| /* |
| ** 2003 September 6 |
| ** |
| ** The author disclaims copyright to this source code. In place of |
| ** a legal notice, here is a blessing: |
| ** |
| ** May you do good and not evil. |
| ** May you find forgiveness for yourself and forgive others. |
| ** May you share freely, never taking more than you give. |
| ** |
| ************************************************************************* |
| ** This file contains code used for creating, destroying, and populating |
| ** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.) Prior |
| ** to version 2.8.7, all this code was combined into the vdbe.c source file. |
| ** But that file was getting too big so this subroutines were split out. |
| ** |
| ** $Id: vdbeaux.c,v 1.423 2008/12/05 15:24:17 drh Exp $ |
| */ |
| #include "sqliteInt.h" |
| #include <ctype.h> |
| #include "vdbeInt.h" |
| |
| |
| |
| /* |
| ** When debugging the code generator in a symbolic debugger, one can |
| ** set the sqlite3VdbeAddopTrace to 1 and all opcodes will be printed |
| ** as they are added to the instruction stream. |
| */ |
| #ifdef SQLITE_DEBUG |
| int sqlite3VdbeAddopTrace = 0; |
| #endif |
| |
| |
| /* |
| ** Create a new virtual database engine. |
| */ |
| Vdbe *sqlite3VdbeCreate(sqlite3 *db){ |
| Vdbe *p; |
| p = sqlite3DbMallocZero(db, sizeof(Vdbe) ); |
| if( p==0 ) return 0; |
| p->db = db; |
| if( db->pVdbe ){ |
| db->pVdbe->pPrev = p; |
| } |
| p->pNext = db->pVdbe; |
| p->pPrev = 0; |
| db->pVdbe = p; |
| p->magic = VDBE_MAGIC_INIT; |
| return p; |
| } |
| |
| /* |
| ** Remember the SQL string for a prepared statement. |
| */ |
| void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n){ |
| if( p==0 ) return; |
| assert( p->zSql==0 ); |
| p->zSql = sqlite3DbStrNDup(p->db, z, n); |
| } |
| |
| /* |
| ** Return the SQL associated with a prepared statement |
| */ |
| const char *sqlite3_sql(sqlite3_stmt *pStmt){ |
| return ((Vdbe *)pStmt)->zSql; |
| } |
| |
| /* |
| ** Swap all content between two VDBE structures. |
| */ |
| void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){ |
| Vdbe tmp, *pTmp; |
| char *zTmp; |
| int nTmp; |
| tmp = *pA; |
| *pA = *pB; |
| *pB = tmp; |
| pTmp = pA->pNext; |
| pA->pNext = pB->pNext; |
| pB->pNext = pTmp; |
| pTmp = pA->pPrev; |
| pA->pPrev = pB->pPrev; |
| pB->pPrev = pTmp; |
| zTmp = pA->zSql; |
| pA->zSql = pB->zSql; |
| pB->zSql = zTmp; |
| nTmp = pA->nSql; |
| pA->nSql = pB->nSql; |
| pB->nSql = nTmp; |
| } |
| |
| #ifdef SQLITE_DEBUG |
| /* |
| ** Turn tracing on or off |
| */ |
| void sqlite3VdbeTrace(Vdbe *p, FILE *trace){ |
| p->trace = trace; |
| } |
| #endif |
| |
| /* |
| ** Resize the Vdbe.aOp array so that it is at least one op larger than |
| ** it was. |
| ** |
| ** If an out-of-memory error occurs while resizing the array, return |
| ** SQLITE_NOMEM. In this case Vdbe.aOp and Vdbe.nOpAlloc remain |
| ** unchanged (this is so that any opcodes already allocated can be |
| ** correctly deallocated along with the rest of the Vdbe). |
| */ |
| static int growOpArray(Vdbe *p){ |
| VdbeOp *pNew; |
| int nNew = (p->nOpAlloc ? p->nOpAlloc*2 : (int)(1024/sizeof(Op))); |
| pNew = sqlite3DbRealloc(p->db, p->aOp, nNew*sizeof(Op)); |
| if( pNew ){ |
| p->nOpAlloc = nNew; |
| p->aOp = pNew; |
| } |
| return (pNew ? SQLITE_OK : SQLITE_NOMEM); |
| } |
| |
| /* |
| ** Add a new instruction to the list of instructions current in the |
| ** VDBE. Return the address of the new instruction. |
| ** |
| ** Parameters: |
| ** |
| ** p Pointer to the VDBE |
| ** |
| ** op The opcode for this instruction |
| ** |
| ** p1, p2, p3 Operands |
| ** |
| ** Use the sqlite3VdbeResolveLabel() function to fix an address and |
| ** the sqlite3VdbeChangeP4() function to change the value of the P4 |
| ** operand. |
| */ |
| int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){ |
| int i; |
| VdbeOp *pOp; |
| |
| i = p->nOp; |
| assert( p->magic==VDBE_MAGIC_INIT ); |
| if( p->nOpAlloc<=i ){ |
| if( growOpArray(p) ){ |
| return 0; |
| } |
| } |
| p->nOp++; |
| pOp = &p->aOp[i]; |
| pOp->opcode = op; |
| pOp->p5 = 0; |
| pOp->p1 = p1; |
| pOp->p2 = p2; |
| pOp->p3 = p3; |
| pOp->p4.p = 0; |
| pOp->p4type = P4_NOTUSED; |
| p->expired = 0; |
| #ifdef SQLITE_DEBUG |
| pOp->zComment = 0; |
| if( sqlite3VdbeAddopTrace ) sqlite3VdbePrintOp(0, i, &p->aOp[i]); |
| #endif |
| #ifdef VDBE_PROFILE |
| pOp->cycles = 0; |
| pOp->cnt = 0; |
| #endif |
| return i; |
| } |
| int sqlite3VdbeAddOp0(Vdbe *p, int op){ |
| return sqlite3VdbeAddOp3(p, op, 0, 0, 0); |
| } |
| int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){ |
| return sqlite3VdbeAddOp3(p, op, p1, 0, 0); |
| } |
| int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){ |
| return sqlite3VdbeAddOp3(p, op, p1, p2, 0); |
| } |
| |
| |
| /* |
| ** Add an opcode that includes the p4 value as a pointer. |
| */ |
| int sqlite3VdbeAddOp4( |
| Vdbe *p, /* Add the opcode to this VM */ |
| int op, /* The new opcode */ |
| int p1, /* The P1 operand */ |
| int p2, /* The P2 operand */ |
| int p3, /* The P3 operand */ |
| const char *zP4, /* The P4 operand */ |
| int p4type /* P4 operand type */ |
| ){ |
| int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3); |
| sqlite3VdbeChangeP4(p, addr, zP4, p4type); |
| return addr; |
| } |
| |
| /* |
| ** Create a new symbolic label for an instruction that has yet to be |
| ** coded. The symbolic label is really just a negative number. The |
| ** label can be used as the P2 value of an operation. Later, when |
| ** the label is resolved to a specific address, the VDBE will scan |
| ** through its operation list and change all values of P2 which match |
| ** the label into the resolved address. |
| ** |
| ** The VDBE knows that a P2 value is a label because labels are |
| ** always negative and P2 values are suppose to be non-negative. |
| ** Hence, a negative P2 value is a label that has yet to be resolved. |
| ** |
| ** Zero is returned if a malloc() fails. |
| */ |
| int sqlite3VdbeMakeLabel(Vdbe *p){ |
| int i; |
| i = p->nLabel++; |
| assert( p->magic==VDBE_MAGIC_INIT ); |
| if( i>=p->nLabelAlloc ){ |
| int n = p->nLabelAlloc*2 + 5; |
| p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel, |
| n*sizeof(p->aLabel[0])); |
| p->nLabelAlloc = sqlite3DbMallocSize(p->db, p->aLabel)/sizeof(p->aLabel[0]); |
| } |
| if( p->aLabel ){ |
| p->aLabel[i] = -1; |
| } |
| return -1-i; |
| } |
| |
| /* |
| ** Resolve label "x" to be the address of the next instruction to |
| ** be inserted. The parameter "x" must have been obtained from |
| ** a prior call to sqlite3VdbeMakeLabel(). |
| */ |
| void sqlite3VdbeResolveLabel(Vdbe *p, int x){ |
| int j = -1-x; |
| assert( p->magic==VDBE_MAGIC_INIT ); |
| assert( j>=0 && j<p->nLabel ); |
| if( p->aLabel ){ |
| p->aLabel[j] = p->nOp; |
| } |
| } |
| |
| /* |
| ** Loop through the program looking for P2 values that are negative |
| ** on jump instructions. Each such value is a label. Resolve the |
| ** label by setting the P2 value to its correct non-zero value. |
| ** |
| ** This routine is called once after all opcodes have been inserted. |
| ** |
| ** Variable *pMaxFuncArgs is set to the maximum value of any P2 argument |
| ** to an OP_Function, OP_AggStep or OP_VFilter opcode. This is used by |
| ** sqlite3VdbeMakeReady() to size the Vdbe.apArg[] array. |
| ** |
| ** This routine also does the following optimization: It scans for |
| ** instructions that might cause a statement rollback. Such instructions |
| ** are: |
| ** |
| ** * OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort. |
| ** * OP_Destroy |
| ** * OP_VUpdate |
| ** * OP_VRename |
| ** |
| ** If no such instruction is found, then every Statement instruction |
| ** is changed to a Noop. In this way, we avoid creating the statement |
| ** journal file unnecessarily. |
| */ |
| static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){ |
| int i; |
| int nMaxArgs = 0; |
| Op *pOp; |
| int *aLabel = p->aLabel; |
| int doesStatementRollback = 0; |
| int hasStatementBegin = 0; |
| p->readOnly = 1; |
| p->usesStmtJournal = 0; |
| for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){ |
| u8 opcode = pOp->opcode; |
| |
| if( opcode==OP_Function || opcode==OP_AggStep ){ |
| if( pOp->p5>nMaxArgs ) nMaxArgs = pOp->p5; |
| #ifndef SQLITE_OMIT_VIRTUALTABLE |
| }else if( opcode==OP_VUpdate ){ |
| if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2; |
| #endif |
| } |
| if( opcode==OP_Halt ){ |
| if( pOp->p1==SQLITE_CONSTRAINT && pOp->p2==OE_Abort ){ |
| doesStatementRollback = 1; |
| } |
| }else if( opcode==OP_Statement ){ |
| hasStatementBegin = 1; |
| p->usesStmtJournal = 1; |
| }else if( opcode==OP_Destroy ){ |
| doesStatementRollback = 1; |
| }else if( opcode==OP_Transaction && pOp->p2!=0 ){ |
| p->readOnly = 0; |
| #ifndef SQLITE_OMIT_VIRTUALTABLE |
| }else if( opcode==OP_VUpdate || opcode==OP_VRename ){ |
| doesStatementRollback = 1; |
| }else if( opcode==OP_VFilter ){ |
| int n; |
| assert( p->nOp - i >= 3 ); |
| assert( pOp[-1].opcode==OP_Integer ); |
| n = pOp[-1].p1; |
| if( n>nMaxArgs ) nMaxArgs = n; |
| #endif |
| } |
| |
| if( sqlite3VdbeOpcodeHasProperty(opcode, OPFLG_JUMP) && pOp->p2<0 ){ |
| assert( -1-pOp->p2<p->nLabel ); |
| pOp->p2 = aLabel[-1-pOp->p2]; |
| } |
| } |
| sqlite3DbFree(p->db, p->aLabel); |
| p->aLabel = 0; |
| |
| *pMaxFuncArgs = nMaxArgs; |
| |
| /* If we never rollback a statement transaction, then statement |
| ** transactions are not needed. So change every OP_Statement |
| ** opcode into an OP_Noop. This avoid a call to sqlite3OsOpenExclusive() |
| ** which can be expensive on some platforms. |
| */ |
| if( hasStatementBegin && !doesStatementRollback ){ |
| p->usesStmtJournal = 0; |
| for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){ |
| if( pOp->opcode==OP_Statement ){ |
| pOp->opcode = OP_Noop; |
| } |
| } |
| } |
| } |
| |
| /* |
| ** Return the address of the next instruction to be inserted. |
| */ |
| int sqlite3VdbeCurrentAddr(Vdbe *p){ |
| assert( p->magic==VDBE_MAGIC_INIT ); |
| return p->nOp; |
| } |
| |
| /* |
| ** Add a whole list of operations to the operation stack. Return the |
| ** address of the first operation added. |
| */ |
| int sqlite3VdbeAddOpList(Vdbe *p, int nOp, VdbeOpList const *aOp){ |
| int addr; |
| assert( p->magic==VDBE_MAGIC_INIT ); |
| if( p->nOp + nOp > p->nOpAlloc && growOpArray(p) ){ |
| return 0; |
| } |
| addr = p->nOp; |
| if( nOp>0 ){ |
| int i; |
| VdbeOpList const *pIn = aOp; |
| for(i=0; i<nOp; i++, pIn++){ |
| int p2 = pIn->p2; |
| VdbeOp *pOut = &p->aOp[i+addr]; |
| pOut->opcode = pIn->opcode; |
| pOut->p1 = pIn->p1; |
| if( p2<0 && sqlite3VdbeOpcodeHasProperty(pOut->opcode, OPFLG_JUMP) ){ |
| pOut->p2 = addr + ADDR(p2); |
| }else{ |
| pOut->p2 = p2; |
| } |
| pOut->p3 = pIn->p3; |
| pOut->p4type = P4_NOTUSED; |
| pOut->p4.p = 0; |
| pOut->p5 = 0; |
| #ifdef SQLITE_DEBUG |
| pOut->zComment = 0; |
| if( sqlite3VdbeAddopTrace ){ |
| sqlite3VdbePrintOp(0, i+addr, &p->aOp[i+addr]); |
| } |
| #endif |
| } |
| p->nOp += nOp; |
| } |
| return addr; |
| } |
| |
| /* |
| ** Change the value of the P1 operand for a specific instruction. |
| ** This routine is useful when a large program is loaded from a |
| ** static array using sqlite3VdbeAddOpList but we want to make a |
| ** few minor changes to the program. |
| */ |
| void sqlite3VdbeChangeP1(Vdbe *p, int addr, int val){ |
| assert( p==0 || p->magic==VDBE_MAGIC_INIT ); |
| if( p && addr>=0 && p->nOp>addr && p->aOp ){ |
| p->aOp[addr].p1 = val; |
| } |
| } |
| |
| /* |
| ** Change the value of the P2 operand for a specific instruction. |
| ** This routine is useful for setting a jump destination. |
| */ |
| void sqlite3VdbeChangeP2(Vdbe *p, int addr, int val){ |
| assert( p==0 || p->magic==VDBE_MAGIC_INIT ); |
| if( p && addr>=0 && p->nOp>addr && p->aOp ){ |
| p->aOp[addr].p2 = val; |
| } |
| } |
| |
| /* |
| ** Change the value of the P3 operand for a specific instruction. |
| */ |
| void sqlite3VdbeChangeP3(Vdbe *p, int addr, int val){ |
| assert( p==0 || p->magic==VDBE_MAGIC_INIT ); |
| if( p && addr>=0 && p->nOp>addr && p->aOp ){ |
| p->aOp[addr].p3 = val; |
| } |
| } |
| |
| /* |
| ** Change the value of the P5 operand for the most recently |
| ** added operation. |
| */ |
| void sqlite3VdbeChangeP5(Vdbe *p, u8 val){ |
| assert( p==0 || p->magic==VDBE_MAGIC_INIT ); |
| if( p && p->aOp ){ |
| assert( p->nOp>0 ); |
| p->aOp[p->nOp-1].p5 = val; |
| } |
| } |
| |
| /* |
| ** Change the P2 operand of instruction addr so that it points to |
| ** the address of the next instruction to be coded. |
| */ |
| void sqlite3VdbeJumpHere(Vdbe *p, int addr){ |
| sqlite3VdbeChangeP2(p, addr, p->nOp); |
| } |
| |
| |
| /* |
| ** If the input FuncDef structure is ephemeral, then free it. If |
| ** the FuncDef is not ephermal, then do nothing. |
| */ |
| static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){ |
| if( pDef && (pDef->flags & SQLITE_FUNC_EPHEM)!=0 ){ |
| sqlite3DbFree(db, pDef); |
| } |
| } |
| |
| /* |
| ** Delete a P4 value if necessary. |
| */ |
| static void freeP4(sqlite3 *db, int p4type, void *p4){ |
| if( p4 ){ |
| switch( p4type ){ |
| case P4_REAL: |
| case P4_INT64: |
| case P4_MPRINTF: |
| case P4_DYNAMIC: |
| case P4_KEYINFO: |
| case P4_INTARRAY: |
| case P4_KEYINFO_HANDOFF: { |
| sqlite3DbFree(db, p4); |
| break; |
| } |
| case P4_VDBEFUNC: { |
| VdbeFunc *pVdbeFunc = (VdbeFunc *)p4; |
| freeEphemeralFunction(db, pVdbeFunc->pFunc); |
| sqlite3VdbeDeleteAuxData(pVdbeFunc, 0); |
| sqlite3DbFree(db, pVdbeFunc); |
| break; |
| } |
| case P4_FUNCDEF: { |
| freeEphemeralFunction(db, (FuncDef*)p4); |
| break; |
| } |
| case P4_MEM: { |
| sqlite3ValueFree((sqlite3_value*)p4); |
| break; |
| } |
| } |
| } |
| } |
| |
| |
| /* |
| ** Change N opcodes starting at addr to No-ops. |
| */ |
| void sqlite3VdbeChangeToNoop(Vdbe *p, int addr, int N){ |
| if( p && p->aOp ){ |
| VdbeOp *pOp = &p->aOp[addr]; |
| sqlite3 *db = p->db; |
| while( N-- ){ |
| freeP4(db, pOp->p4type, pOp->p4.p); |
| memset(pOp, 0, sizeof(pOp[0])); |
| pOp->opcode = OP_Noop; |
| pOp++; |
| } |
| } |
| } |
| |
| /* |
| ** Change the value of the P4 operand for a specific instruction. |
| ** This routine is useful when a large program is loaded from a |
| ** static array using sqlite3VdbeAddOpList but we want to make a |
| ** few minor changes to the program. |
| ** |
| ** If n>=0 then the P4 operand is dynamic, meaning that a copy of |
| ** the string is made into memory obtained from sqlite3_malloc(). |
| ** A value of n==0 means copy bytes of zP4 up to and including the |
| ** first null byte. If n>0 then copy n+1 bytes of zP4. |
| ** |
| ** If n==P4_KEYINFO it means that zP4 is a pointer to a KeyInfo structure. |
| ** A copy is made of the KeyInfo structure into memory obtained from |
| ** sqlite3_malloc, to be freed when the Vdbe is finalized. |
| ** n==P4_KEYINFO_HANDOFF indicates that zP4 points to a KeyInfo structure |
| ** stored in memory that the caller has obtained from sqlite3_malloc. The |
| ** caller should not free the allocation, it will be freed when the Vdbe is |
| ** finalized. |
| ** |
| ** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points |
| ** to a string or structure that is guaranteed to exist for the lifetime of |
| ** the Vdbe. In these cases we can just copy the pointer. |
| ** |
| ** If addr<0 then change P4 on the most recently inserted instruction. |
| */ |
| void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){ |
| Op *pOp; |
| sqlite3 *db; |
| assert( p!=0 ); |
| db = p->db; |
| assert( p->magic==VDBE_MAGIC_INIT ); |
| if( p->aOp==0 || db->mallocFailed ){ |
| if (n != P4_KEYINFO) { |
| freeP4(db, n, (void*)*(char**)&zP4); |
| } |
| return; |
| } |
| assert( addr<p->nOp ); |
| if( addr<0 ){ |
| addr = p->nOp - 1; |
| if( addr<0 ) return; |
| } |
| pOp = &p->aOp[addr]; |
| freeP4(db, pOp->p4type, pOp->p4.p); |
| pOp->p4.p = 0; |
| if( n==P4_INT32 ){ |
| /* Note: this cast is safe, because the origin data point was an int |
| ** that was cast to a (const char *). */ |
| pOp->p4.i = SQLITE_PTR_TO_INT(zP4); |
| pOp->p4type = n; |
| }else if( zP4==0 ){ |
| pOp->p4.p = 0; |
| pOp->p4type = P4_NOTUSED; |
| }else if( n==P4_KEYINFO ){ |
| KeyInfo *pKeyInfo; |
| int nField, nByte; |
| |
| nField = ((KeyInfo*)zP4)->nField; |
| nByte = sizeof(*pKeyInfo) + (nField-1)*sizeof(pKeyInfo->aColl[0]) + nField; |
| pKeyInfo = sqlite3Malloc( nByte ); |
| pOp->p4.pKeyInfo = pKeyInfo; |
| if( pKeyInfo ){ |
| u8 *aSortOrder; |
| memcpy(pKeyInfo, zP4, nByte); |
| aSortOrder = pKeyInfo->aSortOrder; |
| if( aSortOrder ){ |
| pKeyInfo->aSortOrder = (unsigned char*)&pKeyInfo->aColl[nField]; |
| memcpy(pKeyInfo->aSortOrder, aSortOrder, nField); |
| } |
| pOp->p4type = P4_KEYINFO; |
| }else{ |
| p->db->mallocFailed = 1; |
| pOp->p4type = P4_NOTUSED; |
| } |
| }else if( n==P4_KEYINFO_HANDOFF ){ |
| pOp->p4.p = (void*)zP4; |
| pOp->p4type = P4_KEYINFO; |
| }else if( n<0 ){ |
| pOp->p4.p = (void*)zP4; |
| pOp->p4type = n; |
| }else{ |
| if( n==0 ) n = strlen(zP4); |
| pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n); |
| pOp->p4type = P4_DYNAMIC; |
| } |
| } |
| |
| #ifndef NDEBUG |
| /* |
| ** Change the comment on the the most recently coded instruction. Or |
| ** insert a No-op and add the comment to that new instruction. This |
| ** makes the code easier to read during debugging. None of this happens |
| ** in a production build. |
| */ |
| void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){ |
| va_list ap; |
| assert( p->nOp>0 || p->aOp==0 ); |
| assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed ); |
| if( p->nOp ){ |
| char **pz = &p->aOp[p->nOp-1].zComment; |
| va_start(ap, zFormat); |
| sqlite3DbFree(p->db, *pz); |
| *pz = sqlite3VMPrintf(p->db, zFormat, ap); |
| va_end(ap); |
| } |
| } |
| void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){ |
| va_list ap; |
| sqlite3VdbeAddOp0(p, OP_Noop); |
| assert( p->nOp>0 || p->aOp==0 ); |
| assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed ); |
| if( p->nOp ){ |
| char **pz = &p->aOp[p->nOp-1].zComment; |
| va_start(ap, zFormat); |
| sqlite3DbFree(p->db, *pz); |
| *pz = sqlite3VMPrintf(p->db, zFormat, ap); |
| va_end(ap); |
| } |
| } |
| #endif /* NDEBUG */ |
| |
| /* |
| ** Return the opcode for a given address. |
| */ |
| VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){ |
| assert( p->magic==VDBE_MAGIC_INIT ); |
| assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed ); |
| return ((addr>=0 && addr<p->nOp)?(&p->aOp[addr]):0); |
| } |
| |
| #if !defined(SQLITE_OMIT_EXPLAIN) || !defined(NDEBUG) \ |
| || defined(VDBE_PROFILE) || defined(SQLITE_DEBUG) |
| /* |
| ** Compute a string that describes the P4 parameter for an opcode. |
| ** Use zTemp for any required temporary buffer space. |
| */ |
| static char *displayP4(Op *pOp, char *zTemp, int nTemp){ |
| char *zP4 = zTemp; |
| assert( nTemp>=20 ); |
| switch( pOp->p4type ){ |
| case P4_KEYINFO_STATIC: |
| case P4_KEYINFO: { |
| int i, j; |
| KeyInfo *pKeyInfo = pOp->p4.pKeyInfo; |
| sqlite3_snprintf(nTemp, zTemp, "keyinfo(%d", pKeyInfo->nField); |
| i = strlen(zTemp); |
| for(j=0; j<pKeyInfo->nField; j++){ |
| CollSeq *pColl = pKeyInfo->aColl[j]; |
| if( pColl ){ |
| int n = strlen(pColl->zName); |
| if( i+n>nTemp-6 ){ |
| memcpy(&zTemp[i],",...",4); |
| break; |
| } |
| zTemp[i++] = ','; |
| if( pKeyInfo->aSortOrder && pKeyInfo->aSortOrder[j] ){ |
| zTemp[i++] = '-'; |
| } |
| memcpy(&zTemp[i], pColl->zName,n+1); |
| i += n; |
| }else if( i+4<nTemp-6 ){ |
| memcpy(&zTemp[i],",nil",4); |
| i += 4; |
| } |
| } |
| zTemp[i++] = ')'; |
| zTemp[i] = 0; |
| assert( i<nTemp ); |
| break; |
| } |
| case P4_COLLSEQ: { |
| CollSeq *pColl = pOp->p4.pColl; |
| sqlite3_snprintf(nTemp, zTemp, "collseq(%.20s)", pColl->zName); |
| break; |
| } |
| case P4_FUNCDEF: { |
| FuncDef *pDef = pOp->p4.pFunc; |
| sqlite3_snprintf(nTemp, zTemp, "%s(%d)", pDef->zName, pDef->nArg); |
| break; |
| } |
| case P4_INT64: { |
| sqlite3_snprintf(nTemp, zTemp, "%lld", *pOp->p4.pI64); |
| break; |
| } |
| case P4_INT32: { |
| sqlite3_snprintf(nTemp, zTemp, "%d", pOp->p4.i); |
| break; |
| } |
| case P4_REAL: { |
| sqlite3_snprintf(nTemp, zTemp, "%.16g", *pOp->p4.pReal); |
| break; |
| } |
| case P4_MEM: { |
| Mem *pMem = pOp->p4.pMem; |
| assert( (pMem->flags & MEM_Null)==0 ); |
| if( pMem->flags & MEM_Str ){ |
| zP4 = pMem->z; |
| }else if( pMem->flags & MEM_Int ){ |
| sqlite3_snprintf(nTemp, zTemp, "%lld", pMem->u.i); |
| }else if( pMem->flags & MEM_Real ){ |
| sqlite3_snprintf(nTemp, zTemp, "%.16g", pMem->r); |
| } |
| break; |
| } |
| #ifndef SQLITE_OMIT_VIRTUALTABLE |
| case P4_VTAB: { |
| sqlite3_vtab *pVtab = pOp->p4.pVtab; |
| sqlite3_snprintf(nTemp, zTemp, "vtab:%p:%p", pVtab, pVtab->pModule); |
| break; |
| } |
| #endif |
| case P4_INTARRAY: { |
| sqlite3_snprintf(nTemp, zTemp, "intarray"); |
| break; |
| } |
| default: { |
| zP4 = pOp->p4.z; |
| if( zP4==0 ){ |
| zP4 = zTemp; |
| zTemp[0] = 0; |
| } |
| } |
| } |
| assert( zP4!=0 ); |
| return zP4; |
| } |
| #endif |
| |
| /* |
| ** Declare to the Vdbe that the BTree object at db->aDb[i] is used. |
| ** |
| */ |
| void sqlite3VdbeUsesBtree(Vdbe *p, int i){ |
| int mask; |
| assert( i>=0 && i<p->db->nDb ); |
| assert( i<(int)sizeof(p->btreeMask)*8 ); |
| mask = 1<<i; |
| if( (p->btreeMask & mask)==0 ){ |
| p->btreeMask |= mask; |
| sqlite3BtreeMutexArrayInsert(&p->aMutex, p->db->aDb[i].pBt); |
| } |
| } |
| |
| |
| #if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG) |
| /* |
| ** Print a single opcode. This routine is used for debugging only. |
| */ |
| void sqlite3VdbePrintOp(FILE *pOut, int pc, Op *pOp){ |
| char *zP4; |
| char zPtr[50]; |
| static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-4s %.2X %s\n"; |
| if( pOut==0 ) pOut = stdout; |
| zP4 = displayP4(pOp, zPtr, sizeof(zPtr)); |
| fprintf(pOut, zFormat1, pc, |
| sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3, zP4, pOp->p5, |
| #ifdef SQLITE_DEBUG |
| pOp->zComment ? pOp->zComment : "" |
| #else |
| "" |
| #endif |
| ); |
| fflush(pOut); |
| } |
| #endif |
| |
| /* |
| ** Release an array of N Mem elements |
| */ |
| static void releaseMemArray(Mem *p, int N){ |
| if( p && N ){ |
| Mem *pEnd; |
| sqlite3 *db = p->db; |
| int malloc_failed = db->mallocFailed; |
| for(pEnd=&p[N]; p<pEnd; p++){ |
| assert( (&p[1])==pEnd || p[0].db==p[1].db ); |
| |
| /* This block is really an inlined version of sqlite3VdbeMemRelease() |
| ** that takes advantage of the fact that the memory cell value is |
| ** being set to NULL after releasing any dynamic resources. |
| ** |
| ** The justification for duplicating code is that according to |
| ** callgrind, this causes a certain test case to hit the CPU 4.7 |
| ** percent less (x86 linux, gcc version 4.1.2, -O6) than if |
| ** sqlite3MemRelease() were called from here. With -O2, this jumps |
| ** to 6.6 percent. The test case is inserting 1000 rows into a table |
| ** with no indexes using a single prepared INSERT statement, bind() |
| ** and reset(). Inserts are grouped into a transaction. |
| */ |
| if( p->flags&(MEM_Agg|MEM_Dyn) ){ |
| sqlite3VdbeMemRelease(p); |
| }else if( p->zMalloc ){ |
| sqlite3DbFree(db, p->zMalloc); |
| p->zMalloc = 0; |
| } |
| |
| p->flags = MEM_Null; |
| } |
| db->mallocFailed = malloc_failed; |
| } |
| } |
| |
| #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT |
| int sqlite3VdbeReleaseBuffers(Vdbe *p){ |
| int ii; |
| int nFree = 0; |
| assert( sqlite3_mutex_held(p->db->mutex) ); |
| for(ii=1; ii<=p->nMem; ii++){ |
| Mem *pMem = &p->aMem[ii]; |
| if( pMem->flags & MEM_RowSet ){ |
| sqlite3RowSetClear(pMem->u.pRowSet); |
| } |
| if( pMem->z && pMem->flags&MEM_Dyn ){ |
| assert( !pMem->xDel ); |
| nFree += sqlite3DbMallocSize(pMem->db, pMem->z); |
| sqlite3VdbeMemRelease(pMem); |
| } |
| } |
| return nFree; |
| } |
| #endif |
| |
| #ifndef SQLITE_OMIT_EXPLAIN |
| /* |
| ** Give a listing of the program in the virtual machine. |
| ** |
| ** The interface is the same as sqlite3VdbeExec(). But instead of |
| ** running the code, it invokes the callback once for each instruction. |
| ** This feature is used to implement "EXPLAIN". |
| ** |
| ** When p->explain==1, each instruction is listed. When |
| ** p->explain==2, only OP_Explain instructions are listed and these |
| ** are shown in a different format. p->explain==2 is used to implement |
| ** EXPLAIN QUERY PLAN. |
| */ |
| int sqlite3VdbeList( |
| Vdbe *p /* The VDBE */ |
| ){ |
| sqlite3 *db = p->db; |
| int i; |
| int rc = SQLITE_OK; |
| Mem *pMem = p->pResultSet = &p->aMem[1]; |
| |
| assert( p->explain ); |
| if( p->magic!=VDBE_MAGIC_RUN ) return SQLITE_MISUSE; |
| assert( db->magic==SQLITE_MAGIC_BUSY ); |
| assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY || p->rc==SQLITE_NOMEM ); |
| |
| /* Even though this opcode does not use dynamic strings for |
| ** the result, result columns may become dynamic if the user calls |
| ** sqlite3_column_text16(), causing a translation to UTF-16 encoding. |
| */ |
| releaseMemArray(pMem, p->nMem); |
| |
| if( p->rc==SQLITE_NOMEM ){ |
| /* This happens if a malloc() inside a call to sqlite3_column_text() or |
| ** sqlite3_column_text16() failed. */ |
| db->mallocFailed = 1; |
| return SQLITE_ERROR; |
| } |
| |
| do{ |
| i = p->pc++; |
| }while( i<p->nOp && p->explain==2 && p->aOp[i].opcode!=OP_Explain ); |
| if( i>=p->nOp ){ |
| p->rc = SQLITE_OK; |
| rc = SQLITE_DONE; |
| }else if( db->u1.isInterrupted ){ |
| p->rc = SQLITE_INTERRUPT; |
| rc = SQLITE_ERROR; |
| sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(p->rc)); |
| }else{ |
| char *z; |
| Op *pOp = &p->aOp[i]; |
| if( p->explain==1 ){ |
| pMem->flags = MEM_Int; |
| pMem->type = SQLITE_INTEGER; |
| pMem->u.i = i; /* Program counter */ |
| pMem++; |
| |
| pMem->flags = MEM_Static|MEM_Str|MEM_Term; |
| pMem->z = (char*)sqlite3OpcodeName(pOp->opcode); /* Opcode */ |
| assert( pMem->z!=0 ); |
| pMem->n = strlen(pMem->z); |
| pMem->type = SQLITE_TEXT; |
| pMem->enc = SQLITE_UTF8; |
| pMem++; |
| } |
| |
| pMem->flags = MEM_Int; |
| pMem->u.i = pOp->p1; /* P1 */ |
| pMem->type = SQLITE_INTEGER; |
| pMem++; |
| |
| pMem->flags = MEM_Int; |
| pMem->u.i = pOp->p2; /* P2 */ |
| pMem->type = SQLITE_INTEGER; |
| pMem++; |
| |
| if( p->explain==1 ){ |
| pMem->flags = MEM_Int; |
| pMem->u.i = pOp->p3; /* P3 */ |
| pMem->type = SQLITE_INTEGER; |
| pMem++; |
| } |
| |
| if( sqlite3VdbeMemGrow(pMem, 32, 0) ){ /* P4 */ |
| p->db->mallocFailed = 1; |
| return SQLITE_NOMEM; |
| } |
| pMem->flags = MEM_Dyn|MEM_Str|MEM_Term; |
| z = displayP4(pOp, pMem->z, 32); |
| if( z!=pMem->z ){ |
| sqlite3VdbeMemSetStr(pMem, z, -1, SQLITE_UTF8, 0); |
| }else{ |
| assert( pMem->z!=0 ); |
| pMem->n = strlen(pMem->z); |
| pMem->enc = SQLITE_UTF8; |
| } |
| pMem->type = SQLITE_TEXT; |
| pMem++; |
| |
| if( p->explain==1 ){ |
| if( sqlite3VdbeMemGrow(pMem, 4, 0) ){ |
| p->db->mallocFailed = 1; |
| return SQLITE_NOMEM; |
| } |
| pMem->flags = MEM_Dyn|MEM_Str|MEM_Term; |
| pMem->n = 2; |
| sqlite3_snprintf(3, pMem->z, "%.2x", pOp->p5); /* P5 */ |
| pMem->type = SQLITE_TEXT; |
| pMem->enc = SQLITE_UTF8; |
| pMem++; |
| |
| #ifdef SQLITE_DEBUG |
| if( pOp->zComment ){ |
| pMem->flags = MEM_Str|MEM_Term; |
| pMem->z = pOp->zComment; |
| pMem->n = strlen(pMem->z); |
| pMem->enc = SQLITE_UTF8; |
| pMem->type = SQLITE_TEXT; |
| }else |
| #endif |
| { |
| pMem->flags = MEM_Null; /* Comment */ |
| pMem->type = SQLITE_NULL; |
| } |
| } |
| |
| p->nResColumn = 8 - 5*(p->explain-1); |
| p->rc = SQLITE_OK; |
| rc = SQLITE_ROW; |
| } |
| return rc; |
| } |
| #endif /* SQLITE_OMIT_EXPLAIN */ |
| |
| #ifdef SQLITE_DEBUG |
| /* |
| ** Print the SQL that was used to generate a VDBE program. |
| */ |
| void sqlite3VdbePrintSql(Vdbe *p){ |
| int nOp = p->nOp; |
| VdbeOp *pOp; |
| if( nOp<1 ) return; |
| pOp = &p->aOp[0]; |
| if( pOp->opcode==OP_Trace && pOp->p4.z!=0 ){ |
| const char *z = pOp->p4.z; |
| while( isspace(*(u8*)z) ) z++; |
| printf("SQL: [%s]\n", z); |
| } |
| } |
| #endif |
| |
| #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE) |
| /* |
| ** Print an IOTRACE message showing SQL content. |
| */ |
| void sqlite3VdbeIOTraceSql(Vdbe *p){ |
| int nOp = p->nOp; |
| VdbeOp *pOp; |
| if( sqlite3IoTrace==0 ) return; |
| if( nOp<1 ) return; |
| pOp = &p->aOp[0]; |
| if( pOp->opcode==OP_Trace && pOp->p4.z!=0 ){ |
| int i, j; |
| char z[1000]; |
| sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z); |
| for(i=0; isspace((unsigned char)z[i]); i++){} |
| for(j=0; z[i]; i++){ |
| if( isspace((unsigned char)z[i]) ){ |
| if( z[i-1]!=' ' ){ |
| z[j++] = ' '; |
| } |
| }else{ |
| z[j++] = z[i]; |
| } |
| } |
| z[j] = 0; |
| sqlite3IoTrace("SQL %s\n", z); |
| } |
| } |
| #endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */ |
| |
| |
| /* |
| ** Prepare a virtual machine for execution. This involves things such |
| ** as allocating stack space and initializing the program counter. |
| ** After the VDBE has be prepped, it can be executed by one or more |
| ** calls to sqlite3VdbeExec(). |
| ** |
| ** This is the only way to move a VDBE from VDBE_MAGIC_INIT to |
| ** VDBE_MAGIC_RUN. |
| */ |
| void sqlite3VdbeMakeReady( |
| Vdbe *p, /* The VDBE */ |
| int nVar, /* Number of '?' see in the SQL statement */ |
| int nMem, /* Number of memory cells to allocate */ |
| int nCursor, /* Number of cursors to allocate */ |
| int isExplain /* True if the EXPLAIN keywords is present */ |
| ){ |
| int n; |
| sqlite3 *db = p->db; |
| |
| assert( p!=0 ); |
| assert( p->magic==VDBE_MAGIC_INIT ); |
| |
| /* There should be at least one opcode. |
| */ |
| assert( p->nOp>0 ); |
| |
| /* Set the magic to VDBE_MAGIC_RUN sooner rather than later. */ |
| p->magic = VDBE_MAGIC_RUN; |
| |
| /* For each cursor required, also allocate a memory cell. Memory |
| ** cells (nMem+1-nCursor)..nMem, inclusive, will never be used by |
| ** the vdbe program. Instead they are used to allocate space for |
| ** VdbeCursor/BtCursor structures. The blob of memory associated with |
| ** cursor 0 is stored in memory cell nMem. Memory cell (nMem-1) |
| ** stores the blob of memory associated with cursor 1, etc. |
| ** |
| ** See also: allocateCursor(). |
| */ |
| nMem += nCursor; |
| |
| /* |
| ** Allocation space for registers. |
| */ |
| if( p->aMem==0 ){ |
| int nArg; /* Maximum number of args passed to a user function. */ |
| resolveP2Values(p, &nArg); |
| assert( nVar>=0 ); |
| if( isExplain && nMem<10 ){ |
| nMem = 10; |
| } |
| p->aMem = sqlite3DbMallocZero(db, |
| nMem*sizeof(Mem) /* aMem */ |
| + nVar*sizeof(Mem) /* aVar */ |
| + nArg*sizeof(Mem*) /* apArg */ |
| + nVar*sizeof(char*) /* azVar */ |
| + nCursor*sizeof(VdbeCursor*)+1 /* apCsr */ |
| ); |
| if( !db->mallocFailed ){ |
| p->aMem--; /* aMem[] goes from 1..nMem */ |
| p->nMem = nMem; /* not from 0..nMem-1 */ |
| p->aVar = &p->aMem[nMem+1]; |
| p->nVar = nVar; |
| p->okVar = 0; |
| p->apArg = (Mem**)&p->aVar[nVar]; |
| p->azVar = (char**)&p->apArg[nArg]; |
| p->apCsr = (VdbeCursor**)&p->azVar[nVar]; |
| p->nCursor = nCursor; |
| for(n=0; n<nVar; n++){ |
| p->aVar[n].flags = MEM_Null; |
| p->aVar[n].db = db; |
| } |
| for(n=1; n<=nMem; n++){ |
| p->aMem[n].flags = MEM_Null; |
| p->aMem[n].db = db; |
| } |
| } |
| } |
| #ifdef SQLITE_DEBUG |
| for(n=1; n<p->nMem; n++){ |
| assert( p->aMem[n].db==db ); |
| } |
| #endif |
| |
| p->pc = -1; |
| p->rc = SQLITE_OK; |
| p->uniqueCnt = 0; |
| p->errorAction = OE_Abort; |
| p->explain |= isExplain; |
| p->magic = VDBE_MAGIC_RUN; |
| p->nChange = 0; |
| p->cacheCtr = 1; |
| p->minWriteFileFormat = 255; |
| p->openedStatement = 0; |
| #ifdef VDBE_PROFILE |
| { |
| int i; |
| for(i=0; i<p->nOp; i++){ |
| p->aOp[i].cnt = 0; |
| p->aOp[i].cycles = 0; |
| } |
| } |
| #endif |
| } |
| |
| /* |
| ** Close a VDBE cursor and release all the resources that cursor |
| ** happens to hold. |
| */ |
| void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){ |
| if( pCx==0 ){ |
| return; |
| } |
| if( pCx->pBt ){ |
| sqlite3BtreeClose(pCx->pBt); |
| /* The pCx->pCursor will be close automatically, if it exists, by |
| ** the call above. */ |
| }else if( pCx->pCursor ){ |
| sqlite3BtreeCloseCursor(pCx->pCursor); |
| } |
| #ifndef SQLITE_OMIT_VIRTUALTABLE |
| if( pCx->pVtabCursor ){ |
| sqlite3_vtab_cursor *pVtabCursor = pCx->pVtabCursor; |
| const sqlite3_module *pModule = pCx->pModule; |
| p->inVtabMethod = 1; |
| (void)sqlite3SafetyOff(p->db); |
| pModule->xClose(pVtabCursor); |
| (void)sqlite3SafetyOn(p->db); |
| p->inVtabMethod = 0; |
| } |
| #endif |
| if( !pCx->ephemPseudoTable ){ |
| sqlite3DbFree(p->db, pCx->pData); |
| } |
| } |
| |
| /* |
| ** Close all cursors except for VTab cursors that are currently |
| ** in use. |
| */ |
| static void closeAllCursorsExceptActiveVtabs(Vdbe *p){ |
| int i; |
| if( p->apCsr==0 ) return; |
| for(i=0; i<p->nCursor; i++){ |
| VdbeCursor *pC = p->apCsr[i]; |
| if( pC && (!p->inVtabMethod || !pC->pVtabCursor) ){ |
| sqlite3VdbeFreeCursor(p, pC); |
| p->apCsr[i] = 0; |
| } |
| } |
| } |
| |
| /* |
| ** Clean up the VM after execution. |
| ** |
| ** This routine will automatically close any cursors, lists, and/or |
| ** sorters that were left open. It also deletes the values of |
| ** variables in the aVar[] array. |
| */ |
| static void Cleanup(Vdbe *p){ |
| int i; |
| sqlite3 *db = p->db; |
| Mem *pMem; |
| closeAllCursorsExceptActiveVtabs(p); |
| for(pMem=&p->aMem[1], i=1; i<=p->nMem; i++, pMem++){ |
| if( pMem->flags & MEM_RowSet ){ |
| sqlite3RowSetClear(pMem->u.pRowSet); |
| } |
| MemSetTypeFlag(pMem, MEM_Null); |
| } |
| releaseMemArray(&p->aMem[1], p->nMem); |
| if( p->contextStack ){ |
| sqlite3DbFree(db, p->contextStack); |
| } |
| p->contextStack = 0; |
| p->contextStackDepth = 0; |
| p->contextStackTop = 0; |
| sqlite3DbFree(db, p->zErrMsg); |
| p->zErrMsg = 0; |
| p->pResultSet = 0; |
| } |
| |
| /* |
| ** Set the number of result columns that will be returned by this SQL |
| ** statement. This is now set at compile time, rather than during |
| ** execution of the vdbe program so that sqlite3_column_count() can |
| ** be called on an SQL statement before sqlite3_step(). |
| */ |
| void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){ |
| Mem *pColName; |
| int n; |
| sqlite3 *db = p->db; |
| |
| releaseMemArray(p->aColName, p->nResColumn*COLNAME_N); |
| sqlite3DbFree(db, p->aColName); |
| n = nResColumn*COLNAME_N; |
| p->nResColumn = nResColumn; |
| p->aColName = pColName = (Mem*)sqlite3DbMallocZero(db, sizeof(Mem)*n ); |
| if( p->aColName==0 ) return; |
| while( n-- > 0 ){ |
| pColName->flags = MEM_Null; |
| pColName->db = p->db; |
| pColName++; |
| } |
| } |
| |
| /* |
| ** Set the name of the idx'th column to be returned by the SQL statement. |
| ** zName must be a pointer to a nul terminated string. |
| ** |
| ** This call must be made after a call to sqlite3VdbeSetNumCols(). |
| ** |
| ** The final parameter, xDel, must be one of SQLITE_DYNAMIC, SQLITE_STATIC |
| ** or SQLITE_TRANSIENT. If it is SQLITE_DYNAMIC, then the buffer pointed |
| ** to by zName will be freed by sqlite3DbFree() when the vdbe is destroyed. |
| */ |
| int sqlite3VdbeSetColName( |
| Vdbe *p, /* Vdbe being configured */ |
| int idx, /* Index of column zName applies to */ |
| int var, /* One of the COLNAME_* constants */ |
| const char *zName, /* Pointer to buffer containing name */ |
| void (*xDel)(void*) /* Memory management strategy for zName */ |
| ){ |
| int rc; |
| Mem *pColName; |
| assert( idx<p->nResColumn ); |
| assert( var<COLNAME_N ); |
| if( p->db->mallocFailed ){ |
| assert( !zName || xDel!=SQLITE_DYNAMIC ); |
| return SQLITE_NOMEM; |
| } |
| assert( p->aColName!=0 ); |
| pColName = &(p->aColName[idx+var*p->nResColumn]); |
| rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, xDel); |
| assert( rc!=0 || !zName || (pColName->flags&MEM_Term)!=0 ); |
| return rc; |
| } |
| |
| /* |
| ** A read or write transaction may or may not be active on database handle |
| ** db. If a transaction is active, commit it. If there is a |
| ** write-transaction spanning more than one database file, this routine |
| ** takes care of the master journal trickery. |
| */ |
| static int vdbeCommit(sqlite3 *db, Vdbe *p){ |
| int i; |
| int nTrans = 0; /* Number of databases with an active write-transaction */ |
| int rc = SQLITE_OK; |
| int needXcommit = 0; |
| |
| /* Before doing anything else, call the xSync() callback for any |
| ** virtual module tables written in this transaction. This has to |
| ** be done before determining whether a master journal file is |
| ** required, as an xSync() callback may add an attached database |
| ** to the transaction. |
| */ |
| rc = sqlite3VtabSync(db, &p->zErrMsg); |
| if( rc!=SQLITE_OK ){ |
| return rc; |
| } |
| |
| /* This loop determines (a) if the commit hook should be invoked and |
| ** (b) how many database files have open write transactions, not |
| ** including the temp database. (b) is important because if more than |
| ** one database file has an open write transaction, a master journal |
| ** file is required for an atomic commit. |
| */ |
| for(i=0; i<db->nDb; i++){ |
| Btree *pBt = db->aDb[i].pBt; |
| if( sqlite3BtreeIsInTrans(pBt) ){ |
| needXcommit = 1; |
| if( i!=1 ) nTrans++; |
| } |
| } |
| |
| /* If there are any write-transactions at all, invoke the commit hook */ |
| if( needXcommit && db->xCommitCallback ){ |
| (void)sqlite3SafetyOff(db); |
| rc = db->xCommitCallback(db->pCommitArg); |
| (void)sqlite3SafetyOn(db); |
| if( rc ){ |
| return SQLITE_CONSTRAINT; |
| } |
| } |
| |
| /* The simple case - no more than one database file (not counting the |
| ** TEMP database) has a transaction active. There is no need for the |
| ** master-journal. |
| ** |
| ** If the return value of sqlite3BtreeGetFilename() is a zero length |
| ** string, it means the main database is :memory: or a temp file. In |
| ** that case we do not support atomic multi-file commits, so use the |
| ** simple case then too. |
| */ |
| if( 0==strlen(sqlite3BtreeGetFilename(db->aDb[0].pBt)) || nTrans<=1 ){ |
| for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ |
| Btree *pBt = db->aDb[i].pBt; |
| if( pBt ){ |
| rc = sqlite3BtreeCommitPhaseOne(pBt, 0); |
| } |
| } |
| |
| /* Do the commit only if all databases successfully complete phase 1. |
| ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an |
| ** IO error while deleting or truncating a journal file. It is unlikely, |
| ** but could happen. In this case abandon processing and return the error. |
| */ |
| for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ |
| Btree *pBt = db->aDb[i].pBt; |
| if( pBt ){ |
| rc = sqlite3BtreeCommitPhaseTwo(pBt); |
| } |
| } |
| if( rc==SQLITE_OK ){ |
| sqlite3VtabCommit(db); |
| } |
| } |
| |
| /* The complex case - There is a multi-file write-transaction active. |
| ** This requires a master journal file to ensure the transaction is |
| ** committed atomicly. |
| */ |
| #ifndef SQLITE_OMIT_DISKIO |
| else{ |
| sqlite3_vfs *pVfs = db->pVfs; |
| int needSync = 0; |
| char *zMaster = 0; /* File-name for the master journal */ |
| char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt); |
| sqlite3_file *pMaster = 0; |
| i64 offset = 0; |
| int res; |
| |
| /* Select a master journal file name */ |
| do { |
| u32 random; |
| sqlite3DbFree(db, zMaster); |
| sqlite3_randomness(sizeof(random), &random); |
| zMaster = sqlite3MPrintf(db, "%s-mj%08X", zMainFile, random&0x7fffffff); |
| if( !zMaster ){ |
| return SQLITE_NOMEM; |
| } |
| rc = sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS, &res); |
| }while( rc==SQLITE_OK && res ); |
| if( rc==SQLITE_OK ){ |
| /* Open the master journal. */ |
| rc = sqlite3OsOpenMalloc(pVfs, zMaster, &pMaster, |
| SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE| |
| SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_MASTER_JOURNAL, 0 |
| ); |
| } |
| if( rc!=SQLITE_OK ){ |
| sqlite3DbFree(db, zMaster); |
| return rc; |
| } |
| |
| /* Write the name of each database file in the transaction into the new |
| ** master journal file. If an error occurs at this point close |
| ** and delete the master journal file. All the individual journal files |
| ** still have 'null' as the master journal pointer, so they will roll |
| ** back independently if a failure occurs. |
| */ |
| for(i=0; i<db->nDb; i++){ |
| Btree *pBt = db->aDb[i].pBt; |
| if( i==1 ) continue; /* Ignore the TEMP database */ |
| if( sqlite3BtreeIsInTrans(pBt) ){ |
| char const *zFile = sqlite3BtreeGetJournalname(pBt); |
| if( zFile[0]==0 ) continue; /* Ignore :memory: databases */ |
| if( !needSync && !sqlite3BtreeSyncDisabled(pBt) ){ |
| needSync = 1; |
| } |
| rc = sqlite3OsWrite(pMaster, zFile, strlen(zFile)+1, offset); |
| offset += strlen(zFile)+1; |
| if( rc!=SQLITE_OK ){ |
| sqlite3OsCloseFree(pMaster); |
| sqlite3OsDelete(pVfs, zMaster, 0); |
| sqlite3DbFree(db, zMaster); |
| return rc; |
| } |
| } |
| } |
| |
| /* Sync the master journal file. If the IOCAP_SEQUENTIAL device |
| ** flag is set this is not required. |
| */ |
| zMainFile = sqlite3BtreeGetDirname(db->aDb[0].pBt); |
| if( (needSync |
| && (0==(sqlite3OsDeviceCharacteristics(pMaster)&SQLITE_IOCAP_SEQUENTIAL)) |
| && (rc=sqlite3OsSync(pMaster, SQLITE_SYNC_NORMAL))!=SQLITE_OK) ){ |
| sqlite3OsCloseFree(pMaster); |
| sqlite3OsDelete(pVfs, zMaster, 0); |
| sqlite3DbFree(db, zMaster); |
| return rc; |
| } |
| |
| /* Sync all the db files involved in the transaction. The same call |
| ** sets the master journal pointer in each individual journal. If |
| ** an error occurs here, do not delete the master journal file. |
| ** |
| ** If the error occurs during the first call to |
| ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the |
| ** master journal file will be orphaned. But we cannot delete it, |
| ** in case the master journal file name was written into the journal |
| ** file before the failure occured. |
| */ |
| for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ |
| Btree *pBt = db->aDb[i].pBt; |
| if( pBt ){ |
| rc = sqlite3BtreeCommitPhaseOne(pBt, zMaster); |
| } |
| } |
| sqlite3OsCloseFree(pMaster); |
| if( rc!=SQLITE_OK ){ |
| sqlite3DbFree(db, zMaster); |
| return rc; |
| } |
| |
| /* Delete the master journal file. This commits the transaction. After |
| ** doing this the directory is synced again before any individual |
| ** transaction files are deleted. |
| */ |
| rc = sqlite3OsDelete(pVfs, zMaster, 1); |
| sqlite3DbFree(db, zMaster); |
| zMaster = 0; |
| if( rc ){ |
| return rc; |
| } |
| |
| /* All files and directories have already been synced, so the following |
| ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and |
| ** deleting or truncating journals. If something goes wrong while |
| ** this is happening we don't really care. The integrity of the |
| ** transaction is already guaranteed, but some stray 'cold' journals |
| ** may be lying around. Returning an error code won't help matters. |
| */ |
| disable_simulated_io_errors(); |
| sqlite3BeginBenignMalloc(); |
| for(i=0; i<db->nDb; i++){ |
| Btree *pBt = db->aDb[i].pBt; |
| if( pBt ){ |
| sqlite3BtreeCommitPhaseTwo(pBt); |
| } |
| } |
| sqlite3EndBenignMalloc(); |
| enable_simulated_io_errors(); |
| |
| sqlite3VtabCommit(db); |
| } |
| #endif |
| |
| return rc; |
| } |
| |
| /* |
| ** This routine checks that the sqlite3.activeVdbeCnt count variable |
| ** matches the number of vdbe's in the list sqlite3.pVdbe that are |
| ** currently active. An assertion fails if the two counts do not match. |
| ** This is an internal self-check only - it is not an essential processing |
| ** step. |
| ** |
| ** This is a no-op if NDEBUG is defined. |
| */ |
| #ifndef NDEBUG |
| static void checkActiveVdbeCnt(sqlite3 *db){ |
| Vdbe *p; |
| int cnt = 0; |
| int nWrite = 0; |
| p = db->pVdbe; |
| while( p ){ |
| if( p->magic==VDBE_MAGIC_RUN && p->pc>=0 ){ |
| cnt++; |
| if( p->readOnly==0 ) nWrite++; |
| } |
| p = p->pNext; |
| } |
| assert( cnt==db->activeVdbeCnt ); |
| assert( nWrite==db->writeVdbeCnt ); |
| } |
| #else |
| #define checkActiveVdbeCnt(x) |
| #endif |
| |
| /* |
| ** For every Btree that in database connection db which |
| ** has been modified, "trip" or invalidate each cursor in |
| ** that Btree might have been modified so that the cursor |
| ** can never be used again. This happens when a rollback |
| *** occurs. We have to trip all the other cursors, even |
| ** cursor from other VMs in different database connections, |
| ** so that none of them try to use the data at which they |
| ** were pointing and which now may have been changed due |
| ** to the rollback. |
| ** |
| ** Remember that a rollback can delete tables complete and |
| ** reorder rootpages. So it is not sufficient just to save |
| ** the state of the cursor. We have to invalidate the cursor |
| ** so that it is never used again. |
| */ |
| static void invalidateCursorsOnModifiedBtrees(sqlite3 *db){ |
| int i; |
| for(i=0; i<db->nDb; i++){ |
| Btree *p = db->aDb[i].pBt; |
| if( p && sqlite3BtreeIsInTrans(p) ){ |
| sqlite3BtreeTripAllCursors(p, SQLITE_ABORT); |
| } |
| } |
| } |
| |
| /* |
| ** This routine is called the when a VDBE tries to halt. If the VDBE |
| ** has made changes and is in autocommit mode, then commit those |
| ** changes. If a rollback is needed, then do the rollback. |
| ** |
| ** This routine is the only way to move the state of a VM from |
| ** SQLITE_MAGIC_RUN to SQLITE_MAGIC_HALT. It is harmless to |
| ** call this on a VM that is in the SQLITE_MAGIC_HALT state. |
| ** |
| ** Return an error code. If the commit could not complete because of |
| ** lock contention, return SQLITE_BUSY. If SQLITE_BUSY is returned, it |
| ** means the close did not happen and needs to be repeated. |
| */ |
| int sqlite3VdbeHalt(Vdbe *p){ |
| sqlite3 *db = p->db; |
| int i; |
| int (*xFunc)(Btree *pBt) = 0; /* Function to call on each btree backend */ |
| int isSpecialError; /* Set to true if SQLITE_NOMEM or IOERR */ |
| |
| /* This function contains the logic that determines if a statement or |
| ** transaction will be committed or rolled back as a result of the |
| ** execution of this virtual machine. |
| ** |
| ** If any of the following errors occur: |
| ** |
| ** SQLITE_NOMEM |
| ** SQLITE_IOERR |
| ** SQLITE_FULL |
| ** SQLITE_INTERRUPT |
| ** |
| ** Then the internal cache might have been left in an inconsistent |
| ** state. We need to rollback the statement transaction, if there is |
| ** one, or the complete transaction if there is no statement transaction. |
| */ |
| |
| if( p->db->mallocFailed ){ |
| p->rc = SQLITE_NOMEM; |
| } |
| closeAllCursorsExceptActiveVtabs(p); |
| if( p->magic!=VDBE_MAGIC_RUN ){ |
| return SQLITE_OK; |
| } |
| checkActiveVdbeCnt(db); |
| |
| /* No commit or rollback needed if the program never started */ |
| if( p->pc>=0 ){ |
| int mrc; /* Primary error code from p->rc */ |
| |
| /* Lock all btrees used by the statement */ |
| sqlite3BtreeMutexArrayEnter(&p->aMutex); |
| |
| /* Check for one of the special errors */ |
| mrc = p->rc & 0xff; |
| isSpecialError = mrc==SQLITE_NOMEM || mrc==SQLITE_IOERR |
| || mrc==SQLITE_INTERRUPT || mrc==SQLITE_FULL; |
| if( isSpecialError ){ |
| /* If the query was read-only, we need do no rollback at all. Otherwise, |
| ** proceed with the special handling. |
| */ |
| if( !p->readOnly || mrc!=SQLITE_INTERRUPT ){ |
| if( p->rc==SQLITE_IOERR_BLOCKED && p->usesStmtJournal ){ |
| xFunc = sqlite3BtreeRollbackStmt; |
| p->rc = SQLITE_BUSY; |
| }else if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) |
| && p->usesStmtJournal ){ |
| xFunc = sqlite3BtreeRollbackStmt; |
| }else{ |
| /* We are forced to roll back the active transaction. Before doing |
| ** so, abort any other statements this handle currently has active. |
| */ |
| invalidateCursorsOnModifiedBtrees(db); |
| sqlite3RollbackAll(db); |
| db->autoCommit = 1; |
| } |
| } |
| } |
| |
| /* If the auto-commit flag is set and this is the only active vdbe, then |
| ** we do either a commit or rollback of the current transaction. |
| ** |
| ** Note: This block also runs if one of the special errors handled |
| ** above has occurred. |
| */ |
| if( !sqlite3VtabInSync(db) |
| && db->autoCommit |
| && db->writeVdbeCnt==(p->readOnly==0) |
| ){ |
| if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){ |
| /* The auto-commit flag is true, and the vdbe program was |
| ** successful or hit an 'OR FAIL' constraint. This means a commit |
| ** is required. |
| */ |
| int rc = vdbeCommit(db, p); |
| if( rc==SQLITE_BUSY ){ |
| sqlite3BtreeMutexArrayLeave(&p->aMutex); |
| return SQLITE_BUSY; |
| }else if( rc!=SQLITE_OK ){ |
| p->rc = rc; |
| sqlite3RollbackAll(db); |
| }else{ |
| sqlite3CommitInternalChanges(db); |
| } |
| }else{ |
| sqlite3RollbackAll(db); |
| } |
| }else if( !xFunc ){ |
| if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){ |
| if( p->openedStatement ){ |
| xFunc = sqlite3BtreeCommitStmt; |
| } |
| }else if( p->errorAction==OE_Abort ){ |
| xFunc = sqlite3BtreeRollbackStmt; |
| }else{ |
| invalidateCursorsOnModifiedBtrees(db); |
| sqlite3RollbackAll(db); |
| db->autoCommit = 1; |
| } |
| } |
| |
| /* If xFunc is not NULL, then it is one of sqlite3BtreeRollbackStmt or |
| ** sqlite3BtreeCommitStmt. Call it once on each backend. If an error occurs |
| ** and the return code is still SQLITE_OK, set the return code to the new |
| ** error value. |
| */ |
| assert(!xFunc || |
| xFunc==sqlite3BtreeCommitStmt || |
| xFunc==sqlite3BtreeRollbackStmt |
| ); |
| for(i=0; xFunc && i<db->nDb; i++){ |
| int rc; |
| Btree *pBt = db->aDb[i].pBt; |
| if( pBt ){ |
| rc = xFunc(pBt); |
| if( rc && (p->rc==SQLITE_OK || p->rc==SQLITE_CONSTRAINT) ){ |
| p->rc = rc; |
| sqlite3DbFree(db, p->zErrMsg); |
| p->zErrMsg = 0; |
| } |
| } |
| } |
| |
| /* If this was an INSERT, UPDATE or DELETE and the statement was committed, |
| ** set the change counter. |
| */ |
| if( p->changeCntOn && p->pc>=0 ){ |
| if( !xFunc || xFunc==sqlite3BtreeCommitStmt ){ |
| sqlite3VdbeSetChanges(db, p->nChange); |
| }else{ |
| sqlite3VdbeSetChanges(db, 0); |
| } |
| p->nChange = 0; |
| } |
| |
| /* Rollback or commit any schema changes that occurred. */ |
| if( p->rc!=SQLITE_OK && db->flags&SQLITE_InternChanges ){ |
| sqlite3ResetInternalSchema(db, 0); |
| db->flags = (db->flags | SQLITE_InternChanges); |
| } |
| |
| /* Release the locks */ |
| sqlite3BtreeMutexArrayLeave(&p->aMutex); |
| } |
| |
| /* We have successfully halted and closed the VM. Record this fact. */ |
| if( p->pc>=0 ){ |
| db->activeVdbeCnt--; |
| if( !p->readOnly ){ |
| db->writeVdbeCnt--; |
| } |
| assert( db->activeVdbeCnt>=db->writeVdbeCnt ); |
| } |
| p->magic = VDBE_MAGIC_HALT; |
| checkActiveVdbeCnt(db); |
| if( p->db->mallocFailed ){ |
| p->rc = SQLITE_NOMEM; |
| } |
| |
| return SQLITE_OK; |
| } |
| |
| |
| /* |
| ** Each VDBE holds the result of the most recent sqlite3_step() call |
| ** in p->rc. This routine sets that result back to SQLITE_OK. |
| */ |
| void sqlite3VdbeResetStepResult(Vdbe *p){ |
| p->rc = SQLITE_OK; |
| } |
| |
| /* |
| ** Clean up a VDBE after execution but do not delete the VDBE just yet. |
| ** Write any error messages into *pzErrMsg. Return the result code. |
| ** |
| ** After this routine is run, the VDBE should be ready to be executed |
| ** again. |
| ** |
| ** To look at it another way, this routine resets the state of the |
| ** virtual machine from VDBE_MAGIC_RUN or VDBE_MAGIC_HALT back to |
| ** VDBE_MAGIC_INIT. |
| */ |
| int sqlite3VdbeReset(Vdbe *p){ |
| sqlite3 *db; |
| db = p->db; |
| |
| /* If the VM did not run to completion or if it encountered an |
| ** error, then it might not have been halted properly. So halt |
| ** it now. |
| */ |
| (void)sqlite3SafetyOn(db); |
| sqlite3VdbeHalt(p); |
| (void)sqlite3SafetyOff(db); |
| |
| /* If the VDBE has be run even partially, then transfer the error code |
| ** and error message from the VDBE into the main database structure. But |
| ** if the VDBE has just been set to run but has not actually executed any |
| ** instructions yet, leave the main database error information unchanged. |
| */ |
| if( p->pc>=0 ){ |
| if( p->zErrMsg ){ |
| sqlite3BeginBenignMalloc(); |
| sqlite3ValueSetStr(db->pErr,-1,p->zErrMsg,SQLITE_UTF8,SQLITE_TRANSIENT); |
| sqlite3EndBenignMalloc(); |
| db->errCode = p->rc; |
| sqlite3DbFree(db, p->zErrMsg); |
| p->zErrMsg = 0; |
| }else if( p->rc ){ |
| sqlite3Error(db, p->rc, 0); |
| }else{ |
| sqlite3Error(db, SQLITE_OK, 0); |
| } |
| }else if( p->rc && p->expired ){ |
| /* The expired flag was set on the VDBE before the first call |
| ** to sqlite3_step(). For consistency (since sqlite3_step() was |
| ** called), set the database error in this case as well. |
| */ |
| sqlite3Error(db, p->rc, 0); |
| sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT); |
| sqlite3DbFree(db, p->zErrMsg); |
| p->zErrMsg = 0; |
| } |
| |
| /* Reclaim all memory used by the VDBE |
| */ |
| Cleanup(p); |
| |
| /* Save profiling information from this VDBE run. |
| */ |
| #ifdef VDBE_PROFILE |
| { |
| FILE *out = fopen("vdbe_profile.out", "a"); |
| if( out ){ |
| int i; |
| fprintf(out, "---- "); |
| for(i=0; i<p->nOp; i++){ |
| fprintf(out, "%02x", p->aOp[i].opcode); |
| } |
| fprintf(out, "\n"); |
| for(i=0; i<p->nOp; i++){ |
| fprintf(out, "%6d %10lld %8lld ", |
| p->aOp[i].cnt, |
| p->aOp[i].cycles, |
| p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0 |
| ); |
| sqlite3VdbePrintOp(out, i, &p->aOp[i]); |
| } |
| fclose(out); |
| } |
| } |
| #endif |
| p->magic = VDBE_MAGIC_INIT; |
| return p->rc & db->errMask; |
| } |
| |
| /* |
| ** Clean up and delete a VDBE after execution. Return an integer which is |
| ** the result code. Write any error message text into *pzErrMsg. |
| */ |
| int sqlite3VdbeFinalize(Vdbe *p){ |
| int rc = SQLITE_OK; |
| if( p->magic==VDBE_MAGIC_RUN || p->magic==VDBE_MAGIC_HALT ){ |
| rc = sqlite3VdbeReset(p); |
| assert( (rc & p->db->errMask)==rc ); |
| }else if( p->magic!=VDBE_MAGIC_INIT ){ |
| return SQLITE_MISUSE; |
| } |
| sqlite3VdbeDelete(p); |
| return rc; |
| } |
| |
| /* |
| ** Call the destructor for each auxdata entry in pVdbeFunc for which |
| ** the corresponding bit in mask is clear. Auxdata entries beyond 31 |
| ** are always destroyed. To destroy all auxdata entries, call this |
| ** routine with mask==0. |
| */ |
| void sqlite3VdbeDeleteAuxData(VdbeFunc *pVdbeFunc, int mask){ |
| int i; |
| for(i=0; i<pVdbeFunc->nAux; i++){ |
| struct AuxData *pAux = &pVdbeFunc->apAux[i]; |
| if( (i>31 || !(mask&(1<<i))) && pAux->pAux ){ |
| if( pAux->xDelete ){ |
| pAux->xDelete(pAux->pAux); |
| } |
| pAux->pAux = 0; |
| } |
| } |
| } |
| |
| /* |
| ** Delete an entire VDBE. |
| */ |
| void sqlite3VdbeDelete(Vdbe *p){ |
| int i; |
| sqlite3 *db; |
| |
| if( p==0 ) return; |
| db = p->db; |
| if( p->pPrev ){ |
| p->pPrev->pNext = p->pNext; |
| }else{ |
| assert( db->pVdbe==p ); |
| db->pVdbe = p->pNext; |
| } |
| if( p->pNext ){ |
| p->pNext->pPrev = p->pPrev; |
| } |
| if( p->aOp ){ |
| Op *pOp = p->aOp; |
| for(i=0; i<p->nOp; i++, pOp++){ |
| freeP4(db, pOp->p4type, pOp->p4.p); |
| #ifdef SQLITE_DEBUG |
| sqlite3DbFree(db, pOp->zComment); |
| #endif |
| } |
| sqlite3DbFree(db, p->aOp); |
| } |
| releaseMemArray(p->aVar, p->nVar); |
| sqlite3DbFree(db, p->aLabel); |
| if( p->aMem ){ |
| sqlite3DbFree(db, &p->aMem[1]); |
| } |
| releaseMemArray(p->aColName, p->nResColumn*COLNAME_N); |
| sqlite3DbFree(db, p->aColName); |
| sqlite3DbFree(db, p->zSql); |
| p->magic = VDBE_MAGIC_DEAD; |
| sqlite3DbFree(db, p); |
| } |
| |
| /* |
| ** If a MoveTo operation is pending on the given cursor, then do that |
| ** MoveTo now. Return an error code. If no MoveTo is pending, this |
| ** routine does nothing and returns SQLITE_OK. |
| */ |
| int sqlite3VdbeCursorMoveto(VdbeCursor *p){ |
| if( p->deferredMoveto ){ |
| int res, rc; |
| #ifdef SQLITE_TEST |
| extern int sqlite3_search_count; |
| #endif |
| assert( p->isTable ); |
| rc = sqlite3BtreeMovetoUnpacked(p->pCursor, 0, p->movetoTarget, 0, &res); |
| if( rc ) return rc; |
| p->lastRowid = keyToInt(p->movetoTarget); |
| p->rowidIsValid = res==0; |
| if( res<0 ){ |
| rc = sqlite3BtreeNext(p->pCursor, &res); |
| if( rc ) return rc; |
| } |
| #ifdef SQLITE_TEST |
| sqlite3_search_count++; |
| #endif |
| p->deferredMoveto = 0; |
| p->cacheStatus = CACHE_STALE; |
| }else if( p->pCursor ){ |
| int hasMoved; |
| int rc = sqlite3BtreeCursorHasMoved(p->pCursor, &hasMoved); |
| if( rc ) return rc; |
| if( hasMoved ){ |
| p->cacheStatus = CACHE_STALE; |
| p->nullRow = 1; |
| } |
| } |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** The following functions: |
| ** |
| ** sqlite3VdbeSerialType() |
| ** sqlite3VdbeSerialTypeLen() |
| ** sqlite3VdbeSerialLen() |
| ** sqlite3VdbeSerialPut() |
| ** sqlite3VdbeSerialGet() |
| ** |
| ** encapsulate the code that serializes values for storage in SQLite |
| ** data and index records. Each serialized value consists of a |
| ** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned |
| ** integer, stored as a varint. |
| ** |
| ** In an SQLite index record, the serial type is stored directly before |
| ** the blob of data that it corresponds to. In a table record, all serial |
| ** types are stored at the start of the record, and the blobs of data at |
| ** the end. Hence these functions allow the caller to handle the |
| ** serial-type and data blob seperately. |
| ** |
| ** The following table describes the various storage classes for data: |
| ** |
| ** serial type bytes of data type |
| ** -------------- --------------- --------------- |
| ** 0 0 NULL |
| ** 1 1 signed integer |
| ** 2 2 signed integer |
| ** 3 3 signed integer |
| ** 4 4 signed integer |
| ** 5 6 signed integer |
| ** 6 8 signed integer |
| ** 7 8 IEEE float |
| ** 8 0 Integer constant 0 |
| ** 9 0 Integer constant 1 |
| ** 10,11 reserved for expansion |
| ** N>=12 and even (N-12)/2 BLOB |
| ** N>=13 and odd (N-13)/2 text |
| ** |
| ** The 8 and 9 types were added in 3.3.0, file format 4. Prior versions |
| ** of SQLite will not understand those serial types. |
| */ |
| |
| /* |
| ** Return the serial-type for the value stored in pMem. |
| */ |
| u32 sqlite3VdbeSerialType(Mem *pMem, int file_format){ |
| int flags = pMem->flags; |
| int n; |
| |
| if( flags&MEM_Null ){ |
| return 0; |
| } |
| if( flags&MEM_Int ){ |
| /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */ |
| # define MAX_6BYTE ((((i64)0x00008000)<<32)-1) |
| i64 i = pMem->u.i; |
| u64 u; |
| if( file_format>=4 && (i&1)==i ){ |
| return 8+i; |
| } |
| u = i<0 ? -i : i; |
| if( u<=127 ) return 1; |
| if( u<=32767 ) return 2; |
| if( u<=8388607 ) return 3; |
| if( u<=2147483647 ) return 4; |
| if( u<=MAX_6BYTE ) return 5; |
| return 6; |
| } |
| if( flags&MEM_Real ){ |
| return 7; |
| } |
| assert( pMem->db->mallocFailed || flags&(MEM_Str|MEM_Blob) ); |
| n = pMem->n; |
| if( flags & MEM_Zero ){ |
| n += pMem->u.i; |
| } |
| assert( n>=0 ); |
| return ((n*2) + 12 + ((flags&MEM_Str)!=0)); |
| } |
| |
| /* |
| ** Return the length of the data corresponding to the supplied serial-type. |
| */ |
| int sqlite3VdbeSerialTypeLen(u32 serial_type){ |
| if( serial_type>=12 ){ |
| return (serial_type-12)/2; |
| }else{ |
| static const u8 aSize[] = { 0, 1, 2, 3, 4, 6, 8, 8, 0, 0, 0, 0 }; |
| return aSize[serial_type]; |
| } |
| } |
| |
| /* |
| ** If we are on an architecture with mixed-endian floating |
| ** points (ex: ARM7) then swap the lower 4 bytes with the |
| ** upper 4 bytes. Return the result. |
| ** |
| ** For most architectures, this is a no-op. |
| ** |
| ** (later): It is reported to me that the mixed-endian problem |
| ** on ARM7 is an issue with GCC, not with the ARM7 chip. It seems |
| ** that early versions of GCC stored the two words of a 64-bit |
| ** float in the wrong order. And that error has been propagated |
| ** ever since. The blame is not necessarily with GCC, though. |
| ** GCC might have just copying the problem from a prior compiler. |
| ** I am also told that newer versions of GCC that follow a different |
| ** ABI get the byte order right. |
| ** |
| ** Developers using SQLite on an ARM7 should compile and run their |
| ** application using -DSQLITE_DEBUG=1 at least once. With DEBUG |
| ** enabled, some asserts below will ensure that the byte order of |
| ** floating point values is correct. |
| ** |
| ** (2007-08-30) Frank van Vugt has studied this problem closely |
| ** and has send his findings to the SQLite developers. Frank |
| ** writes that some Linux kernels offer floating point hardware |
| ** emulation that uses only 32-bit mantissas instead of a full |
| ** 48-bits as required by the IEEE standard. (This is the |
| ** CONFIG_FPE_FASTFPE option.) On such systems, floating point |
| ** byte swapping becomes very complicated. To avoid problems, |
| ** the necessary byte swapping is carried out using a 64-bit integer |
| ** rather than a 64-bit float. Frank assures us that the code here |
| ** works for him. We, the developers, have no way to independently |
| ** verify this, but Frank seems to know what he is talking about |
| ** so we trust him. |
| */ |
| #ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT |
| static u64 floatSwap(u64 in){ |
| union { |
| u64 r; |
| u32 i[2]; |
| } u; |
| u32 t; |
| |
| u.r = in; |
| t = u.i[0]; |
| u.i[0] = u.i[1]; |
| u.i[1] = t; |
| return u.r; |
| } |
| # define swapMixedEndianFloat(X) X = floatSwap(X) |
| #else |
| # define swapMixedEndianFloat(X) |
| #endif |
| |
| /* |
| ** Write the serialized data blob for the value stored in pMem into |
| ** buf. It is assumed that the caller has allocated sufficient space. |
| ** Return the number of bytes written. |
| ** |
| ** nBuf is the amount of space left in buf[]. nBuf must always be |
| ** large enough to hold the entire field. Except, if the field is |
| ** a blob with a zero-filled tail, then buf[] might be just the right |
| ** size to hold everything except for the zero-filled tail. If buf[] |
| ** is only big enough to hold the non-zero prefix, then only write that |
| ** prefix into buf[]. But if buf[] is large enough to hold both the |
| ** prefix and the tail then write the prefix and set the tail to all |
| ** zeros. |
| ** |
| ** Return the number of bytes actually written into buf[]. The number |
| ** of bytes in the zero-filled tail is included in the return value only |
| ** if those bytes were zeroed in buf[]. |
| */ |
| int sqlite3VdbeSerialPut(u8 *buf, int nBuf, Mem *pMem, int file_format){ |
| u32 serial_type = sqlite3VdbeSerialType(pMem, file_format); |
| int len; |
| |
| /* Integer and Real */ |
| if( serial_type<=7 && serial_type>0 ){ |
| u64 v; |
| int i; |
| if( serial_type==7 ){ |
| assert( sizeof(v)==sizeof(pMem->r) ); |
| memcpy(&v, &pMem->r, sizeof(v)); |
| swapMixedEndianFloat(v); |
| }else{ |
| v = pMem->u.i; |
| } |
| len = i = sqlite3VdbeSerialTypeLen(serial_type); |
| assert( len<=nBuf ); |
| while( i-- ){ |
| buf[i] = (v&0xFF); |
| v >>= 8; |
| } |
| return len; |
| } |
| |
| /* String or blob */ |
| if( serial_type>=12 ){ |
| assert( pMem->n + ((pMem->flags & MEM_Zero)?pMem->u.i:0) |
| == sqlite3VdbeSerialTypeLen(serial_type) ); |
| assert( pMem->n<=nBuf ); |
| len = pMem->n; |
| memcpy(buf, pMem->z, len); |
| if( pMem->flags & MEM_Zero ){ |
| len += pMem->u.i; |
| if( len>nBuf ){ |
| len = nBuf; |
| } |
| memset(&buf[pMem->n], 0, len-pMem->n); |
| } |
| return len; |
| } |
| |
| /* NULL or constants 0 or 1 */ |
| return 0; |
| } |
| |
| /* |
| ** Deserialize the data blob pointed to by buf as serial type serial_type |
| ** and store the result in pMem. Return the number of bytes read. |
| */ |
| int sqlite3VdbeSerialGet( |
| const unsigned char *buf, /* Buffer to deserialize from */ |
| u32 serial_type, /* Serial type to deserialize */ |
| Mem *pMem /* Memory cell to write value into */ |
| ){ |
| switch( serial_type ){ |
| case 10: /* Reserved for future use */ |
| case 11: /* Reserved for future use */ |
| case 0: { /* NULL */ |
| pMem->flags = MEM_Null; |
| break; |
| } |
| case 1: { /* 1-byte signed integer */ |
| pMem->u.i = (signed char)buf[0]; |
| pMem->flags = MEM_Int; |
| return 1; |
| } |
| case 2: { /* 2-byte signed integer */ |
| pMem->u.i = (((signed char)buf[0])<<8) | buf[1]; |
| pMem->flags = MEM_Int; |
| return 2; |
| } |
| case 3: { /* 3-byte signed integer */ |
| pMem->u.i = (((signed char)buf[0])<<16) | (buf[1]<<8) | buf[2]; |
| pMem->flags = MEM_Int; |
| return 3; |
| } |
| case 4: { /* 4-byte signed integer */ |
| pMem->u.i = (buf[0]<<24) | (buf[1]<<16) | (buf[2]<<8) | buf[3]; |
| pMem->flags = MEM_Int; |
| return 4; |
| } |
| case 5: { /* 6-byte signed integer */ |
| u64 x = (((signed char)buf[0])<<8) | buf[1]; |
| u32 y = (buf[2]<<24) | (buf[3]<<16) | (buf[4]<<8) | buf[5]; |
| x = (x<<32) | y; |
| pMem->u.i = *(i64*)&x; |
| pMem->flags = MEM_Int; |
| return 6; |
| } |
| case 6: /* 8-byte signed integer */ |
| case 7: { /* IEEE floating point */ |
| u64 x; |
| u32 y; |
| #if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT) |
| /* Verify that integers and floating point values use the same |
| ** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is |
| ** defined that 64-bit floating point values really are mixed |
| ** endian. |
| */ |
| static const u64 t1 = ((u64)0x3ff00000)<<32; |
| static const double r1 = 1.0; |
| u64 t2 = t1; |
| swapMixedEndianFloat(t2); |
| assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 ); |
| #endif |
| |
| x = (buf[0]<<24) | (buf[1]<<16) | (buf[2]<<8) | buf[3]; |
| y = (buf[4]<<24) | (buf[5]<<16) | (buf[6]<<8) | buf[7]; |
| x = (x<<32) | y; |
| if( serial_type==6 ){ |
| pMem->u.i = *(i64*)&x; |
| pMem->flags = MEM_Int; |
| }else{ |
| assert( sizeof(x)==8 && sizeof(pMem->r)==8 ); |
| swapMixedEndianFloat(x); |
| memcpy(&pMem->r, &x, sizeof(x)); |
| pMem->flags = sqlite3IsNaN(pMem->r) ? MEM_Null : MEM_Real; |
| } |
| return 8; |
| } |
| case 8: /* Integer 0 */ |
| case 9: { /* Integer 1 */ |
| pMem->u.i = serial_type-8; |
| pMem->flags = MEM_Int; |
| return 0; |
| } |
| default: { |
| int len = (serial_type-12)/2; |
| pMem->z = (char *)buf; |
| pMem->n = len; |
| pMem->xDel = 0; |
| if( serial_type&0x01 ){ |
| pMem->flags = MEM_Str | MEM_Ephem; |
| }else{ |
| pMem->flags = MEM_Blob | MEM_Ephem; |
| } |
| return len; |
| } |
| } |
| return 0; |
| } |
| |
| |
| /* |
| ** Given the nKey-byte encoding of a record in pKey[], parse the |
| ** record into a UnpackedRecord structure. Return a pointer to |
| ** that structure. |
| ** |
| ** The calling function might provide szSpace bytes of memory |
| ** space at pSpace. This space can be used to hold the returned |
| ** VDbeParsedRecord structure if it is large enough. If it is |
| ** not big enough, space is obtained from sqlite3_malloc(). |
| ** |
| ** The returned structure should be closed by a call to |
| ** sqlite3VdbeDeleteUnpackedRecord(). |
| */ |
| UnpackedRecord *sqlite3VdbeRecordUnpack( |
| KeyInfo *pKeyInfo, /* Information about the record format */ |
| int nKey, /* Size of the binary record */ |
| const void *pKey, /* The binary record */ |
| UnpackedRecord *pSpace,/* Space available to hold resulting object */ |
| int szSpace /* Size of pSpace[] in bytes */ |
| ){ |
| const unsigned char *aKey = (const unsigned char *)pKey; |
| UnpackedRecord *p; |
| int nByte, d; |
| u32 idx; |
| u16 u; /* Unsigned loop counter */ |
| u32 szHdr; |
| Mem *pMem; |
| |
| assert( sizeof(Mem)>sizeof(*p) ); |
| nByte = sizeof(Mem)*(pKeyInfo->nField+2); |
| if( nByte>szSpace ){ |
| p = sqlite3DbMallocRaw(pKeyInfo->db, nByte); |
| if( p==0 ) return 0; |
| p->flags = UNPACKED_NEED_FREE | UNPACKED_NEED_DESTROY; |
| }else{ |
| p = pSpace; |
| p->flags = UNPACKED_NEED_DESTROY; |
| } |
| p->pKeyInfo = pKeyInfo; |
| p->nField = pKeyInfo->nField + 1; |
| p->aMem = pMem = &((Mem*)p)[1]; |
| idx = getVarint32(aKey, szHdr); |
| d = szHdr; |
| u = 0; |
| while( idx<szHdr && u<p->nField ){ |
| u32 serial_type; |
| |
| idx += getVarint32(&aKey[idx], serial_type); |
| if( d>=nKey && sqlite3VdbeSerialTypeLen(serial_type)>0 ) break; |
| pMem->enc = pKeyInfo->enc; |
| pMem->db = pKeyInfo->db; |
| pMem->flags = 0; |
| pMem->zMalloc = 0; |
| d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem); |
| pMem++; |
| u++; |
| } |
| assert( u<=pKeyInfo->nField + 1 ); |
| p->nField = u; |
| return (void*)p; |
| } |
| |
| /* |
| ** This routine destroys a UnpackedRecord object |
| */ |
| void sqlite3VdbeDeleteUnpackedRecord(UnpackedRecord *p){ |
| if( p ){ |
| if( p->flags & UNPACKED_NEED_DESTROY ){ |
| int i; |
| Mem *pMem; |
| for(i=0, pMem=p->aMem; i<p->nField; i++, pMem++){ |
| if( pMem->zMalloc ){ |
| sqlite3VdbeMemRelease(pMem); |
| } |
| } |
| } |
| if( p->flags & UNPACKED_NEED_FREE ){ |
| sqlite3DbFree(p->pKeyInfo->db, p); |
| } |
| } |
| } |
| |
| /* |
| ** This function compares the two table rows or index records |
| ** specified by {nKey1, pKey1} and pPKey2. It returns a negative, zero |
| ** or positive integer if key1 is less than, equal to or |
| ** greater than key2. The {nKey1, pKey1} key must be a blob |
| ** created by th OP_MakeRecord opcode of the VDBE. The pPKey2 |
| ** key must be a parsed key such as obtained from |
| ** sqlite3VdbeParseRecord. |
| ** |
| ** Key1 and Key2 do not have to contain the same number of fields. |
| ** The key with fewer fields is usually compares less than the |
| ** longer key. However if the UNPACKED_INCRKEY flags in pPKey2 is set |
| ** and the common prefixes are equal, then key1 is less than key2. |
| ** Or if the UNPACKED_MATCH_PREFIX flag is set and the prefixes are |
| ** equal, then the keys are considered to be equal and |
| ** the parts beyond the common prefix are ignored. |
| ** |
| ** If the UNPACKED_IGNORE_ROWID flag is set, then the last byte of |
| ** the header of pKey1 is ignored. It is assumed that pKey1 is |
| ** an index key, and thus ends with a rowid value. The last byte |
| ** of the header will therefore be the serial type of the rowid: |
| ** one of 1, 2, 3, 4, 5, 6, 8, or 9 - the integer serial types. |
| ** The serial type of the final rowid will always be a single byte. |
| ** By ignoring this last byte of the header, we force the comparison |
| ** to ignore the rowid at the end of key1. |
| */ |
| int sqlite3VdbeRecordCompare( |
| int nKey1, const void *pKey1, /* Left key */ |
| UnpackedRecord *pPKey2 /* Right key */ |
| ){ |
| int d1; /* Offset into aKey[] of next data element */ |
| u32 idx1; /* Offset into aKey[] of next header element */ |
| u32 szHdr1; /* Number of bytes in header */ |
| int i = 0; |
| int nField; |
| int rc = 0; |
| const unsigned char *aKey1 = (const unsigned char *)pKey1; |
| KeyInfo *pKeyInfo; |
| Mem mem1; |
| |
| pKeyInfo = pPKey2->pKeyInfo; |
| mem1.enc = pKeyInfo->enc; |
| mem1.db = pKeyInfo->db; |
| mem1.flags = 0; |
| mem1.zMalloc = 0; |
| |
| idx1 = getVarint32(aKey1, szHdr1); |
| d1 = szHdr1; |
| if( pPKey2->flags & UNPACKED_IGNORE_ROWID ){ |
| szHdr1--; |
| } |
| nField = pKeyInfo->nField; |
| while( idx1<szHdr1 && i<pPKey2->nField ){ |
| u32 serial_type1; |
| |
| /* Read the serial types for the next element in each key. */ |
| idx1 += getVarint32( aKey1+idx1, serial_type1 ); |
| if( d1>=nKey1 && sqlite3VdbeSerialTypeLen(serial_type1)>0 ) break; |
| |
| /* Extract the values to be compared. |
| */ |
| d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1); |
| |
| /* Do the comparison |
| */ |
| rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i], |
| i<nField ? pKeyInfo->aColl[i] : 0); |
| if( rc!=0 ){ |
| break; |
| } |
| i++; |
| } |
| if( mem1.zMalloc ) sqlite3VdbeMemRelease(&mem1); |
| |
| if( rc==0 ){ |
| /* rc==0 here means that one of the keys ran out of fields and |
| ** all the fields up to that point were equal. If the UNPACKED_INCRKEY |
| ** flag is set, then break the tie by treating key2 as larger. |
| ** If the UPACKED_PREFIX_MATCH flag is set, then keys with common prefixes |
| ** are considered to be equal. Otherwise, the longer key is the |
| ** larger. As it happens, the pPKey2 will always be the longer |
| ** if there is a difference. |
| */ |
| if( pPKey2->flags & UNPACKED_INCRKEY ){ |
| rc = -1; |
| }else if( pPKey2->flags & UNPACKED_PREFIX_MATCH ){ |
| /* Leave rc==0 */ |
| }else if( idx1<szHdr1 ){ |
| rc = 1; |
| } |
| }else if( pKeyInfo->aSortOrder && i<pKeyInfo->nField |
| && pKeyInfo->aSortOrder[i] ){ |
| rc = -rc; |
| } |
| |
| return rc; |
| } |
| |
| |
| /* |
| ** pCur points at an index entry created using the OP_MakeRecord opcode. |
| ** Read the rowid (the last field in the record) and store it in *rowid. |
| ** Return SQLITE_OK if everything works, or an error code otherwise. |
| */ |
| int sqlite3VdbeIdxRowid(BtCursor *pCur, i64 *rowid){ |
| i64 nCellKey = 0; |
| int rc; |
| u32 szHdr; /* Size of the header */ |
| u32 typeRowid; /* Serial type of the rowid */ |
| u32 lenRowid; /* Size of the rowid */ |
| Mem m, v; |
| |
| sqlite3BtreeKeySize(pCur, &nCellKey); |
| if( nCellKey<=0 ){ |
| return SQLITE_CORRUPT_BKPT; |
| } |
| m.flags = 0; |
| m.db = 0; |
| m.zMalloc = 0; |
| rc = sqlite3VdbeMemFromBtree(pCur, 0, nCellKey, 1, &m); |
| if( rc ){ |
| return rc; |
| } |
| (void)getVarint32((u8*)m.z, szHdr); |
| (void)getVarint32((u8*)&m.z[szHdr-1], typeRowid); |
| lenRowid = sqlite3VdbeSerialTypeLen(typeRowid); |
| sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v); |
| *rowid = v.u.i; |
| sqlite3VdbeMemRelease(&m); |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** Compare the key of the index entry that cursor pC is point to against |
| ** the key string in pKey (of length nKey). Write into *pRes a number |
| ** that is negative, zero, or positive if pC is less than, equal to, |
| ** or greater than pKey. Return SQLITE_OK on success. |
| ** |
| ** pKey is either created without a rowid or is truncated so that it |
| ** omits the rowid at the end. The rowid at the end of the index entry |
| ** is ignored as well. Hence, this routine only compares the prefixes |
| ** of the keys prior to the final rowid, not the entire key. |
| ** |
| ** pUnpacked may be an unpacked version of pKey,nKey. If pUnpacked is |
| ** supplied it is used in place of pKey,nKey. |
| */ |
| int sqlite3VdbeIdxKeyCompare( |
| VdbeCursor *pC, /* The cursor to compare against */ |
| UnpackedRecord *pUnpacked, /* Unpacked version of pKey and nKey */ |
| int *res /* Write the comparison result here */ |
| ){ |
| i64 nCellKey = 0; |
| int rc; |
| BtCursor *pCur = pC->pCursor; |
| Mem m; |
| |
| sqlite3BtreeKeySize(pCur, &nCellKey); |
| if( nCellKey<=0 ){ |
| *res = 0; |
| return SQLITE_OK; |
| } |
| m.db = 0; |
| m.flags = 0; |
| m.zMalloc = 0; |
| rc = sqlite3VdbeMemFromBtree(pC->pCursor, 0, nCellKey, 1, &m); |
| if( rc ){ |
| return rc; |
| } |
| assert( pUnpacked->flags & UNPACKED_IGNORE_ROWID ); |
| *res = sqlite3VdbeRecordCompare(m.n, m.z, pUnpacked); |
| sqlite3VdbeMemRelease(&m); |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** This routine sets the value to be returned by subsequent calls to |
| ** sqlite3_changes() on the database handle 'db'. |
| */ |
| void sqlite3VdbeSetChanges(sqlite3 *db, int nChange){ |
| assert( sqlite3_mutex_held(db->mutex) ); |
| db->nChange = nChange; |
| db->nTotalChange += nChange; |
| } |
| |
| /* |
| ** Set a flag in the vdbe to update the change counter when it is finalised |
| ** or reset. |
| */ |
| void sqlite3VdbeCountChanges(Vdbe *v){ |
| v->changeCntOn = 1; |
| } |
| |
| /* |
| ** Mark every prepared statement associated with a database connection |
| ** as expired. |
| ** |
| ** An expired statement means that recompilation of the statement is |
| ** recommend. Statements expire when things happen that make their |
| ** programs obsolete. Removing user-defined functions or collating |
| ** sequences, or changing an authorization function are the types of |
| ** things that make prepared statements obsolete. |
| */ |
| void sqlite3ExpirePreparedStatements(sqlite3 *db){ |
| Vdbe *p; |
| for(p = db->pVdbe; p; p=p->pNext){ |
| p->expired = 1; |
| } |
| } |
| |
| /* |
| ** Return the database associated with the Vdbe. |
| */ |
| sqlite3 *sqlite3VdbeDb(Vdbe *v){ |
| return v->db; |
| } |