| /* |
| ** 2001 September 15 |
| ** |
| ** The author disclaims copyright to this source code. In place of |
| ** a legal notice, here is a blessing: |
| ** |
| ** May you do good and not evil. |
| ** May you find forgiveness for yourself and forgive others. |
| ** May you share freely, never taking more than you give. |
| ** |
| ************************************************************************* |
| ** This file contains routines used for analyzing expressions and |
| ** for generating VDBE code that evaluates expressions in SQLite. |
| ** |
| ** $Id: expr.c,v 1.45 2002/02/26 23:55:31 drh Exp $ |
| */ |
| #include "sqliteInt.h" |
| |
| |
| /* |
| ** Construct a new expression node and return a pointer to it. Memory |
| ** for this node is obtained from sqliteMalloc(). The calling function |
| ** is responsible for making sure the node eventually gets freed. |
| */ |
| Expr *sqliteExpr(int op, Expr *pLeft, Expr *pRight, Token *pToken){ |
| Expr *pNew; |
| pNew = sqliteMalloc( sizeof(Expr) ); |
| if( pNew==0 ){ |
| sqliteExprDelete(pLeft); |
| sqliteExprDelete(pRight); |
| return 0; |
| } |
| pNew->op = op; |
| pNew->pLeft = pLeft; |
| pNew->pRight = pRight; |
| if( pToken ){ |
| pNew->token = *pToken; |
| }else{ |
| pNew->token.z = 0; |
| pNew->token.n = 0; |
| } |
| if( pLeft && pRight ){ |
| sqliteExprSpan(pNew, &pLeft->span, &pRight->span); |
| }else{ |
| pNew->span = pNew->token; |
| } |
| return pNew; |
| } |
| |
| /* |
| ** Set the Expr.token field of the given expression to span all |
| ** text between the two given tokens. |
| */ |
| void sqliteExprSpan(Expr *pExpr, Token *pLeft, Token *pRight){ |
| if( pExpr ){ |
| pExpr->span.z = pLeft->z; |
| pExpr->span.n = pRight->n + Addr(pRight->z) - Addr(pLeft->z); |
| } |
| } |
| |
| /* |
| ** Construct a new expression node for a function with multiple |
| ** arguments. |
| */ |
| Expr *sqliteExprFunction(ExprList *pList, Token *pToken){ |
| Expr *pNew; |
| pNew = sqliteMalloc( sizeof(Expr) ); |
| if( pNew==0 ){ |
| sqliteExprListDelete(pList); |
| return 0; |
| } |
| pNew->op = TK_FUNCTION; |
| pNew->pList = pList; |
| if( pToken ){ |
| pNew->token = *pToken; |
| }else{ |
| pNew->token.z = 0; |
| pNew->token.n = 0; |
| } |
| return pNew; |
| } |
| |
| /* |
| ** Recursively delete an expression tree. |
| */ |
| void sqliteExprDelete(Expr *p){ |
| if( p==0 ) return; |
| if( p->op!=TK_AS ){ |
| if( p->pLeft ) sqliteExprDelete(p->pLeft); |
| if( p->pRight ) sqliteExprDelete(p->pRight); |
| } |
| if( p->pList ) sqliteExprListDelete(p->pList); |
| if( p->pSelect ) sqliteSelectDelete(p->pSelect); |
| sqliteFree(p); |
| } |
| |
| /* |
| ** The following group of functions are used to translate the string |
| ** pointers of tokens in expression from one buffer to another. |
| ** |
| ** Normally, the Expr.token.z and Expr.span.z fields point into the |
| ** original input buffer of an SQL statement. This is usually OK |
| ** since the SQL statement is executed and the expression is deleted |
| ** before the input buffer is freed. Making the tokens point to the |
| ** original input buffer saves many calls to malloc() and thus helps |
| ** the library to run faster. |
| ** |
| ** But sometimes we need an expression to persist past the time when |
| ** the input buffer is freed. (Example: The SELECT clause of a |
| ** CREATE VIEW statement contains expressions that must persist for |
| ** the life of the view.) When that happens we have to make a |
| ** persistent copy of the input buffer and translate the Expr.token.z |
| ** and Expr.span.z fields to point to the copy rather than the |
| ** original input buffer. The following group of routines handle that |
| ** translation. |
| ** |
| ** The "offset" parameter is the distance from the original input buffer |
| ** to the persistent copy. These routines recursively walk the entire |
| ** expression tree and shift all tokens by "offset" amount. |
| ** |
| ** The work of figuring out the appropriate "offset" and making the |
| ** presistent copy of the input buffer is done by the calling routine. |
| */ |
| void sqliteExprMoveStrings(Expr *p, int offset){ |
| if( p==0 ) return; |
| if( p->token.z ) p->token.z += offset; |
| if( p->span.z ) p->span.z += offset; |
| if( p->pLeft ) sqliteExprMoveStrings(p->pLeft, offset); |
| if( p->pRight ) sqliteExprMoveStrings(p->pRight, offset); |
| if( p->pList ) sqliteExprListMoveStrings(p->pList, offset); |
| if( p->pSelect ) sqliteSelectMoveStrings(p->pSelect, offset); |
| } |
| void sqliteExprListMoveStrings(ExprList *pList, int offset){ |
| int i; |
| if( pList==0 ) return; |
| for(i=0; i<pList->nExpr; i++){ |
| sqliteExprMoveStrings(pList->a[i].pExpr, offset); |
| } |
| } |
| void sqliteSelectMoveStrings(Select *pSelect, int offset){ |
| if( pSelect==0 ) return; |
| sqliteExprListMoveStrings(pSelect->pEList, offset); |
| sqliteExprMoveStrings(pSelect->pWhere, offset); |
| sqliteExprListMoveStrings(pSelect->pGroupBy, offset); |
| sqliteExprMoveStrings(pSelect->pHaving, offset); |
| sqliteExprListMoveStrings(pSelect->pOrderBy, offset); |
| sqliteSelectMoveStrings(pSelect->pPrior, offset); |
| } |
| |
| /* |
| ** Add a new element to the end of an expression list. If pList is |
| ** initially NULL, then create a new expression list. |
| */ |
| ExprList *sqliteExprListAppend(ExprList *pList, Expr *pExpr, Token *pName){ |
| int i; |
| if( pList==0 ){ |
| pList = sqliteMalloc( sizeof(ExprList) ); |
| if( pList==0 ){ |
| sqliteExprDelete(pExpr); |
| return 0; |
| } |
| } |
| if( (pList->nExpr & 7)==0 ){ |
| int n = pList->nExpr + 8; |
| struct ExprList_item *a; |
| a = sqliteRealloc(pList->a, n*sizeof(pList->a[0])); |
| if( a==0 ){ |
| sqliteExprDelete(pExpr); |
| return pList; |
| } |
| pList->a = a; |
| } |
| if( pExpr || pName ){ |
| i = pList->nExpr++; |
| pList->a[i].pExpr = pExpr; |
| pList->a[i].zName = 0; |
| if( pName ){ |
| sqliteSetNString(&pList->a[i].zName, pName->z, pName->n, 0); |
| sqliteDequote(pList->a[i].zName); |
| } |
| } |
| return pList; |
| } |
| |
| /* |
| ** Delete an entire expression list. |
| */ |
| void sqliteExprListDelete(ExprList *pList){ |
| int i; |
| if( pList==0 ) return; |
| for(i=0; i<pList->nExpr; i++){ |
| sqliteExprDelete(pList->a[i].pExpr); |
| sqliteFree(pList->a[i].zName); |
| } |
| sqliteFree(pList->a); |
| sqliteFree(pList); |
| } |
| |
| /* |
| ** Walk an expression tree. Return 1 if the expression is constant |
| ** and 0 if it involves variables. |
| */ |
| int sqliteExprIsConstant(Expr *p){ |
| switch( p->op ){ |
| case TK_ID: |
| case TK_COLUMN: |
| case TK_DOT: |
| return 0; |
| case TK_INTEGER: |
| case TK_FLOAT: |
| case TK_STRING: |
| return 1; |
| default: { |
| if( p->pLeft && !sqliteExprIsConstant(p->pLeft) ) return 0; |
| if( p->pRight && !sqliteExprIsConstant(p->pRight) ) return 0; |
| if( p->pList ){ |
| int i; |
| for(i=0; i<p->pList->nExpr; i++){ |
| if( !sqliteExprIsConstant(p->pList->a[i].pExpr) ) return 0; |
| } |
| } |
| return p->pLeft!=0 || p->pRight!=0 || (p->pList && p->pList->nExpr>0); |
| } |
| } |
| return 0; |
| } |
| |
| /* |
| ** Walk the expression tree and process operators of the form: |
| ** |
| ** expr IN (SELECT ...) |
| ** |
| ** These operators have to be processed before column names are |
| ** resolved because each such operator increments pParse->nTab |
| ** to reserve cursor numbers for its own use. But pParse->nTab |
| ** needs to be constant once we begin resolving column names. For |
| ** that reason, this procedure needs to be called on every expression |
| ** before sqliteExprResolveIds() is called on any expression. |
| ** |
| ** Actually, the processing of IN-SELECT is only started by this |
| ** routine. This routine allocates a cursor number to the IN-SELECT |
| ** and then moves on. The code generation is done by |
| ** sqliteExprResolveIds() which must be called afterwards. |
| */ |
| void sqliteExprResolveInSelect(Parse *pParse, Expr *pExpr){ |
| if( pExpr==0 ) return; |
| if( pExpr->op==TK_IN && pExpr->pSelect!=0 ){ |
| pExpr->iTable = pParse->nTab++; |
| }else{ |
| if( pExpr->pLeft ) sqliteExprResolveInSelect(pParse, pExpr->pLeft); |
| if( pExpr->pRight ) sqliteExprResolveInSelect(pParse, pExpr->pRight); |
| if( pExpr->pList ){ |
| int i; |
| ExprList *pList = pExpr->pList; |
| for(i=0; i<pList->nExpr; i++){ |
| sqliteExprResolveInSelect(pParse, pList->a[i].pExpr); |
| } |
| } |
| } |
| } |
| |
| /* |
| ** Return TRUE if the given string is a row-id column name. |
| */ |
| static int sqliteIsRowid(const char *z){ |
| if( sqliteStrICmp(z, "_ROWID_")==0 ) return 1; |
| if( sqliteStrICmp(z, "ROWID")==0 ) return 1; |
| if( sqliteStrICmp(z, "OID")==0 ) return 1; |
| return 0; |
| } |
| |
| /* |
| ** This routine walks an expression tree and resolves references to |
| ** table columns. Nodes of the form ID.ID or ID resolve into an |
| ** index to the table in the table list and a column offset. The |
| ** Expr.opcode for such nodes is changed to TK_COLUMN. The Expr.iTable |
| ** value is changed to the index of the referenced table in pTabList |
| ** plus the pParse->nTab value. This value will ultimately become the |
| ** VDBE cursor number for a cursor that is pointing into the referenced |
| ** table. The Expr.iColumn value is changed to the index of the column |
| ** of the referenced table. The Expr.iColumn value for the special |
| ** ROWID column is -1. Any INTEGER PRIMARY KEY column is tried as an |
| ** alias for ROWID. |
| ** |
| ** We also check for instances of the IN operator. IN comes in two |
| ** forms: |
| ** |
| ** expr IN (exprlist) |
| ** and |
| ** expr IN (SELECT ...) |
| ** |
| ** The first form is handled by creating a set holding the list |
| ** of allowed values. The second form causes the SELECT to generate |
| ** a temporary table. |
| ** |
| ** This routine also looks for scalar SELECTs that are part of an expression. |
| ** If it finds any, it generates code to write the value of that select |
| ** into a memory cell. |
| ** |
| ** Unknown columns or tables provoke an error. The function returns |
| ** the number of errors seen and leaves an error message on pParse->zErrMsg. |
| */ |
| int sqliteExprResolveIds( |
| Parse *pParse, /* The parser context */ |
| IdList *pTabList, /* List of tables used to resolve column names */ |
| ExprList *pEList, /* List of expressions used to resolve "AS" */ |
| Expr *pExpr /* The expression to be analyzed. */ |
| ){ |
| if( pExpr==0 || pTabList==0 ) return 0; |
| switch( pExpr->op ){ |
| /* A lone identifier. Try and match it as follows: |
| ** |
| ** 1. To the name of a column of one of the tables in pTabList |
| ** |
| ** 2. To the right side of an AS keyword in the column list of |
| ** a SELECT statement. (For example, match against 'x' in |
| ** "SELECT a+b AS 'x' FROM t1".) |
| ** |
| ** 3. One of the special names "ROWID", "OID", or "_ROWID_". |
| */ |
| case TK_ID: { |
| int cnt = 0; /* Number of matches */ |
| int i; /* Loop counter */ |
| char *z; |
| assert( pExpr->token.z ); |
| z = sqliteStrNDup(pExpr->token.z, pExpr->token.n); |
| sqliteDequote(z); |
| if( z==0 ) return 1; |
| for(i=0; i<pTabList->nId; i++){ |
| int j; |
| Table *pTab = pTabList->a[i].pTab; |
| if( pTab==0 ) continue; |
| for(j=0; j<pTab->nCol; j++){ |
| if( sqliteStrICmp(pTab->aCol[j].zName, z)==0 ){ |
| cnt++; |
| pExpr->iTable = i + pParse->nTab; |
| if( j==pTab->iPKey ){ |
| /* Substitute the record number for the INTEGER PRIMARY KEY */ |
| pExpr->iColumn = -1; |
| }else{ |
| pExpr->iColumn = j; |
| } |
| pExpr->op = TK_COLUMN; |
| } |
| } |
| } |
| if( cnt==0 && pEList!=0 ){ |
| int j; |
| for(j=0; j<pEList->nExpr; j++){ |
| char *zAs = pEList->a[j].zName; |
| if( zAs!=0 && sqliteStrICmp(zAs, z)==0 ){ |
| cnt++; |
| assert( pExpr->pLeft==0 && pExpr->pRight==0 ); |
| pExpr->op = TK_AS; |
| pExpr->iColumn = j; |
| pExpr->pLeft = pEList->a[j].pExpr; |
| } |
| } |
| } |
| if( cnt==0 && sqliteIsRowid(z) ){ |
| pExpr->iColumn = -1; |
| pExpr->iTable = pParse->nTab; |
| cnt = 1 + (pTabList->nId>1); |
| pExpr->op = TK_COLUMN; |
| } |
| sqliteFree(z); |
| if( cnt==0 ){ |
| sqliteSetNString(&pParse->zErrMsg, "no such column: ", -1, |
| pExpr->token.z, pExpr->token.n, 0); |
| pParse->nErr++; |
| return 1; |
| }else if( cnt>1 ){ |
| sqliteSetNString(&pParse->zErrMsg, "ambiguous column name: ", -1, |
| pExpr->token.z, pExpr->token.n, 0); |
| pParse->nErr++; |
| return 1; |
| } |
| break; |
| } |
| |
| /* A table name and column name: ID.ID */ |
| case TK_DOT: { |
| int cnt = 0; /* Number of matches */ |
| int cntTab = 0; /* Number of matching tables */ |
| int i; /* Loop counter */ |
| Expr *pLeft, *pRight; /* Left and right subbranches of the expr */ |
| char *zLeft, *zRight; /* Text of an identifier */ |
| |
| pLeft = pExpr->pLeft; |
| pRight = pExpr->pRight; |
| assert( pLeft && pLeft->op==TK_ID && pLeft->token.z ); |
| assert( pRight && pRight->op==TK_ID && pRight->token.z ); |
| zLeft = sqliteStrNDup(pLeft->token.z, pLeft->token.n); |
| zRight = sqliteStrNDup(pRight->token.z, pRight->token.n); |
| if( zLeft==0 || zRight==0 ){ |
| sqliteFree(zLeft); |
| sqliteFree(zRight); |
| return 1; |
| } |
| sqliteDequote(zLeft); |
| sqliteDequote(zRight); |
| pExpr->iTable = -1; |
| for(i=0; i<pTabList->nId; i++){ |
| int j; |
| char *zTab; |
| Table *pTab = pTabList->a[i].pTab; |
| if( pTab==0 ) continue; |
| if( pTabList->a[i].zAlias ){ |
| zTab = pTabList->a[i].zAlias; |
| }else{ |
| zTab = pTab->zName; |
| } |
| if( sqliteStrICmp(zTab, zLeft)!=0 ) continue; |
| if( 0==(cntTab++) ) pExpr->iTable = i + pParse->nTab; |
| for(j=0; j<pTab->nCol; j++){ |
| if( sqliteStrICmp(pTab->aCol[j].zName, zRight)==0 ){ |
| cnt++; |
| pExpr->iTable = i + pParse->nTab; |
| if( j==pTab->iPKey ){ |
| /* Substitute the record number for the INTEGER PRIMARY KEY */ |
| pExpr->iColumn = -1; |
| }else{ |
| pExpr->iColumn = j; |
| } |
| } |
| } |
| } |
| if( cnt==0 && cntTab==1 && sqliteIsRowid(zRight) ){ |
| cnt = 1; |
| pExpr->iColumn = -1; |
| } |
| sqliteFree(zLeft); |
| sqliteFree(zRight); |
| if( cnt==0 ){ |
| sqliteSetNString(&pParse->zErrMsg, "no such column: ", -1, |
| pLeft->token.z, pLeft->token.n, ".", 1, |
| pRight->token.z, pRight->token.n, 0); |
| pParse->nErr++; |
| return 1; |
| }else if( cnt>1 ){ |
| sqliteSetNString(&pParse->zErrMsg, "ambiguous column name: ", -1, |
| pLeft->token.z, pLeft->token.n, ".", 1, |
| pRight->token.z, pRight->token.n, 0); |
| pParse->nErr++; |
| return 1; |
| } |
| sqliteExprDelete(pLeft); |
| pExpr->pLeft = 0; |
| sqliteExprDelete(pRight); |
| pExpr->pRight = 0; |
| pExpr->op = TK_COLUMN; |
| break; |
| } |
| |
| case TK_IN: { |
| Vdbe *v = sqliteGetVdbe(pParse); |
| if( v==0 ) return 1; |
| if( sqliteExprResolveIds(pParse, pTabList, pEList, pExpr->pLeft) ){ |
| return 1; |
| } |
| if( pExpr->pSelect ){ |
| /* Case 1: expr IN (SELECT ...) |
| ** |
| ** Generate code to write the results of the select into a temporary |
| ** table. The cursor number of the temporary table has already |
| ** been put in iTable by sqliteExprResolveInSelect(). |
| */ |
| sqliteVdbeAddOp(v, OP_OpenTemp, pExpr->iTable, 1); |
| if( sqliteSelect(pParse, pExpr->pSelect, SRT_Set, pExpr->iTable) ); |
| }else if( pExpr->pList ){ |
| /* Case 2: expr IN (exprlist) |
| ** |
| ** Create a set to put the exprlist values in. The Set id is stored |
| ** in iTable. |
| */ |
| int i, iSet; |
| for(i=0; i<pExpr->pList->nExpr; i++){ |
| Expr *pE2 = pExpr->pList->a[i].pExpr; |
| if( !sqliteExprIsConstant(pE2) ){ |
| sqliteSetString(&pParse->zErrMsg, |
| "right-hand side of IN operator must be constant", 0); |
| pParse->nErr++; |
| return 1; |
| } |
| if( sqliteExprCheck(pParse, pE2, 0, 0) ){ |
| return 1; |
| } |
| } |
| iSet = pExpr->iTable = pParse->nSet++; |
| for(i=0; i<pExpr->pList->nExpr; i++){ |
| Expr *pE2 = pExpr->pList->a[i].pExpr; |
| switch( pE2->op ){ |
| case TK_FLOAT: |
| case TK_INTEGER: |
| case TK_STRING: { |
| int addr = sqliteVdbeAddOp(v, OP_SetInsert, iSet, 0); |
| assert( pE2->token.z ); |
| sqliteVdbeChangeP3(v, addr, pE2->token.z, pE2->token.n); |
| sqliteVdbeDequoteP3(v, addr); |
| break; |
| } |
| default: { |
| sqliteExprCode(pParse, pE2); |
| sqliteVdbeAddOp(v, OP_SetInsert, iSet, 0); |
| break; |
| } |
| } |
| } |
| } |
| break; |
| } |
| |
| case TK_SELECT: { |
| /* This has to be a scalar SELECT. Generate code to put the |
| ** value of this select in a memory cell and record the number |
| ** of the memory cell in iColumn. |
| */ |
| pExpr->iColumn = pParse->nMem++; |
| if( sqliteSelect(pParse, pExpr->pSelect, SRT_Mem, pExpr->iColumn) ){ |
| return 1; |
| } |
| break; |
| } |
| |
| /* For all else, just recursively walk the tree */ |
| default: { |
| if( pExpr->pLeft |
| && sqliteExprResolveIds(pParse, pTabList, pEList, pExpr->pLeft) ){ |
| return 1; |
| } |
| if( pExpr->pRight |
| && sqliteExprResolveIds(pParse, pTabList, pEList, pExpr->pRight) ){ |
| return 1; |
| } |
| if( pExpr->pList ){ |
| int i; |
| ExprList *pList = pExpr->pList; |
| for(i=0; i<pList->nExpr; i++){ |
| if( sqliteExprResolveIds(pParse,pTabList,pEList,pList->a[i].pExpr) ){ |
| return 1; |
| } |
| } |
| } |
| } |
| } |
| return 0; |
| } |
| |
| #if 0 /* NOT USED */ |
| /* |
| ** Compare a token against a string. Return TRUE if they match. |
| */ |
| static int sqliteTokenCmp(Token *pToken, const char *zStr){ |
| int n = strlen(zStr); |
| if( n!=pToken->n ) return 0; |
| return sqliteStrNICmp(pToken->z, zStr, n)==0; |
| } |
| #endif |
| |
| /* |
| ** Convert a function name into its integer identifier. Return the |
| ** identifier. Return FN_Unknown if the function name is unknown. |
| */ |
| int sqliteFuncId(Token *pToken){ |
| static const struct { |
| char *zName; |
| int len; |
| int id; |
| } aFunc[] = { |
| { "count", 5, FN_Count }, |
| { "min", 3, FN_Min }, |
| { "max", 3, FN_Max }, |
| { "sum", 3, FN_Sum }, |
| { "avg", 3, FN_Avg }, |
| { "length", 6, FN_Length }, |
| { "substr", 6, FN_Substr }, |
| { "abs", 3, FN_Abs }, |
| { "round", 5, FN_Round }, |
| }; |
| int i; |
| for(i=0; i<ArraySize(aFunc); i++){ |
| if( aFunc[i].len==pToken->n |
| && sqliteStrNICmp(pToken->z, aFunc[i].zName, aFunc[i].len)==0 ){ |
| return aFunc[i].id; |
| } |
| } |
| return FN_Unknown; |
| } |
| |
| /* |
| ** Error check the functions in an expression. Make sure all |
| ** function names are recognized and all functions have the correct |
| ** number of arguments. Leave an error message in pParse->zErrMsg |
| ** if anything is amiss. Return the number of errors. |
| ** |
| ** if pIsAgg is not null and this expression is an aggregate function |
| ** (like count(*) or max(value)) then write a 1 into *pIsAgg. |
| */ |
| int sqliteExprCheck(Parse *pParse, Expr *pExpr, int allowAgg, int *pIsAgg){ |
| int nErr = 0; |
| if( pExpr==0 ) return 0; |
| switch( pExpr->op ){ |
| case TK_FUNCTION: { |
| int id = sqliteFuncId(&pExpr->token); |
| int n = pExpr->pList ? pExpr->pList->nExpr : 0; |
| int no_such_func = 0; |
| int too_many_args = 0; |
| int too_few_args = 0; |
| int wrong_num_args = 0; |
| int is_agg = 0; |
| int i; |
| pExpr->iColumn = id; |
| switch( id ){ |
| case FN_Unknown: { |
| UserFunc *pUser = sqliteFindUserFunction(pParse->db, |
| pExpr->token.z, pExpr->token.n, n, 0); |
| if( pUser==0 ){ |
| pUser = sqliteFindUserFunction(pParse->db, |
| pExpr->token.z, pExpr->token.n, -1, 0); |
| if( pUser==0 ){ |
| no_such_func = 1; |
| }else{ |
| wrong_num_args = 1; |
| } |
| }else{ |
| is_agg = pUser->xFunc==0; |
| } |
| break; |
| } |
| case FN_Count: { |
| too_many_args = n>1; |
| is_agg = 1; |
| break; |
| } |
| case FN_Max: |
| case FN_Min: { |
| too_few_args = n<1; |
| is_agg = n==1; |
| break; |
| } |
| case FN_Avg: |
| case FN_Sum: { |
| too_many_args = n>1; |
| too_few_args = n<1; |
| is_agg = 1; |
| break; |
| } |
| case FN_Abs: |
| case FN_Length: { |
| too_few_args = n<1; |
| too_many_args = n>1; |
| break; |
| } |
| case FN_Round: { |
| too_few_args = n<1; |
| too_many_args = n>2; |
| break; |
| } |
| case FN_Substr: { |
| too_few_args = n<3; |
| too_many_args = n>3; |
| break; |
| } |
| default: break; |
| } |
| if( is_agg && !allowAgg ){ |
| sqliteSetNString(&pParse->zErrMsg, "misuse of aggregate function ", -1, |
| pExpr->token.z, pExpr->token.n, "()", 2, 0); |
| pParse->nErr++; |
| nErr++; |
| is_agg = 0; |
| }else if( no_such_func ){ |
| sqliteSetNString(&pParse->zErrMsg, "no such function: ", -1, |
| pExpr->token.z, pExpr->token.n, 0); |
| pParse->nErr++; |
| nErr++; |
| }else if( too_many_args ){ |
| sqliteSetNString(&pParse->zErrMsg, "too many arguments to function ",-1, |
| pExpr->token.z, pExpr->token.n, "()", 2, 0); |
| pParse->nErr++; |
| nErr++; |
| }else if( too_few_args ){ |
| sqliteSetNString(&pParse->zErrMsg, "too few arguments to function ",-1, |
| pExpr->token.z, pExpr->token.n, "()", 2, 0); |
| pParse->nErr++; |
| nErr++; |
| }else if( wrong_num_args ){ |
| sqliteSetNString(&pParse->zErrMsg, |
| "wrong number of arguments to function ",-1, |
| pExpr->token.z, pExpr->token.n, "()", 2, 0); |
| pParse->nErr++; |
| nErr++; |
| } |
| if( is_agg ) pExpr->op = TK_AGG_FUNCTION; |
| if( is_agg && pIsAgg ) *pIsAgg = 1; |
| for(i=0; nErr==0 && i<n; i++){ |
| nErr = sqliteExprCheck(pParse, pExpr->pList->a[i].pExpr, |
| allowAgg && !is_agg, pIsAgg); |
| } |
| } |
| default: { |
| if( pExpr->pLeft ){ |
| nErr = sqliteExprCheck(pParse, pExpr->pLeft, allowAgg, pIsAgg); |
| } |
| if( nErr==0 && pExpr->pRight ){ |
| nErr = sqliteExprCheck(pParse, pExpr->pRight, allowAgg, pIsAgg); |
| } |
| if( nErr==0 && pExpr->pList ){ |
| int n = pExpr->pList->nExpr; |
| int i; |
| for(i=0; nErr==0 && i<n; i++){ |
| Expr *pE2 = pExpr->pList->a[i].pExpr; |
| nErr = sqliteExprCheck(pParse, pE2, allowAgg, pIsAgg); |
| } |
| } |
| break; |
| } |
| } |
| return nErr; |
| } |
| |
| /* |
| ** Generate code into the current Vdbe to evaluate the given |
| ** expression and leave the result on the top of stack. |
| */ |
| void sqliteExprCode(Parse *pParse, Expr *pExpr){ |
| Vdbe *v = pParse->pVdbe; |
| int op; |
| if( v==0 || pExpr==0 ) return; |
| switch( pExpr->op ){ |
| case TK_PLUS: op = OP_Add; break; |
| case TK_MINUS: op = OP_Subtract; break; |
| case TK_STAR: op = OP_Multiply; break; |
| case TK_SLASH: op = OP_Divide; break; |
| case TK_AND: op = OP_And; break; |
| case TK_OR: op = OP_Or; break; |
| case TK_LT: op = OP_Lt; break; |
| case TK_LE: op = OP_Le; break; |
| case TK_GT: op = OP_Gt; break; |
| case TK_GE: op = OP_Ge; break; |
| case TK_NE: op = OP_Ne; break; |
| case TK_EQ: op = OP_Eq; break; |
| case TK_LIKE: op = OP_Like; break; |
| case TK_GLOB: op = OP_Glob; break; |
| case TK_ISNULL: op = OP_IsNull; break; |
| case TK_NOTNULL: op = OP_NotNull; break; |
| case TK_NOT: op = OP_Not; break; |
| case TK_UMINUS: op = OP_Negative; break; |
| case TK_BITAND: op = OP_BitAnd; break; |
| case TK_BITOR: op = OP_BitOr; break; |
| case TK_BITNOT: op = OP_BitNot; break; |
| case TK_LSHIFT: op = OP_ShiftLeft; break; |
| case TK_RSHIFT: op = OP_ShiftRight; break; |
| case TK_REM: op = OP_Remainder; break; |
| default: break; |
| } |
| switch( pExpr->op ){ |
| case TK_COLUMN: { |
| if( pParse->useAgg ){ |
| sqliteVdbeAddOp(v, OP_AggGet, 0, pExpr->iAgg); |
| }else if( pExpr->iColumn>=0 ){ |
| sqliteVdbeAddOp(v, OP_Column, pExpr->iTable, pExpr->iColumn); |
| }else{ |
| sqliteVdbeAddOp(v, OP_Recno, pExpr->iTable, 0); |
| } |
| break; |
| } |
| case TK_FLOAT: |
| case TK_INTEGER: { |
| sqliteVdbeAddOp(v, OP_String, 0, 0); |
| assert( pExpr->token.z ); |
| sqliteVdbeChangeP3(v, -1, pExpr->token.z, pExpr->token.n); |
| break; |
| } |
| case TK_STRING: { |
| int addr = sqliteVdbeAddOp(v, OP_String, 0, 0); |
| assert( pExpr->token.z ); |
| sqliteVdbeChangeP3(v, addr, pExpr->token.z, pExpr->token.n); |
| sqliteVdbeDequoteP3(v, addr); |
| break; |
| } |
| case TK_NULL: { |
| sqliteVdbeAddOp(v, OP_String, 0, 0); |
| break; |
| } |
| case TK_AND: |
| case TK_OR: |
| case TK_PLUS: |
| case TK_STAR: |
| case TK_MINUS: |
| case TK_REM: |
| case TK_BITAND: |
| case TK_BITOR: |
| case TK_SLASH: { |
| sqliteExprCode(pParse, pExpr->pLeft); |
| sqliteExprCode(pParse, pExpr->pRight); |
| sqliteVdbeAddOp(v, op, 0, 0); |
| break; |
| } |
| case TK_LSHIFT: |
| case TK_RSHIFT: { |
| sqliteExprCode(pParse, pExpr->pRight); |
| sqliteExprCode(pParse, pExpr->pLeft); |
| sqliteVdbeAddOp(v, op, 0, 0); |
| break; |
| } |
| case TK_CONCAT: { |
| sqliteExprCode(pParse, pExpr->pLeft); |
| sqliteExprCode(pParse, pExpr->pRight); |
| sqliteVdbeAddOp(v, OP_Concat, 2, 0); |
| break; |
| } |
| case TK_LT: |
| case TK_LE: |
| case TK_GT: |
| case TK_GE: |
| case TK_NE: |
| case TK_EQ: |
| case TK_LIKE: |
| case TK_GLOB: { |
| int dest; |
| sqliteVdbeAddOp(v, OP_Integer, 1, 0); |
| sqliteExprCode(pParse, pExpr->pLeft); |
| sqliteExprCode(pParse, pExpr->pRight); |
| dest = sqliteVdbeCurrentAddr(v) + 2; |
| sqliteVdbeAddOp(v, op, 0, dest); |
| sqliteVdbeAddOp(v, OP_AddImm, -1, 0); |
| break; |
| } |
| case TK_UMINUS: { |
| assert( pExpr->pLeft ); |
| if( pExpr->pLeft->op==TK_FLOAT || pExpr->pLeft->op==TK_INTEGER ){ |
| Token *p = &pExpr->pLeft->token; |
| char *z = sqliteMalloc( p->n + 2 ); |
| sprintf(z, "-%.*s", p->n, p->z); |
| sqliteVdbeAddOp(v, OP_String, 0, 0); |
| sqliteVdbeChangeP3(v, -1, z, p->n+1); |
| sqliteFree(z); |
| break; |
| } |
| /* Fall through into TK_NOT */ |
| } |
| case TK_BITNOT: |
| case TK_NOT: { |
| sqliteExprCode(pParse, pExpr->pLeft); |
| sqliteVdbeAddOp(v, op, 0, 0); |
| break; |
| } |
| case TK_ISNULL: |
| case TK_NOTNULL: { |
| int dest; |
| sqliteVdbeAddOp(v, OP_Integer, 1, 0); |
| sqliteExprCode(pParse, pExpr->pLeft); |
| dest = sqliteVdbeCurrentAddr(v) + 2; |
| sqliteVdbeAddOp(v, op, 0, dest); |
| sqliteVdbeAddOp(v, OP_AddImm, -1, 0); |
| break; |
| } |
| case TK_AGG_FUNCTION: { |
| sqliteVdbeAddOp(v, OP_AggGet, 0, pExpr->iAgg); |
| if( pExpr->iColumn==FN_Avg ){ |
| assert( pParse->iAggCount>=0 && pParse->iAggCount<pParse->nAgg ); |
| sqliteVdbeAddOp(v, OP_AggGet, 0, pParse->iAggCount); |
| sqliteVdbeAddOp(v, OP_Divide, 0, 0); |
| } |
| break; |
| } |
| case TK_FUNCTION: { |
| int id = pExpr->iColumn; |
| int op; |
| int i; |
| ExprList *pList = pExpr->pList; |
| switch( id ){ |
| case FN_Min: |
| case FN_Max: { |
| op = id==FN_Min ? OP_Min : OP_Max; |
| for(i=0; i<pList->nExpr; i++){ |
| sqliteExprCode(pParse, pList->a[i].pExpr); |
| if( i>0 ){ |
| sqliteVdbeAddOp(v, op, 0, 0); |
| } |
| } |
| break; |
| } |
| case FN_Abs: { |
| sqliteExprCode(pParse, pList->a[0].pExpr); |
| sqliteVdbeAddOp(v, OP_AbsValue, 0, 0); |
| break; |
| } |
| case FN_Round: { |
| if( pList->nExpr==2 ){ |
| sqliteExprCode(pParse, pList->a[1].pExpr); |
| }else{ |
| sqliteVdbeAddOp(v, OP_Integer, 0, 0); |
| } |
| sqliteExprCode(pParse, pList->a[0].pExpr); |
| sqliteVdbeAddOp(v, OP_Precision, 0, 0); |
| break; |
| } |
| case FN_Length: { |
| sqliteExprCode(pParse, pList->a[0].pExpr); |
| sqliteVdbeAddOp(v, OP_Strlen, 0, 0); |
| break; |
| } |
| case FN_Substr: { |
| for(i=0; i<pList->nExpr; i++){ |
| sqliteExprCode(pParse, pList->a[i].pExpr); |
| } |
| sqliteVdbeAddOp(v, OP_Substr, 0, 0); |
| break; |
| } |
| case FN_Unknown: { |
| UserFunc *pUser; |
| pUser = sqliteFindUserFunction(pParse->db, |
| pExpr->token.z, pExpr->token.n, pList->nExpr, 0); |
| assert( pUser!=0 ); |
| for(i=0; i<pList->nExpr; i++){ |
| sqliteExprCode(pParse, pList->a[i].pExpr); |
| } |
| sqliteVdbeAddOp(v, OP_UserFunc, pList->nExpr, 0); |
| sqliteVdbeChangeP3(v, -1, (char*)pUser->xFunc, P3_POINTER); |
| break; |
| } |
| default: { |
| /* Can't happen! */ |
| break; |
| } |
| } |
| break; |
| } |
| case TK_SELECT: { |
| sqliteVdbeAddOp(v, OP_MemLoad, pExpr->iColumn, 0); |
| break; |
| } |
| case TK_IN: { |
| int addr; |
| sqliteVdbeAddOp(v, OP_Integer, 1, 0); |
| sqliteExprCode(pParse, pExpr->pLeft); |
| addr = sqliteVdbeCurrentAddr(v); |
| if( pExpr->pSelect ){ |
| sqliteVdbeAddOp(v, OP_Found, pExpr->iTable, addr+2); |
| }else{ |
| sqliteVdbeAddOp(v, OP_SetFound, pExpr->iTable, addr+2); |
| } |
| sqliteVdbeAddOp(v, OP_AddImm, -1, 0); |
| break; |
| } |
| case TK_BETWEEN: { |
| int lbl = sqliteVdbeMakeLabel(v); |
| sqliteVdbeAddOp(v, OP_Integer, 0, 0); |
| sqliteExprIfFalse(pParse, pExpr, lbl); |
| sqliteVdbeAddOp(v, OP_AddImm, 1, 0); |
| sqliteVdbeResolveLabel(v, lbl); |
| break; |
| } |
| case TK_AS: { |
| sqliteExprCode(pParse, pExpr->pLeft); |
| break; |
| } |
| } |
| return; |
| } |
| |
| /* |
| ** Generate code for a boolean expression such that a jump is made |
| ** to the label "dest" if the expression is true but execution |
| ** continues straight thru if the expression is false. |
| */ |
| void sqliteExprIfTrue(Parse *pParse, Expr *pExpr, int dest){ |
| Vdbe *v = pParse->pVdbe; |
| int op = 0; |
| if( v==0 || pExpr==0 ) return; |
| switch( pExpr->op ){ |
| case TK_LT: op = OP_Lt; break; |
| case TK_LE: op = OP_Le; break; |
| case TK_GT: op = OP_Gt; break; |
| case TK_GE: op = OP_Ge; break; |
| case TK_NE: op = OP_Ne; break; |
| case TK_EQ: op = OP_Eq; break; |
| case TK_LIKE: op = OP_Like; break; |
| case TK_GLOB: op = OP_Glob; break; |
| case TK_ISNULL: op = OP_IsNull; break; |
| case TK_NOTNULL: op = OP_NotNull; break; |
| default: break; |
| } |
| switch( pExpr->op ){ |
| case TK_AND: { |
| int d2 = sqliteVdbeMakeLabel(v); |
| sqliteExprIfFalse(pParse, pExpr->pLeft, d2); |
| sqliteExprIfTrue(pParse, pExpr->pRight, dest); |
| sqliteVdbeResolveLabel(v, d2); |
| break; |
| } |
| case TK_OR: { |
| sqliteExprIfTrue(pParse, pExpr->pLeft, dest); |
| sqliteExprIfTrue(pParse, pExpr->pRight, dest); |
| break; |
| } |
| case TK_NOT: { |
| sqliteExprIfFalse(pParse, pExpr->pLeft, dest); |
| break; |
| } |
| case TK_LT: |
| case TK_LE: |
| case TK_GT: |
| case TK_GE: |
| case TK_NE: |
| case TK_EQ: |
| case TK_LIKE: |
| case TK_GLOB: { |
| sqliteExprCode(pParse, pExpr->pLeft); |
| sqliteExprCode(pParse, pExpr->pRight); |
| sqliteVdbeAddOp(v, op, 0, dest); |
| break; |
| } |
| case TK_ISNULL: |
| case TK_NOTNULL: { |
| sqliteExprCode(pParse, pExpr->pLeft); |
| sqliteVdbeAddOp(v, op, 0, dest); |
| break; |
| } |
| case TK_IN: { |
| sqliteExprCode(pParse, pExpr->pLeft); |
| if( pExpr->pSelect ){ |
| sqliteVdbeAddOp(v, OP_Found, pExpr->iTable, dest); |
| }else{ |
| sqliteVdbeAddOp(v, OP_SetFound, pExpr->iTable, dest); |
| } |
| break; |
| } |
| case TK_BETWEEN: { |
| int lbl = sqliteVdbeMakeLabel(v); |
| sqliteExprCode(pParse, pExpr->pLeft); |
| sqliteVdbeAddOp(v, OP_Dup, 0, 0); |
| sqliteExprCode(pParse, pExpr->pList->a[0].pExpr); |
| sqliteVdbeAddOp(v, OP_Lt, 0, lbl); |
| sqliteExprCode(pParse, pExpr->pList->a[1].pExpr); |
| sqliteVdbeAddOp(v, OP_Le, 0, dest); |
| sqliteVdbeAddOp(v, OP_Integer, 0, 0); |
| sqliteVdbeResolveLabel(v, lbl); |
| sqliteVdbeAddOp(v, OP_Pop, 1, 0); |
| break; |
| } |
| default: { |
| sqliteExprCode(pParse, pExpr); |
| sqliteVdbeAddOp(v, OP_If, 0, dest); |
| break; |
| } |
| } |
| } |
| |
| /* |
| ** Generate code for a boolean expression such that a jump is made |
| ** to the label "dest" if the expression is false but execution |
| ** continues straight thru if the expression is true. |
| */ |
| void sqliteExprIfFalse(Parse *pParse, Expr *pExpr, int dest){ |
| Vdbe *v = pParse->pVdbe; |
| int op = 0; |
| if( v==0 || pExpr==0 ) return; |
| switch( pExpr->op ){ |
| case TK_LT: op = OP_Ge; break; |
| case TK_LE: op = OP_Gt; break; |
| case TK_GT: op = OP_Le; break; |
| case TK_GE: op = OP_Lt; break; |
| case TK_NE: op = OP_Eq; break; |
| case TK_EQ: op = OP_Ne; break; |
| case TK_LIKE: op = OP_Like; break; |
| case TK_GLOB: op = OP_Glob; break; |
| case TK_ISNULL: op = OP_NotNull; break; |
| case TK_NOTNULL: op = OP_IsNull; break; |
| default: break; |
| } |
| switch( pExpr->op ){ |
| case TK_AND: { |
| sqliteExprIfFalse(pParse, pExpr->pLeft, dest); |
| sqliteExprIfFalse(pParse, pExpr->pRight, dest); |
| break; |
| } |
| case TK_OR: { |
| int d2 = sqliteVdbeMakeLabel(v); |
| sqliteExprIfTrue(pParse, pExpr->pLeft, d2); |
| sqliteExprIfFalse(pParse, pExpr->pRight, dest); |
| sqliteVdbeResolveLabel(v, d2); |
| break; |
| } |
| case TK_NOT: { |
| sqliteExprIfTrue(pParse, pExpr->pLeft, dest); |
| break; |
| } |
| case TK_LT: |
| case TK_LE: |
| case TK_GT: |
| case TK_GE: |
| case TK_NE: |
| case TK_EQ: { |
| sqliteExprCode(pParse, pExpr->pLeft); |
| sqliteExprCode(pParse, pExpr->pRight); |
| sqliteVdbeAddOp(v, op, 0, dest); |
| break; |
| } |
| case TK_LIKE: |
| case TK_GLOB: { |
| sqliteExprCode(pParse, pExpr->pLeft); |
| sqliteExprCode(pParse, pExpr->pRight); |
| sqliteVdbeAddOp(v, op, 1, dest); |
| break; |
| } |
| case TK_ISNULL: |
| case TK_NOTNULL: { |
| sqliteExprCode(pParse, pExpr->pLeft); |
| sqliteVdbeAddOp(v, op, 0, dest); |
| break; |
| } |
| case TK_IN: { |
| sqliteExprCode(pParse, pExpr->pLeft); |
| if( pExpr->pSelect ){ |
| sqliteVdbeAddOp(v, OP_NotFound, pExpr->iTable, dest); |
| }else{ |
| sqliteVdbeAddOp(v, OP_SetNotFound, pExpr->iTable, dest); |
| } |
| break; |
| } |
| case TK_BETWEEN: { |
| int addr; |
| sqliteExprCode(pParse, pExpr->pLeft); |
| sqliteVdbeAddOp(v, OP_Dup, 0, 0); |
| sqliteExprCode(pParse, pExpr->pList->a[0].pExpr); |
| addr = sqliteVdbeCurrentAddr(v); |
| sqliteVdbeAddOp(v, OP_Ge, 0, addr+3); |
| sqliteVdbeAddOp(v, OP_Pop, 1, 0); |
| sqliteVdbeAddOp(v, OP_Goto, 0, dest); |
| sqliteExprCode(pParse, pExpr->pList->a[1].pExpr); |
| sqliteVdbeAddOp(v, OP_Gt, 0, dest); |
| break; |
| } |
| default: { |
| sqliteExprCode(pParse, pExpr); |
| sqliteVdbeAddOp(v, OP_Not, 0, 0); |
| sqliteVdbeAddOp(v, OP_If, 0, dest); |
| break; |
| } |
| } |
| } |
| |
| /* |
| ** Do a deep comparison of two expression trees. Return TRUE (non-zero) |
| ** if they are identical and return FALSE if they differ in any way. |
| */ |
| int sqliteExprCompare(Expr *pA, Expr *pB){ |
| int i; |
| if( pA==0 ){ |
| return pB==0; |
| }else if( pB==0 ){ |
| return 0; |
| } |
| if( pA->op!=pB->op ) return 0; |
| if( !sqliteExprCompare(pA->pLeft, pB->pLeft) ) return 0; |
| if( !sqliteExprCompare(pA->pRight, pB->pRight) ) return 0; |
| if( pA->pList ){ |
| if( pB->pList==0 ) return 0; |
| if( pA->pList->nExpr!=pB->pList->nExpr ) return 0; |
| for(i=0; i<pA->pList->nExpr; i++){ |
| if( !sqliteExprCompare(pA->pList->a[i].pExpr, pB->pList->a[i].pExpr) ){ |
| return 0; |
| } |
| } |
| }else if( pB->pList ){ |
| return 0; |
| } |
| if( pA->pSelect || pB->pSelect ) return 0; |
| if( pA->token.z ){ |
| if( pB->token.z==0 ) return 0; |
| if( pB->token.n!=pA->token.n ) return 0; |
| if( sqliteStrNICmp(pA->token.z, pB->token.z, pA->token.n)!=0 ) return 0; |
| } |
| return 1; |
| } |
| |
| /* |
| ** Add a new element to the pParse->aAgg[] array and return its index. |
| */ |
| static int appendAggInfo(Parse *pParse){ |
| if( (pParse->nAgg & 0x7)==0 ){ |
| int amt = pParse->nAgg + 8; |
| AggExpr *aAgg = sqliteRealloc(pParse->aAgg, amt*sizeof(pParse->aAgg[0])); |
| if( aAgg==0 ){ |
| return -1; |
| } |
| pParse->aAgg = aAgg; |
| } |
| memset(&pParse->aAgg[pParse->nAgg], 0, sizeof(pParse->aAgg[0])); |
| return pParse->nAgg++; |
| } |
| |
| /* |
| ** Analyze the given expression looking for aggregate functions and |
| ** for variables that need to be added to the pParse->aAgg[] array. |
| ** Make additional entries to the pParse->aAgg[] array as necessary. |
| ** |
| ** This routine should only be called after the expression has been |
| ** analyzed by sqliteExprResolveIds() and sqliteExprCheck(). |
| ** |
| ** If errors are seen, leave an error message in zErrMsg and return |
| ** the number of errors. |
| */ |
| int sqliteExprAnalyzeAggregates(Parse *pParse, Expr *pExpr){ |
| int i; |
| AggExpr *aAgg; |
| int nErr = 0; |
| |
| if( pExpr==0 ) return 0; |
| switch( pExpr->op ){ |
| case TK_COLUMN: { |
| aAgg = pParse->aAgg; |
| for(i=0; i<pParse->nAgg; i++){ |
| if( aAgg[i].isAgg ) continue; |
| if( aAgg[i].pExpr->iTable==pExpr->iTable |
| && aAgg[i].pExpr->iColumn==pExpr->iColumn ){ |
| break; |
| } |
| } |
| if( i>=pParse->nAgg ){ |
| i = appendAggInfo(pParse); |
| if( i<0 ) return 1; |
| pParse->aAgg[i].isAgg = 0; |
| pParse->aAgg[i].pExpr = pExpr; |
| } |
| pExpr->iAgg = i; |
| break; |
| } |
| case TK_AGG_FUNCTION: { |
| if( pExpr->iColumn==FN_Count || pExpr->iColumn==FN_Avg ){ |
| if( pParse->iAggCount>=0 ){ |
| i = pParse->iAggCount; |
| }else{ |
| i = appendAggInfo(pParse); |
| if( i<0 ) return 1; |
| pParse->aAgg[i].isAgg = 1; |
| pParse->aAgg[i].pExpr = 0; |
| pParse->iAggCount = i; |
| } |
| if( pExpr->iColumn==FN_Count ){ |
| pExpr->iAgg = i; |
| break; |
| } |
| } |
| aAgg = pParse->aAgg; |
| for(i=0; i<pParse->nAgg; i++){ |
| if( !aAgg[i].isAgg ) continue; |
| if( sqliteExprCompare(aAgg[i].pExpr, pExpr) ){ |
| break; |
| } |
| } |
| if( i>=pParse->nAgg ){ |
| i = appendAggInfo(pParse); |
| if( i<0 ) return 1; |
| pParse->aAgg[i].isAgg = 1; |
| pParse->aAgg[i].pExpr = pExpr; |
| if( pExpr->iColumn==FN_Unknown ){ |
| pParse->aAgg[i].pUser = sqliteFindUserFunction(pParse->db, |
| pExpr->token.z, pExpr->token.n, pExpr->pList->nExpr, 0); |
| }else{ |
| pParse->aAgg[i].pUser = 0; |
| } |
| } |
| pExpr->iAgg = i; |
| break; |
| } |
| default: { |
| if( pExpr->pLeft ){ |
| nErr = sqliteExprAnalyzeAggregates(pParse, pExpr->pLeft); |
| } |
| if( nErr==0 && pExpr->pRight ){ |
| nErr = sqliteExprAnalyzeAggregates(pParse, pExpr->pRight); |
| } |
| if( nErr==0 && pExpr->pList ){ |
| int n = pExpr->pList->nExpr; |
| int i; |
| for(i=0; nErr==0 && i<n; i++){ |
| nErr = sqliteExprAnalyzeAggregates(pParse, pExpr->pList->a[i].pExpr); |
| } |
| } |
| break; |
| } |
| } |
| return nErr; |
| } |
| |
| /* |
| ** Locate a user function given a name and a number of arguments. |
| ** Return a pointer to the UserFunc structure that defines that |
| ** function, or return NULL if the function does not exist. |
| ** |
| ** If the createFlag argument is true, then a new (blank) UserFunc |
| ** structure is created and liked into the "db" structure if a |
| ** no matching function previously existed. When createFlag is true |
| ** and the nArg parameter is -1, then only a function that accepts |
| ** any number of arguments will be returned. |
| ** |
| ** If createFlag is false and nArg is -1, then the first valid |
| ** function found is returned. A function is valid if either xFunc |
| ** or xStep is non-zero. |
| */ |
| UserFunc *sqliteFindUserFunction( |
| sqlite *db, /* An open database */ |
| const char *zName, /* Name of the function. Not null-terminated */ |
| int nName, /* Number of characters in the name */ |
| int nArg, /* Number of arguments. -1 means any number */ |
| int createFlag /* Create new entry if true and does not otherwise exist */ |
| ){ |
| UserFunc *pFirst, *p, *pMaybe; |
| pFirst = p = (UserFunc*)sqliteHashFind(&db->userFunc, zName, nName); |
| if( !createFlag && nArg<0 ){ |
| while( p && p->xFunc==0 && p->xStep==0 ){ p = p->pNext; } |
| return p; |
| } |
| pMaybe = 0; |
| while( p && p->nArg!=nArg ){ |
| if( p->nArg<0 && !createFlag && (p->xFunc || p->xStep) ) pMaybe = p; |
| p = p->pNext; |
| } |
| if( p && !createFlag && p->xFunc==0 && p->xStep==0 ){ |
| return 0; |
| } |
| if( p==0 && pMaybe ){ |
| assert( createFlag==0 ); |
| return pMaybe; |
| } |
| if( p==0 && createFlag ){ |
| p = sqliteMalloc( sizeof(*p) ); |
| p->nArg = nArg; |
| p->pNext = pFirst; |
| sqliteHashInsert(&db->userFunc, zName, nName, (void*)p); |
| } |
| return p; |
| } |