| /* |
| ** 2001 September 15 |
| ** |
| ** The author disclaims copyright to this source code. In place of |
| ** a legal notice, here is a blessing: |
| ** |
| ** May you do good and not evil. |
| ** May you find forgiveness for yourself and forgive others. |
| ** May you share freely, never taking more than you give. |
| ** |
| ************************************************************************* |
| ** Utility functions used throughout sqlite. |
| ** |
| ** This file contains functions for allocating memory, comparing |
| ** strings, and stuff like that. |
| ** |
| ** $Id: util.c,v 1.242 2008/11/17 19:18:55 danielk1977 Exp $ |
| */ |
| #include "sqliteInt.h" |
| #include <stdarg.h> |
| #include <ctype.h> |
| |
| |
| /* |
| ** Return true if the floating point value is Not a Number (NaN). |
| */ |
| int sqlite3IsNaN(double x){ |
| /* This NaN test sometimes fails if compiled on GCC with -ffast-math. |
| ** On the other hand, the use of -ffast-math comes with the following |
| ** warning: |
| ** |
| ** This option [-ffast-math] should never be turned on by any |
| ** -O option since it can result in incorrect output for programs |
| ** which depend on an exact implementation of IEEE or ISO |
| ** rules/specifications for math functions. |
| ** |
| ** Under MSVC, this NaN test may fail if compiled with a floating- |
| ** point precision mode other than /fp:precise. From the MSDN |
| ** documentation: |
| ** |
| ** The compiler [with /fp:precise] will properly handle comparisons |
| ** involving NaN. For example, x != x evaluates to true if x is NaN |
| ** ... |
| */ |
| #ifdef __FAST_MATH__ |
| # error SQLite will not work correctly with the -ffast-math option of GCC. |
| #endif |
| volatile double y = x; |
| volatile double z = y; |
| return y!=z; |
| } |
| |
| /* |
| ** Return the length of a string, except do not allow the string length |
| ** to exceed the SQLITE_LIMIT_LENGTH setting. |
| */ |
| int sqlite3Strlen(sqlite3 *db, const char *z){ |
| const char *z2 = z; |
| int len; |
| int x; |
| while( *z2 ){ z2++; } |
| x = z2 - z; |
| len = 0x7fffffff & x; |
| if( len!=x || len > db->aLimit[SQLITE_LIMIT_LENGTH] ){ |
| return db->aLimit[SQLITE_LIMIT_LENGTH]; |
| }else{ |
| return len; |
| } |
| } |
| |
| /* |
| ** Set the most recent error code and error string for the sqlite |
| ** handle "db". The error code is set to "err_code". |
| ** |
| ** If it is not NULL, string zFormat specifies the format of the |
| ** error string in the style of the printf functions: The following |
| ** format characters are allowed: |
| ** |
| ** %s Insert a string |
| ** %z A string that should be freed after use |
| ** %d Insert an integer |
| ** %T Insert a token |
| ** %S Insert the first element of a SrcList |
| ** |
| ** zFormat and any string tokens that follow it are assumed to be |
| ** encoded in UTF-8. |
| ** |
| ** To clear the most recent error for sqlite handle "db", sqlite3Error |
| ** should be called with err_code set to SQLITE_OK and zFormat set |
| ** to NULL. |
| */ |
| void sqlite3Error(sqlite3 *db, int err_code, const char *zFormat, ...){ |
| if( db && (db->pErr || (db->pErr = sqlite3ValueNew(db))!=0) ){ |
| db->errCode = err_code; |
| if( zFormat ){ |
| char *z; |
| va_list ap; |
| va_start(ap, zFormat); |
| z = sqlite3VMPrintf(db, zFormat, ap); |
| va_end(ap); |
| sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, SQLITE_DYNAMIC); |
| }else{ |
| sqlite3ValueSetStr(db->pErr, 0, 0, SQLITE_UTF8, SQLITE_STATIC); |
| } |
| } |
| } |
| |
| /* |
| ** Add an error message to pParse->zErrMsg and increment pParse->nErr. |
| ** The following formatting characters are allowed: |
| ** |
| ** %s Insert a string |
| ** %z A string that should be freed after use |
| ** %d Insert an integer |
| ** %T Insert a token |
| ** %S Insert the first element of a SrcList |
| ** |
| ** This function should be used to report any error that occurs whilst |
| ** compiling an SQL statement (i.e. within sqlite3_prepare()). The |
| ** last thing the sqlite3_prepare() function does is copy the error |
| ** stored by this function into the database handle using sqlite3Error(). |
| ** Function sqlite3Error() should be used during statement execution |
| ** (sqlite3_step() etc.). |
| */ |
| void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){ |
| va_list ap; |
| sqlite3 *db = pParse->db; |
| pParse->nErr++; |
| sqlite3DbFree(db, pParse->zErrMsg); |
| va_start(ap, zFormat); |
| pParse->zErrMsg = sqlite3VMPrintf(db, zFormat, ap); |
| va_end(ap); |
| if( pParse->rc==SQLITE_OK ){ |
| pParse->rc = SQLITE_ERROR; |
| } |
| } |
| |
| /* |
| ** Clear the error message in pParse, if any |
| */ |
| void sqlite3ErrorClear(Parse *pParse){ |
| sqlite3DbFree(pParse->db, pParse->zErrMsg); |
| pParse->zErrMsg = 0; |
| pParse->nErr = 0; |
| } |
| |
| /* |
| ** Convert an SQL-style quoted string into a normal string by removing |
| ** the quote characters. The conversion is done in-place. If the |
| ** input does not begin with a quote character, then this routine |
| ** is a no-op. |
| ** |
| ** 2002-Feb-14: This routine is extended to remove MS-Access style |
| ** brackets from around identifers. For example: "[a-b-c]" becomes |
| ** "a-b-c". |
| */ |
| void sqlite3Dequote(char *z){ |
| int quote; |
| int i, j; |
| if( z==0 ) return; |
| quote = z[0]; |
| switch( quote ){ |
| case '\'': break; |
| case '"': break; |
| case '`': break; /* For MySQL compatibility */ |
| case '[': quote = ']'; break; /* For MS SqlServer compatibility */ |
| default: return; |
| } |
| for(i=1, j=0; z[i]; i++){ |
| if( z[i]==quote ){ |
| if( z[i+1]==quote ){ |
| z[j++] = quote; |
| i++; |
| }else{ |
| z[j++] = 0; |
| break; |
| } |
| }else{ |
| z[j++] = z[i]; |
| } |
| } |
| } |
| |
| /* Convenient short-hand */ |
| #define UpperToLower sqlite3UpperToLower |
| |
| /* |
| ** Some systems have stricmp(). Others have strcasecmp(). Because |
| ** there is no consistency, we will define our own. |
| */ |
| int sqlite3StrICmp(const char *zLeft, const char *zRight){ |
| register unsigned char *a, *b; |
| a = (unsigned char *)zLeft; |
| b = (unsigned char *)zRight; |
| while( *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; } |
| return UpperToLower[*a] - UpperToLower[*b]; |
| } |
| int sqlite3StrNICmp(const char *zLeft, const char *zRight, int N){ |
| register unsigned char *a, *b; |
| a = (unsigned char *)zLeft; |
| b = (unsigned char *)zRight; |
| while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; } |
| return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b]; |
| } |
| |
| /* |
| ** Return TRUE if z is a pure numeric string. Return FALSE if the |
| ** string contains any character which is not part of a number. If |
| ** the string is numeric and contains the '.' character, set *realnum |
| ** to TRUE (otherwise FALSE). |
| ** |
| ** An empty string is considered non-numeric. |
| */ |
| int sqlite3IsNumber(const char *z, int *realnum, u8 enc){ |
| int incr = (enc==SQLITE_UTF8?1:2); |
| if( enc==SQLITE_UTF16BE ) z++; |
| if( *z=='-' || *z=='+' ) z += incr; |
| if( !isdigit(*(u8*)z) ){ |
| return 0; |
| } |
| z += incr; |
| if( realnum ) *realnum = 0; |
| while( isdigit(*(u8*)z) ){ z += incr; } |
| if( *z=='.' ){ |
| z += incr; |
| if( !isdigit(*(u8*)z) ) return 0; |
| while( isdigit(*(u8*)z) ){ z += incr; } |
| if( realnum ) *realnum = 1; |
| } |
| if( *z=='e' || *z=='E' ){ |
| z += incr; |
| if( *z=='+' || *z=='-' ) z += incr; |
| if( !isdigit(*(u8*)z) ) return 0; |
| while( isdigit(*(u8*)z) ){ z += incr; } |
| if( realnum ) *realnum = 1; |
| } |
| return *z==0; |
| } |
| |
| /* |
| ** The string z[] is an ascii representation of a real number. |
| ** Convert this string to a double. |
| ** |
| ** This routine assumes that z[] really is a valid number. If it |
| ** is not, the result is undefined. |
| ** |
| ** This routine is used instead of the library atof() function because |
| ** the library atof() might want to use "," as the decimal point instead |
| ** of "." depending on how locale is set. But that would cause problems |
| ** for SQL. So this routine always uses "." regardless of locale. |
| */ |
| int sqlite3AtoF(const char *z, double *pResult){ |
| #ifndef SQLITE_OMIT_FLOATING_POINT |
| int sign = 1; |
| const char *zBegin = z; |
| LONGDOUBLE_TYPE v1 = 0.0; |
| int nSignificant = 0; |
| while( isspace(*(u8*)z) ) z++; |
| if( *z=='-' ){ |
| sign = -1; |
| z++; |
| }else if( *z=='+' ){ |
| z++; |
| } |
| while( z[0]=='0' ){ |
| z++; |
| } |
| while( isdigit(*(u8*)z) ){ |
| v1 = v1*10.0 + (*z - '0'); |
| z++; |
| nSignificant++; |
| } |
| if( *z=='.' ){ |
| LONGDOUBLE_TYPE divisor = 1.0; |
| z++; |
| if( nSignificant==0 ){ |
| while( z[0]=='0' ){ |
| divisor *= 10.0; |
| z++; |
| } |
| } |
| while( isdigit(*(u8*)z) ){ |
| if( nSignificant<18 ){ |
| v1 = v1*10.0 + (*z - '0'); |
| divisor *= 10.0; |
| nSignificant++; |
| } |
| z++; |
| } |
| v1 /= divisor; |
| } |
| if( *z=='e' || *z=='E' ){ |
| int esign = 1; |
| int eval = 0; |
| LONGDOUBLE_TYPE scale = 1.0; |
| z++; |
| if( *z=='-' ){ |
| esign = -1; |
| z++; |
| }else if( *z=='+' ){ |
| z++; |
| } |
| while( isdigit(*(u8*)z) ){ |
| eval = eval*10 + *z - '0'; |
| z++; |
| } |
| while( eval>=64 ){ scale *= 1.0e+64; eval -= 64; } |
| while( eval>=16 ){ scale *= 1.0e+16; eval -= 16; } |
| while( eval>=4 ){ scale *= 1.0e+4; eval -= 4; } |
| while( eval>=1 ){ scale *= 1.0e+1; eval -= 1; } |
| if( esign<0 ){ |
| v1 /= scale; |
| }else{ |
| v1 *= scale; |
| } |
| } |
| *pResult = sign<0 ? -v1 : v1; |
| return z - zBegin; |
| #else |
| return sqlite3Atoi64(z, pResult); |
| #endif /* SQLITE_OMIT_FLOATING_POINT */ |
| } |
| |
| /* |
| ** Compare the 19-character string zNum against the text representation |
| ** value 2^63: 9223372036854775808. Return negative, zero, or positive |
| ** if zNum is less than, equal to, or greater than the string. |
| ** |
| ** Unlike memcmp() this routine is guaranteed to return the difference |
| ** in the values of the last digit if the only difference is in the |
| ** last digit. So, for example, |
| ** |
| ** compare2pow63("9223372036854775800") |
| ** |
| ** will return -8. |
| */ |
| static int compare2pow63(const char *zNum){ |
| int c; |
| c = memcmp(zNum,"922337203685477580",18); |
| if( c==0 ){ |
| c = zNum[18] - '8'; |
| } |
| return c; |
| } |
| |
| |
| /* |
| ** Return TRUE if zNum is a 64-bit signed integer and write |
| ** the value of the integer into *pNum. If zNum is not an integer |
| ** or is an integer that is too large to be expressed with 64 bits, |
| ** then return false. |
| ** |
| ** When this routine was originally written it dealt with only |
| ** 32-bit numbers. At that time, it was much faster than the |
| ** atoi() library routine in RedHat 7.2. |
| */ |
| int sqlite3Atoi64(const char *zNum, i64 *pNum){ |
| i64 v = 0; |
| int neg; |
| int i, c; |
| const char *zStart; |
| while( isspace(*(u8*)zNum) ) zNum++; |
| if( *zNum=='-' ){ |
| neg = 1; |
| zNum++; |
| }else if( *zNum=='+' ){ |
| neg = 0; |
| zNum++; |
| }else{ |
| neg = 0; |
| } |
| zStart = zNum; |
| while( zNum[0]=='0' ){ zNum++; } /* Skip over leading zeros. Ticket #2454 */ |
| for(i=0; (c=zNum[i])>='0' && c<='9'; i++){ |
| v = v*10 + c - '0'; |
| } |
| *pNum = neg ? -v : v; |
| if( c!=0 || (i==0 && zStart==zNum) || i>19 ){ |
| /* zNum is empty or contains non-numeric text or is longer |
| ** than 19 digits (thus guaranting that it is too large) */ |
| return 0; |
| }else if( i<19 ){ |
| /* Less than 19 digits, so we know that it fits in 64 bits */ |
| return 1; |
| }else{ |
| /* 19-digit numbers must be no larger than 9223372036854775807 if positive |
| ** or 9223372036854775808 if negative. Note that 9223372036854665808 |
| ** is 2^63. */ |
| return compare2pow63(zNum)<neg; |
| } |
| } |
| |
| /* |
| ** The string zNum represents an integer. There might be some other |
| ** information following the integer too, but that part is ignored. |
| ** If the integer that the prefix of zNum represents will fit in a |
| ** 64-bit signed integer, return TRUE. Otherwise return FALSE. |
| ** |
| ** This routine returns FALSE for the string -9223372036854775808 even that |
| ** that number will, in theory fit in a 64-bit integer. Positive |
| ** 9223373036854775808 will not fit in 64 bits. So it seems safer to return |
| ** false. |
| */ |
| int sqlite3FitsIn64Bits(const char *zNum, int negFlag){ |
| int i, c; |
| int neg = 0; |
| if( *zNum=='-' ){ |
| neg = 1; |
| zNum++; |
| }else if( *zNum=='+' ){ |
| zNum++; |
| } |
| if( negFlag ) neg = 1-neg; |
| while( *zNum=='0' ){ |
| zNum++; /* Skip leading zeros. Ticket #2454 */ |
| } |
| for(i=0; (c=zNum[i])>='0' && c<='9'; i++){} |
| if( i<19 ){ |
| /* Guaranteed to fit if less than 19 digits */ |
| return 1; |
| }else if( i>19 ){ |
| /* Guaranteed to be too big if greater than 19 digits */ |
| return 0; |
| }else{ |
| /* Compare against 2^63. */ |
| return compare2pow63(zNum)<neg; |
| } |
| } |
| |
| /* |
| ** If zNum represents an integer that will fit in 32-bits, then set |
| ** *pValue to that integer and return true. Otherwise return false. |
| ** |
| ** Any non-numeric characters that following zNum are ignored. |
| ** This is different from sqlite3Atoi64() which requires the |
| ** input number to be zero-terminated. |
| */ |
| int sqlite3GetInt32(const char *zNum, int *pValue){ |
| sqlite_int64 v = 0; |
| int i, c; |
| int neg = 0; |
| if( zNum[0]=='-' ){ |
| neg = 1; |
| zNum++; |
| }else if( zNum[0]=='+' ){ |
| zNum++; |
| } |
| while( zNum[0]=='0' ) zNum++; |
| for(i=0; i<11 && (c = zNum[i] - '0')>=0 && c<=9; i++){ |
| v = v*10 + c; |
| } |
| |
| /* The longest decimal representation of a 32 bit integer is 10 digits: |
| ** |
| ** 1234567890 |
| ** 2^31 -> 2147483648 |
| */ |
| if( i>10 ){ |
| return 0; |
| } |
| if( v-neg>2147483647 ){ |
| return 0; |
| } |
| if( neg ){ |
| v = -v; |
| } |
| *pValue = (int)v; |
| return 1; |
| } |
| |
| /* |
| ** The variable-length integer encoding is as follows: |
| ** |
| ** KEY: |
| ** A = 0xxxxxxx 7 bits of data and one flag bit |
| ** B = 1xxxxxxx 7 bits of data and one flag bit |
| ** C = xxxxxxxx 8 bits of data |
| ** |
| ** 7 bits - A |
| ** 14 bits - BA |
| ** 21 bits - BBA |
| ** 28 bits - BBBA |
| ** 35 bits - BBBBA |
| ** 42 bits - BBBBBA |
| ** 49 bits - BBBBBBA |
| ** 56 bits - BBBBBBBA |
| ** 64 bits - BBBBBBBBC |
| */ |
| |
| /* |
| ** Write a 64-bit variable-length integer to memory starting at p[0]. |
| ** The length of data write will be between 1 and 9 bytes. The number |
| ** of bytes written is returned. |
| ** |
| ** A variable-length integer consists of the lower 7 bits of each byte |
| ** for all bytes that have the 8th bit set and one byte with the 8th |
| ** bit clear. Except, if we get to the 9th byte, it stores the full |
| ** 8 bits and is the last byte. |
| */ |
| int sqlite3PutVarint(unsigned char *p, u64 v){ |
| int i, j, n; |
| u8 buf[10]; |
| if( v & (((u64)0xff000000)<<32) ){ |
| p[8] = v; |
| v >>= 8; |
| for(i=7; i>=0; i--){ |
| p[i] = (v & 0x7f) | 0x80; |
| v >>= 7; |
| } |
| return 9; |
| } |
| n = 0; |
| do{ |
| buf[n++] = (v & 0x7f) | 0x80; |
| v >>= 7; |
| }while( v!=0 ); |
| buf[0] &= 0x7f; |
| assert( n<=9 ); |
| for(i=0, j=n-1; j>=0; j--, i++){ |
| p[i] = buf[j]; |
| } |
| return n; |
| } |
| |
| /* |
| ** This routine is a faster version of sqlite3PutVarint() that only |
| ** works for 32-bit positive integers and which is optimized for |
| ** the common case of small integers. A MACRO version, putVarint32, |
| ** is provided which inlines the single-byte case. All code should use |
| ** the MACRO version as this function assumes the single-byte case has |
| ** already been handled. |
| */ |
| int sqlite3PutVarint32(unsigned char *p, u32 v){ |
| #ifndef putVarint32 |
| if( (v & ~0x7f)==0 ){ |
| p[0] = v; |
| return 1; |
| } |
| #endif |
| if( (v & ~0x3fff)==0 ){ |
| p[0] = (v>>7) | 0x80; |
| p[1] = v & 0x7f; |
| return 2; |
| } |
| return sqlite3PutVarint(p, v); |
| } |
| |
| /* |
| ** Read a 64-bit variable-length integer from memory starting at p[0]. |
| ** Return the number of bytes read. The value is stored in *v. |
| */ |
| int sqlite3GetVarint(const unsigned char *p, u64 *v){ |
| u32 a,b,s; |
| |
| a = *p; |
| /* a: p0 (unmasked) */ |
| if (!(a&0x80)) |
| { |
| *v = a; |
| return 1; |
| } |
| |
| p++; |
| b = *p; |
| /* b: p1 (unmasked) */ |
| if (!(b&0x80)) |
| { |
| a &= 0x7f; |
| a = a<<7; |
| a |= b; |
| *v = a; |
| return 2; |
| } |
| |
| p++; |
| a = a<<14; |
| a |= *p; |
| /* a: p0<<14 | p2 (unmasked) */ |
| if (!(a&0x80)) |
| { |
| a &= (0x7f<<14)|(0x7f); |
| b &= 0x7f; |
| b = b<<7; |
| a |= b; |
| *v = a; |
| return 3; |
| } |
| |
| /* CSE1 from below */ |
| a &= (0x7f<<14)|(0x7f); |
| p++; |
| b = b<<14; |
| b |= *p; |
| /* b: p1<<14 | p3 (unmasked) */ |
| if (!(b&0x80)) |
| { |
| b &= (0x7f<<14)|(0x7f); |
| /* moved CSE1 up */ |
| /* a &= (0x7f<<14)|(0x7f); */ |
| a = a<<7; |
| a |= b; |
| *v = a; |
| return 4; |
| } |
| |
| /* a: p0<<14 | p2 (masked) */ |
| /* b: p1<<14 | p3 (unmasked) */ |
| /* 1:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ |
| /* moved CSE1 up */ |
| /* a &= (0x7f<<14)|(0x7f); */ |
| b &= (0x7f<<14)|(0x7f); |
| s = a; |
| /* s: p0<<14 | p2 (masked) */ |
| |
| p++; |
| a = a<<14; |
| a |= *p; |
| /* a: p0<<28 | p2<<14 | p4 (unmasked) */ |
| if (!(a&0x80)) |
| { |
| /* we can skip these cause they were (effectively) done above in calc'ing s */ |
| /* a &= (0x7f<<28)|(0x7f<<14)|(0x7f); */ |
| /* b &= (0x7f<<14)|(0x7f); */ |
| b = b<<7; |
| a |= b; |
| s = s>>18; |
| *v = ((u64)s)<<32 | a; |
| return 5; |
| } |
| |
| /* 2:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ |
| s = s<<7; |
| s |= b; |
| /* s: p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ |
| |
| p++; |
| b = b<<14; |
| b |= *p; |
| /* b: p1<<28 | p3<<14 | p5 (unmasked) */ |
| if (!(b&0x80)) |
| { |
| /* we can skip this cause it was (effectively) done above in calc'ing s */ |
| /* b &= (0x7f<<28)|(0x7f<<14)|(0x7f); */ |
| a &= (0x7f<<14)|(0x7f); |
| a = a<<7; |
| a |= b; |
| s = s>>18; |
| *v = ((u64)s)<<32 | a; |
| return 6; |
| } |
| |
| p++; |
| a = a<<14; |
| a |= *p; |
| /* a: p2<<28 | p4<<14 | p6 (unmasked) */ |
| if (!(a&0x80)) |
| { |
| a &= (0x7f<<28)|(0x7f<<14)|(0x7f); |
| b &= (0x7f<<14)|(0x7f); |
| b = b<<7; |
| a |= b; |
| s = s>>11; |
| *v = ((u64)s)<<32 | a; |
| return 7; |
| } |
| |
| /* CSE2 from below */ |
| a &= (0x7f<<14)|(0x7f); |
| p++; |
| b = b<<14; |
| b |= *p; |
| /* b: p3<<28 | p5<<14 | p7 (unmasked) */ |
| if (!(b&0x80)) |
| { |
| b &= (0x7f<<28)|(0x7f<<14)|(0x7f); |
| /* moved CSE2 up */ |
| /* a &= (0x7f<<14)|(0x7f); */ |
| a = a<<7; |
| a |= b; |
| s = s>>4; |
| *v = ((u64)s)<<32 | a; |
| return 8; |
| } |
| |
| p++; |
| a = a<<15; |
| a |= *p; |
| /* a: p4<<29 | p6<<15 | p8 (unmasked) */ |
| |
| /* moved CSE2 up */ |
| /* a &= (0x7f<<29)|(0x7f<<15)|(0xff); */ |
| b &= (0x7f<<14)|(0x7f); |
| b = b<<8; |
| a |= b; |
| |
| s = s<<4; |
| b = p[-4]; |
| b &= 0x7f; |
| b = b>>3; |
| s |= b; |
| |
| *v = ((u64)s)<<32 | a; |
| |
| return 9; |
| } |
| |
| /* |
| ** Read a 32-bit variable-length integer from memory starting at p[0]. |
| ** Return the number of bytes read. The value is stored in *v. |
| ** A MACRO version, getVarint32, is provided which inlines the |
| ** single-byte case. All code should use the MACRO version as |
| ** this function assumes the single-byte case has already been handled. |
| */ |
| int sqlite3GetVarint32(const unsigned char *p, u32 *v){ |
| u32 a,b; |
| |
| a = *p; |
| /* a: p0 (unmasked) */ |
| #ifndef getVarint32 |
| if (!(a&0x80)) |
| { |
| *v = a; |
| return 1; |
| } |
| #endif |
| |
| p++; |
| b = *p; |
| /* b: p1 (unmasked) */ |
| if (!(b&0x80)) |
| { |
| a &= 0x7f; |
| a = a<<7; |
| *v = a | b; |
| return 2; |
| } |
| |
| p++; |
| a = a<<14; |
| a |= *p; |
| /* a: p0<<14 | p2 (unmasked) */ |
| if (!(a&0x80)) |
| { |
| a &= (0x7f<<14)|(0x7f); |
| b &= 0x7f; |
| b = b<<7; |
| *v = a | b; |
| return 3; |
| } |
| |
| p++; |
| b = b<<14; |
| b |= *p; |
| /* b: p1<<14 | p3 (unmasked) */ |
| if (!(b&0x80)) |
| { |
| b &= (0x7f<<14)|(0x7f); |
| a &= (0x7f<<14)|(0x7f); |
| a = a<<7; |
| *v = a | b; |
| return 4; |
| } |
| |
| p++; |
| a = a<<14; |
| a |= *p; |
| /* a: p0<<28 | p2<<14 | p4 (unmasked) */ |
| if (!(a&0x80)) |
| { |
| a &= (0x7f<<28)|(0x7f<<14)|(0x7f); |
| b &= (0x7f<<28)|(0x7f<<14)|(0x7f); |
| b = b<<7; |
| *v = a | b; |
| return 5; |
| } |
| |
| /* We can only reach this point when reading a corrupt database |
| ** file. In that case we are not in any hurry. Use the (relatively |
| ** slow) general-purpose sqlite3GetVarint() routine to extract the |
| ** value. */ |
| { |
| u64 v64; |
| int n; |
| |
| p -= 4; |
| n = sqlite3GetVarint(p, &v64); |
| assert( n>5 && n<=9 ); |
| *v = (u32)v64; |
| return n; |
| } |
| } |
| |
| /* |
| ** Return the number of bytes that will be needed to store the given |
| ** 64-bit integer. |
| */ |
| int sqlite3VarintLen(u64 v){ |
| int i = 0; |
| do{ |
| i++; |
| v >>= 7; |
| }while( v!=0 && i<9 ); |
| return i; |
| } |
| |
| |
| /* |
| ** Read or write a four-byte big-endian integer value. |
| */ |
| u32 sqlite3Get4byte(const u8 *p){ |
| return (p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3]; |
| } |
| void sqlite3Put4byte(unsigned char *p, u32 v){ |
| p[0] = v>>24; |
| p[1] = v>>16; |
| p[2] = v>>8; |
| p[3] = v; |
| } |
| |
| |
| |
| #if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC) |
| /* |
| ** Translate a single byte of Hex into an integer. |
| ** This routinen only works if h really is a valid hexadecimal |
| ** character: 0..9a..fA..F |
| */ |
| static int hexToInt(int h){ |
| assert( (h>='0' && h<='9') || (h>='a' && h<='f') || (h>='A' && h<='F') ); |
| #ifdef SQLITE_ASCII |
| h += 9*(1&(h>>6)); |
| #endif |
| #ifdef SQLITE_EBCDIC |
| h += 9*(1&~(h>>4)); |
| #endif |
| return h & 0xf; |
| } |
| #endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */ |
| |
| #if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC) |
| /* |
| ** Convert a BLOB literal of the form "x'hhhhhh'" into its binary |
| ** value. Return a pointer to its binary value. Space to hold the |
| ** binary value has been obtained from malloc and must be freed by |
| ** the calling routine. |
| */ |
| void *sqlite3HexToBlob(sqlite3 *db, const char *z, int n){ |
| char *zBlob; |
| int i; |
| |
| zBlob = (char *)sqlite3DbMallocRaw(db, n/2 + 1); |
| n--; |
| if( zBlob ){ |
| for(i=0; i<n; i+=2){ |
| zBlob[i/2] = (hexToInt(z[i])<<4) | hexToInt(z[i+1]); |
| } |
| zBlob[i/2] = 0; |
| } |
| return zBlob; |
| } |
| #endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */ |
| |
| |
| /* |
| ** Change the sqlite.magic from SQLITE_MAGIC_OPEN to SQLITE_MAGIC_BUSY. |
| ** Return an error (non-zero) if the magic was not SQLITE_MAGIC_OPEN |
| ** when this routine is called. |
| ** |
| ** This routine is called when entering an SQLite API. The SQLITE_MAGIC_OPEN |
| ** value indicates that the database connection passed into the API is |
| ** open and is not being used by another thread. By changing the value |
| ** to SQLITE_MAGIC_BUSY we indicate that the connection is in use. |
| ** sqlite3SafetyOff() below will change the value back to SQLITE_MAGIC_OPEN |
| ** when the API exits. |
| ** |
| ** This routine is a attempt to detect if two threads use the |
| ** same sqlite* pointer at the same time. There is a race |
| ** condition so it is possible that the error is not detected. |
| ** But usually the problem will be seen. The result will be an |
| ** error which can be used to debug the application that is |
| ** using SQLite incorrectly. |
| ** |
| ** Ticket #202: If db->magic is not a valid open value, take care not |
| ** to modify the db structure at all. It could be that db is a stale |
| ** pointer. In other words, it could be that there has been a prior |
| ** call to sqlite3_close(db) and db has been deallocated. And we do |
| ** not want to write into deallocated memory. |
| */ |
| #ifdef SQLITE_DEBUG |
| int sqlite3SafetyOn(sqlite3 *db){ |
| if( db->magic==SQLITE_MAGIC_OPEN ){ |
| db->magic = SQLITE_MAGIC_BUSY; |
| assert( sqlite3_mutex_held(db->mutex) ); |
| return 0; |
| }else if( db->magic==SQLITE_MAGIC_BUSY ){ |
| db->magic = SQLITE_MAGIC_ERROR; |
| db->u1.isInterrupted = 1; |
| } |
| return 1; |
| } |
| #endif |
| |
| /* |
| ** Change the magic from SQLITE_MAGIC_BUSY to SQLITE_MAGIC_OPEN. |
| ** Return an error (non-zero) if the magic was not SQLITE_MAGIC_BUSY |
| ** when this routine is called. |
| */ |
| #ifdef SQLITE_DEBUG |
| int sqlite3SafetyOff(sqlite3 *db){ |
| if( db->magic==SQLITE_MAGIC_BUSY ){ |
| db->magic = SQLITE_MAGIC_OPEN; |
| assert( sqlite3_mutex_held(db->mutex) ); |
| return 0; |
| }else{ |
| db->magic = SQLITE_MAGIC_ERROR; |
| db->u1.isInterrupted = 1; |
| return 1; |
| } |
| } |
| #endif |
| |
| /* |
| ** Check to make sure we have a valid db pointer. This test is not |
| ** foolproof but it does provide some measure of protection against |
| ** misuse of the interface such as passing in db pointers that are |
| ** NULL or which have been previously closed. If this routine returns |
| ** 1 it means that the db pointer is valid and 0 if it should not be |
| ** dereferenced for any reason. The calling function should invoke |
| ** SQLITE_MISUSE immediately. |
| ** |
| ** sqlite3SafetyCheckOk() requires that the db pointer be valid for |
| ** use. sqlite3SafetyCheckSickOrOk() allows a db pointer that failed to |
| ** open properly and is not fit for general use but which can be |
| ** used as an argument to sqlite3_errmsg() or sqlite3_close(). |
| */ |
| int sqlite3SafetyCheckOk(sqlite3 *db){ |
| u32 magic; |
| if( db==0 ) return 0; |
| magic = db->magic; |
| if( magic!=SQLITE_MAGIC_OPEN && |
| magic!=SQLITE_MAGIC_BUSY ) return 0; |
| return 1; |
| } |
| int sqlite3SafetyCheckSickOrOk(sqlite3 *db){ |
| u32 magic; |
| if( db==0 ) return 0; |
| magic = db->magic; |
| if( magic!=SQLITE_MAGIC_SICK && |
| magic!=SQLITE_MAGIC_OPEN && |
| magic!=SQLITE_MAGIC_BUSY ) return 0; |
| return 1; |
| } |