); |
| sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, nxt); |
| codeApplyAffinity(pParse, regBase, nEq+1, pIdx); |
| nConstraint++; |
| } |
| |
| /* Top of the loop body */ |
| pLevel->p2 = sqlite3VdbeCurrentAddr(v); |
| |
| /* Check if the index cursor is past the end of the range. */ |
| op = aEndOp[(pRangeEnd || nEq) * (1 + bRev)]; |
| testcase( op==OP_Noop ); |
| testcase( op==OP_IdxGE ); |
| testcase( op==OP_IdxLT ); |
| sqlite3VdbeAddOp4(v, op, iIdxCur, nxt, regBase, |
| SQLITE_INT_TO_PTR(nConstraint), P4_INT32); |
| sqlite3VdbeChangeP5(v, endEq!=bRev); |
| |
| /* If there are inequality constraints, check that the value |
| ** of the table column that the inequality contrains is not NULL. |
| ** If it is, jump to the next iteration of the loop. |
| */ |
| r1 = sqlite3GetTempReg(pParse); |
| testcase( pLevel->wsFlags & WHERE_BTM_LIMIT ); |
| testcase( pLevel->wsFlags & WHERE_TOP_LIMIT ); |
| if( pLevel->wsFlags & (WHERE_BTM_LIMIT|WHERE_TOP_LIMIT) ){ |
| sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, nEq, r1); |
| sqlite3VdbeAddOp2(v, OP_IsNull, r1, cont); |
| } |
| |
| /* Seek the table cursor, if required */ |
| if( !omitTable ){ |
| sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, r1); |
| sqlite3VdbeAddOp3(v, OP_MoveGe, iCur, 0, r1); /* Deferred seek */ |
| } |
| sqlite3ReleaseTempReg(pParse, r1); |
| |
| /* Record the instruction used to terminate the loop. Disable |
| ** WHERE clause terms made redundant by the index range scan. |
| */ |
| pLevel->op = bRev ? OP_Prev : OP_Next; |
| pLevel->p1 = iIdxCur; |
| disableTerm(pLevel, pRangeStart); |
| disableTerm(pLevel, pRangeEnd); |
| }else{ |
| /* Case 4: There is no usable index. We must do a complete |
| ** scan of the entire table. |
| */ |
| assert( omitTable==0 ); |
| assert( bRev==0 ); |
| pLevel->op = OP_Next; |
| pLevel->p1 = iCur; |
| pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, OP_Rewind, iCur, brk); |
| pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP; |
| } |
| notReady &= ~getMask(&maskSet, iCur); |
| |
| /* Insert code to test every subexpression that can be completely |
| ** computed using the current set of tables. |
| */ |
| k = 0; |
| for(pTerm=wc.a, j=wc.nTerm; j>0; j--, pTerm++){ |
| Expr *pE; |
| testcase( pTerm->wtFlags & TERM_VIRTUAL ); |
| testcase( pTerm->wtFlags & TERM_CODED ); |
| if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; |
| if( (pTerm->prereqAll & notReady)!=0 ) continue; |
| pE = pTerm->pExpr; |
| assert( pE!=0 ); |
| if( pLevel->iLeftJoin && !ExprHasProperty(pE, EP_FromJoin) ){ |
| continue; |
| } |
| pParse->disableColCache += k; |
| sqlite3ExprIfFalse(pParse, pE, cont, SQLITE_JUMPIFNULL); |
| pParse->disableColCache -= k; |
| k = 1; |
| pTerm->wtFlags |= TERM_CODED; |
| } |
| |
| /* For a LEFT OUTER JOIN, generate code that will record the fact that |
| ** at least one row of the right table has matched the left table. |
| */ |
| if( pLevel->iLeftJoin ){ |
| pLevel->top = sqlite3VdbeCurrentAddr(v); |
| sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin); |
| VdbeComment((v, "record LEFT JOIN hit")); |
| sqlite3ExprClearColumnCache(pParse, pLevel->iTabCur); |
| sqlite3ExprClearColumnCache(pParse, pLevel->iIdxCur); |
| for(pTerm=wc.a, j=0; j<wc.nTerm; j++, pTerm++){ |
| testcase( pTerm->wtFlags & TERM_VIRTUAL ); |
| testcase( pTerm->wtFlags & TERM_CODED ); |
| if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; |
| if( (pTerm->prereqAll & notReady)!=0 ) continue; |
| assert( pTerm->pExpr ); |
| sqlite3ExprIfFalse(pParse, pTerm->pExpr, cont, SQLITE_JUMPIFNULL); |
| pTerm->wtFlags |= TERM_CODED; |
| } |
| } |
| } |
| |
| #ifdef SQLITE_TEST /* For testing and debugging use only */ |
| /* Record in the query plan information about the current table |
| ** and the index used to access it (if any). If the table itself |
| ** is not used, its name is just '{}'. If no index is used |
| ** the index is listed as "{}". If the primary key is used the |
| ** index name is '*'. |
| */ |
| for(i=0; i<pTabList->nSrc; i++){ |
| char *z; |
| int n; |
| pLevel = &pWInfo->a[i]; |
| pTabItem = &pTabList->a[pLevel->iFrom]; |
| z = pTabItem->zAlias; |
| if( z==0 ) z = pTabItem->pTab->zName; |
| n = strlen(z); |
| if( n+nQPlan < sizeof(sqlite3_query_plan)-10 ){ |
| if( pLevel->wsFlags & WHERE_IDX_ONLY ){ |
| memcpy(&sqlite3_query_plan[nQPlan], "{}", 2); |
| nQPlan += 2; |
| }else{ |
| memcpy(&sqlite3_query_plan[nQPlan], z, n); |
| nQPlan += n; |
| } |
| sqlite3_query_plan[nQPlan++] = ' '; |
| } |
| testcase( pLevel->wsFlags & WHERE_ROWID_EQ ); |
| testcase( pLevel->wsFlags & WHERE_ROWID_RANGE ); |
| if( pLevel->wsFlags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){ |
| memcpy(&sqlite3_query_plan[nQPlan], "* ", 2); |
| nQPlan += 2; |
| }else if( pLevel->pIdx==0 ){ |
| memcpy(&sqlite3_query_plan[nQPlan], "{} ", 3); |
| nQPlan += 3; |
| }else{ |
| n = strlen(pLevel->pIdx->zName); |
| if( n+nQPlan < sizeof(sqlite3_query_plan)-2 ){ |
| memcpy(&sqlite3_query_plan[nQPlan], pLevel->pIdx->zName, n); |
| nQPlan += n; |
| sqlite3_query_plan[nQPlan++] = ' '; |
| } |
| } |
| } |
| while( nQPlan>0 && sqlite3_query_plan[nQPlan-1]==' ' ){ |
| sqlite3_query_plan[--nQPlan] = 0; |
| } |
| sqlite3_query_plan[nQPlan] = 0; |
| nQPlan = 0; |
| #endif /* SQLITE_TEST // Testing and debugging use only */ |
| |
| /* Record the continuation address in the WhereInfo structure. Then |
| ** clean up and return. |
| */ |
| pWInfo->iContinue = cont; |
| whereClauseClear(&wc); |
| return pWInfo; |
| |
| /* Jump here if malloc fails */ |
| whereBeginError: |
| whereClauseClear(&wc); |
| whereInfoFree(db, pWInfo); |
| return 0; |
| } |
| |
| /* |
| ** Generate the end of the WHERE loop. See comments on |
| ** sqlite3WhereBegin() for additional information. |
| */ |
| void sqlite3WhereEnd(WhereInfo *pWInfo){ |
| Parse *pParse = pWInfo->pParse; |
| Vdbe *v = pParse->pVdbe; |
| int i; |
| WhereLevel *pLevel; |
| SrcList *pTabList = pWInfo->pTabList; |
| sqlite3 *db = pParse->db; |
| |
| /* Generate loop termination code. |
| */ |
| sqlite3ExprClearColumnCache(pParse, -1); |
| for(i=pTabList->nSrc-1; i>=0; i--){ |
| pLevel = &pWInfo->a[i]; |
| sqlite3VdbeResolveLabel(v, pLevel->cont); |
| if( pLevel->op!=OP_Noop ){ |
| sqlite3VdbeAddOp2(v, pLevel->op, pLevel->p1, pLevel->p2); |
| sqlite3VdbeChangeP5(v, pLevel->p5); |
| } |
| if( pLevel->nIn ){ |
| struct InLoop *pIn; |
| int j; |
| sqlite3VdbeResolveLabel(v, pLevel->nxt); |
| for(j=pLevel->nIn, pIn=&pLevel->aInLoop[j-1]; j>0; j--, pIn--){ |
| sqlite3VdbeJumpHere(v, pIn->topAddr+1); |
| sqlite3VdbeAddOp2(v, OP_Next, pIn->iCur, pIn->topAddr); |
| sqlite3VdbeJumpHere(v, pIn->topAddr-1); |
| } |
| sqlite3DbFree(db, pLevel->aInLoop); |
| } |
| sqlite3VdbeResolveLabel(v, pLevel->brk); |
| if( pLevel->iLeftJoin ){ |
| int addr; |
| addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin); |
| sqlite3VdbeAddOp1(v, OP_NullRow, pTabList->a[i].iCursor); |
| if( pLevel->iIdxCur>=0 ){ |
| sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur); |
| } |
| sqlite3VdbeAddOp2(v, OP_Goto, 0, pLevel->top); |
| sqlite3VdbeJumpHere(v, addr); |
| } |
| } |
| |
| /* The "break" point is here, just past the end of the outer loop. |
| ** Set it. |
| */ |
| sqlite3VdbeResolveLabel(v, pWInfo->iBreak); |
| |
| /* Close all of the cursors that were opened by sqlite3WhereBegin. |
| */ |
| for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){ |
| struct SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom]; |
| Table *pTab = pTabItem->pTab; |
| assert( pTab!=0 ); |
| if( (pTab->tabFlags & TF_Ephemeral)!=0 || pTab->pSelect ) continue; |
| if( !pWInfo->okOnePass && (pLevel->wsFlags & WHERE_IDX_ONLY)==0 ){ |
| sqlite3VdbeAddOp1(v, OP_Close, pTabItem->iCursor); |
| } |
| if( pLevel->pIdx!=0 ){ |
| sqlite3VdbeAddOp1(v, OP_Close, pLevel->iIdxCur); |
| } |
| |
| /* If this scan uses an index, make code substitutions to read data |
| ** from the index in preference to the table. Sometimes, this means |
| ** the table need never be read from. This is a performance boost, |
| ** as the vdbe level waits until the table is read before actually |
| ** seeking the table cursor to the record corresponding to the current |
| ** position in the index. |
| ** |
| ** Calls to the code generator in between sqlite3WhereBegin and |
| ** sqlite3WhereEnd will have created code that references the table |
| ** directly. This loop scans all that code looking for opcodes |
| ** that reference the table and converts them into opcodes that |
| ** reference the index. |
| */ |
| if( pLevel->pIdx ){ |
| int k, j, last; |
| VdbeOp *pOp; |
| Index *pIdx = pLevel->pIdx; |
| int useIndexOnly = pLevel->wsFlags & WHERE_IDX_ONLY; |
| |
| assert( pIdx!=0 ); |
| pOp = sqlite3VdbeGetOp(v, pWInfo->iTop); |
| last = sqlite3VdbeCurrentAddr(v); |
| for(k=pWInfo->iTop; k<last; k++, pOp++){ |
| if( pOp->p1!=pLevel->iTabCur ) continue; |
| if( pOp->opcode==OP_Column ){ |
| for(j=0; j<pIdx->nColumn; j++){ |
| if( pOp->p2==pIdx->aiColumn[j] ){ |
| pOp->p2 = j; |
| pOp->p1 = pLevel->iIdxCur; |
| break; |
| } |
| } |
| assert(!useIndexOnly || j<pIdx->nColumn); |
| }else if( pOp->opcode==OP_Rowid ){ |
| pOp->p1 = pLevel->iIdxCur; |
| pOp->opcode = OP_IdxRowid; |
| }else if( pOp->opcode==OP_NullRow && useIndexOnly ){ |
| pOp->opcode = OP_Noop; |
| } |
| } |
| } |
| } |
| |
| /* Final cleanup |
| */ |
| whereInfoFree(db, pWInfo); |
| return; |
| } |