| /* |
| ** 2004 May 26 |
| ** |
| ** The author disclaims copyright to this source code. In place of |
| ** a legal notice, here is a blessing: |
| ** |
| ** May you do good and not evil. |
| ** May you find forgiveness for yourself and forgive others. |
| ** May you share freely, never taking more than you give. |
| ** |
| ************************************************************************* |
| ** |
| ** This file contains code use to implement APIs that are part of the |
| ** VDBE. |
| ** |
| ** $Id: vdbeapi.c,v 1.149 2008/11/19 09:05:27 danielk1977 Exp $ |
| */ |
| #include "sqliteInt.h" |
| #include "vdbeInt.h" |
| |
| #if 0 && defined(SQLITE_ENABLE_MEMORY_MANAGEMENT) |
| /* |
| ** The following structure contains pointers to the end points of a |
| ** doubly-linked list of all compiled SQL statements that may be holding |
| ** buffers eligible for release when the sqlite3_release_memory() interface is |
| ** invoked. Access to this list is protected by the SQLITE_MUTEX_STATIC_LRU2 |
| ** mutex. |
| ** |
| ** Statements are added to the end of this list when sqlite3_reset() is |
| ** called. They are removed either when sqlite3_step() or sqlite3_finalize() |
| ** is called. When statements are added to this list, the associated |
| ** register array (p->aMem[1..p->nMem]) may contain dynamic buffers that |
| ** can be freed using sqlite3VdbeReleaseMemory(). |
| ** |
| ** When statements are added or removed from this list, the mutex |
| ** associated with the Vdbe being added or removed (Vdbe.db->mutex) is |
| ** already held. The LRU2 mutex is then obtained, blocking if necessary, |
| ** the linked-list pointers manipulated and the LRU2 mutex relinquished. |
| */ |
| struct StatementLruList { |
| Vdbe *pFirst; |
| Vdbe *pLast; |
| }; |
| static struct StatementLruList sqlite3LruStatements; |
| |
| /* |
| ** Check that the list looks to be internally consistent. This is used |
| ** as part of an assert() statement as follows: |
| ** |
| ** assert( stmtLruCheck() ); |
| */ |
| #ifndef NDEBUG |
| static int stmtLruCheck(){ |
| Vdbe *p; |
| for(p=sqlite3LruStatements.pFirst; p; p=p->pLruNext){ |
| assert(p->pLruNext || p==sqlite3LruStatements.pLast); |
| assert(!p->pLruNext || p->pLruNext->pLruPrev==p); |
| assert(p->pLruPrev || p==sqlite3LruStatements.pFirst); |
| assert(!p->pLruPrev || p->pLruPrev->pLruNext==p); |
| } |
| return 1; |
| } |
| #endif |
| |
| /* |
| ** Add vdbe p to the end of the statement lru list. It is assumed that |
| ** p is not already part of the list when this is called. The lru list |
| ** is protected by the SQLITE_MUTEX_STATIC_LRU mutex. |
| */ |
| static void stmtLruAdd(Vdbe *p){ |
| sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU2)); |
| |
| if( p->pLruPrev || p->pLruNext || sqlite3LruStatements.pFirst==p ){ |
| sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU2)); |
| return; |
| } |
| |
| assert( stmtLruCheck() ); |
| |
| if( !sqlite3LruStatements.pFirst ){ |
| assert( !sqlite3LruStatements.pLast ); |
| sqlite3LruStatements.pFirst = p; |
| sqlite3LruStatements.pLast = p; |
| }else{ |
| assert( !sqlite3LruStatements.pLast->pLruNext ); |
| p->pLruPrev = sqlite3LruStatements.pLast; |
| sqlite3LruStatements.pLast->pLruNext = p; |
| sqlite3LruStatements.pLast = p; |
| } |
| |
| assert( stmtLruCheck() ); |
| |
| sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU2)); |
| } |
| |
| /* |
| ** Assuming the SQLITE_MUTEX_STATIC_LRU2 mutext is already held, remove |
| ** statement p from the least-recently-used statement list. If the |
| ** statement is not currently part of the list, this call is a no-op. |
| */ |
| static void stmtLruRemoveNomutex(Vdbe *p){ |
| if( p->pLruPrev || p->pLruNext || p==sqlite3LruStatements.pFirst ){ |
| assert( stmtLruCheck() ); |
| if( p->pLruNext ){ |
| p->pLruNext->pLruPrev = p->pLruPrev; |
| }else{ |
| sqlite3LruStatements.pLast = p->pLruPrev; |
| } |
| if( p->pLruPrev ){ |
| p->pLruPrev->pLruNext = p->pLruNext; |
| }else{ |
| sqlite3LruStatements.pFirst = p->pLruNext; |
| } |
| p->pLruNext = 0; |
| p->pLruPrev = 0; |
| assert( stmtLruCheck() ); |
| } |
| } |
| |
| /* |
| ** Assuming the SQLITE_MUTEX_STATIC_LRU2 mutext is not held, remove |
| ** statement p from the least-recently-used statement list. If the |
| ** statement is not currently part of the list, this call is a no-op. |
| */ |
| static void stmtLruRemove(Vdbe *p){ |
| sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU2)); |
| stmtLruRemoveNomutex(p); |
| sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU2)); |
| } |
| |
| /* |
| ** Try to release n bytes of memory by freeing buffers associated |
| ** with the memory registers of currently unused vdbes. |
| */ |
| int sqlite3VdbeReleaseMemory(int n){ |
| Vdbe *p; |
| Vdbe *pNext; |
| int nFree = 0; |
| |
| sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU2)); |
| for(p=sqlite3LruStatements.pFirst; p && nFree<n; p=pNext){ |
| pNext = p->pLruNext; |
| |
| /* For each statement handle in the lru list, attempt to obtain the |
| ** associated database mutex. If it cannot be obtained, continue |
| ** to the next statement handle. It is not possible to block on |
| ** the database mutex - that could cause deadlock. |
| */ |
| if( SQLITE_OK==sqlite3_mutex_try(p->db->mutex) ){ |
| nFree += sqlite3VdbeReleaseBuffers(p); |
| stmtLruRemoveNomutex(p); |
| sqlite3_mutex_leave(p->db->mutex); |
| } |
| } |
| sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU2)); |
| |
| return nFree; |
| } |
| |
| /* |
| ** Call sqlite3Reprepare() on the statement. Remove it from the |
| ** lru list before doing so, as Reprepare() will free all the |
| ** memory register buffers anyway. |
| */ |
| int vdbeReprepare(Vdbe *p){ |
| stmtLruRemove(p); |
| return sqlite3Reprepare(p); |
| } |
| |
| #else /* !SQLITE_ENABLE_MEMORY_MANAGEMENT */ |
| #define stmtLruRemove(x) |
| #define stmtLruAdd(x) |
| #define vdbeReprepare(x) sqlite3Reprepare(x) |
| #endif |
| |
| |
| #ifndef SQLITE_OMIT_DEPRECATED |
| /* |
| ** Return TRUE (non-zero) of the statement supplied as an argument needs |
| ** to be recompiled. A statement needs to be recompiled whenever the |
| ** execution environment changes in a way that would alter the program |
| ** that sqlite3_prepare() generates. For example, if new functions or |
| ** collating sequences are registered or if an authorizer function is |
| ** added or changed. |
| */ |
| int sqlite3_expired(sqlite3_stmt *pStmt){ |
| Vdbe *p = (Vdbe*)pStmt; |
| return p==0 || p->expired; |
| } |
| #endif |
| |
| /* |
| ** The following routine destroys a virtual machine that is created by |
| ** the sqlite3_compile() routine. The integer returned is an SQLITE_ |
| ** success/failure code that describes the result of executing the virtual |
| ** machine. |
| ** |
| ** This routine sets the error code and string returned by |
| ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16(). |
| */ |
| int sqlite3_finalize(sqlite3_stmt *pStmt){ |
| int rc; |
| if( pStmt==0 ){ |
| rc = SQLITE_OK; |
| }else{ |
| Vdbe *v = (Vdbe*)pStmt; |
| #if SQLITE_THREADSAFE |
| sqlite3_mutex *mutex = v->db->mutex; |
| #endif |
| sqlite3_mutex_enter(mutex); |
| stmtLruRemove(v); |
| rc = sqlite3VdbeFinalize(v); |
| sqlite3_mutex_leave(mutex); |
| } |
| return rc; |
| } |
| |
| /* |
| ** Terminate the current execution of an SQL statement and reset it |
| ** back to its starting state so that it can be reused. A success code from |
| ** the prior execution is returned. |
| ** |
| ** This routine sets the error code and string returned by |
| ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16(). |
| */ |
| int sqlite3_reset(sqlite3_stmt *pStmt){ |
| int rc; |
| if( pStmt==0 ){ |
| rc = SQLITE_OK; |
| }else{ |
| Vdbe *v = (Vdbe*)pStmt; |
| sqlite3_mutex_enter(v->db->mutex); |
| rc = sqlite3VdbeReset(v); |
| stmtLruAdd(v); |
| sqlite3VdbeMakeReady(v, -1, 0, 0, 0); |
| assert( (rc & (v->db->errMask))==rc ); |
| sqlite3_mutex_leave(v->db->mutex); |
| } |
| return rc; |
| } |
| |
| /* |
| ** Set all the parameters in the compiled SQL statement to NULL. |
| */ |
| int sqlite3_clear_bindings(sqlite3_stmt *pStmt){ |
| int i; |
| int rc = SQLITE_OK; |
| Vdbe *p = (Vdbe*)pStmt; |
| #if SQLITE_THREADSAFE |
| sqlite3_mutex *mutex = ((Vdbe*)pStmt)->db->mutex; |
| #endif |
| sqlite3_mutex_enter(mutex); |
| for(i=0; i<p->nVar; i++){ |
| sqlite3VdbeMemRelease(&p->aVar[i]); |
| p->aVar[i].flags = MEM_Null; |
| } |
| sqlite3_mutex_leave(mutex); |
| return rc; |
| } |
| |
| |
| /**************************** sqlite3_value_ ******************************* |
| ** The following routines extract information from a Mem or sqlite3_value |
| ** structure. |
| */ |
| const void *sqlite3_value_blob(sqlite3_value *pVal){ |
| Mem *p = (Mem*)pVal; |
| if( p->flags & (MEM_Blob|MEM_Str) ){ |
| sqlite3VdbeMemExpandBlob(p); |
| p->flags &= ~MEM_Str; |
| p->flags |= MEM_Blob; |
| return p->z; |
| }else{ |
| return sqlite3_value_text(pVal); |
| } |
| } |
| int sqlite3_value_bytes(sqlite3_value *pVal){ |
| return sqlite3ValueBytes(pVal, SQLITE_UTF8); |
| } |
| int sqlite3_value_bytes16(sqlite3_value *pVal){ |
| return sqlite3ValueBytes(pVal, SQLITE_UTF16NATIVE); |
| } |
| double sqlite3_value_double(sqlite3_value *pVal){ |
| return sqlite3VdbeRealValue((Mem*)pVal); |
| } |
| int sqlite3_value_int(sqlite3_value *pVal){ |
| return sqlite3VdbeIntValue((Mem*)pVal); |
| } |
| sqlite_int64 sqlite3_value_int64(sqlite3_value *pVal){ |
| return sqlite3VdbeIntValue((Mem*)pVal); |
| } |
| const unsigned char *sqlite3_value_text(sqlite3_value *pVal){ |
| return (const unsigned char *)sqlite3ValueText(pVal, SQLITE_UTF8); |
| } |
| #ifndef SQLITE_OMIT_UTF16 |
| const void *sqlite3_value_text16(sqlite3_value* pVal){ |
| return sqlite3ValueText(pVal, SQLITE_UTF16NATIVE); |
| } |
| const void *sqlite3_value_text16be(sqlite3_value *pVal){ |
| return sqlite3ValueText(pVal, SQLITE_UTF16BE); |
| } |
| const void *sqlite3_value_text16le(sqlite3_value *pVal){ |
| return sqlite3ValueText(pVal, SQLITE_UTF16LE); |
| } |
| #endif /* SQLITE_OMIT_UTF16 */ |
| int sqlite3_value_type(sqlite3_value* pVal){ |
| return pVal->type; |
| } |
| |
| /**************************** sqlite3_result_ ******************************* |
| ** The following routines are used by user-defined functions to specify |
| ** the function result. |
| */ |
| void sqlite3_result_blob( |
| sqlite3_context *pCtx, |
| const void *z, |
| int n, |
| void (*xDel)(void *) |
| ){ |
| assert( n>=0 ); |
| assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); |
| sqlite3VdbeMemSetStr(&pCtx->s, z, n, 0, xDel); |
| } |
| void sqlite3_result_double(sqlite3_context *pCtx, double rVal){ |
| assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); |
| sqlite3VdbeMemSetDouble(&pCtx->s, rVal); |
| } |
| void sqlite3_result_error(sqlite3_context *pCtx, const char *z, int n){ |
| assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); |
| pCtx->isError = SQLITE_ERROR; |
| sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF8, SQLITE_TRANSIENT); |
| } |
| #ifndef SQLITE_OMIT_UTF16 |
| void sqlite3_result_error16(sqlite3_context *pCtx, const void *z, int n){ |
| assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); |
| pCtx->isError = SQLITE_ERROR; |
| sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16NATIVE, SQLITE_TRANSIENT); |
| } |
| #endif |
| void sqlite3_result_int(sqlite3_context *pCtx, int iVal){ |
| assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); |
| sqlite3VdbeMemSetInt64(&pCtx->s, (i64)iVal); |
| } |
| void sqlite3_result_int64(sqlite3_context *pCtx, i64 iVal){ |
| assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); |
| sqlite3VdbeMemSetInt64(&pCtx->s, iVal); |
| } |
| void sqlite3_result_null(sqlite3_context *pCtx){ |
| assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); |
| sqlite3VdbeMemSetNull(&pCtx->s); |
| } |
| void sqlite3_result_text( |
| sqlite3_context *pCtx, |
| const char *z, |
| int n, |
| void (*xDel)(void *) |
| ){ |
| assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); |
| sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF8, xDel); |
| } |
| #ifndef SQLITE_OMIT_UTF16 |
| void sqlite3_result_text16( |
| sqlite3_context *pCtx, |
| const void *z, |
| int n, |
| void (*xDel)(void *) |
| ){ |
| assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); |
| sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16NATIVE, xDel); |
| } |
| void sqlite3_result_text16be( |
| sqlite3_context *pCtx, |
| const void *z, |
| int n, |
| void (*xDel)(void *) |
| ){ |
| assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); |
| sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16BE, xDel); |
| } |
| void sqlite3_result_text16le( |
| sqlite3_context *pCtx, |
| const void *z, |
| int n, |
| void (*xDel)(void *) |
| ){ |
| assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); |
| sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16LE, xDel); |
| } |
| #endif /* SQLITE_OMIT_UTF16 */ |
| void sqlite3_result_value(sqlite3_context *pCtx, sqlite3_value *pValue){ |
| assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); |
| sqlite3VdbeMemCopy(&pCtx->s, pValue); |
| } |
| void sqlite3_result_zeroblob(sqlite3_context *pCtx, int n){ |
| assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); |
| sqlite3VdbeMemSetZeroBlob(&pCtx->s, n); |
| } |
| void sqlite3_result_error_code(sqlite3_context *pCtx, int errCode){ |
| pCtx->isError = errCode; |
| } |
| |
| /* Force an SQLITE_TOOBIG error. */ |
| void sqlite3_result_error_toobig(sqlite3_context *pCtx){ |
| assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); |
| pCtx->isError = SQLITE_TOOBIG; |
| sqlite3VdbeMemSetStr(&pCtx->s, "string or blob too big", -1, |
| SQLITE_UTF8, SQLITE_STATIC); |
| } |
| |
| /* An SQLITE_NOMEM error. */ |
| void sqlite3_result_error_nomem(sqlite3_context *pCtx){ |
| assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); |
| sqlite3VdbeMemSetNull(&pCtx->s); |
| pCtx->isError = SQLITE_NOMEM; |
| pCtx->s.db->mallocFailed = 1; |
| } |
| |
| /* |
| ** Execute the statement pStmt, either until a row of data is ready, the |
| ** statement is completely executed or an error occurs. |
| ** |
| ** This routine implements the bulk of the logic behind the sqlite_step() |
| ** API. The only thing omitted is the automatic recompile if a |
| ** schema change has occurred. That detail is handled by the |
| ** outer sqlite3_step() wrapper procedure. |
| */ |
| static int sqlite3Step(Vdbe *p){ |
| sqlite3 *db; |
| int rc; |
| |
| assert(p); |
| if( p->magic!=VDBE_MAGIC_RUN ){ |
| return SQLITE_MISUSE; |
| } |
| |
| /* Assert that malloc() has not failed */ |
| db = p->db; |
| if( db->mallocFailed ){ |
| return SQLITE_NOMEM; |
| } |
| |
| if( p->pc<=0 && p->expired ){ |
| if( p->rc==SQLITE_OK ){ |
| p->rc = SQLITE_SCHEMA; |
| } |
| rc = SQLITE_ERROR; |
| goto end_of_step; |
| } |
| if( sqlite3SafetyOn(db) ){ |
| p->rc = SQLITE_MISUSE; |
| return SQLITE_MISUSE; |
| } |
| if( p->pc<0 ){ |
| /* If there are no other statements currently running, then |
| ** reset the interrupt flag. This prevents a call to sqlite3_interrupt |
| ** from interrupting a statement that has not yet started. |
| */ |
| if( db->activeVdbeCnt==0 ){ |
| db->u1.isInterrupted = 0; |
| } |
| |
| #ifndef SQLITE_OMIT_TRACE |
| if( db->xProfile && !db->init.busy ){ |
| double rNow; |
| sqlite3OsCurrentTime(db->pVfs, &rNow); |
| p->startTime = (rNow - (int)rNow)*3600.0*24.0*1000000000.0; |
| } |
| #endif |
| |
| db->activeVdbeCnt++; |
| if( p->readOnly==0 ) db->writeVdbeCnt++; |
| p->pc = 0; |
| stmtLruRemove(p); |
| } |
| #ifndef SQLITE_OMIT_EXPLAIN |
| if( p->explain ){ |
| rc = sqlite3VdbeList(p); |
| }else |
| #endif /* SQLITE_OMIT_EXPLAIN */ |
| { |
| rc = sqlite3VdbeExec(p); |
| } |
| |
| if( sqlite3SafetyOff(db) ){ |
| rc = SQLITE_MISUSE; |
| } |
| |
| #ifndef SQLITE_OMIT_TRACE |
| /* Invoke the profile callback if there is one |
| */ |
| if( rc!=SQLITE_ROW && db->xProfile && !db->init.busy && p->nOp>0 |
| && p->aOp[0].opcode==OP_Trace && p->aOp[0].p4.z!=0 ){ |
| double rNow; |
| u64 elapseTime; |
| |
| sqlite3OsCurrentTime(db->pVfs, &rNow); |
| elapseTime = (rNow - (int)rNow)*3600.0*24.0*1000000000.0 - p->startTime; |
| db->xProfile(db->pProfileArg, p->aOp[0].p4.z, elapseTime); |
| } |
| #endif |
| |
| db->errCode = rc; |
| /*sqlite3Error(p->db, rc, 0);*/ |
| p->rc = sqlite3ApiExit(p->db, p->rc); |
| end_of_step: |
| assert( (rc&0xff)==rc ); |
| if( p->zSql && (rc&0xff)<SQLITE_ROW ){ |
| /* This behavior occurs if sqlite3_prepare_v2() was used to build |
| ** the prepared statement. Return error codes directly */ |
| p->db->errCode = p->rc; |
| /* sqlite3Error(p->db, p->rc, 0); */ |
| return p->rc; |
| }else{ |
| /* This is for legacy sqlite3_prepare() builds and when the code |
| ** is SQLITE_ROW or SQLITE_DONE */ |
| return rc; |
| } |
| } |
| |
| /* |
| ** This is the top-level implementation of sqlite3_step(). Call |
| ** sqlite3Step() to do most of the work. If a schema error occurs, |
| ** call sqlite3Reprepare() and try again. |
| */ |
| #ifdef SQLITE_OMIT_PARSER |
| int sqlite3_step(sqlite3_stmt *pStmt){ |
| int rc = SQLITE_MISUSE; |
| if( pStmt ){ |
| Vdbe *v; |
| v = (Vdbe*)pStmt; |
| sqlite3_mutex_enter(v->db->mutex); |
| rc = sqlite3Step(v); |
| sqlite3_mutex_leave(v->db->mutex); |
| } |
| return rc; |
| } |
| #else |
| int sqlite3_step(sqlite3_stmt *pStmt){ |
| int rc = SQLITE_MISUSE; |
| if( pStmt ){ |
| int cnt = 0; |
| Vdbe *v = (Vdbe*)pStmt; |
| sqlite3 *db = v->db; |
| sqlite3_mutex_enter(db->mutex); |
| while( (rc = sqlite3Step(v))==SQLITE_SCHEMA |
| && cnt++ < 5 |
| && vdbeReprepare(v) ){ |
| sqlite3_reset(pStmt); |
| v->expired = 0; |
| } |
| if( rc==SQLITE_SCHEMA && v->zSql && db->pErr ){ |
| /* This case occurs after failing to recompile an sql statement. |
| ** The error message from the SQL compiler has already been loaded |
| ** into the database handle. This block copies the error message |
| ** from the database handle into the statement and sets the statement |
| ** program counter to 0 to ensure that when the statement is |
| ** finalized or reset the parser error message is available via |
| ** sqlite3_errmsg() and sqlite3_errcode(). |
| */ |
| const char *zErr = (const char *)sqlite3_value_text(db->pErr); |
| sqlite3DbFree(db, v->zErrMsg); |
| if( !db->mallocFailed ){ |
| v->zErrMsg = sqlite3DbStrDup(db, zErr); |
| } else { |
| v->zErrMsg = 0; |
| v->rc = SQLITE_NOMEM; |
| } |
| } |
| rc = sqlite3ApiExit(db, rc); |
| sqlite3_mutex_leave(db->mutex); |
| } |
| return rc; |
| } |
| #endif |
| |
| /* |
| ** Extract the user data from a sqlite3_context structure and return a |
| ** pointer to it. |
| */ |
| void *sqlite3_user_data(sqlite3_context *p){ |
| assert( p && p->pFunc ); |
| return p->pFunc->pUserData; |
| } |
| |
| /* |
| ** Extract the user data from a sqlite3_context structure and return a |
| ** pointer to it. |
| */ |
| sqlite3 *sqlite3_context_db_handle(sqlite3_context *p){ |
| assert( p && p->pFunc ); |
| return p->s.db; |
| } |
| |
| /* |
| ** The following is the implementation of an SQL function that always |
| ** fails with an error message stating that the function is used in the |
| ** wrong context. The sqlite3_overload_function() API might construct |
| ** SQL function that use this routine so that the functions will exist |
| ** for name resolution but are actually overloaded by the xFindFunction |
| ** method of virtual tables. |
| */ |
| void sqlite3InvalidFunction( |
| sqlite3_context *context, /* The function calling context */ |
| int NotUsed, /* Number of arguments to the function */ |
| sqlite3_value **NotUsed2 /* Value of each argument */ |
| ){ |
| const char *zName = context->pFunc->zName; |
| char *zErr; |
| UNUSED_PARAMETER2(NotUsed, NotUsed2); |
| zErr = sqlite3MPrintf(0, |
| "unable to use function %s in the requested context", zName); |
| sqlite3_result_error(context, zErr, -1); |
| sqlite3_free(zErr); |
| } |
| |
| /* |
| ** Allocate or return the aggregate context for a user function. A new |
| ** context is allocated on the first call. Subsequent calls return the |
| ** same context that was returned on prior calls. |
| */ |
| void *sqlite3_aggregate_context(sqlite3_context *p, int nByte){ |
| Mem *pMem; |
| assert( p && p->pFunc && p->pFunc->xStep ); |
| assert( sqlite3_mutex_held(p->s.db->mutex) ); |
| pMem = p->pMem; |
| if( (pMem->flags & MEM_Agg)==0 ){ |
| if( nByte==0 ){ |
| sqlite3VdbeMemReleaseExternal(pMem); |
| pMem->flags = MEM_Null; |
| pMem->z = 0; |
| }else{ |
| sqlite3VdbeMemGrow(pMem, nByte, 0); |
| pMem->flags = MEM_Agg; |
| pMem->u.pDef = p->pFunc; |
| if( pMem->z ){ |
| memset(pMem->z, 0, nByte); |
| } |
| } |
| } |
| return (void*)pMem->z; |
| } |
| |
| /* |
| ** Return the auxilary data pointer, if any, for the iArg'th argument to |
| ** the user-function defined by pCtx. |
| */ |
| void *sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){ |
| VdbeFunc *pVdbeFunc; |
| |
| assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); |
| pVdbeFunc = pCtx->pVdbeFunc; |
| if( !pVdbeFunc || iArg>=pVdbeFunc->nAux || iArg<0 ){ |
| return 0; |
| } |
| return pVdbeFunc->apAux[iArg].pAux; |
| } |
| |
| /* |
| ** Set the auxilary data pointer and delete function, for the iArg'th |
| ** argument to the user-function defined by pCtx. Any previous value is |
| ** deleted by calling the delete function specified when it was set. |
| */ |
| void sqlite3_set_auxdata( |
| sqlite3_context *pCtx, |
| int iArg, |
| void *pAux, |
| void (*xDelete)(void*) |
| ){ |
| struct AuxData *pAuxData; |
| VdbeFunc *pVdbeFunc; |
| if( iArg<0 ) goto failed; |
| |
| assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); |
| pVdbeFunc = pCtx->pVdbeFunc; |
| if( !pVdbeFunc || pVdbeFunc->nAux<=iArg ){ |
| int nAux = (pVdbeFunc ? pVdbeFunc->nAux : 0); |
| int nMalloc = sizeof(VdbeFunc) + sizeof(struct AuxData)*iArg; |
| pVdbeFunc = sqlite3DbRealloc(pCtx->s.db, pVdbeFunc, nMalloc); |
| if( !pVdbeFunc ){ |
| goto failed; |
| } |
| pCtx->pVdbeFunc = pVdbeFunc; |
| memset(&pVdbeFunc->apAux[nAux], 0, sizeof(struct AuxData)*(iArg+1-nAux)); |
| pVdbeFunc->nAux = iArg+1; |
| pVdbeFunc->pFunc = pCtx->pFunc; |
| } |
| |
| pAuxData = &pVdbeFunc->apAux[iArg]; |
| if( pAuxData->pAux && pAuxData->xDelete ){ |
| pAuxData->xDelete(pAuxData->pAux); |
| } |
| pAuxData->pAux = pAux; |
| pAuxData->xDelete = xDelete; |
| return; |
| |
| failed: |
| if( xDelete ){ |
| xDelete(pAux); |
| } |
| } |
| |
| #ifndef SQLITE_OMIT_DEPRECATED |
| /* |
| ** Return the number of times the Step function of a aggregate has been |
| ** called. |
| ** |
| ** This function is deprecated. Do not use it for new code. It is |
| ** provide only to avoid breaking legacy code. New aggregate function |
| ** implementations should keep their own counts within their aggregate |
| ** context. |
| */ |
| int sqlite3_aggregate_count(sqlite3_context *p){ |
| assert( p && p->pFunc && p->pFunc->xStep ); |
| return p->pMem->n; |
| } |
| #endif |
| |
| /* |
| ** Return the number of columns in the result set for the statement pStmt. |
| */ |
| int sqlite3_column_count(sqlite3_stmt *pStmt){ |
| Vdbe *pVm = (Vdbe *)pStmt; |
| return pVm ? pVm->nResColumn : 0; |
| } |
| |
| /* |
| ** Return the number of values available from the current row of the |
| ** currently executing statement pStmt. |
| */ |
| int sqlite3_data_count(sqlite3_stmt *pStmt){ |
| Vdbe *pVm = (Vdbe *)pStmt; |
| if( pVm==0 || pVm->pResultSet==0 ) return 0; |
| return pVm->nResColumn; |
| } |
| |
| |
| /* |
| ** Check to see if column iCol of the given statement is valid. If |
| ** it is, return a pointer to the Mem for the value of that column. |
| ** If iCol is not valid, return a pointer to a Mem which has a value |
| ** of NULL. |
| */ |
| static Mem *columnMem(sqlite3_stmt *pStmt, int i){ |
| Vdbe *pVm; |
| int vals; |
| Mem *pOut; |
| |
| pVm = (Vdbe *)pStmt; |
| if( pVm && pVm->pResultSet!=0 && i<pVm->nResColumn && i>=0 ){ |
| sqlite3_mutex_enter(pVm->db->mutex); |
| vals = sqlite3_data_count(pStmt); |
| pOut = &pVm->pResultSet[i]; |
| }else{ |
| static const Mem nullMem = {{0}, 0.0, 0, "", 0, MEM_Null, SQLITE_NULL, 0, 0, 0 }; |
| if( pVm->db ){ |
| sqlite3_mutex_enter(pVm->db->mutex); |
| sqlite3Error(pVm->db, SQLITE_RANGE, 0); |
| } |
| pOut = (Mem*)&nullMem; |
| } |
| return pOut; |
| } |
| |
| /* |
| ** This function is called after invoking an sqlite3_value_XXX function on a |
| ** column value (i.e. a value returned by evaluating an SQL expression in the |
| ** select list of a SELECT statement) that may cause a malloc() failure. If |
| ** malloc() has failed, the threads mallocFailed flag is cleared and the result |
| ** code of statement pStmt set to SQLITE_NOMEM. |
| ** |
| ** Specifically, this is called from within: |
| ** |
| ** sqlite3_column_int() |
| ** sqlite3_column_int64() |
| ** sqlite3_column_text() |
| ** sqlite3_column_text16() |
| ** sqlite3_column_real() |
| ** sqlite3_column_bytes() |
| ** sqlite3_column_bytes16() |
| ** |
| ** But not for sqlite3_column_blob(), which never calls malloc(). |
| */ |
| static void columnMallocFailure(sqlite3_stmt *pStmt) |
| { |
| /* If malloc() failed during an encoding conversion within an |
| ** sqlite3_column_XXX API, then set the return code of the statement to |
| ** SQLITE_NOMEM. The next call to _step() (if any) will return SQLITE_ERROR |
| ** and _finalize() will return NOMEM. |
| */ |
| Vdbe *p = (Vdbe *)pStmt; |
| if( p ){ |
| p->rc = sqlite3ApiExit(p->db, p->rc); |
| sqlite3_mutex_leave(p->db->mutex); |
| } |
| } |
| |
| /**************************** sqlite3_column_ ******************************* |
| ** The following routines are used to access elements of the current row |
| ** in the result set. |
| */ |
| const void *sqlite3_column_blob(sqlite3_stmt *pStmt, int i){ |
| const void *val; |
| val = sqlite3_value_blob( columnMem(pStmt,i) ); |
| /* Even though there is no encoding conversion, value_blob() might |
| ** need to call malloc() to expand the result of a zeroblob() |
| ** expression. |
| */ |
| columnMallocFailure(pStmt); |
| return val; |
| } |
| int sqlite3_column_bytes(sqlite3_stmt *pStmt, int i){ |
| int val = sqlite3_value_bytes( columnMem(pStmt,i) ); |
| columnMallocFailure(pStmt); |
| return val; |
| } |
| int sqlite3_column_bytes16(sqlite3_stmt *pStmt, int i){ |
| int val = sqlite3_value_bytes16( columnMem(pStmt,i) ); |
| columnMallocFailure(pStmt); |
| return val; |
| } |
| double sqlite3_column_double(sqlite3_stmt *pStmt, int i){ |
| double val = sqlite3_value_double( columnMem(pStmt,i) ); |
| columnMallocFailure(pStmt); |
| return val; |
| } |
| int sqlite3_column_int(sqlite3_stmt *pStmt, int i){ |
| int val = sqlite3_value_int( columnMem(pStmt,i) ); |
| columnMallocFailure(pStmt); |
| return val; |
| } |
| sqlite_int64 sqlite3_column_int64(sqlite3_stmt *pStmt, int i){ |
| sqlite_int64 val = sqlite3_value_int64( columnMem(pStmt,i) ); |
| columnMallocFailure(pStmt); |
| return val; |
| } |
| const unsigned char *sqlite3_column_text(sqlite3_stmt *pStmt, int i){ |
| const unsigned char *val = sqlite3_value_text( columnMem(pStmt,i) ); |
| columnMallocFailure(pStmt); |
| return val; |
| } |
| sqlite3_value *sqlite3_column_value(sqlite3_stmt *pStmt, int i){ |
| Mem *pOut = columnMem(pStmt, i); |
| if( pOut->flags&MEM_Static ){ |
| pOut->flags &= ~MEM_Static; |
| pOut->flags |= MEM_Ephem; |
| } |
| columnMallocFailure(pStmt); |
| return (sqlite3_value *)pOut; |
| } |
| #ifndef SQLITE_OMIT_UTF16 |
| const void *sqlite3_column_text16(sqlite3_stmt *pStmt, int i){ |
| const void *val = sqlite3_value_text16( columnMem(pStmt,i) ); |
| columnMallocFailure(pStmt); |
| return val; |
| } |
| #endif /* SQLITE_OMIT_UTF16 */ |
| int sqlite3_column_type(sqlite3_stmt *pStmt, int i){ |
| int iType = sqlite3_value_type( columnMem(pStmt,i) ); |
| columnMallocFailure(pStmt); |
| return iType; |
| } |
| |
| /* The following function is experimental and subject to change or |
| ** removal */ |
| /*int sqlite3_column_numeric_type(sqlite3_stmt *pStmt, int i){ |
| ** return sqlite3_value_numeric_type( columnMem(pStmt,i) ); |
| **} |
| */ |
| |
| /* |
| ** Convert the N-th element of pStmt->pColName[] into a string using |
| ** xFunc() then return that string. If N is out of range, return 0. |
| ** |
| ** There are up to 5 names for each column. useType determines which |
| ** name is returned. Here are the names: |
| ** |
| ** 0 The column name as it should be displayed for output |
| ** 1 The datatype name for the column |
| ** 2 The name of the database that the column derives from |
| ** 3 The name of the table that the column derives from |
| ** 4 The name of the table column that the result column derives from |
| ** |
| ** If the result is not a simple column reference (if it is an expression |
| ** or a constant) then useTypes 2, 3, and 4 return NULL. |
| */ |
| static const void *columnName( |
| sqlite3_stmt *pStmt, |
| int N, |
| const void *(*xFunc)(Mem*), |
| int useType |
| ){ |
| const void *ret = 0; |
| Vdbe *p = (Vdbe *)pStmt; |
| int n; |
| |
| |
| if( p!=0 ){ |
| n = sqlite3_column_count(pStmt); |
| if( N<n && N>=0 ){ |
| N += useType*n; |
| sqlite3_mutex_enter(p->db->mutex); |
| ret = xFunc(&p->aColName[N]); |
| |
| /* A malloc may have failed inside of the xFunc() call. If this |
| ** is the case, clear the mallocFailed flag and return NULL. |
| */ |
| if( p->db && p->db->mallocFailed ){ |
| p->db->mallocFailed = 0; |
| ret = 0; |
| } |
| sqlite3_mutex_leave(p->db->mutex); |
| } |
| } |
| return ret; |
| } |
| |
| /* |
| ** Return the name of the Nth column of the result set returned by SQL |
| ** statement pStmt. |
| */ |
| const char *sqlite3_column_name(sqlite3_stmt *pStmt, int N){ |
| return columnName( |
| pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_NAME); |
| } |
| #ifndef SQLITE_OMIT_UTF16 |
| const void *sqlite3_column_name16(sqlite3_stmt *pStmt, int N){ |
| return columnName( |
| pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_NAME); |
| } |
| #endif |
| |
| /* |
| ** Constraint: If you have ENABLE_COLUMN_METADATA then you must |
| ** not define OMIT_DECLTYPE. |
| */ |
| #if defined(SQLITE_OMIT_DECLTYPE) && defined(SQLITE_ENABLE_COLUMN_METADATA) |
| # error "Must not define both SQLITE_OMIT_DECLTYPE \ |
| and SQLITE_ENABLE_COLUMN_METADATA" |
| #endif |
| |
| #ifndef SQLITE_OMIT_DECLTYPE |
| /* |
| ** Return the column declaration type (if applicable) of the 'i'th column |
| ** of the result set of SQL statement pStmt. |
| */ |
| const char *sqlite3_column_decltype(sqlite3_stmt *pStmt, int N){ |
| return columnName( |
| pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DECLTYPE); |
| } |
| #ifndef SQLITE_OMIT_UTF16 |
| const void *sqlite3_column_decltype16(sqlite3_stmt *pStmt, int N){ |
| return columnName( |
| pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DECLTYPE); |
| } |
| #endif /* SQLITE_OMIT_UTF16 */ |
| #endif /* SQLITE_OMIT_DECLTYPE */ |
| |
| #ifdef SQLITE_ENABLE_COLUMN_METADATA |
| /* |
| ** Return the name of the database from which a result column derives. |
| ** NULL is returned if the result column is an expression or constant or |
| ** anything else which is not an unabiguous reference to a database column. |
| */ |
| const char *sqlite3_column_database_name(sqlite3_stmt *pStmt, int N){ |
| return columnName( |
| pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DATABASE); |
| } |
| #ifndef SQLITE_OMIT_UTF16 |
| const void *sqlite3_column_database_name16(sqlite3_stmt *pStmt, int N){ |
| return columnName( |
| pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DATABASE); |
| } |
| #endif /* SQLITE_OMIT_UTF16 */ |
| |
| /* |
| ** Return the name of the table from which a result column derives. |
| ** NULL is returned if the result column is an expression or constant or |
| ** anything else which is not an unabiguous reference to a database column. |
| */ |
| const char *sqlite3_column_table_name(sqlite3_stmt *pStmt, int N){ |
| return columnName( |
| pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_TABLE); |
| } |
| #ifndef SQLITE_OMIT_UTF16 |
| const void *sqlite3_column_table_name16(sqlite3_stmt *pStmt, int N){ |
| return columnName( |
| pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_TABLE); |
| } |
| #endif /* SQLITE_OMIT_UTF16 */ |
| |
| /* |
| ** Return the name of the table column from which a result column derives. |
| ** NULL is returned if the result column is an expression or constant or |
| ** anything else which is not an unabiguous reference to a database column. |
| */ |
| const char *sqlite3_column_origin_name(sqlite3_stmt *pStmt, int N){ |
| return columnName( |
| pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_COLUMN); |
| } |
| #ifndef SQLITE_OMIT_UTF16 |
| const void *sqlite3_column_origin_name16(sqlite3_stmt *pStmt, int N){ |
| return columnName( |
| pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_COLUMN); |
| } |
| #endif /* SQLITE_OMIT_UTF16 */ |
| #endif /* SQLITE_ENABLE_COLUMN_METADATA */ |
| |
| |
| /******************************* sqlite3_bind_ *************************** |
| ** |
| ** Routines used to attach values to wildcards in a compiled SQL statement. |
| */ |
| /* |
| ** Unbind the value bound to variable i in virtual machine p. This is the |
| ** the same as binding a NULL value to the column. If the "i" parameter is |
| ** out of range, then SQLITE_RANGE is returned. Othewise SQLITE_OK. |
| ** |
| ** A successful evaluation of this routine acquires the mutex on p. |
| ** the mutex is released if any kind of error occurs. |
| ** |
| ** The error code stored in database p->db is overwritten with the return |
| ** value in any case. |
| */ |
| static int vdbeUnbind(Vdbe *p, int i){ |
| Mem *pVar; |
| if( p==0 ) return SQLITE_MISUSE; |
| sqlite3_mutex_enter(p->db->mutex); |
| if( p->magic!=VDBE_MAGIC_RUN || p->pc>=0 ){ |
| sqlite3Error(p->db, SQLITE_MISUSE, 0); |
| sqlite3_mutex_leave(p->db->mutex); |
| return SQLITE_MISUSE; |
| } |
| if( i<1 || i>p->nVar ){ |
| sqlite3Error(p->db, SQLITE_RANGE, 0); |
| sqlite3_mutex_leave(p->db->mutex); |
| return SQLITE_RANGE; |
| } |
| i--; |
| pVar = &p->aVar[i]; |
| sqlite3VdbeMemRelease(pVar); |
| pVar->flags = MEM_Null; |
| sqlite3Error(p->db, SQLITE_OK, 0); |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** Bind a text or BLOB value. |
| */ |
| static int bindText( |
| sqlite3_stmt *pStmt, /* The statement to bind against */ |
| int i, /* Index of the parameter to bind */ |
| const void *zData, /* Pointer to the data to be bound */ |
| int nData, /* Number of bytes of data to be bound */ |
| void (*xDel)(void*), /* Destructor for the data */ |
| int encoding /* Encoding for the data */ |
| ){ |
| Vdbe *p = (Vdbe *)pStmt; |
| Mem *pVar; |
| int rc; |
| |
| rc = vdbeUnbind(p, i); |
| if( rc==SQLITE_OK ){ |
| if( zData!=0 ){ |
| pVar = &p->aVar[i-1]; |
| rc = sqlite3VdbeMemSetStr(pVar, zData, nData, encoding, xDel); |
| if( rc==SQLITE_OK && encoding!=0 ){ |
| rc = sqlite3VdbeChangeEncoding(pVar, ENC(p->db)); |
| } |
| sqlite3Error(p->db, rc, 0); |
| rc = sqlite3ApiExit(p->db, rc); |
| } |
| sqlite3_mutex_leave(p->db->mutex); |
| } |
| return rc; |
| } |
| |
| |
| /* |
| ** Bind a blob value to an SQL statement variable. |
| */ |
| int sqlite3_bind_blob( |
| sqlite3_stmt *pStmt, |
| int i, |
| const void *zData, |
| int nData, |
| void (*xDel)(void*) |
| ){ |
| return bindText(pStmt, i, zData, nData, xDel, 0); |
| } |
| int sqlite3_bind_double(sqlite3_stmt *pStmt, int i, double rValue){ |
| int rc; |
| Vdbe *p = (Vdbe *)pStmt; |
| rc = vdbeUnbind(p, i); |
| if( rc==SQLITE_OK ){ |
| sqlite3VdbeMemSetDouble(&p->aVar[i-1], rValue); |
| sqlite3_mutex_leave(p->db->mutex); |
| } |
| return rc; |
| } |
| int sqlite3_bind_int(sqlite3_stmt *p, int i, int iValue){ |
| return sqlite3_bind_int64(p, i, (i64)iValue); |
| } |
| int sqlite3_bind_int64(sqlite3_stmt *pStmt, int i, sqlite_int64 iValue){ |
| int rc; |
| Vdbe *p = (Vdbe *)pStmt; |
| rc = vdbeUnbind(p, i); |
| if( rc==SQLITE_OK ){ |
| sqlite3VdbeMemSetInt64(&p->aVar[i-1], iValue); |
| sqlite3_mutex_leave(p->db->mutex); |
| } |
| return rc; |
| } |
| int sqlite3_bind_null(sqlite3_stmt *pStmt, int i){ |
| int rc; |
| Vdbe *p = (Vdbe*)pStmt; |
| rc = vdbeUnbind(p, i); |
| if( rc==SQLITE_OK ){ |
| sqlite3_mutex_leave(p->db->mutex); |
| } |
| return rc; |
| } |
| int sqlite3_bind_text( |
| sqlite3_stmt *pStmt, |
| int i, |
| const char *zData, |
| int nData, |
| void (*xDel)(void*) |
| ){ |
| return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF8); |
| } |
| #ifndef SQLITE_OMIT_UTF16 |
| int sqlite3_bind_text16( |
| sqlite3_stmt *pStmt, |
| int i, |
| const void *zData, |
| int nData, |
| void (*xDel)(void*) |
| ){ |
| return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF16NATIVE); |
| } |
| #endif /* SQLITE_OMIT_UTF16 */ |
| int sqlite3_bind_value(sqlite3_stmt *pStmt, int i, const sqlite3_value *pValue){ |
| int rc; |
| Vdbe *p = (Vdbe *)pStmt; |
| rc = vdbeUnbind(p, i); |
| if( rc==SQLITE_OK ){ |
| rc = sqlite3VdbeMemCopy(&p->aVar[i-1], pValue); |
| if( rc==SQLITE_OK ){ |
| rc = sqlite3VdbeChangeEncoding(&p->aVar[i-1], ENC(p->db)); |
| } |
| sqlite3_mutex_leave(p->db->mutex); |
| } |
| rc = sqlite3ApiExit(p->db, rc); |
| return rc; |
| } |
| int sqlite3_bind_zeroblob(sqlite3_stmt *pStmt, int i, int n){ |
| int rc; |
| Vdbe *p = (Vdbe *)pStmt; |
| rc = vdbeUnbind(p, i); |
| if( rc==SQLITE_OK ){ |
| sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n); |
| sqlite3_mutex_leave(p->db->mutex); |
| } |
| return rc; |
| } |
| |
| /* |
| ** Return the number of wildcards that can be potentially bound to. |
| ** This routine is added to support DBD::SQLite. |
| */ |
| int sqlite3_bind_parameter_count(sqlite3_stmt *pStmt){ |
| Vdbe *p = (Vdbe*)pStmt; |
| return p ? p->nVar : 0; |
| } |
| |
| /* |
| ** Create a mapping from variable numbers to variable names |
| ** in the Vdbe.azVar[] array, if such a mapping does not already |
| ** exist. |
| */ |
| static void createVarMap(Vdbe *p){ |
| if( !p->okVar ){ |
| sqlite3_mutex_enter(p->db->mutex); |
| if( !p->okVar ){ |
| int j; |
| Op *pOp; |
| for(j=0, pOp=p->aOp; j<p->nOp; j++, pOp++){ |
| if( pOp->opcode==OP_Variable ){ |
| assert( pOp->p1>0 && pOp->p1<=p->nVar ); |
| p->azVar[pOp->p1-1] = pOp->p4.z; |
| } |
| } |
| p->okVar = 1; |
| } |
| sqlite3_mutex_leave(p->db->mutex); |
| } |
| } |
| |
| /* |
| ** Return the name of a wildcard parameter. Return NULL if the index |
| ** is out of range or if the wildcard is unnamed. |
| ** |
| ** The result is always UTF-8. |
| */ |
| const char *sqlite3_bind_parameter_name(sqlite3_stmt *pStmt, int i){ |
| Vdbe *p = (Vdbe*)pStmt; |
| if( p==0 || i<1 || i>p->nVar ){ |
| return 0; |
| } |
| createVarMap(p); |
| return p->azVar[i-1]; |
| } |
| |
| /* |
| ** Given a wildcard parameter name, return the index of the variable |
| ** with that name. If there is no variable with the given name, |
| ** return 0. |
| */ |
| int sqlite3_bind_parameter_index(sqlite3_stmt *pStmt, const char *zName){ |
| Vdbe *p = (Vdbe*)pStmt; |
| int i; |
| if( p==0 ){ |
| return 0; |
| } |
| createVarMap(p); |
| if( zName ){ |
| for(i=0; i<p->nVar; i++){ |
| const char *z = p->azVar[i]; |
| if( z && strcmp(z,zName)==0 ){ |
| return i+1; |
| } |
| } |
| } |
| return 0; |
| } |
| |
| /* |
| ** Transfer all bindings from the first statement over to the second. |
| ** If the two statements contain a different number of bindings, then |
| ** an SQLITE_ERROR is returned. |
| */ |
| int sqlite3TransferBindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){ |
| Vdbe *pFrom = (Vdbe*)pFromStmt; |
| Vdbe *pTo = (Vdbe*)pToStmt; |
| int i, rc = SQLITE_OK; |
| if( (pFrom->magic!=VDBE_MAGIC_RUN && pFrom->magic!=VDBE_MAGIC_HALT) |
| || (pTo->magic!=VDBE_MAGIC_RUN && pTo->magic!=VDBE_MAGIC_HALT) |
| || pTo->db!=pFrom->db ){ |
| return SQLITE_MISUSE; |
| } |
| if( pFrom->nVar!=pTo->nVar ){ |
| return SQLITE_ERROR; |
| } |
| sqlite3_mutex_enter(pTo->db->mutex); |
| for(i=0; rc==SQLITE_OK && i<pFrom->nVar; i++){ |
| sqlite3VdbeMemMove(&pTo->aVar[i], &pFrom->aVar[i]); |
| } |
| sqlite3_mutex_leave(pTo->db->mutex); |
| assert( rc==SQLITE_OK || rc==SQLITE_NOMEM ); |
| return rc; |
| } |
| |
| #ifndef SQLITE_OMIT_DEPRECATED |
| /* |
| ** Deprecated external interface. Internal/core SQLite code |
| ** should call sqlite3TransferBindings. |
| */ |
| int sqlite3_transfer_bindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){ |
| return sqlite3TransferBindings(pFromStmt, pToStmt); |
| } |
| #endif |
| |
| /* |
| ** Return the sqlite3* database handle to which the prepared statement given |
| ** in the argument belongs. This is the same database handle that was |
| ** the first argument to the sqlite3_prepare() that was used to create |
| ** the statement in the first place. |
| */ |
| sqlite3 *sqlite3_db_handle(sqlite3_stmt *pStmt){ |
| return pStmt ? ((Vdbe*)pStmt)->db : 0; |
| } |
| |
| /* |
| ** Return a pointer to the next prepared statement after pStmt associated |
| ** with database connection pDb. If pStmt is NULL, return the first |
| ** prepared statement for the database connection. Return NULL if there |
| ** are no more. |
| */ |
| sqlite3_stmt *sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt){ |
| sqlite3_stmt *pNext; |
| sqlite3_mutex_enter(pDb->mutex); |
| if( pStmt==0 ){ |
| pNext = (sqlite3_stmt*)pDb->pVdbe; |
| }else{ |
| pNext = (sqlite3_stmt*)((Vdbe*)pStmt)->pNext; |
| } |
| sqlite3_mutex_leave(pDb->mutex); |
| return pNext; |
| } |
| |
| /* |
| ** Return the value of a status counter for a prepared statement |
| */ |
| int sqlite3_stmt_status(sqlite3_stmt *pStmt, int op, int resetFlag){ |
| Vdbe *pVdbe = (Vdbe*)pStmt; |
| int v = pVdbe->aCounter[op-1]; |
| if( resetFlag ) pVdbe->aCounter[op-1] = 0; |
| return v; |
| } |