| /* |
| ** 2001 September 15 |
| ** |
| ** The author disclaims copyright to this source code. In place of |
| ** a legal notice, here is a blessing: |
| ** |
| ** May you do good and not evil. |
| ** May you find forgiveness for yourself and forgive others. |
| ** May you share freely, never taking more than you give. |
| ** |
| ************************************************************************* |
| ** This file contains routines used for analyzing expressions and |
| ** for generating VDBE code that evaluates expressions in SQLite. |
| ** |
| ** $Id: expr.c,v 1.235 2005/11/03 12:33:28 drh Exp $ |
| */ |
| #include "sqliteInt.h" |
| #include <ctype.h> |
| |
| /* |
| ** Return the 'affinity' of the expression pExpr if any. |
| ** |
| ** If pExpr is a column, a reference to a column via an 'AS' alias, |
| ** or a sub-select with a column as the return value, then the |
| ** affinity of that column is returned. Otherwise, 0x00 is returned, |
| ** indicating no affinity for the expression. |
| ** |
| ** i.e. the WHERE clause expresssions in the following statements all |
| ** have an affinity: |
| ** |
| ** CREATE TABLE t1(a); |
| ** SELECT * FROM t1 WHERE a; |
| ** SELECT a AS b FROM t1 WHERE b; |
| ** SELECT * FROM t1 WHERE (select a from t1); |
| */ |
| char sqlite3ExprAffinity(Expr *pExpr){ |
| int op = pExpr->op; |
| if( op==TK_AS ){ |
| return sqlite3ExprAffinity(pExpr->pLeft); |
| } |
| if( op==TK_SELECT ){ |
| return sqlite3ExprAffinity(pExpr->pSelect->pEList->a[0].pExpr); |
| } |
| #ifndef SQLITE_OMIT_CAST |
| if( op==TK_CAST ){ |
| return sqlite3AffinityType(&pExpr->token, 0); |
| } |
| #endif |
| return pExpr->affinity; |
| } |
| |
| /* |
| ** Return the default collation sequence for the expression pExpr. If |
| ** there is no default collation type, return 0. |
| */ |
| CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){ |
| CollSeq *pColl = 0; |
| if( pExpr ){ |
| pColl = pExpr->pColl; |
| if( (pExpr->op==TK_AS || pExpr->op==TK_CAST) && !pColl ){ |
| return sqlite3ExprCollSeq(pParse, pExpr->pLeft); |
| } |
| } |
| if( sqlite3CheckCollSeq(pParse, pColl) ){ |
| pColl = 0; |
| } |
| return pColl; |
| } |
| |
| /* |
| ** pExpr is an operand of a comparison operator. aff2 is the |
| ** type affinity of the other operand. This routine returns the |
| ** type affinity that should be used for the comparison operator. |
| */ |
| char sqlite3CompareAffinity(Expr *pExpr, char aff2){ |
| char aff1 = sqlite3ExprAffinity(pExpr); |
| if( aff1 && aff2 ){ |
| /* Both sides of the comparison are columns. If one has numeric |
| ** affinity, use that. Otherwise use no affinity. |
| */ |
| if( aff1==SQLITE_AFF_NUMERIC || aff2==SQLITE_AFF_NUMERIC ){ |
| return SQLITE_AFF_NUMERIC; |
| }else{ |
| return SQLITE_AFF_NONE; |
| } |
| }else if( !aff1 && !aff2 ){ |
| /* Neither side of the comparison is a column. Compare the |
| ** results directly. |
| */ |
| return SQLITE_AFF_NONE; |
| }else{ |
| /* One side is a column, the other is not. Use the columns affinity. */ |
| assert( aff1==0 || aff2==0 ); |
| return (aff1 + aff2); |
| } |
| } |
| |
| /* |
| ** pExpr is a comparison operator. Return the type affinity that should |
| ** be applied to both operands prior to doing the comparison. |
| */ |
| static char comparisonAffinity(Expr *pExpr){ |
| char aff; |
| assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || |
| pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || |
| pExpr->op==TK_NE ); |
| assert( pExpr->pLeft ); |
| aff = sqlite3ExprAffinity(pExpr->pLeft); |
| if( pExpr->pRight ){ |
| aff = sqlite3CompareAffinity(pExpr->pRight, aff); |
| } |
| else if( pExpr->pSelect ){ |
| aff = sqlite3CompareAffinity(pExpr->pSelect->pEList->a[0].pExpr, aff); |
| } |
| else if( !aff ){ |
| aff = SQLITE_AFF_NUMERIC; |
| } |
| return aff; |
| } |
| |
| /* |
| ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. |
| ** idx_affinity is the affinity of an indexed column. Return true |
| ** if the index with affinity idx_affinity may be used to implement |
| ** the comparison in pExpr. |
| */ |
| int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){ |
| char aff = comparisonAffinity(pExpr); |
| return (aff==SQLITE_AFF_NONE) || (aff==idx_affinity); |
| } |
| |
| /* |
| ** Return the P1 value that should be used for a binary comparison |
| ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2. |
| ** If jumpIfNull is true, then set the low byte of the returned |
| ** P1 value to tell the opcode to jump if either expression |
| ** evaluates to NULL. |
| */ |
| static int binaryCompareP1(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){ |
| char aff = sqlite3ExprAffinity(pExpr2); |
| return ((int)sqlite3CompareAffinity(pExpr1, aff))+(jumpIfNull?0x100:0); |
| } |
| |
| /* |
| ** Return a pointer to the collation sequence that should be used by |
| ** a binary comparison operator comparing pLeft and pRight. |
| ** |
| ** If the left hand expression has a collating sequence type, then it is |
| ** used. Otherwise the collation sequence for the right hand expression |
| ** is used, or the default (BINARY) if neither expression has a collating |
| ** type. |
| */ |
| static CollSeq* binaryCompareCollSeq(Parse *pParse, Expr *pLeft, Expr *pRight){ |
| CollSeq *pColl = sqlite3ExprCollSeq(pParse, pLeft); |
| if( !pColl ){ |
| pColl = sqlite3ExprCollSeq(pParse, pRight); |
| } |
| return pColl; |
| } |
| |
| /* |
| ** Generate code for a comparison operator. |
| */ |
| static int codeCompare( |
| Parse *pParse, /* The parsing (and code generating) context */ |
| Expr *pLeft, /* The left operand */ |
| Expr *pRight, /* The right operand */ |
| int opcode, /* The comparison opcode */ |
| int dest, /* Jump here if true. */ |
| int jumpIfNull /* If true, jump if either operand is NULL */ |
| ){ |
| int p1 = binaryCompareP1(pLeft, pRight, jumpIfNull); |
| CollSeq *p3 = binaryCompareCollSeq(pParse, pLeft, pRight); |
| return sqlite3VdbeOp3(pParse->pVdbe, opcode, p1, dest, (void*)p3, P3_COLLSEQ); |
| } |
| |
| /* |
| ** Construct a new expression node and return a pointer to it. Memory |
| ** for this node is obtained from sqliteMalloc(). The calling function |
| ** is responsible for making sure the node eventually gets freed. |
| */ |
| Expr *sqlite3Expr(int op, Expr *pLeft, Expr *pRight, const Token *pToken){ |
| Expr *pNew; |
| pNew = sqliteMalloc( sizeof(Expr) ); |
| if( pNew==0 ){ |
| /* When malloc fails, delete pLeft and pRight. Expressions passed to |
| ** this function must always be allocated with sqlite3Expr() for this |
| ** reason. |
| */ |
| sqlite3ExprDelete(pLeft); |
| sqlite3ExprDelete(pRight); |
| return 0; |
| } |
| pNew->op = op; |
| pNew->pLeft = pLeft; |
| pNew->pRight = pRight; |
| pNew->iAgg = -1; |
| if( pToken ){ |
| assert( pToken->dyn==0 ); |
| pNew->span = pNew->token = *pToken; |
| }else if( pLeft && pRight ){ |
| sqlite3ExprSpan(pNew, &pLeft->span, &pRight->span); |
| } |
| return pNew; |
| } |
| |
| /* |
| ** When doing a nested parse, you can include terms in an expression |
| ** that look like this: #0 #1 #2 ... These terms refer to elements |
| ** on the stack. "#0" means the top of the stack. |
| ** "#1" means the next down on the stack. And so forth. |
| ** |
| ** This routine is called by the parser to deal with on of those terms. |
| ** It immediately generates code to store the value in a memory location. |
| ** The returns an expression that will code to extract the value from |
| ** that memory location as needed. |
| */ |
| Expr *sqlite3RegisterExpr(Parse *pParse, Token *pToken){ |
| Vdbe *v = pParse->pVdbe; |
| Expr *p; |
| int depth; |
| if( pParse->nested==0 ){ |
| sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", pToken); |
| return 0; |
| } |
| if( v==0 ) return 0; |
| p = sqlite3Expr(TK_REGISTER, 0, 0, pToken); |
| if( p==0 ){ |
| return 0; /* Malloc failed */ |
| } |
| depth = atoi(&pToken->z[1]); |
| p->iTable = pParse->nMem++; |
| sqlite3VdbeAddOp(v, OP_Dup, depth, 0); |
| sqlite3VdbeAddOp(v, OP_MemStore, p->iTable, 1); |
| return p; |
| } |
| |
| /* |
| ** Join two expressions using an AND operator. If either expression is |
| ** NULL, then just return the other expression. |
| */ |
| Expr *sqlite3ExprAnd(Expr *pLeft, Expr *pRight){ |
| if( pLeft==0 ){ |
| return pRight; |
| }else if( pRight==0 ){ |
| return pLeft; |
| }else{ |
| return sqlite3Expr(TK_AND, pLeft, pRight, 0); |
| } |
| } |
| |
| /* |
| ** Set the Expr.span field of the given expression to span all |
| ** text between the two given tokens. |
| */ |
| void sqlite3ExprSpan(Expr *pExpr, Token *pLeft, Token *pRight){ |
| assert( pRight!=0 ); |
| assert( pLeft!=0 ); |
| if( !sqlite3_malloc_failed && pRight->z && pLeft->z ){ |
| assert( pLeft->dyn==0 || pLeft->z[pLeft->n]==0 ); |
| if( pLeft->dyn==0 && pRight->dyn==0 ){ |
| pExpr->span.z = pLeft->z; |
| pExpr->span.n = pRight->n + (pRight->z - pLeft->z); |
| }else{ |
| pExpr->span.z = 0; |
| } |
| } |
| } |
| |
| /* |
| ** Construct a new expression node for a function with multiple |
| ** arguments. |
| */ |
| Expr *sqlite3ExprFunction(ExprList *pList, Token *pToken){ |
| Expr *pNew; |
| pNew = sqliteMalloc( sizeof(Expr) ); |
| if( pNew==0 ){ |
| sqlite3ExprListDelete(pList); /* Avoid leaking memory when malloc fails */ |
| return 0; |
| } |
| pNew->op = TK_FUNCTION; |
| pNew->pList = pList; |
| if( pToken ){ |
| assert( pToken->dyn==0 ); |
| pNew->token = *pToken; |
| }else{ |
| pNew->token.z = 0; |
| } |
| pNew->span = pNew->token; |
| return pNew; |
| } |
| |
| /* |
| ** Assign a variable number to an expression that encodes a wildcard |
| ** in the original SQL statement. |
| ** |
| ** Wildcards consisting of a single "?" are assigned the next sequential |
| ** variable number. |
| ** |
| ** Wildcards of the form "?nnn" are assigned the number "nnn". We make |
| ** sure "nnn" is not too be to avoid a denial of service attack when |
| ** the SQL statement comes from an external source. |
| ** |
| ** Wildcards of the form ":aaa" or "$aaa" are assigned the same number |
| ** as the previous instance of the same wildcard. Or if this is the first |
| ** instance of the wildcard, the next sequenial variable number is |
| ** assigned. |
| */ |
| void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){ |
| Token *pToken; |
| if( pExpr==0 ) return; |
| pToken = &pExpr->token; |
| assert( pToken->n>=1 ); |
| assert( pToken->z!=0 ); |
| assert( pToken->z[0]!=0 ); |
| if( pToken->n==1 ){ |
| /* Wildcard of the form "?". Assign the next variable number */ |
| pExpr->iTable = ++pParse->nVar; |
| }else if( pToken->z[0]=='?' ){ |
| /* Wildcard of the form "?nnn". Convert "nnn" to an integer and |
| ** use it as the variable number */ |
| int i; |
| pExpr->iTable = i = atoi(&pToken->z[1]); |
| if( i<1 || i>SQLITE_MAX_VARIABLE_NUMBER ){ |
| sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", |
| SQLITE_MAX_VARIABLE_NUMBER); |
| } |
| if( i>pParse->nVar ){ |
| pParse->nVar = i; |
| } |
| }else{ |
| /* Wildcards of the form ":aaa" or "$aaa". Reuse the same variable |
| ** number as the prior appearance of the same name, or if the name |
| ** has never appeared before, reuse the same variable number |
| */ |
| int i, n; |
| n = pToken->n; |
| for(i=0; i<pParse->nVarExpr; i++){ |
| Expr *pE; |
| if( (pE = pParse->apVarExpr[i])!=0 |
| && pE->token.n==n |
| && memcmp(pE->token.z, pToken->z, n)==0 ){ |
| pExpr->iTable = pE->iTable; |
| break; |
| } |
| } |
| if( i>=pParse->nVarExpr ){ |
| pExpr->iTable = ++pParse->nVar; |
| if( pParse->nVarExpr>=pParse->nVarExprAlloc-1 ){ |
| pParse->nVarExprAlloc += pParse->nVarExprAlloc + 10; |
| sqlite3ReallocOrFree((void**)&pParse->apVarExpr, |
| pParse->nVarExprAlloc*sizeof(pParse->apVarExpr[0]) ); |
| } |
| if( !sqlite3_malloc_failed ){ |
| assert( pParse->apVarExpr!=0 ); |
| pParse->apVarExpr[pParse->nVarExpr++] = pExpr; |
| } |
| } |
| } |
| } |
| |
| /* |
| ** Recursively delete an expression tree. |
| */ |
| void sqlite3ExprDelete(Expr *p){ |
| if( p==0 ) return; |
| if( p->span.dyn ) sqliteFree((char*)p->span.z); |
| if( p->token.dyn ) sqliteFree((char*)p->token.z); |
| sqlite3ExprDelete(p->pLeft); |
| sqlite3ExprDelete(p->pRight); |
| sqlite3ExprListDelete(p->pList); |
| sqlite3SelectDelete(p->pSelect); |
| sqliteFree(p); |
| } |
| |
| /* |
| ** The Expr.token field might be a string literal that is quoted. |
| ** If so, remove the quotation marks. |
| */ |
| void sqlite3DequoteExpr(Expr *p){ |
| if( ExprHasAnyProperty(p, EP_Dequoted) ){ |
| return; |
| } |
| ExprSetProperty(p, EP_Dequoted); |
| if( p->token.dyn==0 ){ |
| sqlite3TokenCopy(&p->token, &p->token); |
| } |
| sqlite3Dequote((char*)p->token.z); |
| } |
| |
| |
| /* |
| ** The following group of routines make deep copies of expressions, |
| ** expression lists, ID lists, and select statements. The copies can |
| ** be deleted (by being passed to their respective ...Delete() routines) |
| ** without effecting the originals. |
| ** |
| ** The expression list, ID, and source lists return by sqlite3ExprListDup(), |
| ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded |
| ** by subsequent calls to sqlite*ListAppend() routines. |
| ** |
| ** Any tables that the SrcList might point to are not duplicated. |
| */ |
| Expr *sqlite3ExprDup(Expr *p){ |
| Expr *pNew; |
| if( p==0 ) return 0; |
| pNew = sqliteMallocRaw( sizeof(*p) ); |
| if( pNew==0 ) return 0; |
| memcpy(pNew, p, sizeof(*pNew)); |
| if( p->token.z!=0 ){ |
| pNew->token.z = sqliteStrNDup(p->token.z, p->token.n); |
| pNew->token.dyn = 1; |
| }else{ |
| assert( pNew->token.z==0 ); |
| } |
| pNew->span.z = 0; |
| pNew->pLeft = sqlite3ExprDup(p->pLeft); |
| pNew->pRight = sqlite3ExprDup(p->pRight); |
| pNew->pList = sqlite3ExprListDup(p->pList); |
| pNew->pSelect = sqlite3SelectDup(p->pSelect); |
| pNew->pTab = p->pTab; |
| return pNew; |
| } |
| void sqlite3TokenCopy(Token *pTo, Token *pFrom){ |
| if( pTo->dyn ) sqliteFree((char*)pTo->z); |
| if( pFrom->z ){ |
| pTo->n = pFrom->n; |
| pTo->z = sqliteStrNDup(pFrom->z, pFrom->n); |
| pTo->dyn = 1; |
| }else{ |
| pTo->z = 0; |
| } |
| } |
| ExprList *sqlite3ExprListDup(ExprList *p){ |
| ExprList *pNew; |
| struct ExprList_item *pItem, *pOldItem; |
| int i; |
| if( p==0 ) return 0; |
| pNew = sqliteMalloc( sizeof(*pNew) ); |
| if( pNew==0 ) return 0; |
| pNew->nExpr = pNew->nAlloc = p->nExpr; |
| pNew->a = pItem = sqliteMalloc( p->nExpr*sizeof(p->a[0]) ); |
| if( pItem==0 ){ |
| sqliteFree(pNew); |
| return 0; |
| } |
| pOldItem = p->a; |
| for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){ |
| Expr *pNewExpr, *pOldExpr; |
| pItem->pExpr = pNewExpr = sqlite3ExprDup(pOldExpr = pOldItem->pExpr); |
| if( pOldExpr->span.z!=0 && pNewExpr ){ |
| /* Always make a copy of the span for top-level expressions in the |
| ** expression list. The logic in SELECT processing that determines |
| ** the names of columns in the result set needs this information */ |
| sqlite3TokenCopy(&pNewExpr->span, &pOldExpr->span); |
| } |
| assert( pNewExpr==0 || pNewExpr->span.z!=0 |
| || pOldExpr->span.z==0 || sqlite3_malloc_failed ); |
| pItem->zName = sqliteStrDup(pOldItem->zName); |
| pItem->sortOrder = pOldItem->sortOrder; |
| pItem->isAgg = pOldItem->isAgg; |
| pItem->done = 0; |
| } |
| return pNew; |
| } |
| |
| /* |
| ** If cursors, triggers, views and subqueries are all omitted from |
| ** the build, then none of the following routines, except for |
| ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes |
| ** called with a NULL argument. |
| */ |
| #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \ |
| || !defined(SQLITE_OMIT_SUBQUERY) |
| SrcList *sqlite3SrcListDup(SrcList *p){ |
| SrcList *pNew; |
| int i; |
| int nByte; |
| if( p==0 ) return 0; |
| nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); |
| pNew = sqliteMallocRaw( nByte ); |
| if( pNew==0 ) return 0; |
| pNew->nSrc = pNew->nAlloc = p->nSrc; |
| for(i=0; i<p->nSrc; i++){ |
| struct SrcList_item *pNewItem = &pNew->a[i]; |
| struct SrcList_item *pOldItem = &p->a[i]; |
| Table *pTab; |
| pNewItem->zDatabase = sqliteStrDup(pOldItem->zDatabase); |
| pNewItem->zName = sqliteStrDup(pOldItem->zName); |
| pNewItem->zAlias = sqliteStrDup(pOldItem->zAlias); |
| pNewItem->jointype = pOldItem->jointype; |
| pNewItem->iCursor = pOldItem->iCursor; |
| pTab = pNewItem->pTab = pOldItem->pTab; |
| if( pTab ){ |
| pTab->nRef++; |
| } |
| pNewItem->pSelect = sqlite3SelectDup(pOldItem->pSelect); |
| pNewItem->pOn = sqlite3ExprDup(pOldItem->pOn); |
| pNewItem->pUsing = sqlite3IdListDup(pOldItem->pUsing); |
| pNewItem->colUsed = pOldItem->colUsed; |
| } |
| return pNew; |
| } |
| IdList *sqlite3IdListDup(IdList *p){ |
| IdList *pNew; |
| int i; |
| if( p==0 ) return 0; |
| pNew = sqliteMallocRaw( sizeof(*pNew) ); |
| if( pNew==0 ) return 0; |
| pNew->nId = pNew->nAlloc = p->nId; |
| pNew->a = sqliteMallocRaw( p->nId*sizeof(p->a[0]) ); |
| if( pNew->a==0 ){ |
| sqliteFree(pNew); |
| return 0; |
| } |
| for(i=0; i<p->nId; i++){ |
| struct IdList_item *pNewItem = &pNew->a[i]; |
| struct IdList_item *pOldItem = &p->a[i]; |
| pNewItem->zName = sqliteStrDup(pOldItem->zName); |
| pNewItem->idx = pOldItem->idx; |
| } |
| return pNew; |
| } |
| Select *sqlite3SelectDup(Select *p){ |
| Select *pNew; |
| if( p==0 ) return 0; |
| pNew = sqliteMallocRaw( sizeof(*p) ); |
| if( pNew==0 ) return 0; |
| pNew->isDistinct = p->isDistinct; |
| pNew->pEList = sqlite3ExprListDup(p->pEList); |
| pNew->pSrc = sqlite3SrcListDup(p->pSrc); |
| pNew->pWhere = sqlite3ExprDup(p->pWhere); |
| pNew->pGroupBy = sqlite3ExprListDup(p->pGroupBy); |
| pNew->pHaving = sqlite3ExprDup(p->pHaving); |
| pNew->pOrderBy = sqlite3ExprListDup(p->pOrderBy); |
| pNew->op = p->op; |
| pNew->pPrior = sqlite3SelectDup(p->pPrior); |
| pNew->pLimit = sqlite3ExprDup(p->pLimit); |
| pNew->pOffset = sqlite3ExprDup(p->pOffset); |
| pNew->iLimit = -1; |
| pNew->iOffset = -1; |
| pNew->isResolved = p->isResolved; |
| pNew->isAgg = p->isAgg; |
| pNew->usesVirt = 0; |
| pNew->disallowOrderBy = 0; |
| pNew->pRightmost = 0; |
| pNew->addrOpenVirt[0] = -1; |
| pNew->addrOpenVirt[1] = -1; |
| pNew->addrOpenVirt[2] = -1; |
| return pNew; |
| } |
| #else |
| Select *sqlite3SelectDup(Select *p){ |
| assert( p==0 ); |
| return 0; |
| } |
| #endif |
| |
| |
| /* |
| ** Add a new element to the end of an expression list. If pList is |
| ** initially NULL, then create a new expression list. |
| */ |
| ExprList *sqlite3ExprListAppend(ExprList *pList, Expr *pExpr, Token *pName){ |
| if( pList==0 ){ |
| pList = sqliteMalloc( sizeof(ExprList) ); |
| if( pList==0 ){ |
| goto no_mem; |
| } |
| assert( pList->nAlloc==0 ); |
| } |
| if( pList->nAlloc<=pList->nExpr ){ |
| struct ExprList_item *a; |
| int n = pList->nAlloc*2 + 4; |
| a = sqliteRealloc(pList->a, n*sizeof(pList->a[0])); |
| if( a==0 ){ |
| goto no_mem; |
| } |
| pList->a = a; |
| pList->nAlloc = n; |
| } |
| assert( pList->a!=0 ); |
| if( pExpr || pName ){ |
| struct ExprList_item *pItem = &pList->a[pList->nExpr++]; |
| memset(pItem, 0, sizeof(*pItem)); |
| pItem->zName = sqlite3NameFromToken(pName); |
| pItem->pExpr = pExpr; |
| } |
| return pList; |
| |
| no_mem: |
| /* Avoid leaking memory if malloc has failed. */ |
| sqlite3ExprDelete(pExpr); |
| sqlite3ExprListDelete(pList); |
| return 0; |
| } |
| |
| /* |
| ** Delete an entire expression list. |
| */ |
| void sqlite3ExprListDelete(ExprList *pList){ |
| int i; |
| struct ExprList_item *pItem; |
| if( pList==0 ) return; |
| assert( pList->a!=0 || (pList->nExpr==0 && pList->nAlloc==0) ); |
| assert( pList->nExpr<=pList->nAlloc ); |
| for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ |
| sqlite3ExprDelete(pItem->pExpr); |
| sqliteFree(pItem->zName); |
| } |
| sqliteFree(pList->a); |
| sqliteFree(pList); |
| } |
| |
| /* |
| ** Walk an expression tree. Call xFunc for each node visited. |
| ** |
| ** The return value from xFunc determines whether the tree walk continues. |
| ** 0 means continue walking the tree. 1 means do not walk children |
| ** of the current node but continue with siblings. 2 means abandon |
| ** the tree walk completely. |
| ** |
| ** The return value from this routine is 1 to abandon the tree walk |
| ** and 0 to continue. |
| ** |
| ** NOTICE: This routine does *not* descend into subqueries. |
| */ |
| static int walkExprList(ExprList *, int (*)(void *, Expr*), void *); |
| static int walkExprTree(Expr *pExpr, int (*xFunc)(void*,Expr*), void *pArg){ |
| int rc; |
| if( pExpr==0 ) return 0; |
| rc = (*xFunc)(pArg, pExpr); |
| if( rc==0 ){ |
| if( walkExprTree(pExpr->pLeft, xFunc, pArg) ) return 1; |
| if( walkExprTree(pExpr->pRight, xFunc, pArg) ) return 1; |
| if( walkExprList(pExpr->pList, xFunc, pArg) ) return 1; |
| } |
| return rc>1; |
| } |
| |
| /* |
| ** Call walkExprTree() for every expression in list p. |
| */ |
| static int walkExprList(ExprList *p, int (*xFunc)(void *, Expr*), void *pArg){ |
| int i; |
| struct ExprList_item *pItem; |
| if( !p ) return 0; |
| for(i=p->nExpr, pItem=p->a; i>0; i--, pItem++){ |
| if( walkExprTree(pItem->pExpr, xFunc, pArg) ) return 1; |
| } |
| return 0; |
| } |
| |
| /* |
| ** Call walkExprTree() for every expression in Select p, not including |
| ** expressions that are part of sub-selects in any FROM clause or the LIMIT |
| ** or OFFSET expressions.. |
| */ |
| static int walkSelectExpr(Select *p, int (*xFunc)(void *, Expr*), void *pArg){ |
| walkExprList(p->pEList, xFunc, pArg); |
| walkExprTree(p->pWhere, xFunc, pArg); |
| walkExprList(p->pGroupBy, xFunc, pArg); |
| walkExprTree(p->pHaving, xFunc, pArg); |
| walkExprList(p->pOrderBy, xFunc, pArg); |
| return 0; |
| } |
| |
| |
| /* |
| ** This routine is designed as an xFunc for walkExprTree(). |
| ** |
| ** pArg is really a pointer to an integer. If we can tell by looking |
| ** at pExpr that the expression that contains pExpr is not a constant |
| ** expression, then set *pArg to 0 and return 2 to abandon the tree walk. |
| ** If pExpr does does not disqualify the expression from being a constant |
| ** then do nothing. |
| ** |
| ** After walking the whole tree, if no nodes are found that disqualify |
| ** the expression as constant, then we assume the whole expression |
| ** is constant. See sqlite3ExprIsConstant() for additional information. |
| */ |
| static int exprNodeIsConstant(void *pArg, Expr *pExpr){ |
| switch( pExpr->op ){ |
| /* Consider functions to be constant if all their arguments are constant |
| ** and *pArg==2 */ |
| case TK_FUNCTION: |
| if( *((int*)pArg)==2 ) return 0; |
| /* Fall through */ |
| case TK_ID: |
| case TK_COLUMN: |
| case TK_DOT: |
| case TK_AGG_FUNCTION: |
| case TK_AGG_COLUMN: |
| #ifndef SQLITE_OMIT_SUBQUERY |
| case TK_SELECT: |
| case TK_EXISTS: |
| #endif |
| *((int*)pArg) = 0; |
| return 2; |
| case TK_IN: |
| if( pExpr->pSelect ){ |
| *((int*)pArg) = 0; |
| return 2; |
| } |
| default: |
| return 0; |
| } |
| } |
| |
| /* |
| ** Walk an expression tree. Return 1 if the expression is constant |
| ** and 0 if it involves variables or function calls. |
| ** |
| ** For the purposes of this function, a double-quoted string (ex: "abc") |
| ** is considered a variable but a single-quoted string (ex: 'abc') is |
| ** a constant. |
| */ |
| int sqlite3ExprIsConstant(Expr *p){ |
| int isConst = 1; |
| walkExprTree(p, exprNodeIsConstant, &isConst); |
| return isConst; |
| } |
| |
| /* |
| ** Walk an expression tree. Return 1 if the expression is constant |
| ** or a function call with constant arguments. Return and 0 if there |
| ** are any variables. |
| ** |
| ** For the purposes of this function, a double-quoted string (ex: "abc") |
| ** is considered a variable but a single-quoted string (ex: 'abc') is |
| ** a constant. |
| */ |
| int sqlite3ExprIsConstantOrFunction(Expr *p){ |
| int isConst = 2; |
| walkExprTree(p, exprNodeIsConstant, &isConst); |
| return isConst!=0; |
| } |
| |
| /* |
| ** If the expression p codes a constant integer that is small enough |
| ** to fit in a 32-bit integer, return 1 and put the value of the integer |
| ** in *pValue. If the expression is not an integer or if it is too big |
| ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. |
| */ |
| int sqlite3ExprIsInteger(Expr *p, int *pValue){ |
| switch( p->op ){ |
| case TK_INTEGER: { |
| if( sqlite3GetInt32(p->token.z, pValue) ){ |
| return 1; |
| } |
| break; |
| } |
| case TK_UPLUS: { |
| return sqlite3ExprIsInteger(p->pLeft, pValue); |
| } |
| case TK_UMINUS: { |
| int v; |
| if( sqlite3ExprIsInteger(p->pLeft, &v) ){ |
| *pValue = -v; |
| return 1; |
| } |
| break; |
| } |
| default: break; |
| } |
| return 0; |
| } |
| |
| /* |
| ** Return TRUE if the given string is a row-id column name. |
| */ |
| int sqlite3IsRowid(const char *z){ |
| if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; |
| if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; |
| if( sqlite3StrICmp(z, "OID")==0 ) return 1; |
| return 0; |
| } |
| |
| /* |
| ** Given the name of a column of the form X.Y.Z or Y.Z or just Z, look up |
| ** that name in the set of source tables in pSrcList and make the pExpr |
| ** expression node refer back to that source column. The following changes |
| ** are made to pExpr: |
| ** |
| ** pExpr->iDb Set the index in db->aDb[] of the database holding |
| ** the table. |
| ** pExpr->iTable Set to the cursor number for the table obtained |
| ** from pSrcList. |
| ** pExpr->iColumn Set to the column number within the table. |
| ** pExpr->op Set to TK_COLUMN. |
| ** pExpr->pLeft Any expression this points to is deleted |
| ** pExpr->pRight Any expression this points to is deleted. |
| ** |
| ** The pDbToken is the name of the database (the "X"). This value may be |
| ** NULL meaning that name is of the form Y.Z or Z. Any available database |
| ** can be used. The pTableToken is the name of the table (the "Y"). This |
| ** value can be NULL if pDbToken is also NULL. If pTableToken is NULL it |
| ** means that the form of the name is Z and that columns from any table |
| ** can be used. |
| ** |
| ** If the name cannot be resolved unambiguously, leave an error message |
| ** in pParse and return non-zero. Return zero on success. |
| */ |
| static int lookupName( |
| Parse *pParse, /* The parsing context */ |
| Token *pDbToken, /* Name of the database containing table, or NULL */ |
| Token *pTableToken, /* Name of table containing column, or NULL */ |
| Token *pColumnToken, /* Name of the column. */ |
| NameContext *pNC, /* The name context used to resolve the name */ |
| Expr *pExpr /* Make this EXPR node point to the selected column */ |
| ){ |
| char *zDb = 0; /* Name of the database. The "X" in X.Y.Z */ |
| char *zTab = 0; /* Name of the table. The "Y" in X.Y.Z or Y.Z */ |
| char *zCol = 0; /* Name of the column. The "Z" */ |
| int i, j; /* Loop counters */ |
| int cnt = 0; /* Number of matching column names */ |
| int cntTab = 0; /* Number of matching table names */ |
| sqlite3 *db = pParse->db; /* The database */ |
| struct SrcList_item *pItem; /* Use for looping over pSrcList items */ |
| struct SrcList_item *pMatch = 0; /* The matching pSrcList item */ |
| NameContext *pTopNC = pNC; /* First namecontext in the list */ |
| |
| assert( pColumnToken && pColumnToken->z ); /* The Z in X.Y.Z cannot be NULL */ |
| zDb = sqlite3NameFromToken(pDbToken); |
| zTab = sqlite3NameFromToken(pTableToken); |
| zCol = sqlite3NameFromToken(pColumnToken); |
| if( sqlite3_malloc_failed ){ |
| goto lookupname_end; |
| } |
| |
| pExpr->iTable = -1; |
| while( pNC && cnt==0 ){ |
| ExprList *pEList; |
| SrcList *pSrcList = pNC->pSrcList; |
| |
| if( pSrcList ){ |
| for(i=0, pItem=pSrcList->a; i<pSrcList->nSrc; i++, pItem++){ |
| Table *pTab = pItem->pTab; |
| Column *pCol; |
| |
| if( pTab==0 ) continue; |
| assert( pTab->nCol>0 ); |
| if( zTab ){ |
| if( pItem->zAlias ){ |
| char *zTabName = pItem->zAlias; |
| if( sqlite3StrICmp(zTabName, zTab)!=0 ) continue; |
| }else{ |
| char *zTabName = pTab->zName; |
| if( zTabName==0 || sqlite3StrICmp(zTabName, zTab)!=0 ) continue; |
| if( zDb!=0 && sqlite3StrICmp(db->aDb[pTab->iDb].zName, zDb)!=0 ){ |
| continue; |
| } |
| } |
| } |
| if( 0==(cntTab++) ){ |
| pExpr->iTable = pItem->iCursor; |
| pExpr->iDb = pTab->iDb; |
| pMatch = pItem; |
| } |
| for(j=0, pCol=pTab->aCol; j<pTab->nCol; j++, pCol++){ |
| if( sqlite3StrICmp(pCol->zName, zCol)==0 ){ |
| IdList *pUsing; |
| cnt++; |
| pExpr->iTable = pItem->iCursor; |
| pMatch = pItem; |
| pExpr->iDb = pTab->iDb; |
| /* Substitute the rowid (column -1) for the INTEGER PRIMARY KEY */ |
| pExpr->iColumn = j==pTab->iPKey ? -1 : j; |
| pExpr->affinity = pTab->aCol[j].affinity; |
| pExpr->pColl = pTab->aCol[j].pColl; |
| if( pItem->jointype & JT_NATURAL ){ |
| /* If this match occurred in the left table of a natural join, |
| ** then skip the right table to avoid a duplicate match */ |
| pItem++; |
| i++; |
| } |
| if( (pUsing = pItem->pUsing)!=0 ){ |
| /* If this match occurs on a column that is in the USING clause |
| ** of a join, skip the search of the right table of the join |
| ** to avoid a duplicate match there. */ |
| int k; |
| for(k=0; k<pUsing->nId; k++){ |
| if( sqlite3StrICmp(pUsing->a[k].zName, zCol)==0 ){ |
| pItem++; |
| i++; |
| break; |
| } |
| } |
| } |
| break; |
| } |
| } |
| } |
| } |
| |
| #ifndef SQLITE_OMIT_TRIGGER |
| /* If we have not already resolved the name, then maybe |
| ** it is a new.* or old.* trigger argument reference |
| */ |
| if( zDb==0 && zTab!=0 && cnt==0 && pParse->trigStack!=0 ){ |
| TriggerStack *pTriggerStack = pParse->trigStack; |
| Table *pTab = 0; |
| if( pTriggerStack->newIdx != -1 && sqlite3StrICmp("new", zTab) == 0 ){ |
| pExpr->iTable = pTriggerStack->newIdx; |
| assert( pTriggerStack->pTab ); |
| pTab = pTriggerStack->pTab; |
| }else if( pTriggerStack->oldIdx != -1 && sqlite3StrICmp("old", zTab)==0 ){ |
| pExpr->iTable = pTriggerStack->oldIdx; |
| assert( pTriggerStack->pTab ); |
| pTab = pTriggerStack->pTab; |
| } |
| |
| if( pTab ){ |
| int j; |
| Column *pCol = pTab->aCol; |
| |
| pExpr->iDb = pTab->iDb; |
| cntTab++; |
| for(j=0; j < pTab->nCol; j++, pCol++) { |
| if( sqlite3StrICmp(pCol->zName, zCol)==0 ){ |
| cnt++; |
| pExpr->iColumn = j==pTab->iPKey ? -1 : j; |
| pExpr->affinity = pTab->aCol[j].affinity; |
| pExpr->pColl = pTab->aCol[j].pColl; |
| pExpr->pTab = pTab; |
| break; |
| } |
| } |
| } |
| } |
| #endif /* !defined(SQLITE_OMIT_TRIGGER) */ |
| |
| /* |
| ** Perhaps the name is a reference to the ROWID |
| */ |
| if( cnt==0 && cntTab==1 && sqlite3IsRowid(zCol) ){ |
| cnt = 1; |
| pExpr->iColumn = -1; |
| pExpr->affinity = SQLITE_AFF_NUMERIC; |
| } |
| |
| /* |
| ** If the input is of the form Z (not Y.Z or X.Y.Z) then the name Z |
| ** might refer to an result-set alias. This happens, for example, when |
| ** we are resolving names in the WHERE clause of the following command: |
| ** |
| ** SELECT a+b AS x FROM table WHERE x<10; |
| ** |
| ** In cases like this, replace pExpr with a copy of the expression that |
| ** forms the result set entry ("a+b" in the example) and return immediately. |
| ** Note that the expression in the result set should have already been |
| ** resolved by the time the WHERE clause is resolved. |
| */ |
| if( cnt==0 && (pEList = pNC->pEList)!=0 && zTab==0 ){ |
| for(j=0; j<pEList->nExpr; j++){ |
| char *zAs = pEList->a[j].zName; |
| if( zAs!=0 && sqlite3StrICmp(zAs, zCol)==0 ){ |
| assert( pExpr->pLeft==0 && pExpr->pRight==0 ); |
| pExpr->op = TK_AS; |
| pExpr->iColumn = j; |
| pExpr->pLeft = sqlite3ExprDup(pEList->a[j].pExpr); |
| cnt = 1; |
| assert( zTab==0 && zDb==0 ); |
| goto lookupname_end_2; |
| } |
| } |
| } |
| |
| /* Advance to the next name context. The loop will exit when either |
| ** we have a match (cnt>0) or when we run out of name contexts. |
| */ |
| if( cnt==0 ){ |
| pNC = pNC->pNext; |
| } |
| } |
| |
| /* |
| ** If X and Y are NULL (in other words if only the column name Z is |
| ** supplied) and the value of Z is enclosed in double-quotes, then |
| ** Z is a string literal if it doesn't match any column names. In that |
| ** case, we need to return right away and not make any changes to |
| ** pExpr. |
| ** |
| ** Because no reference was made to outer contexts, the pNC->nRef |
| ** fields are not changed in any context. |
| */ |
| if( cnt==0 && zTab==0 && pColumnToken->z[0]=='"' ){ |
| sqliteFree(zCol); |
| return 0; |
| } |
| |
| /* |
| ** cnt==0 means there was not match. cnt>1 means there were two or |
| ** more matches. Either way, we have an error. |
| */ |
| if( cnt!=1 ){ |
| char *z = 0; |
| char *zErr; |
| zErr = cnt==0 ? "no such column: %s" : "ambiguous column name: %s"; |
| if( zDb ){ |
| sqlite3SetString(&z, zDb, ".", zTab, ".", zCol, 0); |
| }else if( zTab ){ |
| sqlite3SetString(&z, zTab, ".", zCol, 0); |
| }else{ |
| z = sqliteStrDup(zCol); |
| } |
| sqlite3ErrorMsg(pParse, zErr, z); |
| sqliteFree(z); |
| pTopNC->nErr++; |
| } |
| |
| /* If a column from a table in pSrcList is referenced, then record |
| ** this fact in the pSrcList.a[].colUsed bitmask. Column 0 causes |
| ** bit 0 to be set. Column 1 sets bit 1. And so forth. If the |
| ** column number is greater than the number of bits in the bitmask |
| ** then set the high-order bit of the bitmask. |
| */ |
| if( pExpr->iColumn>=0 && pMatch!=0 ){ |
| int n = pExpr->iColumn; |
| if( n>=sizeof(Bitmask)*8 ){ |
| n = sizeof(Bitmask)*8-1; |
| } |
| assert( pMatch->iCursor==pExpr->iTable ); |
| pMatch->colUsed |= 1<<n; |
| } |
| |
| lookupname_end: |
| /* Clean up and return |
| */ |
| sqliteFree(zDb); |
| sqliteFree(zTab); |
| sqlite3ExprDelete(pExpr->pLeft); |
| pExpr->pLeft = 0; |
| sqlite3ExprDelete(pExpr->pRight); |
| pExpr->pRight = 0; |
| pExpr->op = TK_COLUMN; |
| lookupname_end_2: |
| sqliteFree(zCol); |
| if( cnt==1 ){ |
| assert( pNC!=0 ); |
| sqlite3AuthRead(pParse, pExpr, pNC->pSrcList); |
| if( pMatch && !pMatch->pSelect ){ |
| pExpr->pTab = pMatch->pTab; |
| } |
| /* Increment the nRef value on all name contexts from TopNC up to |
| ** the point where the name matched. */ |
| for(;;){ |
| assert( pTopNC!=0 ); |
| pTopNC->nRef++; |
| if( pTopNC==pNC ) break; |
| pTopNC = pTopNC->pNext; |
| } |
| return 0; |
| } else { |
| return 1; |
| } |
| } |
| |
| /* |
| ** This routine is designed as an xFunc for walkExprTree(). |
| ** |
| ** Resolve symbolic names into TK_COLUMN operators for the current |
| ** node in the expression tree. Return 0 to continue the search down |
| ** the tree or 2 to abort the tree walk. |
| ** |
| ** This routine also does error checking and name resolution for |
| ** function names. The operator for aggregate functions is changed |
| ** to TK_AGG_FUNCTION. |
| */ |
| static int nameResolverStep(void *pArg, Expr *pExpr){ |
| NameContext *pNC = (NameContext*)pArg; |
| SrcList *pSrcList; |
| Parse *pParse; |
| |
| if( pExpr==0 ) return 1; |
| assert( pNC!=0 ); |
| pSrcList = pNC->pSrcList; |
| pParse = pNC->pParse; |
| |
| if( ExprHasAnyProperty(pExpr, EP_Resolved) ) return 1; |
| ExprSetProperty(pExpr, EP_Resolved); |
| #ifndef NDEBUG |
| if( pSrcList && pSrcList->nAlloc>0 ){ |
| int i; |
| for(i=0; i<pSrcList->nSrc; i++){ |
| assert( pSrcList->a[i].iCursor>=0 && pSrcList->a[i].iCursor<pParse->nTab); |
| } |
| } |
| #endif |
| switch( pExpr->op ){ |
| /* Double-quoted strings (ex: "abc") are used as identifiers if |
| ** possible. Otherwise they remain as strings. Single-quoted |
| ** strings (ex: 'abc') are always string literals. |
| */ |
| case TK_STRING: { |
| if( pExpr->token.z[0]=='\'' ) break; |
| /* Fall thru into the TK_ID case if this is a double-quoted string */ |
| } |
| /* A lone identifier is the name of a column. |
| */ |
| case TK_ID: { |
| lookupName(pParse, 0, 0, &pExpr->token, pNC, pExpr); |
| return 1; |
| } |
| |
| /* A table name and column name: ID.ID |
| ** Or a database, table and column: ID.ID.ID |
| */ |
| case TK_DOT: { |
| Token *pColumn; |
| Token *pTable; |
| Token *pDb; |
| Expr *pRight; |
| |
| /* if( pSrcList==0 ) break; */ |
| pRight = pExpr->pRight; |
| if( pRight->op==TK_ID ){ |
| pDb = 0; |
| pTable = &pExpr->pLeft->token; |
| pColumn = &pRight->token; |
| }else{ |
| assert( pRight->op==TK_DOT ); |
| pDb = &pExpr->pLeft->token; |
| pTable = &pRight->pLeft->token; |
| pColumn = &pRight->pRight->token; |
| } |
| lookupName(pParse, pDb, pTable, pColumn, pNC, pExpr); |
| return 1; |
| } |
| |
| /* Resolve function names |
| */ |
| case TK_CONST_FUNC: |
| case TK_FUNCTION: { |
| ExprList *pList = pExpr->pList; /* The argument list */ |
| int n = pList ? pList->nExpr : 0; /* Number of arguments */ |
| int no_such_func = 0; /* True if no such function exists */ |
| int wrong_num_args = 0; /* True if wrong number of arguments */ |
| int is_agg = 0; /* True if is an aggregate function */ |
| int i; |
| int nId; /* Number of characters in function name */ |
| const char *zId; /* The function name. */ |
| FuncDef *pDef; /* Information about the function */ |
| int enc = pParse->db->enc; /* The database encoding */ |
| |
| zId = pExpr->token.z; |
| nId = pExpr->token.n; |
| pDef = sqlite3FindFunction(pParse->db, zId, nId, n, enc, 0); |
| if( pDef==0 ){ |
| pDef = sqlite3FindFunction(pParse->db, zId, nId, -1, enc, 0); |
| if( pDef==0 ){ |
| no_such_func = 1; |
| }else{ |
| wrong_num_args = 1; |
| } |
| }else{ |
| is_agg = pDef->xFunc==0; |
| } |
| if( is_agg && !pNC->allowAgg ){ |
| sqlite3ErrorMsg(pParse, "misuse of aggregate function %.*s()", nId,zId); |
| pNC->nErr++; |
| is_agg = 0; |
| }else if( no_such_func ){ |
| sqlite3ErrorMsg(pParse, "no such function: %.*s", nId, zId); |
| pNC->nErr++; |
| }else if( wrong_num_args ){ |
| sqlite3ErrorMsg(pParse,"wrong number of arguments to function %.*s()", |
| nId, zId); |
| pNC->nErr++; |
| } |
| if( is_agg ){ |
| pExpr->op = TK_AGG_FUNCTION; |
| pNC->hasAgg = 1; |
| } |
| if( is_agg ) pNC->allowAgg = 0; |
| for(i=0; pNC->nErr==0 && i<n; i++){ |
| walkExprTree(pList->a[i].pExpr, nameResolverStep, pNC); |
| } |
| if( is_agg ) pNC->allowAgg = 1; |
| /* FIX ME: Compute pExpr->affinity based on the expected return |
| ** type of the function |
| */ |
| return is_agg; |
| } |
| #ifndef SQLITE_OMIT_SUBQUERY |
| case TK_SELECT: |
| case TK_EXISTS: |
| #endif |
| case TK_IN: { |
| if( pExpr->pSelect ){ |
| #ifndef SQLITE_OMIT_CHECK |
| if( pNC->isCheck ){ |
| sqlite3ErrorMsg(pParse,"subqueries prohibited in CHECK constraints"); |
| } |
| #endif |
| int nRef = pNC->nRef; |
| sqlite3SelectResolve(pParse, pExpr->pSelect, pNC); |
| assert( pNC->nRef>=nRef ); |
| if( nRef!=pNC->nRef ){ |
| ExprSetProperty(pExpr, EP_VarSelect); |
| } |
| } |
| break; |
| } |
| #ifndef SQLITE_OMIT_CHECK |
| case TK_VARIABLE: { |
| if( pNC->isCheck ){ |
| sqlite3ErrorMsg(pParse,"parameters prohibited in CHECK constraints"); |
| } |
| break; |
| } |
| #endif |
| } |
| return 0; |
| } |
| |
| /* |
| ** This routine walks an expression tree and resolves references to |
| ** table columns. Nodes of the form ID.ID or ID resolve into an |
| ** index to the table in the table list and a column offset. The |
| ** Expr.opcode for such nodes is changed to TK_COLUMN. The Expr.iTable |
| ** value is changed to the index of the referenced table in pTabList |
| ** plus the "base" value. The base value will ultimately become the |
| ** VDBE cursor number for a cursor that is pointing into the referenced |
| ** table. The Expr.iColumn value is changed to the index of the column |
| ** of the referenced table. The Expr.iColumn value for the special |
| ** ROWID column is -1. Any INTEGER PRIMARY KEY column is tried as an |
| ** alias for ROWID. |
| ** |
| ** Also resolve function names and check the functions for proper |
| ** usage. Make sure all function names are recognized and all functions |
| ** have the correct number of arguments. Leave an error message |
| ** in pParse->zErrMsg if anything is amiss. Return the number of errors. |
| ** |
| ** If the expression contains aggregate functions then set the EP_Agg |
| ** property on the expression. |
| */ |
| int sqlite3ExprResolveNames( |
| NameContext *pNC, /* Namespace to resolve expressions in. */ |
| Expr *pExpr /* The expression to be analyzed. */ |
| ){ |
| int savedHasAgg; |
| if( pExpr==0 ) return 0; |
| savedHasAgg = pNC->hasAgg; |
| pNC->hasAgg = 0; |
| walkExprTree(pExpr, nameResolverStep, pNC); |
| if( pNC->nErr>0 ){ |
| ExprSetProperty(pExpr, EP_Error); |
| } |
| if( pNC->hasAgg ){ |
| ExprSetProperty(pExpr, EP_Agg); |
| }else if( savedHasAgg ){ |
| pNC->hasAgg = 1; |
| } |
| return ExprHasProperty(pExpr, EP_Error); |
| } |
| |
| /* |
| ** A pointer instance of this structure is used to pass information |
| ** through walkExprTree into codeSubqueryStep(). |
| */ |
| typedef struct QueryCoder QueryCoder; |
| struct QueryCoder { |
| Parse *pParse; /* The parsing context */ |
| NameContext *pNC; /* Namespace of first enclosing query */ |
| }; |
| |
| |
| /* |
| ** Generate code for subqueries and IN operators. |
| ** |
| ** IN operators comes in two forms: |
| ** |
| ** expr IN (exprlist) |
| ** and |
| ** expr IN (SELECT ...) |
| ** |
| ** The first form is handled by creating a set holding the list |
| ** of allowed values. The second form causes the SELECT to generate |
| ** a temporary table. |
| */ |
| #ifndef SQLITE_OMIT_SUBQUERY |
| void sqlite3CodeSubselect(Parse *pParse, Expr *pExpr){ |
| int testAddr = 0; /* One-time test address */ |
| Vdbe *v = sqlite3GetVdbe(pParse); |
| if( v==0 ) return; |
| |
| /* This code must be run in its entirety every time it is encountered |
| ** if any of the following is true: |
| ** |
| ** * The right-hand side is a correlated subquery |
| ** * The right-hand side is an expression list containing variables |
| ** * We are inside a trigger |
| ** |
| ** If all of the above are false, then we can run this code just once |
| ** save the results, and reuse the same result on subsequent invocations. |
| */ |
| if( !ExprHasAnyProperty(pExpr, EP_VarSelect) && !pParse->trigStack ){ |
| int mem = pParse->nMem++; |
| sqlite3VdbeAddOp(v, OP_MemLoad, mem, 0); |
| testAddr = sqlite3VdbeAddOp(v, OP_If, 0, 0); |
| assert( testAddr>0 || sqlite3_malloc_failed ); |
| sqlite3VdbeAddOp(v, OP_MemInt, 1, mem); |
| } |
| |
| switch( pExpr->op ){ |
| case TK_IN: { |
| char affinity; |
| KeyInfo keyInfo; |
| int addr; /* Address of OP_OpenVirtual instruction */ |
| |
| affinity = sqlite3ExprAffinity(pExpr->pLeft); |
| |
| /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)' |
| ** expression it is handled the same way. A virtual table is |
| ** filled with single-field index keys representing the results |
| ** from the SELECT or the <exprlist>. |
| ** |
| ** If the 'x' expression is a column value, or the SELECT... |
| ** statement returns a column value, then the affinity of that |
| ** column is used to build the index keys. If both 'x' and the |
| ** SELECT... statement are columns, then numeric affinity is used |
| ** if either column has NUMERIC or INTEGER affinity. If neither |
| ** 'x' nor the SELECT... statement are columns, then numeric affinity |
| ** is used. |
| */ |
| pExpr->iTable = pParse->nTab++; |
| addr = sqlite3VdbeAddOp(v, OP_OpenVirtual, pExpr->iTable, 0); |
| memset(&keyInfo, 0, sizeof(keyInfo)); |
| keyInfo.nField = 1; |
| sqlite3VdbeAddOp(v, OP_SetNumColumns, pExpr->iTable, 1); |
| |
| if( pExpr->pSelect ){ |
| /* Case 1: expr IN (SELECT ...) |
| ** |
| ** Generate code to write the results of the select into the temporary |
| ** table allocated and opened above. |
| */ |
| int iParm = pExpr->iTable + (((int)affinity)<<16); |
| ExprList *pEList; |
| assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable ); |
| sqlite3Select(pParse, pExpr->pSelect, SRT_Set, iParm, 0, 0, 0, 0); |
| pEList = pExpr->pSelect->pEList; |
| if( pEList && pEList->nExpr>0 ){ |
| keyInfo.aColl[0] = binaryCompareCollSeq(pParse, pExpr->pLeft, |
| pEList->a[0].pExpr); |
| } |
| }else if( pExpr->pList ){ |
| /* Case 2: expr IN (exprlist) |
| ** |
| ** For each expression, build an index key from the evaluation and |
| ** store it in the temporary table. If <expr> is a column, then use |
| ** that columns affinity when building index keys. If <expr> is not |
| ** a column, use numeric affinity. |
| */ |
| int i; |
| ExprList *pList = pExpr->pList; |
| struct ExprList_item *pItem; |
| |
| if( !affinity ){ |
| affinity = SQLITE_AFF_NUMERIC; |
| } |
| keyInfo.aColl[0] = pExpr->pLeft->pColl; |
| |
| /* Loop through each expression in <exprlist>. */ |
| for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ |
| Expr *pE2 = pItem->pExpr; |
| |
| /* If the expression is not constant then we will need to |
| ** disable the test that was generated above that makes sure |
| ** this code only executes once. Because for a non-constant |
| ** expression we need to rerun this code each time. |
| */ |
| if( testAddr>0 && !sqlite3ExprIsConstant(pE2) ){ |
| VdbeOp *aOp = sqlite3VdbeGetOp(v, testAddr-1); |
| int i; |
| for(i=0; i<3; i++){ |
| aOp[i].opcode = OP_Noop; |
| } |
| testAddr = 0; |
| } |
| |
| /* Evaluate the expression and insert it into the temp table */ |
| sqlite3ExprCode(pParse, pE2); |
| sqlite3VdbeOp3(v, OP_MakeRecord, 1, 0, &affinity, 1); |
| sqlite3VdbeAddOp(v, OP_IdxInsert, pExpr->iTable, 0); |
| } |
| } |
| sqlite3VdbeChangeP3(v, addr, (void *)&keyInfo, P3_KEYINFO); |
| break; |
| } |
| |
| case TK_EXISTS: |
| case TK_SELECT: { |
| /* This has to be a scalar SELECT. Generate code to put the |
| ** value of this select in a memory cell and record the number |
| ** of the memory cell in iColumn. |
| */ |
| static const Token one = { "1", 0, 1 }; |
| Select *pSel; |
| int iMem; |
| int sop; |
| |
| pExpr->iColumn = iMem = pParse->nMem++; |
| pSel = pExpr->pSelect; |
| if( pExpr->op==TK_SELECT ){ |
| sop = SRT_Mem; |
| sqlite3VdbeAddOp(v, OP_MemNull, iMem, 0); |
| VdbeComment((v, "# Init subquery result")); |
| }else{ |
| sop = SRT_Exists; |
| sqlite3VdbeAddOp(v, OP_MemInt, 0, iMem); |
| VdbeComment((v, "# Init EXISTS result")); |
| } |
| sqlite3ExprDelete(pSel->pLimit); |
| pSel->pLimit = sqlite3Expr(TK_INTEGER, 0, 0, &one); |
| sqlite3Select(pParse, pSel, sop, iMem, 0, 0, 0, 0); |
| break; |
| } |
| } |
| |
| if( testAddr ){ |
| sqlite3VdbeJumpHere(v, testAddr); |
| } |
| return; |
| } |
| #endif /* SQLITE_OMIT_SUBQUERY */ |
| |
| /* |
| ** Generate an instruction that will put the integer describe by |
| ** text z[0..n-1] on the stack. |
| */ |
| static void codeInteger(Vdbe *v, const char *z, int n){ |
| int i; |
| if( sqlite3GetInt32(z, &i) ){ |
| sqlite3VdbeAddOp(v, OP_Integer, i, 0); |
| }else if( sqlite3FitsIn64Bits(z) ){ |
| sqlite3VdbeOp3(v, OP_Int64, 0, 0, z, n); |
| }else{ |
| sqlite3VdbeOp3(v, OP_Real, 0, 0, z, n); |
| } |
| } |
| |
| /* |
| ** Generate code into the current Vdbe to evaluate the given |
| ** expression and leave the result on the top of stack. |
| ** |
| ** This code depends on the fact that certain token values (ex: TK_EQ) |
| ** are the same as opcode values (ex: OP_Eq) that implement the corresponding |
| ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in |
| ** the make process cause these values to align. Assert()s in the code |
| ** below verify that the numbers are aligned correctly. |
| */ |
| void sqlite3ExprCode(Parse *pParse, Expr *pExpr){ |
| Vdbe *v = pParse->pVdbe; |
| int op; |
| int stackChng = 1; /* Amount of change to stack depth */ |
| |
| if( v==0 ) return; |
| if( pExpr==0 ){ |
| sqlite3VdbeAddOp(v, OP_Null, 0, 0); |
| return; |
| } |
| op = pExpr->op; |
| switch( op ){ |
| case TK_AGG_COLUMN: { |
| AggInfo *pAggInfo = pExpr->pAggInfo; |
| struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg]; |
| if( !pAggInfo->directMode ){ |
| sqlite3VdbeAddOp(v, OP_MemLoad, pCol->iMem, 0); |
| break; |
| }else if( pAggInfo->useSortingIdx ){ |
| sqlite3VdbeAddOp(v, OP_Column, pAggInfo->sortingIdx, |
| pCol->iSorterColumn); |
| break; |
| } |
| /* Otherwise, fall thru into the TK_COLUMN case */ |
| } |
| case TK_COLUMN: { |
| if( pExpr->iTable<0 ){ |
| /* This only happens when coding check constraints */ |
| assert( pParse->ckOffset>0 ); |
| sqlite3VdbeAddOp(v, OP_Dup, pParse->ckOffset-pExpr->iColumn-1, 1); |
| }else if( pExpr->iColumn>=0 ){ |
| sqlite3VdbeAddOp(v, OP_Column, pExpr->iTable, pExpr->iColumn); |
| sqlite3ColumnDefault(v, pExpr->pTab, pExpr->iColumn); |
| }else{ |
| sqlite3VdbeAddOp(v, OP_Rowid, pExpr->iTable, 0); |
| } |
| break; |
| } |
| case TK_INTEGER: { |
| codeInteger(v, pExpr->token.z, pExpr->token.n); |
| break; |
| } |
| case TK_FLOAT: |
| case TK_STRING: { |
| assert( TK_FLOAT==OP_Real ); |
| assert( TK_STRING==OP_String8 ); |
| sqlite3DequoteExpr(pExpr); |
| sqlite3VdbeOp3(v, op, 0, 0, pExpr->token.z, pExpr->token.n); |
| break; |
| } |
| case TK_NULL: { |
| sqlite3VdbeAddOp(v, OP_Null, 0, 0); |
| break; |
| } |
| #ifndef SQLITE_OMIT_BLOB_LITERAL |
| case TK_BLOB: { |
| int n; |
| const char *z; |
| assert( TK_BLOB==OP_HexBlob ); |
| n = pExpr->token.n - 3; |
| z = pExpr->token.z + 2; |
| assert( n>=0 ); |
| if( n==0 ){ |
| z = ""; |
| } |
| sqlite3VdbeOp3(v, op, 0, 0, z, n); |
| break; |
| } |
| #endif |
| case TK_VARIABLE: { |
| sqlite3VdbeAddOp(v, OP_Variable, pExpr->iTable, 0); |
| if( pExpr->token.n>1 ){ |
| sqlite3VdbeChangeP3(v, -1, pExpr->token.z, pExpr->token.n); |
| } |
| break; |
| } |
| case TK_REGISTER: { |
| sqlite3VdbeAddOp(v, OP_MemLoad, pExpr->iTable, 0); |
| break; |
| } |
| #ifndef SQLITE_OMIT_CAST |
| case TK_CAST: { |
| /* Expressions of the form: CAST(pLeft AS token) */ |
| int aff, op; |
| sqlite3ExprCode(pParse, pExpr->pLeft); |
| aff = sqlite3AffinityType(&pExpr->token, 1); |
| switch( aff ){ |
| case SQLITE_AFF_INTEGER: op = OP_ToInt; break; |
| case SQLITE_AFF_NUMERIC: op = OP_ToNumeric; break; |
| case SQLITE_AFF_TEXT: op = OP_ToText; break; |
| case SQLITE_AFF_NONE: op = OP_ToBlob; break; |
| } |
| sqlite3VdbeAddOp(v, op, 0, 0); |
| stackChng = 0; |
| break; |
| } |
| #endif /* SQLITE_OMIT_CAST */ |
| case TK_LT: |
| case TK_LE: |
| case TK_GT: |
| case TK_GE: |
| case TK_NE: |
| case TK_EQ: { |
| assert( TK_LT==OP_Lt ); |
| assert( TK_LE==OP_Le ); |
| assert( TK_GT==OP_Gt ); |
| assert( TK_GE==OP_Ge ); |
| assert( TK_EQ==OP_Eq ); |
| assert( TK_NE==OP_Ne ); |
| sqlite3ExprCode(pParse, pExpr->pLeft); |
| sqlite3ExprCode(pParse, pExpr->pRight); |
| codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 0, 0); |
| stackChng = -1; |
| break; |
| } |
| case TK_AND: |
| case TK_OR: |
| case TK_PLUS: |
| case TK_STAR: |
| case TK_MINUS: |
| case TK_REM: |
| case TK_BITAND: |
| case TK_BITOR: |
| case TK_SLASH: |
| case TK_LSHIFT: |
| case TK_RSHIFT: |
| case TK_CONCAT: { |
| assert( TK_AND==OP_And ); |
| assert( TK_OR==OP_Or ); |
| assert( TK_PLUS==OP_Add ); |
| assert( TK_MINUS==OP_Subtract ); |
| assert( TK_REM==OP_Remainder ); |
| assert( TK_BITAND==OP_BitAnd ); |
| assert( TK_BITOR==OP_BitOr ); |
| assert( TK_SLASH==OP_Divide ); |
| assert( TK_LSHIFT==OP_ShiftLeft ); |
| assert( TK_RSHIFT==OP_ShiftRight ); |
| assert( TK_CONCAT==OP_Concat ); |
| sqlite3ExprCode(pParse, pExpr->pLeft); |
| sqlite3ExprCode(pParse, pExpr->pRight); |
| sqlite3VdbeAddOp(v, op, 0, 0); |
| stackChng = -1; |
| break; |
| } |
| case TK_UMINUS: { |
| Expr *pLeft = pExpr->pLeft; |
| assert( pLeft ); |
| if( pLeft->op==TK_FLOAT || pLeft->op==TK_INTEGER ){ |
| Token *p = &pLeft->token; |
| char *z = sqliteMalloc( p->n + 2 ); |
| sprintf(z, "-%.*s", p->n, p->z); |
| if( pLeft->op==TK_FLOAT ){ |
| sqlite3VdbeOp3(v, OP_Real, 0, 0, z, p->n+1); |
| }else{ |
| codeInteger(v, z, p->n+1); |
| } |
| sqliteFree(z); |
| break; |
| } |
| /* Fall through into TK_NOT */ |
| } |
| case TK_BITNOT: |
| case TK_NOT: { |
| assert( TK_BITNOT==OP_BitNot ); |
| assert( TK_NOT==OP_Not ); |
| sqlite3ExprCode(pParse, pExpr->pLeft); |
| sqlite3VdbeAddOp(v, op, 0, 0); |
| stackChng = 0; |
| break; |
| } |
| case TK_ISNULL: |
| case TK_NOTNULL: { |
| int dest; |
| assert( TK_ISNULL==OP_IsNull ); |
| assert( TK_NOTNULL==OP_NotNull ); |
| sqlite3VdbeAddOp(v, OP_Integer, 1, 0); |
| sqlite3ExprCode(pParse, pExpr->pLeft); |
| dest = sqlite3VdbeCurrentAddr(v) + 2; |
| sqlite3VdbeAddOp(v, op, 1, dest); |
| sqlite3VdbeAddOp(v, OP_AddImm, -1, 0); |
| stackChng = 0; |
| break; |
| } |
| case TK_AGG_FUNCTION: { |
| AggInfo *pInfo = pExpr->pAggInfo; |
| sqlite3VdbeAddOp(v, OP_MemLoad, pInfo->aFunc[pExpr->iAgg].iMem, 0); |
| break; |
| } |
| case TK_CONST_FUNC: |
| case TK_FUNCTION: { |
| ExprList *pList = pExpr->pList; |
| int nExpr = pList ? pList->nExpr : 0; |
| FuncDef *pDef; |
| int nId; |
| const char *zId; |
| int constMask = 0; |
| int i; |
| u8 enc = pParse->db->enc; |
| CollSeq *pColl = 0; |
| zId = pExpr->token.z; |
| nId = pExpr->token.n; |
| pDef = sqlite3FindFunction(pParse->db, zId, nId, nExpr, enc, 0); |
| assert( pDef!=0 ); |
| nExpr = sqlite3ExprCodeExprList(pParse, pList); |
| for(i=0; i<nExpr && i<32; i++){ |
| if( sqlite3ExprIsConstant(pList->a[i].pExpr) ){ |
| constMask |= (1<<i); |
| } |
| if( pDef->needCollSeq && !pColl ){ |
| pColl = sqlite3ExprCollSeq(pParse, pList->a[i].pExpr); |
| } |
| } |
| if( pDef->needCollSeq ){ |
| if( !pColl ) pColl = pParse->db->pDfltColl; |
| sqlite3VdbeOp3(v, OP_CollSeq, 0, 0, (char *)pColl, P3_COLLSEQ); |
| } |
| sqlite3VdbeOp3(v, OP_Function, constMask, nExpr, (char*)pDef, P3_FUNCDEF); |
| stackChng = 1-nExpr; |
| break; |
| } |
| #ifndef SQLITE_OMIT_SUBQUERY |
| case TK_EXISTS: |
| case TK_SELECT: { |
| sqlite3CodeSubselect(pParse, pExpr); |
| sqlite3VdbeAddOp(v, OP_MemLoad, pExpr->iColumn, 0); |
| VdbeComment((v, "# load subquery result")); |
| break; |
| } |
| case TK_IN: { |
| int addr; |
| char affinity; |
| sqlite3CodeSubselect(pParse, pExpr); |
| |
| /* Figure out the affinity to use to create a key from the results |
| ** of the expression. affinityStr stores a static string suitable for |
| ** P3 of OP_MakeRecord. |
| */ |
| affinity = comparisonAffinity(pExpr); |
| |
| sqlite3VdbeAddOp(v, OP_Integer, 1, 0); |
| |
| /* Code the <expr> from "<expr> IN (...)". The temporary table |
| ** pExpr->iTable contains the values that make up the (...) set. |
| */ |
| sqlite3ExprCode(pParse, pExpr->pLeft); |
| addr = sqlite3VdbeCurrentAddr(v); |
| sqlite3VdbeAddOp(v, OP_NotNull, -1, addr+4); /* addr + 0 */ |
| sqlite3VdbeAddOp(v, OP_Pop, 2, 0); |
| sqlite3VdbeAddOp(v, OP_Null, 0, 0); |
| sqlite3VdbeAddOp(v, OP_Goto, 0, addr+7); |
| sqlite3VdbeOp3(v, OP_MakeRecord, 1, 0, &affinity, 1); /* addr + 4 */ |
| sqlite3VdbeAddOp(v, OP_Found, pExpr->iTable, addr+7); |
| sqlite3VdbeAddOp(v, OP_AddImm, -1, 0); /* addr + 6 */ |
| |
| break; |
| } |
| #endif |
| case TK_BETWEEN: { |
| Expr *pLeft = pExpr->pLeft; |
| struct ExprList_item *pLItem = pExpr->pList->a; |
| Expr *pRight = pLItem->pExpr; |
| sqlite3ExprCode(pParse, pLeft); |
| sqlite3VdbeAddOp(v, OP_Dup, 0, 0); |
| sqlite3ExprCode(pParse, pRight); |
| codeCompare(pParse, pLeft, pRight, OP_Ge, 0, 0); |
| sqlite3VdbeAddOp(v, OP_Pull, 1, 0); |
| pLItem++; |
| pRight = pLItem->pExpr; |
| sqlite3ExprCode(pParse, pRight); |
| codeCompare(pParse, pLeft, pRight, OP_Le, 0, 0); |
| sqlite3VdbeAddOp(v, OP_And, 0, 0); |
| break; |
| } |
| case TK_UPLUS: |
| case TK_AS: { |
| sqlite3ExprCode(pParse, pExpr->pLeft); |
| stackChng = 0; |
| break; |
| } |
| case TK_CASE: { |
| int expr_end_label; |
| int jumpInst; |
| int nExpr; |
| int i; |
| ExprList *pEList; |
| struct ExprList_item *aListelem; |
| |
| assert(pExpr->pList); |
| assert((pExpr->pList->nExpr % 2) == 0); |
| assert(pExpr->pList->nExpr > 0); |
| pEList = pExpr->pList; |
| aListelem = pEList->a; |
| nExpr = pEList->nExpr; |
| expr_end_label = sqlite3VdbeMakeLabel(v); |
| if( pExpr->pLeft ){ |
| sqlite3ExprCode(pParse, pExpr->pLeft); |
| } |
| for(i=0; i<nExpr; i=i+2){ |
| sqlite3ExprCode(pParse, aListelem[i].pExpr); |
| if( pExpr->pLeft ){ |
| sqlite3VdbeAddOp(v, OP_Dup, 1, 1); |
| jumpInst = codeCompare(pParse, pExpr->pLeft, aListelem[i].pExpr, |
| OP_Ne, 0, 1); |
| sqlite3VdbeAddOp(v, OP_Pop, 1, 0); |
| }else{ |
| jumpInst = sqlite3VdbeAddOp(v, OP_IfNot, 1, 0); |
| } |
| sqlite3ExprCode(pParse, aListelem[i+1].pExpr); |
| sqlite3VdbeAddOp(v, OP_Goto, 0, expr_end_label); |
| sqlite3VdbeJumpHere(v, jumpInst); |
| } |
| if( pExpr->pLeft ){ |
| sqlite3VdbeAddOp(v, OP_Pop, 1, 0); |
| } |
| if( pExpr->pRight ){ |
| sqlite3ExprCode(pParse, pExpr->pRight); |
| }else{ |
| sqlite3VdbeAddOp(v, OP_Null, 0, 0); |
| } |
| sqlite3VdbeResolveLabel(v, expr_end_label); |
| break; |
| } |
| #ifndef SQLITE_OMIT_TRIGGER |
| case TK_RAISE: { |
| if( !pParse->trigStack ){ |
| sqlite3ErrorMsg(pParse, |
| "RAISE() may only be used within a trigger-program"); |
| return; |
| } |
| if( pExpr->iColumn!=OE_Ignore ){ |
| assert( pExpr->iColumn==OE_Rollback || |
| pExpr->iColumn == OE_Abort || |
| pExpr->iColumn == OE_Fail ); |
| sqlite3DequoteExpr(pExpr); |
| sqlite3VdbeOp3(v, OP_Halt, SQLITE_CONSTRAINT, pExpr->iColumn, |
| pExpr->token.z, pExpr->token.n); |
| } else { |
| assert( pExpr->iColumn == OE_Ignore ); |
| sqlite3VdbeAddOp(v, OP_ContextPop, 0, 0); |
| sqlite3VdbeAddOp(v, OP_Goto, 0, pParse->trigStack->ignoreJump); |
| VdbeComment((v, "# raise(IGNORE)")); |
| } |
| stackChng = 0; |
| break; |
| } |
| #endif |
| } |
| |
| if( pParse->ckOffset ){ |
| pParse->ckOffset += stackChng; |
| assert( pParse->ckOffset ); |
| } |
| } |
| |
| #ifndef SQLITE_OMIT_TRIGGER |
| /* |
| ** Generate code that evalutes the given expression and leaves the result |
| ** on the stack. See also sqlite3ExprCode(). |
| ** |
| ** This routine might also cache the result and modify the pExpr tree |
| ** so that it will make use of the cached result on subsequent evaluations |
| ** rather than evaluate the whole expression again. Trivial expressions are |
| ** not cached. If the expression is cached, its result is stored in a |
| ** memory location. |
| */ |
| void sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr){ |
| Vdbe *v = pParse->pVdbe; |
| int iMem; |
| int addr1, addr2; |
| if( v==0 ) return; |
| addr1 = sqlite3VdbeCurrentAddr(v); |
| sqlite3ExprCode(pParse, pExpr); |
| addr2 = sqlite3VdbeCurrentAddr(v); |
| if( addr2>addr1+1 || sqlite3VdbeGetOp(v, addr1)->opcode==OP_Function ){ |
| iMem = pExpr->iTable = pParse->nMem++; |
| sqlite3VdbeAddOp(v, OP_MemStore, iMem, 0); |
| pExpr->op = TK_REGISTER; |
| } |
| } |
| #endif |
| |
| /* |
| ** Generate code that pushes the value of every element of the given |
| ** expression list onto the stack. |
| ** |
| ** Return the number of elements pushed onto the stack. |
| */ |
| int sqlite3ExprCodeExprList( |
| Parse *pParse, /* Parsing context */ |
| ExprList *pList /* The expression list to be coded */ |
| ){ |
| struct ExprList_item *pItem; |
| int i, n; |
| if( pList==0 ) return 0; |
| n = pList->nExpr; |
| for(pItem=pList->a, i=n; i>0; i--, pItem++){ |
| sqlite3ExprCode(pParse, pItem->pExpr); |
| } |
| return n; |
| } |
| |
| /* |
| ** Generate code for a boolean expression such that a jump is made |
| ** to the label "dest" if the expression is true but execution |
| ** continues straight thru if the expression is false. |
| ** |
| ** If the expression evaluates to NULL (neither true nor false), then |
| ** take the jump if the jumpIfNull flag is true. |
| ** |
| ** This code depends on the fact that certain token values (ex: TK_EQ) |
| ** are the same as opcode values (ex: OP_Eq) that implement the corresponding |
| ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in |
| ** the make process cause these values to align. Assert()s in the code |
| ** below verify that the numbers are aligned correctly. |
| */ |
| void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ |
| Vdbe *v = pParse->pVdbe; |
| int op = 0; |
| int ckOffset = pParse->ckOffset; |
| if( v==0 || pExpr==0 ) return; |
| op = pExpr->op; |
| switch( op ){ |
| case TK_AND: { |
| int d2 = sqlite3VdbeMakeLabel(v); |
| sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2, !jumpIfNull); |
| sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); |
| sqlite3VdbeResolveLabel(v, d2); |
| break; |
| } |
| case TK_OR: { |
| sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); |
| sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); |
| break; |
| } |
| case TK_NOT: { |
| sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); |
| break; |
| } |
| case TK_LT: |
| case TK_LE: |
| case TK_GT: |
| case TK_GE: |
| case TK_NE: |
| case TK_EQ: { |
| assert( TK_LT==OP_Lt ); |
| assert( TK_LE==OP_Le ); |
| assert( TK_GT==OP_Gt ); |
| assert( TK_GE==OP_Ge ); |
| assert( TK_EQ==OP_Eq ); |
| assert( TK_NE==OP_Ne ); |
| sqlite3ExprCode(pParse, pExpr->pLeft); |
| sqlite3ExprCode(pParse, pExpr->pRight); |
| codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, dest, jumpIfNull); |
| break; |
| } |
| case TK_ISNULL: |
| case TK_NOTNULL: { |
| assert( TK_ISNULL==OP_IsNull ); |
| assert( TK_NOTNULL==OP_NotNull ); |
| sqlite3ExprCode(pParse, pExpr->pLeft); |
| sqlite3VdbeAddOp(v, op, 1, dest); |
| break; |
| } |
| case TK_BETWEEN: { |
| /* The expression "x BETWEEN y AND z" is implemented as: |
| ** |
| ** 1 IF (x < y) GOTO 3 |
| ** 2 IF (x <= z) GOTO <dest> |
| ** 3 ... |
| */ |
| int addr; |
| Expr *pLeft = pExpr->pLeft; |
| Expr *pRight = pExpr->pList->a[0].pExpr; |
| sqlite3ExprCode(pParse, pLeft); |
| sqlite3VdbeAddOp(v, OP_Dup, 0, 0); |
| sqlite3ExprCode(pParse, pRight); |
| addr = codeCompare(pParse, pLeft, pRight, OP_Lt, 0, !jumpIfNull); |
| |
| pRight = pExpr->pList->a[1].pExpr; |
| sqlite3ExprCode(pParse, pRight); |
| codeCompare(pParse, pLeft, pRight, OP_Le, dest, jumpIfNull); |
| |
| sqlite3VdbeAddOp(v, OP_Integer, 0, 0); |
| sqlite3VdbeJumpHere(v, addr); |
| sqlite3VdbeAddOp(v, OP_Pop, 1, 0); |
| break; |
| } |
| default: { |
| sqlite3ExprCode(pParse, pExpr); |
| sqlite3VdbeAddOp(v, OP_If, jumpIfNull, dest); |
| break; |
| } |
| } |
| pParse->ckOffset = ckOffset; |
| } |
| |
| /* |
| ** Generate code for a boolean expression such that a jump is made |
| ** to the label "dest" if the expression is false but execution |
| ** continues straight thru if the expression is true. |
| ** |
| ** If the expression evaluates to NULL (neither true nor false) then |
| ** jump if jumpIfNull is true or fall through if jumpIfNull is false. |
| */ |
| void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ |
| Vdbe *v = pParse->pVdbe; |
| int op = 0; |
| int ckOffset = pParse->ckOffset; |
| if( v==0 || pExpr==0 ) return; |
| |
| /* The value of pExpr->op and op are related as follows: |
| ** |
| ** pExpr->op op |
| ** --------- ---------- |
| ** TK_ISNULL OP_NotNull |
| ** TK_NOTNULL OP_IsNull |
| ** TK_NE OP_Eq |
| ** TK_EQ OP_Ne |
| ** TK_GT OP_Le |
| ** TK_LE OP_Gt |
| ** TK_GE OP_Lt |
| ** TK_LT OP_Ge |
| ** |
| ** For other values of pExpr->op, op is undefined and unused. |
| ** The value of TK_ and OP_ constants are arranged such that we |
| ** can compute the mapping above using the following expression. |
| ** Assert()s verify that the computation is correct. |
| */ |
| op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1); |
| |
| /* Verify correct alignment of TK_ and OP_ constants |
| */ |
| assert( pExpr->op!=TK_ISNULL || op==OP_NotNull ); |
| assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull ); |
| assert( pExpr->op!=TK_NE || op==OP_Eq ); |
| assert( pExpr->op!=TK_EQ || op==OP_Ne ); |
| assert( pExpr->op!=TK_LT || op==OP_Ge ); |
| assert( pExpr->op!=TK_LE || op==OP_Gt ); |
| assert( pExpr->op!=TK_GT || op==OP_Le ); |
| assert( pExpr->op!=TK_GE || op==OP_Lt ); |
| |
| switch( pExpr->op ){ |
| case TK_AND: { |
| sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); |
| sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); |
| break; |
| } |
| case TK_OR: { |
| int d2 = sqlite3VdbeMakeLabel(v); |
| sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, !jumpIfNull); |
| sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); |
| sqlite3VdbeResolveLabel(v, d2); |
| break; |
| } |
| case TK_NOT: { |
| sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); |
| break; |
| } |
| case TK_LT: |
| case TK_LE: |
| case TK_GT: |
| case TK_GE: |
| case TK_NE: |
| case TK_EQ: { |
| sqlite3ExprCode(pParse, pExpr->pLeft); |
| sqlite3ExprCode(pParse, pExpr->pRight); |
| codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, dest, jumpIfNull); |
| break; |
| } |
| case TK_ISNULL: |
| case TK_NOTNULL: { |
| sqlite3ExprCode(pParse, pExpr->pLeft); |
| sqlite3VdbeAddOp(v, op, 1, dest); |
| break; |
| } |
| case TK_BETWEEN: { |
| /* The expression is "x BETWEEN y AND z". It is implemented as: |
| ** |
| ** 1 IF (x >= y) GOTO 3 |
| ** 2 GOTO <dest> |
| ** 3 IF (x > z) GOTO <dest> |
| */ |
| int addr; |
| Expr *pLeft = pExpr->pLeft; |
| Expr *pRight = pExpr->pList->a[0].pExpr; |
| sqlite3ExprCode(pParse, pLeft); |
| sqlite3VdbeAddOp(v, OP_Dup, 0, 0); |
| sqlite3ExprCode(pParse, pRight); |
| addr = sqlite3VdbeCurrentAddr(v); |
| codeCompare(pParse, pLeft, pRight, OP_Ge, addr+3, !jumpIfNull); |
| |
| sqlite3VdbeAddOp(v, OP_Pop, 1, 0); |
| sqlite3VdbeAddOp(v, OP_Goto, 0, dest); |
| pRight = pExpr->pList->a[1].pExpr; |
| sqlite3ExprCode(pParse, pRight); |
| codeCompare(pParse, pLeft, pRight, OP_Gt, dest, jumpIfNull); |
| break; |
| } |
| default: { |
| sqlite3ExprCode(pParse, pExpr); |
| sqlite3VdbeAddOp(v, OP_IfNot, jumpIfNull, dest); |
| break; |
| } |
| } |
| pParse->ckOffset = ckOffset; |
| } |
| |
| /* |
| ** Do a deep comparison of two expression trees. Return TRUE (non-zero) |
| ** if they are identical and return FALSE if they differ in any way. |
| */ |
| int sqlite3ExprCompare(Expr *pA, Expr *pB){ |
| int i; |
| if( pA==0 ){ |
| return pB==0; |
| }else if( pB==0 ){ |
| return 0; |
| } |
| if( pA->op!=pB->op ) return 0; |
| if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 0; |
| if( !sqlite3ExprCompare(pA->pLeft, pB->pLeft) ) return 0; |
| if( !sqlite3ExprCompare(pA->pRight, pB->pRight) ) return 0; |
| if( pA->pList ){ |
| if( pB->pList==0 ) return 0; |
| if( pA->pList->nExpr!=pB->pList->nExpr ) return 0; |
| for(i=0; i<pA->pList->nExpr; i++){ |
| if( !sqlite3ExprCompare(pA->pList->a[i].pExpr, pB->pList->a[i].pExpr) ){ |
| return 0; |
| } |
| } |
| }else if( pB->pList ){ |
| return 0; |
| } |
| if( pA->pSelect || pB->pSelect ) return 0; |
| if( pA->iTable!=pB->iTable || pA->iColumn!=pB->iColumn ) return 0; |
| if( pA->token.z ){ |
| if( pB->token.z==0 ) return 0; |
| if( pB->token.n!=pA->token.n ) return 0; |
| if( sqlite3StrNICmp(pA->token.z, pB->token.z, pB->token.n)!=0 ) return 0; |
| } |
| return 1; |
| } |
| |
| |
| /* |
| ** Add a new element to the pAggInfo->aCol[] array. Return the index of |
| ** the new element. Return a negative number if malloc fails. |
| */ |
| static int addAggInfoColumn(AggInfo *pInfo){ |
| int i; |
| i = sqlite3ArrayAllocate((void**)&pInfo->aCol, sizeof(pInfo->aCol[0]), 3); |
| if( i<0 ){ |
| return -1; |
| } |
| return i; |
| } |
| |
| /* |
| ** Add a new element to the pAggInfo->aFunc[] array. Return the index of |
| ** the new element. Return a negative number if malloc fails. |
| */ |
| static int addAggInfoFunc(AggInfo *pInfo){ |
| int i; |
| i = sqlite3ArrayAllocate((void**)&pInfo->aFunc, sizeof(pInfo->aFunc[0]), 2); |
| if( i<0 ){ |
| return -1; |
| } |
| return i; |
| } |
| |
| /* |
| ** This is an xFunc for walkExprTree() used to implement |
| ** sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates |
| ** for additional information. |
| ** |
| ** This routine analyzes the aggregate function at pExpr. |
| */ |
| static int analyzeAggregate(void *pArg, Expr *pExpr){ |
| int i; |
| NameContext *pNC = (NameContext *)pArg; |
| Parse *pParse = pNC->pParse; |
| SrcList *pSrcList = pNC->pSrcList; |
| AggInfo *pAggInfo = pNC->pAggInfo; |
| |
| |
| switch( pExpr->op ){ |
| case TK_COLUMN: { |
| /* Check to see if the column is in one of the tables in the FROM |
| ** clause of the aggregate query */ |
| if( pSrcList ){ |
| struct SrcList_item *pItem = pSrcList->a; |
| for(i=0; i<pSrcList->nSrc; i++, pItem++){ |
| struct AggInfo_col *pCol; |
| if( pExpr->iTable==pItem->iCursor ){ |
| /* If we reach this point, it means that pExpr refers to a table |
| ** that is in the FROM clause of the aggregate query. |
| ** |
| ** Make an entry for the column in pAggInfo->aCol[] if there |
| ** is not an entry there already. |
| */ |
| pCol = pAggInfo->aCol; |
| for(i=0; i<pAggInfo->nColumn; i++, pCol++){ |
| if( pCol->iTable==pExpr->iTable && |
| pCol->iColumn==pExpr->iColumn ){ |
| break; |
| } |
| } |
| if( i>=pAggInfo->nColumn && (i = addAggInfoColumn(pAggInfo))>=0 ){ |
| pCol = &pAggInfo->aCol[i]; |
| pCol->iTable = pExpr->iTable; |
| pCol->iColumn = pExpr->iColumn; |
| pCol->iMem = pParse->nMem++; |
| pCol->iSorterColumn = -1; |
| pCol->pExpr = pExpr; |
| if( pAggInfo->pGroupBy ){ |
| int j, n; |
| ExprList *pGB = pAggInfo->pGroupBy; |
| struct ExprList_item *pTerm = pGB->a; |
| n = pGB->nExpr; |
| for(j=0; j<n; j++, pTerm++){ |
| Expr *pE = pTerm->pExpr; |
| if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable && |
| pE->iColumn==pExpr->iColumn ){ |
| pCol->iSorterColumn = j; |
| break; |
| } |
| } |
| } |
| if( pCol->iSorterColumn<0 ){ |
| pCol->iSorterColumn = pAggInfo->nSortingColumn++; |
| } |
| } |
| /* There is now an entry for pExpr in pAggInfo->aCol[] (either |
| ** because it was there before or because we just created it). |
| ** Convert the pExpr to be a TK_AGG_COLUMN referring to that |
| ** pAggInfo->aCol[] entry. |
| */ |
| pExpr->pAggInfo = pAggInfo; |
| pExpr->op = TK_AGG_COLUMN; |
| pExpr->iAgg = i; |
| break; |
| } /* endif pExpr->iTable==pItem->iCursor */ |
| } /* end loop over pSrcList */ |
| } |
| return 1; |
| } |
| case TK_AGG_FUNCTION: { |
| /* The pNC->nDepth==0 test causes aggregate functions in subqueries |
| ** to be ignored */ |
| if( pNC->nDepth==0 ){ |
| /* Check to see if pExpr is a duplicate of another aggregate |
| ** function that is already in the pAggInfo structure |
| */ |
| struct AggInfo_func *pItem = pAggInfo->aFunc; |
| for(i=0; i<pAggInfo->nFunc; i++, pItem++){ |
| if( sqlite3ExprCompare(pItem->pExpr, pExpr) ){ |
| break; |
| } |
| } |
| if( i>=pAggInfo->nFunc ){ |
| /* pExpr is original. Make a new entry in pAggInfo->aFunc[] |
| */ |
| u8 enc = pParse->db->enc; |
| i = addAggInfoFunc(pAggInfo); |
| if( i>=0 ){ |
| pItem = &pAggInfo->aFunc[i]; |
| pItem->pExpr = pExpr; |
| pItem->iMem = pParse->nMem++; |
| pItem->pFunc = sqlite3FindFunction(pParse->db, |
| pExpr->token.z, pExpr->token.n, |
| pExpr->pList ? pExpr->pList->nExpr : 0, enc, 0); |
| if( pExpr->flags & EP_Distinct ){ |
| pItem->iDistinct = pParse->nTab++; |
| }else{ |
| pItem->iDistinct = -1; |
| } |
| } |
| } |
| /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry |
| */ |
| pExpr->iAgg = i; |
| pExpr->pAggInfo = pAggInfo; |
| return 1; |
| } |
| } |
| } |
| |
| /* Recursively walk subqueries looking for TK_COLUMN nodes that need |
| ** to be changed to TK_AGG_COLUMN. But increment nDepth so that |
| ** TK_AGG_FUNCTION nodes in subqueries will be unchanged. |
| */ |
| if( pExpr->pSelect ){ |
| pNC->nDepth++; |
| walkSelectExpr(pExpr->pSelect, analyzeAggregate, pNC); |
| pNC->nDepth--; |
| } |
| return 0; |
| } |
| |
| /* |
| ** Analyze the given expression looking for aggregate functions and |
| ** for variables that need to be added to the pParse->aAgg[] array. |
| ** Make additional entries to the pParse->aAgg[] array as necessary. |
| ** |
| ** This routine should only be called after the expression has been |
| ** analyzed by sqlite3ExprResolveNames(). |
| ** |
| ** If errors are seen, leave an error message in zErrMsg and return |
| ** the number of errors. |
| */ |
| int sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){ |
| int nErr = pNC->pParse->nErr; |
| walkExprTree(pExpr, analyzeAggregate, pNC); |
| return pNC->pParse->nErr - nErr; |
| } |
| |
| /* |
| ** Call sqlite3ExprAnalyzeAggregates() for every expression in an |
| ** expression list. Return the number of errors. |
| ** |
| ** If an error is found, the analysis is cut short. |
| */ |
| int sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){ |
| struct ExprList_item *pItem; |
| int i; |
| int nErr = 0; |
| if( pList ){ |
| for(pItem=pList->a, i=0; nErr==0 && i<pList->nExpr; i++, pItem++){ |
| nErr += sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr); |
| } |
| } |
| return nErr; |
| } |