| /* |
| ** 2001 September 15 |
| ** |
| ** The author disclaims copyright to this source code. In place of |
| ** a legal notice, here is a blessing: |
| ** |
| ** May you do good and not evil. |
| ** May you find forgiveness for yourself and forgive others. |
| ** May you share freely, never taking more than you give. |
| ** |
| ************************************************************************* |
| ** This file contains routines used for analyzing expressions and |
| ** for generating VDBE code that evaluates expressions in SQLite. |
| ** |
| ** $Id: expr.c,v 1.369 2008/04/25 00:08:38 drh Exp $ |
| */ |
| #include "sqliteInt.h" |
| #include <ctype.h> |
| |
| /* |
| ** Return the 'affinity' of the expression pExpr if any. |
| ** |
| ** If pExpr is a column, a reference to a column via an 'AS' alias, |
| ** or a sub-select with a column as the return value, then the |
| ** affinity of that column is returned. Otherwise, 0x00 is returned, |
| ** indicating no affinity for the expression. |
| ** |
| ** i.e. the WHERE clause expresssions in the following statements all |
| ** have an affinity: |
| ** |
| ** CREATE TABLE t1(a); |
| ** SELECT * FROM t1 WHERE a; |
| ** SELECT a AS b FROM t1 WHERE b; |
| ** SELECT * FROM t1 WHERE (select a from t1); |
| */ |
| char sqlite3ExprAffinity(Expr *pExpr){ |
| int op = pExpr->op; |
| if( op==TK_SELECT ){ |
| return sqlite3ExprAffinity(pExpr->pSelect->pEList->a[0].pExpr); |
| } |
| #ifndef SQLITE_OMIT_CAST |
| if( op==TK_CAST ){ |
| return sqlite3AffinityType(&pExpr->token); |
| } |
| #endif |
| return pExpr->affinity; |
| } |
| |
| /* |
| ** Set the collating sequence for expression pExpr to be the collating |
| ** sequence named by pToken. Return a pointer to the revised expression. |
| ** The collating sequence is marked as "explicit" using the EP_ExpCollate |
| ** flag. An explicit collating sequence will override implicit |
| ** collating sequences. |
| */ |
| Expr *sqlite3ExprSetColl(Parse *pParse, Expr *pExpr, Token *pName){ |
| char *zColl = 0; /* Dequoted name of collation sequence */ |
| CollSeq *pColl; |
| zColl = sqlite3NameFromToken(pParse->db, pName); |
| if( pExpr && zColl ){ |
| pColl = sqlite3LocateCollSeq(pParse, zColl, -1); |
| if( pColl ){ |
| pExpr->pColl = pColl; |
| pExpr->flags |= EP_ExpCollate; |
| } |
| } |
| sqlite3_free(zColl); |
| return pExpr; |
| } |
| |
| /* |
| ** Return the default collation sequence for the expression pExpr. If |
| ** there is no default collation type, return 0. |
| */ |
| CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){ |
| CollSeq *pColl = 0; |
| if( pExpr ){ |
| int op; |
| pColl = pExpr->pColl; |
| op = pExpr->op; |
| if( (op==TK_CAST || op==TK_UPLUS) && !pColl ){ |
| return sqlite3ExprCollSeq(pParse, pExpr->pLeft); |
| } |
| } |
| if( sqlite3CheckCollSeq(pParse, pColl) ){ |
| pColl = 0; |
| } |
| return pColl; |
| } |
| |
| /* |
| ** pExpr is an operand of a comparison operator. aff2 is the |
| ** type affinity of the other operand. This routine returns the |
| ** type affinity that should be used for the comparison operator. |
| */ |
| char sqlite3CompareAffinity(Expr *pExpr, char aff2){ |
| char aff1 = sqlite3ExprAffinity(pExpr); |
| if( aff1 && aff2 ){ |
| /* Both sides of the comparison are columns. If one has numeric |
| ** affinity, use that. Otherwise use no affinity. |
| */ |
| if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){ |
| return SQLITE_AFF_NUMERIC; |
| }else{ |
| return SQLITE_AFF_NONE; |
| } |
| }else if( !aff1 && !aff2 ){ |
| /* Neither side of the comparison is a column. Compare the |
| ** results directly. |
| */ |
| return SQLITE_AFF_NONE; |
| }else{ |
| /* One side is a column, the other is not. Use the columns affinity. */ |
| assert( aff1==0 || aff2==0 ); |
| return (aff1 + aff2); |
| } |
| } |
| |
| /* |
| ** pExpr is a comparison operator. Return the type affinity that should |
| ** be applied to both operands prior to doing the comparison. |
| */ |
| static char comparisonAffinity(Expr *pExpr){ |
| char aff; |
| assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || |
| pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || |
| pExpr->op==TK_NE ); |
| assert( pExpr->pLeft ); |
| aff = sqlite3ExprAffinity(pExpr->pLeft); |
| if( pExpr->pRight ){ |
| aff = sqlite3CompareAffinity(pExpr->pRight, aff); |
| } |
| else if( pExpr->pSelect ){ |
| aff = sqlite3CompareAffinity(pExpr->pSelect->pEList->a[0].pExpr, aff); |
| } |
| else if( !aff ){ |
| aff = SQLITE_AFF_NONE; |
| } |
| return aff; |
| } |
| |
| /* |
| ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. |
| ** idx_affinity is the affinity of an indexed column. Return true |
| ** if the index with affinity idx_affinity may be used to implement |
| ** the comparison in pExpr. |
| */ |
| int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){ |
| char aff = comparisonAffinity(pExpr); |
| switch( aff ){ |
| case SQLITE_AFF_NONE: |
| return 1; |
| case SQLITE_AFF_TEXT: |
| return idx_affinity==SQLITE_AFF_TEXT; |
| default: |
| return sqlite3IsNumericAffinity(idx_affinity); |
| } |
| } |
| |
| /* |
| ** Return the P5 value that should be used for a binary comparison |
| ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2. |
| */ |
| static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){ |
| u8 aff = (char)sqlite3ExprAffinity(pExpr2); |
| aff = sqlite3CompareAffinity(pExpr1, aff) | jumpIfNull; |
| return aff; |
| } |
| |
| /* |
| ** Return a pointer to the collation sequence that should be used by |
| ** a binary comparison operator comparing pLeft and pRight. |
| ** |
| ** If the left hand expression has a collating sequence type, then it is |
| ** used. Otherwise the collation sequence for the right hand expression |
| ** is used, or the default (BINARY) if neither expression has a collating |
| ** type. |
| ** |
| ** Argument pRight (but not pLeft) may be a null pointer. In this case, |
| ** it is not considered. |
| */ |
| CollSeq *sqlite3BinaryCompareCollSeq( |
| Parse *pParse, |
| Expr *pLeft, |
| Expr *pRight |
| ){ |
| CollSeq *pColl; |
| assert( pLeft ); |
| if( pLeft->flags & EP_ExpCollate ){ |
| assert( pLeft->pColl ); |
| pColl = pLeft->pColl; |
| }else if( pRight && pRight->flags & EP_ExpCollate ){ |
| assert( pRight->pColl ); |
| pColl = pRight->pColl; |
| }else{ |
| pColl = sqlite3ExprCollSeq(pParse, pLeft); |
| if( !pColl ){ |
| pColl = sqlite3ExprCollSeq(pParse, pRight); |
| } |
| } |
| return pColl; |
| } |
| |
| /* |
| ** Generate the operands for a comparison operation. Before |
| ** generating the code for each operand, set the EP_AnyAff |
| ** flag on the expression so that it will be able to used a |
| ** cached column value that has previously undergone an |
| ** affinity change. |
| */ |
| static void codeCompareOperands( |
| Parse *pParse, /* Parsing and code generating context */ |
| Expr *pLeft, /* The left operand */ |
| int *pRegLeft, /* Register where left operand is stored */ |
| int *pFreeLeft, /* Free this register when done */ |
| Expr *pRight, /* The right operand */ |
| int *pRegRight, /* Register where right operand is stored */ |
| int *pFreeRight /* Write temp register for right operand there */ |
| ){ |
| while( pLeft->op==TK_UPLUS ) pLeft = pLeft->pLeft; |
| pLeft->flags |= EP_AnyAff; |
| *pRegLeft = sqlite3ExprCodeTemp(pParse, pLeft, pFreeLeft); |
| while( pRight->op==TK_UPLUS ) pRight = pRight->pLeft; |
| pRight->flags |= EP_AnyAff; |
| *pRegRight = sqlite3ExprCodeTemp(pParse, pRight, pFreeRight); |
| } |
| |
| /* |
| ** Generate code for a comparison operator. |
| */ |
| static int codeCompare( |
| Parse *pParse, /* The parsing (and code generating) context */ |
| Expr *pLeft, /* The left operand */ |
| Expr *pRight, /* The right operand */ |
| int opcode, /* The comparison opcode */ |
| int in1, int in2, /* Register holding operands */ |
| int dest, /* Jump here if true. */ |
| int jumpIfNull /* If true, jump if either operand is NULL */ |
| ){ |
| int p5; |
| int addr; |
| CollSeq *p4; |
| |
| p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight); |
| p5 = binaryCompareP5(pLeft, pRight, jumpIfNull); |
| addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1, |
| (void*)p4, P4_COLLSEQ); |
| sqlite3VdbeChangeP5(pParse->pVdbe, p5); |
| if( p5 & SQLITE_AFF_MASK ){ |
| sqlite3ExprCacheAffinityChange(pParse, in1, 1); |
| sqlite3ExprCacheAffinityChange(pParse, in2, 1); |
| } |
| return addr; |
| } |
| |
| /* |
| ** Construct a new expression node and return a pointer to it. Memory |
| ** for this node is obtained from sqlite3_malloc(). The calling function |
| ** is responsible for making sure the node eventually gets freed. |
| */ |
| Expr *sqlite3Expr( |
| sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ |
| int op, /* Expression opcode */ |
| Expr *pLeft, /* Left operand */ |
| Expr *pRight, /* Right operand */ |
| const Token *pToken /* Argument token */ |
| ){ |
| Expr *pNew; |
| static const Expr zeroExpr; |
| pNew = sqlite3DbMallocRaw(db, sizeof(Expr)); |
| if( pNew==0 ){ |
| /* When malloc fails, delete pLeft and pRight. Expressions passed to |
| ** this function must always be allocated with sqlite3Expr() for this |
| ** reason. |
| */ |
| sqlite3ExprDelete(pLeft); |
| sqlite3ExprDelete(pRight); |
| return 0; |
| } |
| *pNew = zeroExpr; |
| pNew->op = op; |
| pNew->pLeft = pLeft; |
| pNew->pRight = pRight; |
| pNew->iAgg = -1; |
| if( pToken ){ |
| assert( pToken->dyn==0 ); |
| pNew->span = pNew->token = *pToken; |
| }else if( pLeft ){ |
| if( pRight ){ |
| sqlite3ExprSpan(pNew, &pLeft->span, &pRight->span); |
| if( pRight->flags & EP_ExpCollate ){ |
| pNew->flags |= EP_ExpCollate; |
| pNew->pColl = pRight->pColl; |
| } |
| } |
| if( pLeft->flags & EP_ExpCollate ){ |
| pNew->flags |= EP_ExpCollate; |
| pNew->pColl = pLeft->pColl; |
| } |
| } |
| |
| sqlite3ExprSetHeight(pNew); |
| return pNew; |
| } |
| |
| /* |
| ** Works like sqlite3Expr() except that it takes an extra Parse* |
| ** argument and notifies the associated connection object if malloc fails. |
| */ |
| Expr *sqlite3PExpr( |
| Parse *pParse, /* Parsing context */ |
| int op, /* Expression opcode */ |
| Expr *pLeft, /* Left operand */ |
| Expr *pRight, /* Right operand */ |
| const Token *pToken /* Argument token */ |
| ){ |
| return sqlite3Expr(pParse->db, op, pLeft, pRight, pToken); |
| } |
| |
| /* |
| ** When doing a nested parse, you can include terms in an expression |
| ** that look like this: #1 #2 ... These terms refer to registers |
| ** in the virtual machine. #N is the N-th register. |
| ** |
| ** This routine is called by the parser to deal with on of those terms. |
| ** It immediately generates code to store the value in a memory location. |
| ** The returns an expression that will code to extract the value from |
| ** that memory location as needed. |
| */ |
| Expr *sqlite3RegisterExpr(Parse *pParse, Token *pToken){ |
| Vdbe *v = pParse->pVdbe; |
| Expr *p; |
| if( pParse->nested==0 ){ |
| sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", pToken); |
| return sqlite3PExpr(pParse, TK_NULL, 0, 0, 0); |
| } |
| if( v==0 ) return 0; |
| p = sqlite3PExpr(pParse, TK_REGISTER, 0, 0, pToken); |
| if( p==0 ){ |
| return 0; /* Malloc failed */ |
| } |
| p->iTable = atoi((char*)&pToken->z[1]); |
| return p; |
| } |
| |
| /* |
| ** Join two expressions using an AND operator. If either expression is |
| ** NULL, then just return the other expression. |
| */ |
| Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){ |
| if( pLeft==0 ){ |
| return pRight; |
| }else if( pRight==0 ){ |
| return pLeft; |
| }else{ |
| return sqlite3Expr(db, TK_AND, pLeft, pRight, 0); |
| } |
| } |
| |
| /* |
| ** Set the Expr.span field of the given expression to span all |
| ** text between the two given tokens. |
| */ |
| void sqlite3ExprSpan(Expr *pExpr, Token *pLeft, Token *pRight){ |
| assert( pRight!=0 ); |
| assert( pLeft!=0 ); |
| if( pExpr && pRight->z && pLeft->z ){ |
| assert( pLeft->dyn==0 || pLeft->z[pLeft->n]==0 ); |
| if( pLeft->dyn==0 && pRight->dyn==0 ){ |
| pExpr->span.z = pLeft->z; |
| pExpr->span.n = pRight->n + (pRight->z - pLeft->z); |
| }else{ |
| pExpr->span.z = 0; |
| } |
| } |
| } |
| |
| /* |
| ** Construct a new expression node for a function with multiple |
| ** arguments. |
| */ |
| Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){ |
| Expr *pNew; |
| assert( pToken ); |
| pNew = sqlite3DbMallocZero(pParse->db, sizeof(Expr) ); |
| if( pNew==0 ){ |
| sqlite3ExprListDelete(pList); /* Avoid leaking memory when malloc fails */ |
| return 0; |
| } |
| pNew->op = TK_FUNCTION; |
| pNew->pList = pList; |
| assert( pToken->dyn==0 ); |
| pNew->token = *pToken; |
| pNew->span = pNew->token; |
| |
| sqlite3ExprSetHeight(pNew); |
| return pNew; |
| } |
| |
| /* |
| ** Assign a variable number to an expression that encodes a wildcard |
| ** in the original SQL statement. |
| ** |
| ** Wildcards consisting of a single "?" are assigned the next sequential |
| ** variable number. |
| ** |
| ** Wildcards of the form "?nnn" are assigned the number "nnn". We make |
| ** sure "nnn" is not too be to avoid a denial of service attack when |
| ** the SQL statement comes from an external source. |
| ** |
| ** Wildcards of the form ":aaa" or "$aaa" are assigned the same number |
| ** as the previous instance of the same wildcard. Or if this is the first |
| ** instance of the wildcard, the next sequenial variable number is |
| ** assigned. |
| */ |
| void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){ |
| Token *pToken; |
| sqlite3 *db = pParse->db; |
| |
| if( pExpr==0 ) return; |
| pToken = &pExpr->token; |
| assert( pToken->n>=1 ); |
| assert( pToken->z!=0 ); |
| assert( pToken->z[0]!=0 ); |
| if( pToken->n==1 ){ |
| /* Wildcard of the form "?". Assign the next variable number */ |
| pExpr->iTable = ++pParse->nVar; |
| }else if( pToken->z[0]=='?' ){ |
| /* Wildcard of the form "?nnn". Convert "nnn" to an integer and |
| ** use it as the variable number */ |
| int i; |
| pExpr->iTable = i = atoi((char*)&pToken->z[1]); |
| testcase( i==0 ); |
| testcase( i==1 ); |
| testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 ); |
| testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ); |
| if( i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ |
| sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", |
| db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]); |
| } |
| if( i>pParse->nVar ){ |
| pParse->nVar = i; |
| } |
| }else{ |
| /* Wildcards of the form ":aaa" or "$aaa". Reuse the same variable |
| ** number as the prior appearance of the same name, or if the name |
| ** has never appeared before, reuse the same variable number |
| */ |
| int i, n; |
| n = pToken->n; |
| for(i=0; i<pParse->nVarExpr; i++){ |
| Expr *pE; |
| if( (pE = pParse->apVarExpr[i])!=0 |
| && pE->token.n==n |
| && memcmp(pE->token.z, pToken->z, n)==0 ){ |
| pExpr->iTable = pE->iTable; |
| break; |
| } |
| } |
| if( i>=pParse->nVarExpr ){ |
| pExpr->iTable = ++pParse->nVar; |
| if( pParse->nVarExpr>=pParse->nVarExprAlloc-1 ){ |
| pParse->nVarExprAlloc += pParse->nVarExprAlloc + 10; |
| pParse->apVarExpr = |
| sqlite3DbReallocOrFree( |
| db, |
| pParse->apVarExpr, |
| pParse->nVarExprAlloc*sizeof(pParse->apVarExpr[0]) |
| ); |
| } |
| if( !db->mallocFailed ){ |
| assert( pParse->apVarExpr!=0 ); |
| pParse->apVarExpr[pParse->nVarExpr++] = pExpr; |
| } |
| } |
| } |
| if( !pParse->nErr && pParse->nVar>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ |
| sqlite3ErrorMsg(pParse, "too many SQL variables"); |
| } |
| } |
| |
| /* |
| ** Recursively delete an expression tree. |
| */ |
| void sqlite3ExprDelete(Expr *p){ |
| if( p==0 ) return; |
| if( p->span.dyn ) sqlite3_free((char*)p->span.z); |
| if( p->token.dyn ) sqlite3_free((char*)p->token.z); |
| sqlite3ExprDelete(p->pLeft); |
| sqlite3ExprDelete(p->pRight); |
| sqlite3ExprListDelete(p->pList); |
| sqlite3SelectDelete(p->pSelect); |
| sqlite3_free(p); |
| } |
| |
| /* |
| ** The Expr.token field might be a string literal that is quoted. |
| ** If so, remove the quotation marks. |
| */ |
| void sqlite3DequoteExpr(sqlite3 *db, Expr *p){ |
| if( ExprHasAnyProperty(p, EP_Dequoted) ){ |
| return; |
| } |
| ExprSetProperty(p, EP_Dequoted); |
| if( p->token.dyn==0 ){ |
| sqlite3TokenCopy(db, &p->token, &p->token); |
| } |
| sqlite3Dequote((char*)p->token.z); |
| } |
| |
| |
| /* |
| ** The following group of routines make deep copies of expressions, |
| ** expression lists, ID lists, and select statements. The copies can |
| ** be deleted (by being passed to their respective ...Delete() routines) |
| ** without effecting the originals. |
| ** |
| ** The expression list, ID, and source lists return by sqlite3ExprListDup(), |
| ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded |
| ** by subsequent calls to sqlite*ListAppend() routines. |
| ** |
| ** Any tables that the SrcList might point to are not duplicated. |
| */ |
| Expr *sqlite3ExprDup(sqlite3 *db, Expr *p){ |
| Expr *pNew; |
| if( p==0 ) return 0; |
| pNew = sqlite3DbMallocRaw(db, sizeof(*p) ); |
| if( pNew==0 ) return 0; |
| memcpy(pNew, p, sizeof(*pNew)); |
| if( p->token.z!=0 ){ |
| pNew->token.z = (u8*)sqlite3DbStrNDup(db, (char*)p->token.z, p->token.n); |
| pNew->token.dyn = 1; |
| }else{ |
| assert( pNew->token.z==0 ); |
| } |
| pNew->span.z = 0; |
| pNew->pLeft = sqlite3ExprDup(db, p->pLeft); |
| pNew->pRight = sqlite3ExprDup(db, p->pRight); |
| pNew->pList = sqlite3ExprListDup(db, p->pList); |
| pNew->pSelect = sqlite3SelectDup(db, p->pSelect); |
| return pNew; |
| } |
| void sqlite3TokenCopy(sqlite3 *db, Token *pTo, Token *pFrom){ |
| if( pTo->dyn ) sqlite3_free((char*)pTo->z); |
| if( pFrom->z ){ |
| pTo->n = pFrom->n; |
| pTo->z = (u8*)sqlite3DbStrNDup(db, (char*)pFrom->z, pFrom->n); |
| pTo->dyn = 1; |
| }else{ |
| pTo->z = 0; |
| } |
| } |
| ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p){ |
| ExprList *pNew; |
| struct ExprList_item *pItem, *pOldItem; |
| int i; |
| if( p==0 ) return 0; |
| pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) ); |
| if( pNew==0 ) return 0; |
| pNew->iECursor = 0; |
| pNew->nExpr = pNew->nAlloc = p->nExpr; |
| pNew->a = pItem = sqlite3DbMallocRaw(db, p->nExpr*sizeof(p->a[0]) ); |
| if( pItem==0 ){ |
| sqlite3_free(pNew); |
| return 0; |
| } |
| pOldItem = p->a; |
| for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){ |
| Expr *pNewExpr, *pOldExpr; |
| pItem->pExpr = pNewExpr = sqlite3ExprDup(db, pOldExpr = pOldItem->pExpr); |
| if( pOldExpr->span.z!=0 && pNewExpr ){ |
| /* Always make a copy of the span for top-level expressions in the |
| ** expression list. The logic in SELECT processing that determines |
| ** the names of columns in the result set needs this information */ |
| sqlite3TokenCopy(db, &pNewExpr->span, &pOldExpr->span); |
| } |
| assert( pNewExpr==0 || pNewExpr->span.z!=0 |
| || pOldExpr->span.z==0 |
| || db->mallocFailed ); |
| pItem->zName = sqlite3DbStrDup(db, pOldItem->zName); |
| pItem->sortOrder = pOldItem->sortOrder; |
| pItem->isAgg = pOldItem->isAgg; |
| pItem->done = 0; |
| } |
| return pNew; |
| } |
| |
| /* |
| ** If cursors, triggers, views and subqueries are all omitted from |
| ** the build, then none of the following routines, except for |
| ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes |
| ** called with a NULL argument. |
| */ |
| #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \ |
| || !defined(SQLITE_OMIT_SUBQUERY) |
| SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p){ |
| SrcList *pNew; |
| int i; |
| int nByte; |
| if( p==0 ) return 0; |
| nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); |
| pNew = sqlite3DbMallocRaw(db, nByte ); |
| if( pNew==0 ) return 0; |
| pNew->nSrc = pNew->nAlloc = p->nSrc; |
| for(i=0; i<p->nSrc; i++){ |
| struct SrcList_item *pNewItem = &pNew->a[i]; |
| struct SrcList_item *pOldItem = &p->a[i]; |
| Table *pTab; |
| pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase); |
| pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); |
| pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias); |
| pNewItem->jointype = pOldItem->jointype; |
| pNewItem->iCursor = pOldItem->iCursor; |
| pNewItem->isPopulated = pOldItem->isPopulated; |
| pTab = pNewItem->pTab = pOldItem->pTab; |
| if( pTab ){ |
| pTab->nRef++; |
| } |
| pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect); |
| pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn); |
| pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing); |
| pNewItem->colUsed = pOldItem->colUsed; |
| } |
| return pNew; |
| } |
| IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){ |
| IdList *pNew; |
| int i; |
| if( p==0 ) return 0; |
| pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) ); |
| if( pNew==0 ) return 0; |
| pNew->nId = pNew->nAlloc = p->nId; |
| pNew->a = sqlite3DbMallocRaw(db, p->nId*sizeof(p->a[0]) ); |
| if( pNew->a==0 ){ |
| sqlite3_free(pNew); |
| return 0; |
| } |
| for(i=0; i<p->nId; i++){ |
| struct IdList_item *pNewItem = &pNew->a[i]; |
| struct IdList_item *pOldItem = &p->a[i]; |
| pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); |
| pNewItem->idx = pOldItem->idx; |
| } |
| return pNew; |
| } |
| Select *sqlite3SelectDup(sqlite3 *db, Select *p){ |
| Select *pNew; |
| if( p==0 ) return 0; |
| pNew = sqlite3DbMallocRaw(db, sizeof(*p) ); |
| if( pNew==0 ) return 0; |
| pNew->isDistinct = p->isDistinct; |
| pNew->pEList = sqlite3ExprListDup(db, p->pEList); |
| pNew->pSrc = sqlite3SrcListDup(db, p->pSrc); |
| pNew->pWhere = sqlite3ExprDup(db, p->pWhere); |
| pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy); |
| pNew->pHaving = sqlite3ExprDup(db, p->pHaving); |
| pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy); |
| pNew->op = p->op; |
| pNew->pPrior = sqlite3SelectDup(db, p->pPrior); |
| pNew->pLimit = sqlite3ExprDup(db, p->pLimit); |
| pNew->pOffset = sqlite3ExprDup(db, p->pOffset); |
| pNew->iLimit = -1; |
| pNew->iOffset = -1; |
| pNew->isResolved = p->isResolved; |
| pNew->isAgg = p->isAgg; |
| pNew->usesEphm = 0; |
| pNew->disallowOrderBy = 0; |
| pNew->pRightmost = 0; |
| pNew->addrOpenEphm[0] = -1; |
| pNew->addrOpenEphm[1] = -1; |
| pNew->addrOpenEphm[2] = -1; |
| return pNew; |
| } |
| #else |
| Select *sqlite3SelectDup(sqlite3 *db, Select *p){ |
| assert( p==0 ); |
| return 0; |
| } |
| #endif |
| |
| |
| /* |
| ** Add a new element to the end of an expression list. If pList is |
| ** initially NULL, then create a new expression list. |
| */ |
| ExprList *sqlite3ExprListAppend( |
| Parse *pParse, /* Parsing context */ |
| ExprList *pList, /* List to which to append. Might be NULL */ |
| Expr *pExpr, /* Expression to be appended */ |
| Token *pName /* AS keyword for the expression */ |
| ){ |
| sqlite3 *db = pParse->db; |
| if( pList==0 ){ |
| pList = sqlite3DbMallocZero(db, sizeof(ExprList) ); |
| if( pList==0 ){ |
| goto no_mem; |
| } |
| assert( pList->nAlloc==0 ); |
| } |
| if( pList->nAlloc<=pList->nExpr ){ |
| struct ExprList_item *a; |
| int n = pList->nAlloc*2 + 4; |
| a = sqlite3DbRealloc(db, pList->a, n*sizeof(pList->a[0])); |
| if( a==0 ){ |
| goto no_mem; |
| } |
| pList->a = a; |
| pList->nAlloc = n; |
| } |
| assert( pList->a!=0 ); |
| if( pExpr || pName ){ |
| struct ExprList_item *pItem = &pList->a[pList->nExpr++]; |
| memset(pItem, 0, sizeof(*pItem)); |
| pItem->zName = sqlite3NameFromToken(db, pName); |
| pItem->pExpr = pExpr; |
| } |
| return pList; |
| |
| no_mem: |
| /* Avoid leaking memory if malloc has failed. */ |
| sqlite3ExprDelete(pExpr); |
| sqlite3ExprListDelete(pList); |
| return 0; |
| } |
| |
| /* |
| ** If the expression list pEList contains more than iLimit elements, |
| ** leave an error message in pParse. |
| */ |
| void sqlite3ExprListCheckLength( |
| Parse *pParse, |
| ExprList *pEList, |
| const char *zObject |
| ){ |
| int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN]; |
| testcase( pEList && pEList->nExpr==mx ); |
| testcase( pEList && pEList->nExpr==mx+1 ); |
| if( pEList && pEList->nExpr>mx ){ |
| sqlite3ErrorMsg(pParse, "too many columns in %s", zObject); |
| } |
| } |
| |
| |
| /* The following three functions, heightOfExpr(), heightOfExprList() |
| ** and heightOfSelect(), are used to determine the maximum height |
| ** of any expression tree referenced by the structure passed as the |
| ** first argument. |
| ** |
| ** If this maximum height is greater than the current value pointed |
| ** to by pnHeight, the second parameter, then set *pnHeight to that |
| ** value. |
| */ |
| static void heightOfExpr(Expr *p, int *pnHeight){ |
| if( p ){ |
| if( p->nHeight>*pnHeight ){ |
| *pnHeight = p->nHeight; |
| } |
| } |
| } |
| static void heightOfExprList(ExprList *p, int *pnHeight){ |
| if( p ){ |
| int i; |
| for(i=0; i<p->nExpr; i++){ |
| heightOfExpr(p->a[i].pExpr, pnHeight); |
| } |
| } |
| } |
| static void heightOfSelect(Select *p, int *pnHeight){ |
| if( p ){ |
| heightOfExpr(p->pWhere, pnHeight); |
| heightOfExpr(p->pHaving, pnHeight); |
| heightOfExpr(p->pLimit, pnHeight); |
| heightOfExpr(p->pOffset, pnHeight); |
| heightOfExprList(p->pEList, pnHeight); |
| heightOfExprList(p->pGroupBy, pnHeight); |
| heightOfExprList(p->pOrderBy, pnHeight); |
| heightOfSelect(p->pPrior, pnHeight); |
| } |
| } |
| |
| /* |
| ** Set the Expr.nHeight variable in the structure passed as an |
| ** argument. An expression with no children, Expr.pList or |
| ** Expr.pSelect member has a height of 1. Any other expression |
| ** has a height equal to the maximum height of any other |
| ** referenced Expr plus one. |
| */ |
| void sqlite3ExprSetHeight(Expr *p){ |
| int nHeight = 0; |
| heightOfExpr(p->pLeft, &nHeight); |
| heightOfExpr(p->pRight, &nHeight); |
| heightOfExprList(p->pList, &nHeight); |
| heightOfSelect(p->pSelect, &nHeight); |
| p->nHeight = nHeight + 1; |
| } |
| |
| /* |
| ** Return the maximum height of any expression tree referenced |
| ** by the select statement passed as an argument. |
| */ |
| int sqlite3SelectExprHeight(Select *p){ |
| int nHeight = 0; |
| heightOfSelect(p, &nHeight); |
| return nHeight; |
| } |
| |
| /* |
| ** Delete an entire expression list. |
| */ |
| void sqlite3ExprListDelete(ExprList *pList){ |
| int i; |
| struct ExprList_item *pItem; |
| if( pList==0 ) return; |
| assert( pList->a!=0 || (pList->nExpr==0 && pList->nAlloc==0) ); |
| assert( pList->nExpr<=pList->nAlloc ); |
| for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ |
| sqlite3ExprDelete(pItem->pExpr); |
| sqlite3_free(pItem->zName); |
| } |
| sqlite3_free(pList->a); |
| sqlite3_free(pList); |
| } |
| |
| /* |
| ** Walk an expression tree. Call xFunc for each node visited. xFunc |
| ** is called on the node before xFunc is called on the nodes children. |
| ** |
| ** The return value from xFunc determines whether the tree walk continues. |
| ** 0 means continue walking the tree. 1 means do not walk children |
| ** of the current node but continue with siblings. 2 means abandon |
| ** the tree walk completely. |
| ** |
| ** The return value from this routine is 1 to abandon the tree walk |
| ** and 0 to continue. |
| ** |
| ** NOTICE: This routine does *not* descend into subqueries. |
| */ |
| static int walkExprList(ExprList *, int (*)(void *, Expr*), void *); |
| static int walkExprTree(Expr *pExpr, int (*xFunc)(void*,Expr*), void *pArg){ |
| int rc; |
| if( pExpr==0 ) return 0; |
| rc = (*xFunc)(pArg, pExpr); |
| if( rc==0 ){ |
| if( walkExprTree(pExpr->pLeft, xFunc, pArg) ) return 1; |
| if( walkExprTree(pExpr->pRight, xFunc, pArg) ) return 1; |
| if( walkExprList(pExpr->pList, xFunc, pArg) ) return 1; |
| } |
| return rc>1; |
| } |
| |
| /* |
| ** Call walkExprTree() for every expression in list p. |
| */ |
| static int walkExprList(ExprList *p, int (*xFunc)(void *, Expr*), void *pArg){ |
| int i; |
| struct ExprList_item *pItem; |
| if( !p ) return 0; |
| for(i=p->nExpr, pItem=p->a; i>0; i--, pItem++){ |
| if( walkExprTree(pItem->pExpr, xFunc, pArg) ) return 1; |
| } |
| return 0; |
| } |
| |
| /* |
| ** Call walkExprTree() for every expression in Select p, not including |
| ** expressions that are part of sub-selects in any FROM clause or the LIMIT |
| ** or OFFSET expressions.. |
| */ |
| static int walkSelectExpr(Select *p, int (*xFunc)(void *, Expr*), void *pArg){ |
| walkExprList(p->pEList, xFunc, pArg); |
| walkExprTree(p->pWhere, xFunc, pArg); |
| walkExprList(p->pGroupBy, xFunc, pArg); |
| walkExprTree(p->pHaving, xFunc, pArg); |
| walkExprList(p->pOrderBy, xFunc, pArg); |
| if( p->pPrior ){ |
| walkSelectExpr(p->pPrior, xFunc, pArg); |
| } |
| return 0; |
| } |
| |
| |
| /* |
| ** This routine is designed as an xFunc for walkExprTree(). |
| ** |
| ** pArg is really a pointer to an integer. If we can tell by looking |
| ** at pExpr that the expression that contains pExpr is not a constant |
| ** expression, then set *pArg to 0 and return 2 to abandon the tree walk. |
| ** If pExpr does does not disqualify the expression from being a constant |
| ** then do nothing. |
| ** |
| ** After walking the whole tree, if no nodes are found that disqualify |
| ** the expression as constant, then we assume the whole expression |
| ** is constant. See sqlite3ExprIsConstant() for additional information. |
| */ |
| static int exprNodeIsConstant(void *pArg, Expr *pExpr){ |
| int *pN = (int*)pArg; |
| |
| /* If *pArg is 3 then any term of the expression that comes from |
| ** the ON or USING clauses of a join disqualifies the expression |
| ** from being considered constant. */ |
| if( (*pN)==3 && ExprHasAnyProperty(pExpr, EP_FromJoin) ){ |
| *pN = 0; |
| return 2; |
| } |
| |
| switch( pExpr->op ){ |
| /* Consider functions to be constant if all their arguments are constant |
| ** and *pArg==2 */ |
| case TK_FUNCTION: |
| if( (*pN)==2 ) return 0; |
| /* Fall through */ |
| case TK_ID: |
| case TK_COLUMN: |
| case TK_DOT: |
| case TK_AGG_FUNCTION: |
| case TK_AGG_COLUMN: |
| #ifndef SQLITE_OMIT_SUBQUERY |
| case TK_SELECT: |
| case TK_EXISTS: |
| testcase( pExpr->op==TK_SELECT ); |
| testcase( pExpr->op==TK_EXISTS ); |
| #endif |
| testcase( pExpr->op==TK_ID ); |
| testcase( pExpr->op==TK_COLUMN ); |
| testcase( pExpr->op==TK_DOT ); |
| testcase( pExpr->op==TK_AGG_FUNCTION ); |
| testcase( pExpr->op==TK_AGG_COLUMN ); |
| *pN = 0; |
| return 2; |
| case TK_IN: |
| if( pExpr->pSelect ){ |
| *pN = 0; |
| return 2; |
| } |
| default: |
| return 0; |
| } |
| } |
| |
| /* |
| ** Walk an expression tree. Return 1 if the expression is constant |
| ** and 0 if it involves variables or function calls. |
| ** |
| ** For the purposes of this function, a double-quoted string (ex: "abc") |
| ** is considered a variable but a single-quoted string (ex: 'abc') is |
| ** a constant. |
| */ |
| int sqlite3ExprIsConstant(Expr *p){ |
| int isConst = 1; |
| walkExprTree(p, exprNodeIsConstant, &isConst); |
| return isConst; |
| } |
| |
| /* |
| ** Walk an expression tree. Return 1 if the expression is constant |
| ** that does no originate from the ON or USING clauses of a join. |
| ** Return 0 if it involves variables or function calls or terms from |
| ** an ON or USING clause. |
| */ |
| int sqlite3ExprIsConstantNotJoin(Expr *p){ |
| int isConst = 3; |
| walkExprTree(p, exprNodeIsConstant, &isConst); |
| return isConst!=0; |
| } |
| |
| /* |
| ** Walk an expression tree. Return 1 if the expression is constant |
| ** or a function call with constant arguments. Return and 0 if there |
| ** are any variables. |
| ** |
| ** For the purposes of this function, a double-quoted string (ex: "abc") |
| ** is considered a variable but a single-quoted string (ex: 'abc') is |
| ** a constant. |
| */ |
| int sqlite3ExprIsConstantOrFunction(Expr *p){ |
| int isConst = 2; |
| walkExprTree(p, exprNodeIsConstant, &isConst); |
| return isConst!=0; |
| } |
| |
| /* |
| ** If the expression p codes a constant integer that is small enough |
| ** to fit in a 32-bit integer, return 1 and put the value of the integer |
| ** in *pValue. If the expression is not an integer or if it is too big |
| ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. |
| */ |
| int sqlite3ExprIsInteger(Expr *p, int *pValue){ |
| switch( p->op ){ |
| case TK_INTEGER: { |
| if( sqlite3GetInt32((char*)p->token.z, pValue) ){ |
| return 1; |
| } |
| break; |
| } |
| case TK_UPLUS: { |
| return sqlite3ExprIsInteger(p->pLeft, pValue); |
| } |
| case TK_UMINUS: { |
| int v; |
| if( sqlite3ExprIsInteger(p->pLeft, &v) ){ |
| *pValue = -v; |
| return 1; |
| } |
| break; |
| } |
| default: break; |
| } |
| return 0; |
| } |
| |
| /* |
| ** Return TRUE if the given string is a row-id column name. |
| */ |
| int sqlite3IsRowid(const char *z){ |
| if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; |
| if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; |
| if( sqlite3StrICmp(z, "OID")==0 ) return 1; |
| return 0; |
| } |
| |
| /* |
| ** Given the name of a column of the form X.Y.Z or Y.Z or just Z, look up |
| ** that name in the set of source tables in pSrcList and make the pExpr |
| ** expression node refer back to that source column. The following changes |
| ** are made to pExpr: |
| ** |
| ** pExpr->iDb Set the index in db->aDb[] of the database holding |
| ** the table. |
| ** pExpr->iTable Set to the cursor number for the table obtained |
| ** from pSrcList. |
| ** pExpr->iColumn Set to the column number within the table. |
| ** pExpr->op Set to TK_COLUMN. |
| ** pExpr->pLeft Any expression this points to is deleted |
| ** pExpr->pRight Any expression this points to is deleted. |
| ** |
| ** The pDbToken is the name of the database (the "X"). This value may be |
| ** NULL meaning that name is of the form Y.Z or Z. Any available database |
| ** can be used. The pTableToken is the name of the table (the "Y"). This |
| ** value can be NULL if pDbToken is also NULL. If pTableToken is NULL it |
| ** means that the form of the name is Z and that columns from any table |
| ** can be used. |
| ** |
| ** If the name cannot be resolved unambiguously, leave an error message |
| ** in pParse and return non-zero. Return zero on success. |
| */ |
| static int lookupName( |
| Parse *pParse, /* The parsing context */ |
| Token *pDbToken, /* Name of the database containing table, or NULL */ |
| Token *pTableToken, /* Name of table containing column, or NULL */ |
| Token *pColumnToken, /* Name of the column. */ |
| NameContext *pNC, /* The name context used to resolve the name */ |
| Expr *pExpr /* Make this EXPR node point to the selected column */ |
| ){ |
| char *zDb = 0; /* Name of the database. The "X" in X.Y.Z */ |
| char *zTab = 0; /* Name of the table. The "Y" in X.Y.Z or Y.Z */ |
| char *zCol = 0; /* Name of the column. The "Z" */ |
| int i, j; /* Loop counters */ |
| int cnt = 0; /* Number of matching column names */ |
| int cntTab = 0; /* Number of matching table names */ |
| sqlite3 *db = pParse->db; /* The database */ |
| struct SrcList_item *pItem; /* Use for looping over pSrcList items */ |
| struct SrcList_item *pMatch = 0; /* The matching pSrcList item */ |
| NameContext *pTopNC = pNC; /* First namecontext in the list */ |
| Schema *pSchema = 0; /* Schema of the expression */ |
| |
| assert( pColumnToken && pColumnToken->z ); /* The Z in X.Y.Z cannot be NULL */ |
| zDb = sqlite3NameFromToken(db, pDbToken); |
| zTab = sqlite3NameFromToken(db, pTableToken); |
| zCol = sqlite3NameFromToken(db, pColumnToken); |
| if( db->mallocFailed ){ |
| goto lookupname_end; |
| } |
| |
| pExpr->iTable = -1; |
| while( pNC && cnt==0 ){ |
| ExprList *pEList; |
| SrcList *pSrcList = pNC->pSrcList; |
| |
| if( pSrcList ){ |
| for(i=0, pItem=pSrcList->a; i<pSrcList->nSrc; i++, pItem++){ |
| Table *pTab; |
| int iDb; |
| Column *pCol; |
| |
| pTab = pItem->pTab; |
| assert( pTab!=0 ); |
| iDb = sqlite3SchemaToIndex(db, pTab->pSchema); |
| assert( pTab->nCol>0 ); |
| if( zTab ){ |
| if( pItem->zAlias ){ |
| char *zTabName = pItem->zAlias; |
| if( sqlite3StrICmp(zTabName, zTab)!=0 ) continue; |
| }else{ |
| char *zTabName = pTab->zName; |
| if( zTabName==0 || sqlite3StrICmp(zTabName, zTab)!=0 ) continue; |
| if( zDb!=0 && sqlite3StrICmp(db->aDb[iDb].zName, zDb)!=0 ){ |
| continue; |
| } |
| } |
| } |
| if( 0==(cntTab++) ){ |
| pExpr->iTable = pItem->iCursor; |
| pSchema = pTab->pSchema; |
| pMatch = pItem; |
| } |
| for(j=0, pCol=pTab->aCol; j<pTab->nCol; j++, pCol++){ |
| if( sqlite3StrICmp(pCol->zName, zCol)==0 ){ |
| const char *zColl = pTab->aCol[j].zColl; |
| IdList *pUsing; |
| cnt++; |
| pExpr->iTable = pItem->iCursor; |
| pMatch = pItem; |
| pSchema = pTab->pSchema; |
| /* Substitute the rowid (column -1) for the INTEGER PRIMARY KEY */ |
| pExpr->iColumn = j==pTab->iPKey ? -1 : j; |
| pExpr->affinity = pTab->aCol[j].affinity; |
| if( (pExpr->flags & EP_ExpCollate)==0 ){ |
| pExpr->pColl = sqlite3FindCollSeq(db, ENC(db), zColl,-1, 0); |
| } |
| if( i<pSrcList->nSrc-1 ){ |
| if( pItem[1].jointype & JT_NATURAL ){ |
| /* If this match occurred in the left table of a natural join, |
| ** then skip the right table to avoid a duplicate match */ |
| pItem++; |
| i++; |
| }else if( (pUsing = pItem[1].pUsing)!=0 ){ |
| /* If this match occurs on a column that is in the USING clause |
| ** of a join, skip the search of the right table of the join |
| ** to avoid a duplicate match there. */ |
| int k; |
| for(k=0; k<pUsing->nId; k++){ |
| if( sqlite3StrICmp(pUsing->a[k].zName, zCol)==0 ){ |
| pItem++; |
| i++; |
| break; |
| } |
| } |
| } |
| } |
| break; |
| } |
| } |
| } |
| } |
| |
| #ifndef SQLITE_OMIT_TRIGGER |
| /* If we have not already resolved the name, then maybe |
| ** it is a new.* or old.* trigger argument reference |
| */ |
| if( zDb==0 && zTab!=0 && cnt==0 && pParse->trigStack!=0 ){ |
| TriggerStack *pTriggerStack = pParse->trigStack; |
| Table *pTab = 0; |
| u32 *piColMask; |
| if( pTriggerStack->newIdx != -1 && sqlite3StrICmp("new", zTab) == 0 ){ |
| pExpr->iTable = pTriggerStack->newIdx; |
| assert( pTriggerStack->pTab ); |
| pTab = pTriggerStack->pTab; |
| piColMask = &(pTriggerStack->newColMask); |
| }else if( pTriggerStack->oldIdx != -1 && sqlite3StrICmp("old", zTab)==0 ){ |
| pExpr->iTable = pTriggerStack->oldIdx; |
| assert( pTriggerStack->pTab ); |
| pTab = pTriggerStack->pTab; |
| piColMask = &(pTriggerStack->oldColMask); |
| } |
| |
| if( pTab ){ |
| int iCol; |
| Column *pCol = pTab->aCol; |
| |
| pSchema = pTab->pSchema; |
| cntTab++; |
| for(iCol=0; iCol < pTab->nCol; iCol++, pCol++) { |
| if( sqlite3StrICmp(pCol->zName, zCol)==0 ){ |
| const char *zColl = pTab->aCol[iCol].zColl; |
| cnt++; |
| pExpr->iColumn = iCol==pTab->iPKey ? -1 : iCol; |
| pExpr->affinity = pTab->aCol[iCol].affinity; |
| if( (pExpr->flags & EP_ExpCollate)==0 ){ |
| pExpr->pColl = sqlite3FindCollSeq(db, ENC(db), zColl,-1, 0); |
| } |
| pExpr->pTab = pTab; |
| if( iCol>=0 ){ |
| testcase( iCol==31 ); |
| testcase( iCol==32 ); |
| *piColMask |= ((u32)1<<iCol) | (iCol>=32?0xffffffff:0); |
| } |
| break; |
| } |
| } |
| } |
| } |
| #endif /* !defined(SQLITE_OMIT_TRIGGER) */ |
| |
| /* |
| ** Perhaps the name is a reference to the ROWID |
| */ |
| if( cnt==0 && cntTab==1 && sqlite3IsRowid(zCol) ){ |
| cnt = 1; |
| pExpr->iColumn = -1; |
| pExpr->affinity = SQLITE_AFF_INTEGER; |
| } |
| |
| /* |
| ** If the input is of the form Z (not Y.Z or X.Y.Z) then the name Z |
| ** might refer to an result-set alias. This happens, for example, when |
| ** we are resolving names in the WHERE clause of the following command: |
| ** |
| ** SELECT a+b AS x FROM table WHERE x<10; |
| ** |
| ** In cases like this, replace pExpr with a copy of the expression that |
| ** forms the result set entry ("a+b" in the example) and return immediately. |
| ** Note that the expression in the result set should have already been |
| ** resolved by the time the WHERE clause is resolved. |
| */ |
| if( cnt==0 && (pEList = pNC->pEList)!=0 && zTab==0 ){ |
| for(j=0; j<pEList->nExpr; j++){ |
| char *zAs = pEList->a[j].zName; |
| if( zAs!=0 && sqlite3StrICmp(zAs, zCol)==0 ){ |
| Expr *pDup, *pOrig; |
| assert( pExpr->pLeft==0 && pExpr->pRight==0 ); |
| assert( pExpr->pList==0 ); |
| assert( pExpr->pSelect==0 ); |
| pOrig = pEList->a[j].pExpr; |
| if( !pNC->allowAgg && ExprHasProperty(pOrig, EP_Agg) ){ |
| sqlite3ErrorMsg(pParse, "misuse of aliased aggregate %s", zAs); |
| sqlite3_free(zCol); |
| return 2; |
| } |
| pDup = sqlite3ExprDup(db, pOrig); |
| if( pExpr->flags & EP_ExpCollate ){ |
| pDup->pColl = pExpr->pColl; |
| pDup->flags |= EP_ExpCollate; |
| } |
| if( pExpr->span.dyn ) sqlite3_free((char*)pExpr->span.z); |
| if( pExpr->token.dyn ) sqlite3_free((char*)pExpr->token.z); |
| memcpy(pExpr, pDup, sizeof(*pExpr)); |
| sqlite3_free(pDup); |
| cnt = 1; |
| pMatch = 0; |
| assert( zTab==0 && zDb==0 ); |
| goto lookupname_end_2; |
| } |
| } |
| } |
| |
| /* Advance to the next name context. The loop will exit when either |
| ** we have a match (cnt>0) or when we run out of name contexts. |
| */ |
| if( cnt==0 ){ |
| pNC = pNC->pNext; |
| } |
| } |
| |
| /* |
| ** If X and Y are NULL (in other words if only the column name Z is |
| ** supplied) and the value of Z is enclosed in double-quotes, then |
| ** Z is a string literal if it doesn't match any column names. In that |
| ** case, we need to return right away and not make any changes to |
| ** pExpr. |
| ** |
| ** Because no reference was made to outer contexts, the pNC->nRef |
| ** fields are not changed in any context. |
| */ |
| if( cnt==0 && zTab==0 && pColumnToken->z[0]=='"' ){ |
| sqlite3_free(zCol); |
| return 0; |
| } |
| |
| /* |
| ** cnt==0 means there was not match. cnt>1 means there were two or |
| ** more matches. Either way, we have an error. |
| */ |
| if( cnt!=1 ){ |
| const char *zErr; |
| zErr = cnt==0 ? "no such column" : "ambiguous column name"; |
| if( zDb ){ |
| sqlite3ErrorMsg(pParse, "%s: %s.%s.%s", zErr, zDb, zTab, zCol); |
| }else if( zTab ){ |
| sqlite3ErrorMsg(pParse, "%s: %s.%s", zErr, zTab, zCol); |
| }else{ |
| sqlite3ErrorMsg(pParse, "%s: %s", zErr, zCol); |
| } |
| pTopNC->nErr++; |
| } |
| |
| /* If a column from a table in pSrcList is referenced, then record |
| ** this fact in the pSrcList.a[].colUsed bitmask. Column 0 causes |
| ** bit 0 to be set. Column 1 sets bit 1. And so forth. If the |
| ** column number is greater than the number of bits in the bitmask |
| ** then set the high-order bit of the bitmask. |
| */ |
| if( pExpr->iColumn>=0 && pMatch!=0 ){ |
| int n = pExpr->iColumn; |
| testcase( n==sizeof(Bitmask)*8-1 ); |
| if( n>=sizeof(Bitmask)*8 ){ |
| n = sizeof(Bitmask)*8-1; |
| } |
| assert( pMatch->iCursor==pExpr->iTable ); |
| pMatch->colUsed |= ((Bitmask)1)<<n; |
| } |
| |
| lookupname_end: |
| /* Clean up and return |
| */ |
| sqlite3_free(zDb); |
| sqlite3_free(zTab); |
| sqlite3ExprDelete(pExpr->pLeft); |
| pExpr->pLeft = 0; |
| sqlite3ExprDelete(pExpr->pRight); |
| pExpr->pRight = 0; |
| pExpr->op = TK_COLUMN; |
| lookupname_end_2: |
| sqlite3_free(zCol); |
| if( cnt==1 ){ |
| assert( pNC!=0 ); |
| sqlite3AuthRead(pParse, pExpr, pSchema, pNC->pSrcList); |
| if( pMatch && !pMatch->pSelect ){ |
| pExpr->pTab = pMatch->pTab; |
| } |
| /* Increment the nRef value on all name contexts from TopNC up to |
| ** the point where the name matched. */ |
| for(;;){ |
| assert( pTopNC!=0 ); |
| pTopNC->nRef++; |
| if( pTopNC==pNC ) break; |
| pTopNC = pTopNC->pNext; |
| } |
| return 0; |
| } else { |
| return 1; |
| } |
| } |
| |
| /* |
| ** This routine is designed as an xFunc for walkExprTree(). |
| ** |
| ** Resolve symbolic names into TK_COLUMN operators for the current |
| ** node in the expression tree. Return 0 to continue the search down |
| ** the tree or 2 to abort the tree walk. |
| ** |
| ** This routine also does error checking and name resolution for |
| ** function names. The operator for aggregate functions is changed |
| ** to TK_AGG_FUNCTION. |
| */ |
| static int nameResolverStep(void *pArg, Expr *pExpr){ |
| NameContext *pNC = (NameContext*)pArg; |
| Parse *pParse; |
| |
| if( pExpr==0 ) return 1; |
| assert( pNC!=0 ); |
| pParse = pNC->pParse; |
| |
| if( ExprHasAnyProperty(pExpr, EP_Resolved) ) return 1; |
| ExprSetProperty(pExpr, EP_Resolved); |
| #ifndef NDEBUG |
| if( pNC->pSrcList && pNC->pSrcList->nAlloc>0 ){ |
| SrcList *pSrcList = pNC->pSrcList; |
| int i; |
| for(i=0; i<pNC->pSrcList->nSrc; i++){ |
| assert( pSrcList->a[i].iCursor>=0 && pSrcList->a[i].iCursor<pParse->nTab); |
| } |
| } |
| #endif |
| switch( pExpr->op ){ |
| /* Double-quoted strings (ex: "abc") are used as identifiers if |
| ** possible. Otherwise they remain as strings. Single-quoted |
| ** strings (ex: 'abc') are always string literals. |
| */ |
| case TK_STRING: { |
| if( pExpr->token.z[0]=='\'' ) break; |
| /* Fall thru into the TK_ID case if this is a double-quoted string */ |
| } |
| /* A lone identifier is the name of a column. |
| */ |
| case TK_ID: { |
| lookupName(pParse, 0, 0, &pExpr->token, pNC, pExpr); |
| return 1; |
| } |
| |
| /* A table name and column name: ID.ID |
| ** Or a database, table and column: ID.ID.ID |
| */ |
| case TK_DOT: { |
| Token *pColumn; |
| Token *pTable; |
| Token *pDb; |
| Expr *pRight; |
| |
| /* if( pSrcList==0 ) break; */ |
| pRight = pExpr->pRight; |
| if( pRight->op==TK_ID ){ |
| pDb = 0; |
| pTable = &pExpr->pLeft->token; |
| pColumn = &pRight->token; |
| }else{ |
| assert( pRight->op==TK_DOT ); |
| pDb = &pExpr->pLeft->token; |
| pTable = &pRight->pLeft->token; |
| pColumn = &pRight->pRight->token; |
| } |
| lookupName(pParse, pDb, pTable, pColumn, pNC, pExpr); |
| return 1; |
| } |
| |
| /* Resolve function names |
| */ |
| case TK_CONST_FUNC: |
| case TK_FUNCTION: { |
| ExprList *pList = pExpr->pList; /* The argument list */ |
| int n = pList ? pList->nExpr : 0; /* Number of arguments */ |
| int no_such_func = 0; /* True if no such function exists */ |
| int wrong_num_args = 0; /* True if wrong number of arguments */ |
| int is_agg = 0; /* True if is an aggregate function */ |
| int i; |
| int auth; /* Authorization to use the function */ |
| int nId; /* Number of characters in function name */ |
| const char *zId; /* The function name. */ |
| FuncDef *pDef; /* Information about the function */ |
| int enc = ENC(pParse->db); /* The database encoding */ |
| |
| zId = (char*)pExpr->token.z; |
| nId = pExpr->token.n; |
| pDef = sqlite3FindFunction(pParse->db, zId, nId, n, enc, 0); |
| if( pDef==0 ){ |
| pDef = sqlite3FindFunction(pParse->db, zId, nId, -1, enc, 0); |
| if( pDef==0 ){ |
| no_such_func = 1; |
| }else{ |
| wrong_num_args = 1; |
| } |
| }else{ |
| is_agg = pDef->xFunc==0; |
| } |
| #ifndef SQLITE_OMIT_AUTHORIZATION |
| if( pDef ){ |
| auth = sqlite3AuthCheck(pParse, SQLITE_FUNCTION, 0, pDef->zName, 0); |
| if( auth!=SQLITE_OK ){ |
| if( auth==SQLITE_DENY ){ |
| sqlite3ErrorMsg(pParse, "not authorized to use function: %s", |
| pDef->zName); |
| pNC->nErr++; |
| } |
| pExpr->op = TK_NULL; |
| return 1; |
| } |
| } |
| #endif |
| if( is_agg && !pNC->allowAgg ){ |
| sqlite3ErrorMsg(pParse, "misuse of aggregate function %.*s()", nId,zId); |
| pNC->nErr++; |
| is_agg = 0; |
| }else if( no_such_func ){ |
| sqlite3ErrorMsg(pParse, "no such function: %.*s", nId, zId); |
| pNC->nErr++; |
| }else if( wrong_num_args ){ |
| sqlite3ErrorMsg(pParse,"wrong number of arguments to function %.*s()", |
| nId, zId); |
| pNC->nErr++; |
| } |
| if( is_agg ){ |
| pExpr->op = TK_AGG_FUNCTION; |
| pNC->hasAgg = 1; |
| } |
| if( is_agg ) pNC->allowAgg = 0; |
| for(i=0; pNC->nErr==0 && i<n; i++){ |
| walkExprTree(pList->a[i].pExpr, nameResolverStep, pNC); |
| } |
| if( is_agg ) pNC->allowAgg = 1; |
| /* FIX ME: Compute pExpr->affinity based on the expected return |
| ** type of the function |
| */ |
| return is_agg; |
| } |
| #ifndef SQLITE_OMIT_SUBQUERY |
| case TK_SELECT: |
| case TK_EXISTS: |
| #endif |
| case TK_IN: { |
| if( pExpr->pSelect ){ |
| int nRef = pNC->nRef; |
| #ifndef SQLITE_OMIT_CHECK |
| if( pNC->isCheck ){ |
| sqlite3ErrorMsg(pParse,"subqueries prohibited in CHECK constraints"); |
| } |
| #endif |
| sqlite3SelectResolve(pParse, pExpr->pSelect, pNC); |
| assert( pNC->nRef>=nRef ); |
| if( nRef!=pNC->nRef ){ |
| ExprSetProperty(pExpr, EP_VarSelect); |
| } |
| } |
| break; |
| } |
| #ifndef SQLITE_OMIT_CHECK |
| case TK_VARIABLE: { |
| if( pNC->isCheck ){ |
| sqlite3ErrorMsg(pParse,"parameters prohibited in CHECK constraints"); |
| } |
| break; |
| } |
| #endif |
| } |
| return 0; |
| } |
| |
| /* |
| ** This routine walks an expression tree and resolves references to |
| ** table columns. Nodes of the form ID.ID or ID resolve into an |
| ** index to the table in the table list and a column offset. The |
| ** Expr.opcode for such nodes is changed to TK_COLUMN. The Expr.iTable |
| ** value is changed to the index of the referenced table in pTabList |
| ** plus the "base" value. The base value will ultimately become the |
| ** VDBE cursor number for a cursor that is pointing into the referenced |
| ** table. The Expr.iColumn value is changed to the index of the column |
| ** of the referenced table. The Expr.iColumn value for the special |
| ** ROWID column is -1. Any INTEGER PRIMARY KEY column is tried as an |
| ** alias for ROWID. |
| ** |
| ** Also resolve function names and check the functions for proper |
| ** usage. Make sure all function names are recognized and all functions |
| ** have the correct number of arguments. Leave an error message |
| ** in pParse->zErrMsg if anything is amiss. Return the number of errors. |
| ** |
| ** If the expression contains aggregate functions then set the EP_Agg |
| ** property on the expression. |
| */ |
| int sqlite3ExprResolveNames( |
| NameContext *pNC, /* Namespace to resolve expressions in. */ |
| Expr *pExpr /* The expression to be analyzed. */ |
| ){ |
| int savedHasAgg; |
| |
| if( pExpr==0 ) return 0; |
| #if SQLITE_MAX_EXPR_DEPTH>0 |
| { |
| int mxDepth = pNC->pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH]; |
| if( (pExpr->nHeight+pNC->pParse->nHeight)>mxDepth ){ |
| sqlite3ErrorMsg(pNC->pParse, |
| "Expression tree is too large (maximum depth %d)", mxDepth |
| ); |
| return 1; |
| } |
| pNC->pParse->nHeight += pExpr->nHeight; |
| } |
| #endif |
| savedHasAgg = pNC->hasAgg; |
| pNC->hasAgg = 0; |
| walkExprTree(pExpr, nameResolverStep, pNC); |
| #if SQLITE_MAX_EXPR_DEPTH>0 |
| pNC->pParse->nHeight -= pExpr->nHeight; |
| #endif |
| if( pNC->nErr>0 ){ |
| ExprSetProperty(pExpr, EP_Error); |
| } |
| if( pNC->hasAgg ){ |
| ExprSetProperty(pExpr, EP_Agg); |
| }else if( savedHasAgg ){ |
| pNC->hasAgg = 1; |
| } |
| return ExprHasProperty(pExpr, EP_Error); |
| } |
| |
| /* |
| ** A pointer instance of this structure is used to pass information |
| ** through walkExprTree into codeSubqueryStep(). |
| */ |
| typedef struct QueryCoder QueryCoder; |
| struct QueryCoder { |
| Parse *pParse; /* The parsing context */ |
| NameContext *pNC; /* Namespace of first enclosing query */ |
| }; |
| |
| #ifdef SQLITE_TEST |
| int sqlite3_enable_in_opt = 1; |
| #else |
| #define sqlite3_enable_in_opt 1 |
| #endif |
| |
| /* |
| ** Return true if the IN operator optimization is enabled and |
| ** the SELECT statement p exists and is of the |
| ** simple form: |
| ** |
| ** SELECT <column> FROM <table> |
| ** |
| ** If this is the case, it may be possible to use an existing table |
| ** or index instead of generating an epheremal table. |
| */ |
| #ifndef SQLITE_OMIT_SUBQUERY |
| static int isCandidateForInOpt(Select *p){ |
| SrcList *pSrc; |
| ExprList *pEList; |
| Table *pTab; |
| if( !sqlite3_enable_in_opt ) return 0; /* IN optimization must be enabled */ |
| if( p==0 ) return 0; /* right-hand side of IN is SELECT */ |
| if( p->pPrior ) return 0; /* Not a compound SELECT */ |
| if( p->isDistinct ) return 0; /* No DISTINCT keyword */ |
| if( p->isAgg ) return 0; /* Contains no aggregate functions */ |
| if( p->pGroupBy ) return 0; /* Has no GROUP BY clause */ |
| if( p->pLimit ) return 0; /* Has no LIMIT clause */ |
| if( p->pOffset ) return 0; |
| if( p->pWhere ) return 0; /* Has no WHERE clause */ |
| pSrc = p->pSrc; |
| if( pSrc==0 ) return 0; /* A single table in the FROM clause */ |
| if( pSrc->nSrc!=1 ) return 0; |
| if( pSrc->a[0].pSelect ) return 0; /* FROM clause is not a subquery */ |
| pTab = pSrc->a[0].pTab; |
| if( pTab==0 ) return 0; |
| if( pTab->pSelect ) return 0; /* FROM clause is not a view */ |
| if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */ |
| pEList = p->pEList; |
| if( pEList->nExpr!=1 ) return 0; /* One column in the result set */ |
| if( pEList->a[0].pExpr->op!=TK_COLUMN ) return 0; /* Result is a column */ |
| return 1; |
| } |
| #endif /* SQLITE_OMIT_SUBQUERY */ |
| |
| /* |
| ** This function is used by the implementation of the IN (...) operator. |
| ** It's job is to find or create a b-tree structure that may be used |
| ** either to test for membership of the (...) set or to iterate through |
| ** its members, skipping duplicates. |
| ** |
| ** The cursor opened on the structure (database table, database index |
| ** or ephermal table) is stored in pX->iTable before this function returns. |
| ** The returned value indicates the structure type, as follows: |
| ** |
| ** IN_INDEX_ROWID - The cursor was opened on a database table. |
| ** IN_INDEX_INDEX - The cursor was opened on a database index. |
| ** IN_INDEX_EPH - The cursor was opened on a specially created and |
| ** populated epheremal table. |
| ** |
| ** An existing structure may only be used if the SELECT is of the simple |
| ** form: |
| ** |
| ** SELECT <column> FROM <table> |
| ** |
| ** If the mustBeUnique parameter is false, the structure will be used |
| ** for fast set membership tests. In this case an epheremal table must |
| ** be used unless <column> is an INTEGER PRIMARY KEY or an index can |
| ** be found with <column> as its left-most column. |
| ** |
| ** If mustBeUnique is true, then the structure will be used to iterate |
| ** through the set members, skipping any duplicates. In this case an |
| ** epheremal table must be used unless the selected <column> is guaranteed |
| ** to be unique - either because it is an INTEGER PRIMARY KEY or it |
| ** is unique by virtue of a constraint or implicit index. |
| */ |
| #ifndef SQLITE_OMIT_SUBQUERY |
| int sqlite3FindInIndex(Parse *pParse, Expr *pX, int mustBeUnique){ |
| Select *p; |
| int eType = 0; |
| int iTab = pParse->nTab++; |
| |
| /* The follwing if(...) expression is true if the SELECT is of the |
| ** simple form: |
| ** |
| ** SELECT <column> FROM <table> |
| ** |
| ** If this is the case, it may be possible to use an existing table |
| ** or index instead of generating an epheremal table. |
| */ |
| p = pX->pSelect; |
| if( isCandidateForInOpt(p) ){ |
| sqlite3 *db = pParse->db; |
| Index *pIdx; |
| Expr *pExpr = p->pEList->a[0].pExpr; |
| int iCol = pExpr->iColumn; |
| Vdbe *v = sqlite3GetVdbe(pParse); |
| |
| /* This function is only called from two places. In both cases the vdbe |
| ** has already been allocated. So assume sqlite3GetVdbe() is always |
| ** successful here. |
| */ |
| assert(v); |
| if( iCol<0 ){ |
| int iMem = ++pParse->nMem; |
| int iAddr; |
| Table *pTab = p->pSrc->a[0].pTab; |
| int iDb = sqlite3SchemaToIndex(db, pTab->pSchema); |
| sqlite3VdbeUsesBtree(v, iDb); |
| |
| iAddr = sqlite3VdbeAddOp1(v, OP_If, iMem); |
| sqlite3VdbeAddOp2(v, OP_Integer, 1, iMem); |
| |
| sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); |
| eType = IN_INDEX_ROWID; |
| |
| sqlite3VdbeJumpHere(v, iAddr); |
| }else{ |
| /* The collation sequence used by the comparison. If an index is to |
| ** be used in place of a temp-table, it must be ordered according |
| ** to this collation sequence. |
| */ |
| CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pExpr); |
| |
| /* Check that the affinity that will be used to perform the |
| ** comparison is the same as the affinity of the column. If |
| ** it is not, it is not possible to use any index. |
| */ |
| Table *pTab = p->pSrc->a[0].pTab; |
| char aff = comparisonAffinity(pX); |
| int affinity_ok = (pTab->aCol[iCol].affinity==aff||aff==SQLITE_AFF_NONE); |
| |
| for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){ |
| if( (pIdx->aiColumn[0]==iCol) |
| && (pReq==sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], -1, 0)) |
| && (!mustBeUnique || (pIdx->nColumn==1 && pIdx->onError!=OE_None)) |
| ){ |
| int iDb; |
| int iMem = ++pParse->nMem; |
| int iAddr; |
| char *pKey; |
| |
| pKey = (char *)sqlite3IndexKeyinfo(pParse, pIdx); |
| iDb = sqlite3SchemaToIndex(db, pIdx->pSchema); |
| sqlite3VdbeUsesBtree(v, iDb); |
| |
| iAddr = sqlite3VdbeAddOp1(v, OP_If, iMem); |
| sqlite3VdbeAddOp2(v, OP_Integer, 1, iMem); |
| |
| sqlite3VdbeAddOp2(v, OP_SetNumColumns, 0, pIdx->nColumn); |
| sqlite3VdbeAddOp4(v, OP_OpenRead, iTab, pIdx->tnum, iDb, |
| pKey,P4_KEYINFO_HANDOFF); |
| VdbeComment((v, "%s", pIdx->zName)); |
| eType = IN_INDEX_INDEX; |
| |
| sqlite3VdbeJumpHere(v, iAddr); |
| } |
| } |
| } |
| } |
| |
| if( eType==0 ){ |
| sqlite3CodeSubselect(pParse, pX); |
| eType = IN_INDEX_EPH; |
| }else{ |
| pX->iTable = iTab; |
| } |
| return eType; |
| } |
| #endif |
| |
| /* |
| ** Generate code for scalar subqueries used as an expression |
| ** and IN operators. Examples: |
| ** |
| ** (SELECT a FROM b) -- subquery |
| ** EXISTS (SELECT a FROM b) -- EXISTS subquery |
| ** x IN (4,5,11) -- IN operator with list on right-hand side |
| ** x IN (SELECT a FROM b) -- IN operator with subquery on the right |
| ** |
| ** The pExpr parameter describes the expression that contains the IN |
| ** operator or subquery. |
| */ |
| #ifndef SQLITE_OMIT_SUBQUERY |
| void sqlite3CodeSubselect(Parse *pParse, Expr *pExpr){ |
| int testAddr = 0; /* One-time test address */ |
| Vdbe *v = sqlite3GetVdbe(pParse); |
| if( v==0 ) return; |
| |
| |
| /* This code must be run in its entirety every time it is encountered |
| ** if any of the following is true: |
| ** |
| ** * The right-hand side is a correlated subquery |
| ** * The right-hand side is an expression list containing variables |
| ** * We are inside a trigger |
| ** |
| ** If all of the above are false, then we can run this code just once |
| ** save the results, and reuse the same result on subsequent invocations. |
| */ |
| if( !ExprHasAnyProperty(pExpr, EP_VarSelect) && !pParse->trigStack ){ |
| int mem = ++pParse->nMem; |
| sqlite3VdbeAddOp1(v, OP_If, mem); |
| testAddr = sqlite3VdbeAddOp2(v, OP_Integer, 1, mem); |
| assert( testAddr>0 || pParse->db->mallocFailed ); |
| } |
| |
| switch( pExpr->op ){ |
| case TK_IN: { |
| char affinity; |
| KeyInfo keyInfo; |
| int addr; /* Address of OP_OpenEphemeral instruction */ |
| |
| affinity = sqlite3ExprAffinity(pExpr->pLeft); |
| |
| /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)' |
| ** expression it is handled the same way. A virtual table is |
| ** filled with single-field index keys representing the results |
| ** from the SELECT or the <exprlist>. |
| ** |
| ** If the 'x' expression is a column value, or the SELECT... |
| ** statement returns a column value, then the affinity of that |
| ** column is used to build the index keys. If both 'x' and the |
| ** SELECT... statement are columns, then numeric affinity is used |
| ** if either column has NUMERIC or INTEGER affinity. If neither |
| ** 'x' nor the SELECT... statement are columns, then numeric affinity |
| ** is used. |
| */ |
| pExpr->iTable = pParse->nTab++; |
| addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, 1); |
| memset(&keyInfo, 0, sizeof(keyInfo)); |
| keyInfo.nField = 1; |
| |
| if( pExpr->pSelect ){ |
| /* Case 1: expr IN (SELECT ...) |
| ** |
| ** Generate code to write the results of the select into the temporary |
| ** table allocated and opened above. |
| */ |
| SelectDest dest; |
| ExprList *pEList; |
| |
| sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable); |
| dest.affinity = (int)affinity; |
| assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable ); |
| if( sqlite3Select(pParse, pExpr->pSelect, &dest, 0, 0, 0, 0) ){ |
| return; |
| } |
| pEList = pExpr->pSelect->pEList; |
| if( pEList && pEList->nExpr>0 ){ |
| keyInfo.aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft, |
| pEList->a[0].pExpr); |
| } |
| }else if( pExpr->pList ){ |
| /* Case 2: expr IN (exprlist) |
| ** |
| ** For each expression, build an index key from the evaluation and |
| ** store it in the temporary table. If <expr> is a column, then use |
| ** that columns affinity when building index keys. If <expr> is not |
| ** a column, use numeric affinity. |
| */ |
| int i; |
| ExprList *pList = pExpr->pList; |
| struct ExprList_item *pItem; |
| int r1, r2; |
| |
| if( !affinity ){ |
| affinity = SQLITE_AFF_NONE; |
| } |
| keyInfo.aColl[0] = pExpr->pLeft->pColl; |
| |
| /* Loop through each expression in <exprlist>. */ |
| r1 = sqlite3GetTempReg(pParse); |
| r2 = sqlite3GetTempReg(pParse); |
| for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ |
| Expr *pE2 = pItem->pExpr; |
| |
| /* If the expression is not constant then we will need to |
| ** disable the test that was generated above that makes sure |
| ** this code only executes once. Because for a non-constant |
| ** expression we need to rerun this code each time. |
| */ |
| if( testAddr && !sqlite3ExprIsConstant(pE2) ){ |
| sqlite3VdbeChangeToNoop(v, testAddr-1, 2); |
| testAddr = 0; |
| } |
| |
| /* Evaluate the expression and insert it into the temp table */ |
| pParse->disableColCache++; |
| sqlite3ExprCode(pParse, pE2, r1); |
| assert( pParse->disableColCache>0 ); |
| pParse->disableColCache--; |
| sqlite3VdbeAddOp4(v, OP_MakeRecord, r1, 1, r2, &affinity, 1); |
| sqlite3ExprCacheAffinityChange(pParse, r1, 1); |
| sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2); |
| } |
| sqlite3ReleaseTempReg(pParse, r1); |
| sqlite3ReleaseTempReg(pParse, r2); |
| } |
| sqlite3VdbeChangeP4(v, addr, (void *)&keyInfo, P4_KEYINFO); |
| break; |
| } |
| |
| case TK_EXISTS: |
| case TK_SELECT: { |
| /* This has to be a scalar SELECT. Generate code to put the |
| ** value of this select in a memory cell and record the number |
| ** of the memory cell in iColumn. |
| */ |
| static const Token one = { (u8*)"1", 0, 1 }; |
| Select *pSel; |
| SelectDest dest; |
| |
| pSel = pExpr->pSelect; |
| sqlite3SelectDestInit(&dest, 0, ++pParse->nMem); |
| if( pExpr->op==TK_SELECT ){ |
| dest.eDest = SRT_Mem; |
| sqlite3VdbeAddOp2(v, OP_Null, 0, dest.iParm); |
| VdbeComment((v, "Init subquery result")); |
| }else{ |
| dest.eDest = SRT_Exists; |
| sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iParm); |
| VdbeComment((v, "Init EXISTS result")); |
| } |
| sqlite3ExprDelete(pSel->pLimit); |
| pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, &one); |
| if( sqlite3Select(pParse, pSel, &dest, 0, 0, 0, 0) ){ |
| return; |
| } |
| pExpr->iColumn = dest.iParm; |
| break; |
| } |
| } |
| |
| if( testAddr ){ |
| sqlite3VdbeJumpHere(v, testAddr-1); |
| } |
| |
| return; |
| } |
| #endif /* SQLITE_OMIT_SUBQUERY */ |
| |
| /* |
| ** Duplicate an 8-byte value |
| */ |
| static char *dup8bytes(Vdbe *v, const char *in){ |
| char *out = sqlite3DbMallocRaw(sqlite3VdbeDb(v), 8); |
| if( out ){ |
| memcpy(out, in, 8); |
| } |
| return out; |
| } |
| |
| /* |
| ** Generate an instruction that will put the floating point |
| ** value described by z[0..n-1] into register iMem. |
| ** |
| ** The z[] string will probably not be zero-terminated. But the |
| ** z[n] character is guaranteed to be something that does not look |
| ** like the continuation of the number. |
| */ |
| static void codeReal(Vdbe *v, const char *z, int n, int negateFlag, int iMem){ |
| assert( z || v==0 || sqlite3VdbeDb(v)->mallocFailed ); |
| if( z ){ |
| double value; |
| char *zV; |
| assert( !isdigit(z[n]) ); |
| sqlite3AtoF(z, &value); |
| if( negateFlag ) value = -value; |
| zV = dup8bytes(v, (char*)&value); |
| sqlite3VdbeAddOp4(v, OP_Real, 0, iMem, 0, zV, P4_REAL); |
| } |
| } |
| |
| |
| /* |
| ** Generate an instruction that will put the integer describe by |
| ** text z[0..n-1] into register iMem. |
| ** |
| ** The z[] string will probably not be zero-terminated. But the |
| ** z[n] character is guaranteed to be something that does not look |
| ** like the continuation of the number. |
| */ |
| static void codeInteger(Vdbe *v, const char *z, int n, int negFlag, int iMem){ |
| assert( z || v==0 || sqlite3VdbeDb(v)->mallocFailed ); |
| if( z ){ |
| int i; |
| assert( !isdigit(z[n]) ); |
| if( sqlite3GetInt32(z, &i) ){ |
| if( negFlag ) i = -i; |
| sqlite3VdbeAddOp2(v, OP_Integer, i, iMem); |
| }else if( sqlite3FitsIn64Bits(z, negFlag) ){ |
| i64 value; |
| char *zV; |
| sqlite3Atoi64(z, &value); |
| if( negFlag ) value = -value; |
| zV = dup8bytes(v, (char*)&value); |
| sqlite3VdbeAddOp4(v, OP_Int64, 0, iMem, 0, zV, P4_INT64); |
| }else{ |
| codeReal(v, z, n, negFlag, iMem); |
| } |
| } |
| } |
| |
| |
| /* |
| ** Generate code that will extract the iColumn-th column from |
| ** table pTab and store the column value in a register. An effort |
| ** is made to store the column value in register iReg, but this is |
| ** not guaranteed. The location of the column value is returned. |
| ** |
| ** There must be an open cursor to pTab in iTable when this routine |
| ** is called. If iColumn<0 then code is generated that extracts the rowid. |
| ** |
| ** This routine might attempt to reuse the value of the column that |
| ** has already been loaded into a register. The value will always |
| ** be used if it has not undergone any affinity changes. But if |
| ** an affinity change has occurred, then the cached value will only be |
| ** used if allowAffChng is true. |
| */ |
| int sqlite3ExprCodeGetColumn( |
| Parse *pParse, /* Parsing and code generating context */ |
| Table *pTab, /* Description of the table we are reading from */ |
| int iColumn, /* Index of the table column */ |
| int iTable, /* The cursor pointing to the table */ |
| int iReg, /* Store results here */ |
| int allowAffChng /* True if prior affinity changes are OK */ |
| ){ |
| Vdbe *v = pParse->pVdbe; |
| int i; |
| struct yColCache *p; |
| |
| for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){ |
| if( p->iTable==iTable && p->iColumn==iColumn |
| && (!p->affChange || allowAffChng) ){ |
| #if 0 |
| sqlite3VdbeAddOp0(v, OP_Noop); |
| VdbeComment((v, "OPT: tab%d.col%d -> r%d", iTable, iColumn, p->iReg)); |
| #endif |
| return p->iReg; |
| } |
| } |
| assert( v!=0 ); |
| if( iColumn<0 ){ |
| int op = (pTab && IsVirtual(pTab)) ? OP_VRowid : OP_Rowid; |
| sqlite3VdbeAddOp2(v, op, iTable, iReg); |
| }else if( pTab==0 ){ |
| sqlite3VdbeAddOp3(v, OP_Column, iTable, iColumn, iReg); |
| }else{ |
| int op = IsVirtual(pTab) ? OP_VColumn : OP_Column; |
| sqlite3VdbeAddOp3(v, op, iTable, iColumn, iReg); |
| sqlite3ColumnDefault(v, pTab, iColumn); |
| #ifndef SQLITE_OMIT_FLOATING_POINT |
| if( pTab->aCol[iColumn].affinity==SQLITE_AFF_REAL ){ |
| sqlite3VdbeAddOp1(v, OP_RealAffinity, iReg); |
| } |
| #endif |
| } |
| if( pParse->disableColCache==0 ){ |
| i = pParse->iColCache; |
| p = &pParse->aColCache[i]; |
| p->iTable = iTable; |
| p->iColumn = iColumn; |
| p->iReg = iReg; |
| p->affChange = 0; |
| i++; |
| if( i>=ArraySize(pParse->aColCache) ) i = 0; |
| if( i>pParse->nColCache ) pParse->nColCache = i; |
| pParse->iColCache = i; |
| } |
| return iReg; |
| } |
| |
| /* |
| ** Clear all column cache entries associated with the vdbe |
| ** cursor with cursor number iTable. |
| */ |
| void sqlite3ExprClearColumnCache(Parse *pParse, int iTable){ |
| if( iTable<0 ){ |
| pParse->nColCache = 0; |
| pParse->iColCache = 0; |
| }else{ |
| int i; |
| for(i=0; i<pParse->nColCache; i++){ |
| if( pParse->aColCache[i].iTable==iTable ){ |
| testcase( i==pParse->nColCache-1 ); |
| pParse->aColCache[i] = pParse->aColCache[--pParse->nColCache]; |
| pParse->iColCache = pParse->nColCache; |
| } |
| } |
| } |
| } |
| |
| /* |
| ** Record the fact that an affinity change has occurred on iCount |
| ** registers starting with iStart. |
| */ |
| void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){ |
| int iEnd = iStart + iCount - 1; |
| int i; |
| for(i=0; i<pParse->nColCache; i++){ |
| int r = pParse->aColCache[i].iReg; |
| if( r>=iStart && r<=iEnd ){ |
| pParse->aColCache[i].affChange = 1; |
| } |
| } |
| } |
| |
| /* |
| ** Generate code to moves content from one register to another. |
| ** Keep the column cache up-to-date. |
| */ |
| void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo){ |
| int i; |
| if( iFrom==iTo ) return; |
| sqlite3VdbeAddOp2(pParse->pVdbe, OP_Move, iFrom, iTo); |
| for(i=0; i<pParse->nColCache; i++){ |
| if( pParse->aColCache[i].iReg==iFrom ){ |
| pParse->aColCache[i].iReg = iTo; |
| } |
| } |
| } |
| |
| /* |
| ** Return true if any register in the range iFrom..iTo (inclusive) |
| ** is used as part of the column cache. |
| */ |
| static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){ |
| int i; |
| for(i=0; i<pParse->nColCache; i++){ |
| int r = pParse->aColCache[i].iReg; |
| if( r>=iFrom && r<=iTo ) return 1; |
| } |
| return 0; |
| } |
| |
| /* |
| ** Theres is a value in register iCurrent. We ultimately want |
| ** the value to be in register iTarget. It might be that |
| ** iCurrent and iTarget are the same register. |
| ** |
| ** We are going to modify the value, so we need to make sure it |
| ** is not a cached register. If iCurrent is a cached register, |
| ** then try to move the value over to iTarget. If iTarget is a |
| ** cached register, then clear the corresponding cache line. |
| ** |
| ** Return the register that the value ends up in. |
| */ |
| int sqlite3ExprWritableRegister(Parse *pParse, int iCurrent, int iTarget){ |
| int i; |
| assert( pParse->pVdbe!=0 ); |
| if( !usedAsColumnCache(pParse, iCurrent, iCurrent) ){ |
| return iCurrent; |
| } |
| if( iCurrent!=iTarget ){ |
| sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, iCurrent, iTarget); |
| } |
| for(i=0; i<pParse->nColCache; i++){ |
| if( pParse->aColCache[i].iReg==iTarget ){ |
| pParse->aColCache[i] = pParse->aColCache[--pParse->nColCache]; |
| pParse->iColCache = pParse->nColCache; |
| } |
| } |
| return iTarget; |
| } |
| |
| /* |
| ** If the last instruction coded is an ephemeral copy of any of |
| ** the registers in the nReg registers beginning with iReg, then |
| ** convert the last instruction from OP_SCopy to OP_Copy. |
| */ |
| void sqlite3ExprHardCopy(Parse *pParse, int iReg, int nReg){ |
| int addr; |
| VdbeOp *pOp; |
| Vdbe *v; |
| |
| v = pParse->pVdbe; |
| addr = sqlite3VdbeCurrentAddr(v); |
| pOp = sqlite3VdbeGetOp(v, addr-1); |
| assert( pOp || pParse->db->mallocFailed ); |
| if( pOp && pOp->opcode==OP_SCopy && pOp->p1>=iReg && pOp->p1<iReg+nReg ){ |
| pOp->opcode = OP_Copy; |
| } |
| } |
| |
| /* |
| ** Generate code into the current Vdbe to evaluate the given |
| ** expression. Attempt to store the results in register "target". |
| ** Return the register where results are stored. |
| ** |
| ** With this routine, there is no guaranteed that results will |
| ** be stored in target. The result might be stored in some other |
| ** register if it is convenient to do so. The calling function |
| ** must check the return code and move the results to the desired |
| ** register. |
| */ |
| int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){ |
| Vdbe *v = pParse->pVdbe; /* The VM under construction */ |
| int op; /* The opcode being coded */ |
| int inReg = target; /* Results stored in register inReg */ |
| int regFree1 = 0; /* If non-zero free this temporary register */ |
| int regFree2 = 0; /* If non-zero free this temporary register */ |
| int r1, r2, r3, r4; /* Various register numbers */ |
| |
| assert( v!=0 || pParse->db->mallocFailed ); |
| assert( target>0 && target<=pParse->nMem ); |
| if( v==0 ) return 0; |
| |
| if( pExpr==0 ){ |
| op = TK_NULL; |
| }else{ |
| op = pExpr->op; |
| } |
| switch( op ){ |
| case TK_AGG_COLUMN: { |
| AggInfo *pAggInfo = pExpr->pAggInfo; |
| struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg]; |
| if( !pAggInfo->directMode ){ |
| assert( pCol->iMem>0 ); |
| inReg = pCol->iMem; |
| break; |
| }else if( pAggInfo->useSortingIdx ){ |
| sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdx, |
| pCol->iSorterColumn, target); |
| break; |
| } |
| /* Otherwise, fall thru into the TK_COLUMN case */ |
| } |
| case TK_COLUMN: { |
| if( pExpr->iTable<0 ){ |
| /* This only happens when coding check constraints */ |
| assert( pParse->ckBase>0 ); |
| inReg = pExpr->iColumn + pParse->ckBase; |
| }else{ |
| testcase( (pExpr->flags & EP_AnyAff)!=0 ); |
| inReg = sqlite3ExprCodeGetColumn(pParse, pExpr->pTab, |
| pExpr->iColumn, pExpr->iTable, target, |
| pExpr->flags & EP_AnyAff); |
| } |
| break; |
| } |
| case TK_INTEGER: { |
| codeInteger(v, (char*)pExpr->token.z, pExpr->token.n, 0, target); |
| break; |
| } |
| case TK_FLOAT: { |
| codeReal(v, (char*)pExpr->token.z, pExpr->token.n, 0, target); |
| break; |
| } |
| case TK_STRING: { |
| sqlite3DequoteExpr(pParse->db, pExpr); |
| sqlite3VdbeAddOp4(v,OP_String8, 0, target, 0, |
| (char*)pExpr->token.z, pExpr->token.n); |
| break; |
| } |
| case TK_NULL: { |
| sqlite3VdbeAddOp2(v, OP_Null, 0, target); |
| break; |
| } |
| #ifndef SQLITE_OMIT_BLOB_LITERAL |
| case TK_BLOB: { |
| int n; |
| const char *z; |
| char *zBlob; |
| assert( pExpr->token.n>=3 ); |
| assert( pExpr->token.z[0]=='x' || pExpr->token.z[0]=='X' ); |
| assert( pExpr->token.z[1]=='\'' ); |
| assert( pExpr->token.z[pExpr->token.n-1]=='\'' ); |
| n = pExpr->token.n - 3; |
| z = (char*)pExpr->token.z + 2; |
| zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n); |
| sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC); |
| break; |
| } |
| #endif |
| case TK_VARIABLE: { |
| sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iTable, target); |
| if( pExpr->token.n>1 ){ |
| sqlite3VdbeChangeP4(v, -1, (char*)pExpr->token.z, pExpr->token.n); |
| } |
| break; |
| } |
| case TK_REGISTER: { |
| inReg = pExpr->iTable; |
| break; |
| } |
| #ifndef SQLITE_OMIT_CAST |
| case TK_CAST: { |
| /* Expressions of the form: CAST(pLeft AS token) */ |
| int aff, to_op; |
| inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); |
| aff = sqlite3AffinityType(&pExpr->token); |
| to_op = aff - SQLITE_AFF_TEXT + OP_ToText; |
| assert( to_op==OP_ToText || aff!=SQLITE_AFF_TEXT ); |
| assert( to_op==OP_ToBlob || aff!=SQLITE_AFF_NONE ); |
| assert( to_op==OP_ToNumeric || aff!=SQLITE_AFF_NUMERIC ); |
| assert( to_op==OP_ToInt || aff!=SQLITE_AFF_INTEGER ); |
| assert( to_op==OP_ToReal || aff!=SQLITE_AFF_REAL ); |
| testcase( to_op==OP_ToText ); |
| testcase( to_op==OP_ToBlob ); |
| testcase( to_op==OP_ToNumeric ); |
| testcase( to_op==OP_ToInt ); |
| testcase( to_op==OP_ToReal ); |
| sqlite3VdbeAddOp1(v, to_op, inReg); |
| testcase( usedAsColumnCache(pParse, inReg, inReg) ); |
| sqlite3ExprCacheAffinityChange(pParse, inReg, 1); |
| break; |
| } |
| #endif /* SQLITE_OMIT_CAST */ |
| case TK_LT: |
| case TK_LE: |
| case TK_GT: |
| case TK_GE: |
| case TK_NE: |
| case TK_EQ: { |
| assert( TK_LT==OP_Lt ); |
| assert( TK_LE==OP_Le ); |
| assert( TK_GT==OP_Gt ); |
| assert( TK_GE==OP_Ge ); |
| assert( TK_EQ==OP_Eq ); |
| assert( TK_NE==OP_Ne ); |
| testcase( op==TK_LT ); |
| testcase( op==TK_LE ); |
| testcase( op==TK_GT ); |
| testcase( op==TK_GE ); |
| testcase( op==TK_EQ ); |
| testcase( op==TK_NE ); |
| codeCompareOperands(pParse, pExpr->pLeft, &r1, ®Free1, |
| pExpr->pRight, &r2, ®Free2); |
| codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, |
| r1, r2, inReg, SQLITE_STOREP2); |
| testcase( regFree1==0 ); |
| testcase( regFree2==0 ); |
| break; |
| } |
| case TK_AND: |
| case TK_OR: |
| case TK_PLUS: |
| case TK_STAR: |
| case TK_MINUS: |
| case TK_REM: |
| case TK_BITAND: |
| case TK_BITOR: |
| case TK_SLASH: |
| case TK_LSHIFT: |
| case TK_RSHIFT: |
| case TK_CONCAT: { |
| assert( TK_AND==OP_And ); |
| assert( TK_OR==OP_Or ); |
| assert( TK_PLUS==OP_Add ); |
| assert( TK_MINUS==OP_Subtract ); |
| assert( TK_REM==OP_Remainder ); |
| assert( TK_BITAND==OP_BitAnd ); |
| assert( TK_BITOR==OP_BitOr ); |
| assert( TK_SLASH==OP_Divide ); |
| assert( TK_LSHIFT==OP_ShiftLeft ); |
| assert( TK_RSHIFT==OP_ShiftRight ); |
| assert( TK_CONCAT==OP_Concat ); |
| testcase( op==TK_AND ); |
| testcase( op==TK_OR ); |
| testcase( op==TK_PLUS ); |
| testcase( op==TK_MINUS ); |
| testcase( op==TK_REM ); |
| testcase( op==TK_BITAND ); |
| testcase( op==TK_BITOR ); |
| testcase( op==TK_SLASH ); |
| testcase( op==TK_LSHIFT ); |
| testcase( op==TK_RSHIFT ); |
| testcase( op==TK_CONCAT ); |
| r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); |
| r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); |
| sqlite3VdbeAddOp3(v, op, r2, r1, target); |
| testcase( regFree1==0 ); |
| testcase( regFree2==0 ); |
| break; |
| } |
| case TK_UMINUS: { |
| Expr *pLeft = pExpr->pLeft; |
| assert( pLeft ); |
| if( pLeft->op==TK_FLOAT || pLeft->op==TK_INTEGER ){ |
| Token *p = &pLeft->token; |
| if( pLeft->op==TK_FLOAT ){ |
| codeReal(v, (char*)p->z, p->n, 1, target); |
| }else{ |
| codeInteger(v, (char*)p->z, p->n, 1, target); |
| } |
| }else{ |
| regFree1 = r1 = sqlite3GetTempReg(pParse); |
| sqlite3VdbeAddOp2(v, OP_Integer, 0, r1); |
| r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free2); |
| sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target); |
| testcase( regFree2==0 ); |
| } |
| inReg = target; |
| break; |
| } |
| case TK_BITNOT: |
| case TK_NOT: { |
| assert( TK_BITNOT==OP_BitNot ); |
| assert( TK_NOT==OP_Not ); |
| testcase( op==TK_BITNOT ); |
| testcase( op==TK_NOT ); |
| inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); |
| testcase( inReg==target ); |
| testcase( usedAsColumnCache(pParse, inReg, inReg) ); |
| inReg = sqlite3ExprWritableRegister(pParse, inReg, target); |
| sqlite3VdbeAddOp1(v, op, inReg); |
| break; |
| } |
| case TK_ISNULL: |
| case TK_NOTNULL: { |
| int addr; |
| assert( TK_ISNULL==OP_IsNull ); |
| assert( TK_NOTNULL==OP_NotNull ); |
| testcase( op==TK_ISNULL ); |
| testcase( op==TK_NOTNULL ); |
| sqlite3VdbeAddOp2(v, OP_Integer, 1, target); |
| r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); |
| testcase( regFree1==0 ); |
| addr = sqlite3VdbeAddOp1(v, op, r1); |
| sqlite3VdbeAddOp2(v, OP_AddImm, target, -1); |
| sqlite3VdbeJumpHere(v, addr); |
| break; |
| } |
| case TK_AGG_FUNCTION: { |
| AggInfo *pInfo = pExpr->pAggInfo; |
| if( pInfo==0 ){ |
| sqlite3ErrorMsg(pParse, "misuse of aggregate: %T", |
| &pExpr->span); |
| }else{ |
| inReg = pInfo->aFunc[pExpr->iAgg].iMem; |
| } |
| break; |
| } |
| case TK_CONST_FUNC: |
| case TK_FUNCTION: { |
| ExprList *pList = pExpr->pList; |
| int nExpr = pList ? pList->nExpr : 0; |
| FuncDef *pDef; |
| int nId; |
| const char *zId; |
| int constMask = 0; |
| int i; |
| sqlite3 *db = pParse->db; |
| u8 enc = ENC(db); |
| CollSeq *pColl = 0; |
| |
| testcase( op==TK_CONST_FUNC ); |
| testcase( op==TK_FUNCTION ); |
| zId = (char*)pExpr->token.z; |
| nId = pExpr->token.n; |
| pDef = sqlite3FindFunction(pParse->db, zId, nId, nExpr, enc, 0); |
| assert( pDef!=0 ); |
| if( pList ){ |
| nExpr = pList->nExpr; |
| r1 = sqlite3GetTempRange(pParse, nExpr); |
| sqlite3ExprCodeExprList(pParse, pList, r1, 1); |
| }else{ |
| nExpr = r1 = 0; |
| } |
| #ifndef SQLITE_OMIT_VIRTUALTABLE |
| /* Possibly overload the function if the first argument is |
| ** a virtual table column. |
| ** |
| ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the |
| ** second argument, not the first, as the argument to test to |
| ** see if it is a column in a virtual table. This is done because |
| ** the left operand of infix functions (the operand we want to |
| ** control overloading) ends up as the second argument to the |
| ** function. The expression "A glob B" is equivalent to |
| ** "glob(B,A). We want to use the A in "A glob B" to test |
| ** for function overloading. But we use the B term in "glob(B,A)". |
| */ |
| if( nExpr>=2 && (pExpr->flags & EP_InfixFunc) ){ |
| pDef = sqlite3VtabOverloadFunction(db, pDef, nExpr, pList->a[1].pExpr); |
| }else if( nExpr>0 ){ |
| pDef = sqlite3VtabOverloadFunction(db, pDef, nExpr, pList->a[0].pExpr); |
| } |
| #endif |
| for(i=0; i<nExpr && i<32; i++){ |
| if( sqlite3ExprIsConstant(pList->a[i].pExpr) ){ |
| constMask |= (1<<i); |
| } |
| if( pDef->needCollSeq && !pColl ){ |
| pColl = sqlite3ExprCollSeq(pParse, pList->a[i].pExpr); |
| } |
| } |
| if( pDef->needCollSeq ){ |
| if( !pColl ) pColl = pParse->db->pDfltColl; |
| sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); |
| } |
| sqlite3VdbeAddOp4(v, OP_Function, constMask, r1, target, |
| (char*)pDef, P4_FUNCDEF); |
| sqlite3VdbeChangeP5(v, nExpr); |
| if( nExpr ){ |
| sqlite3ReleaseTempRange(pParse, r1, nExpr); |
| } |
| sqlite3ExprCacheAffinityChange(pParse, r1, nExpr); |
| break; |
| } |
| #ifndef SQLITE_OMIT_SUBQUERY |
| case TK_EXISTS: |
| case TK_SELECT: { |
| testcase( op==TK_EXISTS ); |
| testcase( op==TK_SELECT ); |
| if( pExpr->iColumn==0 ){ |
| sqlite3CodeSubselect(pParse, pExpr); |
| } |
| inReg = pExpr->iColumn; |
| break; |
| } |
| case TK_IN: { |
| int j1, j2, j3, j4, j5; |
| char affinity; |
| int eType; |
| |
| eType = sqlite3FindInIndex(pParse, pExpr, 0); |
| |
| /* Figure out the affinity to use to create a key from the results |
| ** of the expression. affinityStr stores a static string suitable for |
| ** P4 of OP_MakeRecord. |
| */ |
| affinity = comparisonAffinity(pExpr); |
| |
| sqlite3VdbeAddOp2(v, OP_Integer, 1, target); |
| |
| /* Code the <expr> from "<expr> IN (...)". The temporary table |
| ** pExpr->iTable contains the values that make up the (...) set. |
| */ |
| r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); |
| testcase( regFree1==0 ); |
| j1 = sqlite3VdbeAddOp1(v, OP_NotNull, r1); |
| sqlite3VdbeAddOp2(v, OP_Null, 0, target); |
| j2 = sqlite3VdbeAddOp0(v, OP_Goto); |
| sqlite3VdbeJumpHere(v, j1); |
| if( eType==IN_INDEX_ROWID ){ |
| j3 = sqlite3VdbeAddOp1(v, OP_MustBeInt, r1); |
| j4 = sqlite3VdbeAddOp3(v, OP_NotExists, pExpr->iTable, 0, r1); |
| j5 = sqlite3VdbeAddOp0(v, OP_Goto); |
| sqlite3VdbeJumpHere(v, j3); |
| sqlite3VdbeJumpHere(v, j4); |
| }else{ |
| r2 = regFree2 = sqlite3GetTempReg(pParse); |
| sqlite3VdbeAddOp4(v, OP_MakeRecord, r1, 1, r2, &affinity, 1); |
| sqlite3ExprCacheAffinityChange(pParse, r1, 1); |
| j5 = sqlite3VdbeAddOp3(v, OP_Found, pExpr->iTable, 0, r2); |
| } |
| sqlite3VdbeAddOp2(v, OP_AddImm, target, -1); |
| sqlite3VdbeJumpHere(v, j2); |
| sqlite3VdbeJumpHere(v, j5); |
| break; |
| } |
| #endif |
| /* |
| ** x BETWEEN y AND z |
| ** |
| ** This is equivalent to |
| ** |
| ** x>=y AND x<=z |
| ** |
| ** X is stored in pExpr->pLeft. |
| ** Y is stored in pExpr->pList->a[0].pExpr. |
| ** Z is stored in pExpr->pList->a[1].pExpr. |
| */ |
| case TK_BETWEEN: { |
| Expr *pLeft = pExpr->pLeft; |
| struct ExprList_item *pLItem = pExpr->pList->a; |
| Expr *pRight = pLItem->pExpr; |
| |
| codeCompareOperands(pParse, pLeft, &r1, ®Free1, |
| pRight, &r2, ®Free2); |
| testcase( regFree1==0 ); |
| testcase( regFree2==0 ); |
| r3 = sqlite3GetTempReg(pParse); |
| r4 = sqlite3GetTempReg(pParse); |
| codeCompare(pParse, pLeft, pRight, OP_Ge, |
| r1, r2, r3, SQLITE_STOREP2); |
| pLItem++; |
| pRight = pLItem->pExpr; |
| sqlite3ReleaseTempReg(pParse, regFree2); |
| r2 = sqlite3ExprCodeTemp(pParse, pRight, ®Free2); |
| testcase( regFree2==0 ); |
| codeCompare(pParse, pLeft, pRight, OP_Le, r1, r2, r4, SQLITE_STOREP2); |
| sqlite3VdbeAddOp3(v, OP_And, r3, r4, target); |
| sqlite3ReleaseTempReg(pParse, r3); |
| sqlite3ReleaseTempReg(pParse, r4); |
| break; |
| } |
| case TK_UPLUS: { |
| inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); |
| break; |
| } |
| |
| /* |
| ** Form A: |
| ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END |
| ** |
| ** Form B: |
| ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END |
| ** |
| ** Form A is can be transformed into the equivalent form B as follows: |
| ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ... |
| ** WHEN x=eN THEN rN ELSE y END |
| ** |
| ** X (if it exists) is in pExpr->pLeft. |
| ** Y is in pExpr->pRight. The Y is also optional. If there is no |
| ** ELSE clause and no other term matches, then the result of the |
| ** exprssion is NULL. |
| ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1]. |
| ** |
| ** The result of the expression is the Ri for the first matching Ei, |
| ** or if there is no matching Ei, the ELSE term Y, or if there is |
| ** no ELSE term, NULL. |
| */ |
| case TK_CASE: { |
| int endLabel; /* GOTO label for end of CASE stmt */ |
| int nextCase; /* GOTO label for next WHEN clause */ |
| int nExpr; /* 2x number of WHEN terms */ |
| int i; /* Loop counter */ |
| ExprList *pEList; /* List of WHEN terms */ |
| struct ExprList_item *aListelem; /* Array of WHEN terms */ |
| Expr opCompare; /* The X==Ei expression */ |
| Expr cacheX; /* Cached expression X */ |
| Expr *pX; /* The X expression */ |
| Expr *pTest; /* X==Ei (form A) or just Ei (form B) */ |
| |
| assert(pExpr->pList); |
| assert((pExpr->pList->nExpr % 2) == 0); |
| assert(pExpr->pList->nExpr > 0); |
| pEList = pExpr->pList; |
| aListelem = pEList->a; |
| nExpr = pEList->nExpr; |
| endLabel = sqlite3VdbeMakeLabel(v); |
| if( (pX = pExpr->pLeft)!=0 ){ |
| cacheX = *pX; |
| testcase( pX->op==TK_COLUMN || pX->op==TK_REGISTER ); |
| cacheX.iTable = sqlite3ExprCodeTemp(pParse, pX, ®Free1); |
| testcase( regFree1==0 ); |
| cacheX.op = TK_REGISTER; |
| cacheX.iColumn = 0; |
| opCompare.op = TK_EQ; |
| opCompare.pLeft = &cacheX; |
| pTest = &opCompare; |
| } |
| pParse->disableColCache++; |
| for(i=0; i<nExpr; i=i+2){ |
| if( pX ){ |
| opCompare.pRight = aListelem[i].pExpr; |
| }else{ |
| pTest = aListelem[i].pExpr; |
| } |
| nextCase = sqlite3VdbeMakeLabel(v); |
| testcase( pTest->op==TK_COLUMN || pTest->op==TK_REGISTER ); |
| sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL); |
| testcase( aListelem[i+1].pExpr->op==TK_COLUMN ); |
| testcase( aListelem[i+1].pExpr->op==TK_REGISTER ); |
| sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target); |
| sqlite3VdbeAddOp2(v, OP_Goto, 0, endLabel); |
| sqlite3VdbeResolveLabel(v, nextCase); |
| } |
| if( pExpr->pRight ){ |
| sqlite3ExprCode(pParse, pExpr->pRight, target); |
| }else{ |
| sqlite3VdbeAddOp2(v, OP_Null, 0, target); |
| } |
| sqlite3VdbeResolveLabel(v, endLabel); |
| assert( pParse->disableColCache>0 ); |
| pParse->disableColCache--; |
| break; |
| } |
| #ifndef SQLITE_OMIT_TRIGGER |
| case TK_RAISE: { |
| if( !pParse->trigStack ){ |
| sqlite3ErrorMsg(pParse, |
| "RAISE() may only be used within a trigger-program"); |
| return 0; |
| } |
| if( pExpr->iColumn!=OE_Ignore ){ |
| assert( pExpr->iColumn==OE_Rollback || |
| pExpr->iColumn == OE_Abort || |
| pExpr->iColumn == OE_Fail ); |
| sqlite3DequoteExpr(pParse->db, pExpr); |
| sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, pExpr->iColumn, 0, |
| (char*)pExpr->token.z, pExpr->token.n); |
| } else { |
| assert( pExpr->iColumn == OE_Ignore ); |
| sqlite3VdbeAddOp2(v, OP_ContextPop, 0, 0); |
| sqlite3VdbeAddOp2(v, OP_Goto, 0, pParse->trigStack->ignoreJump); |
| VdbeComment((v, "raise(IGNORE)")); |
| } |
| break; |
| } |
| #endif |
| } |
| sqlite3ReleaseTempReg(pParse, regFree1); |
| sqlite3ReleaseTempReg(pParse, regFree2); |
| return inReg; |
| } |
| |
| /* |
| ** Generate code to evaluate an expression and store the results |
| ** into a register. Return the register number where the results |
| ** are stored. |
| ** |
| ** If the register is a temporary register that can be deallocated, |
| ** then write its number into *pReg. If the result register is not |
| ** a temporary, then set *pReg to zero. |
| */ |
| int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){ |
| int r1 = sqlite3GetTempReg(pParse); |
| int r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); |
| if( r2==r1 ){ |
| *pReg = r1; |
| }else{ |
| sqlite3ReleaseTempReg(pParse, r1); |
| *pReg = 0; |
| } |
| return r2; |
| } |
| |
| /* |
| ** Generate code that will evaluate expression pExpr and store the |
| ** results in register target. The results are guaranteed to appear |
| ** in register target. |
| */ |
| int sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){ |
| int inReg; |
| |
| assert( target>0 && target<=pParse->nMem ); |
| inReg = sqlite3ExprCodeTarget(pParse, pExpr, target); |
| assert( pParse->pVdbe || pParse->db->mallocFailed ); |
| if( inReg!=target && pParse->pVdbe ){ |
| sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target); |
| } |
| return target; |
| } |
| |
| /* |
| ** Generate code that evalutes the given expression and puts the result |
| ** in register target. |
| ** |
| ** Also make a copy of the expression results into another "cache" register |
| ** and modify the expression so that the next time it is evaluated, |
| ** the result is a copy of the cache register. |
| ** |
| ** This routine is used for expressions that are used multiple |
| ** times. They are evaluated once and the results of the expression |
| ** are reused. |
| */ |
| int sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){ |
| Vdbe *v = pParse->pVdbe; |
| int inReg; |
| inReg = sqlite3ExprCode(pParse, pExpr, target); |
| assert( target>0 ); |
| if( pExpr->op!=TK_REGISTER ){ |
| int iMem; |
| iMem = ++pParse->nMem; |
| sqlite3VdbeAddOp2(v, OP_Copy, inReg, iMem); |
| pExpr->iTable = iMem; |
| pExpr->iColumn = pExpr->op; |
| pExpr->op = TK_REGISTER; |
| } |
| return inReg; |
| } |
| |
| /* |
| ** Return TRUE if pExpr is an constant expression that is appropriate |
| ** for factoring out of a loop. Appropriate expressions are: |
| ** |
| ** * Any expression that evaluates to two or more opcodes. |
| ** |
| ** * Any OP_Integer, OP_Real, OP_String, OP_Blob, OP_Null, |
| ** or OP_Variable that does not need to be placed in a |
| ** specific register. |
| ** |
| ** There is no point in factoring out single-instruction constant |
| ** expressions that need to be placed in a particular register. |
| ** We could factor them out, but then we would end up adding an |
| ** OP_SCopy instruction to move the value into the correct register |
| ** later. We might as well just use the original instruction and |
| ** avoid the OP_SCopy. |
| */ |
| static int isAppropriateForFactoring(Expr *p){ |
| if( !sqlite3ExprIsConstantNotJoin(p) ){ |
| return 0; /* Only constant expressions are appropriate for factoring */ |
| } |
| if( (p->flags & EP_FixedDest)==0 ){ |
| return 1; /* Any constant without a fixed destination is appropriate */ |
| } |
| while( p->op==TK_UPLUS ) p = p->pLeft; |
| switch( p->op ){ |
| #ifndef SQLITE_OMIT_BLOB_LITERAL |
| case TK_BLOB: |
| #endif |
| case TK_VARIABLE: |
| case TK_INTEGER: |
| case TK_FLOAT: |
| case TK_NULL: |
| case TK_STRING: { |
| testcase( p->op==TK_BLOB ); |
| testcase( p->op==TK_VARIABLE ); |
| testcase( p->op==TK_INTEGER ); |
| testcase( p->op==TK_FLOAT ); |
| testcase( p->op==TK_NULL ); |
| testcase( p->op==TK_STRING ); |
| /* Single-instruction constants with a fixed destination are |
| ** better done in-line. If we factor them, they will just end |
| ** up generating an OP_SCopy to move the value to the destination |
| ** register. */ |
| return 0; |
| } |
| case TK_UMINUS: { |
| if( p->pLeft->op==TK_FLOAT || p->pLeft->op==TK_INTEGER ){ |
| return 0; |
| } |
| break; |
| } |
| default: { |
| break; |
| } |
| } |
| return 1; |
| } |
| |
| /* |
| ** If pExpr is a constant expression that is appropriate for |
| ** factoring out of a loop, then evaluate the expression |
| ** into a register and convert the expression into a TK_REGISTER |
| ** expression. |
| */ |
| static int evalConstExpr(void *pArg, Expr *pExpr){ |
| Parse *pParse = (Parse*)pArg; |
| switch( pExpr->op ){ |
| case TK_REGISTER: { |
| return 1; |
| } |
| case TK_FUNCTION: |
| case TK_AGG_FUNCTION: |
| case TK_CONST_FUNC: { |
| /* The arguments to a function have a fixed destination. |
| ** Mark them this way to avoid generated unneeded OP_SCopy |
| ** instructions. |
| */ |
| ExprList *pList = pExpr->pList; |
| if( pList ){ |
| int i = pList->nExpr; |
| struct ExprList_item *pItem = pList->a; |
| for(; i>0; i--, pItem++){ |
| if( pItem->pExpr ) pItem->pExpr->flags |= EP_FixedDest; |
| } |
| } |
| break; |
| } |
| } |
| if( isAppropriateForFactoring(pExpr) ){ |
| int r1 = ++pParse->nMem; |
| int r2; |
| r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); |
| if( r1!=r2 ) sqlite3ReleaseTempReg(pParse, r1); |
| pExpr->iColumn = pExpr->op; |
| pExpr->op = TK_REGISTER; |
| pExpr->iTable = r2; |
| return 1; |
| } |
| return 0; |
| } |
| |
| /* |
| ** Preevaluate constant subexpressions within pExpr and store the |
| ** results in registers. Modify pExpr so that the constant subexpresions |
| ** are TK_REGISTER opcodes that refer to the precomputed values. |
| */ |
| void sqlite3ExprCodeConstants(Parse *pParse, Expr *pExpr){ |
| walkExprTree(pExpr, evalConstExpr, pParse); |
| } |
| |
| |
| /* |
| ** Generate code that pushes the value of every element of the given |
| ** expression list into a sequence of registers beginning at target. |
| ** |
| ** Return the number of elements evaluated. |
| */ |
| int sqlite3ExprCodeExprList( |
| Parse *pParse, /* Parsing context */ |
| ExprList *pList, /* The expression list to be coded */ |
| int target, /* Where to write results */ |
| int doHardCopy /* Call sqlite3ExprHardCopy on each element if true */ |
| ){ |
| struct ExprList_item *pItem; |
| int i, n; |
| assert( pList!=0 || pParse->db->mallocFailed ); |
| if( pList==0 ){ |
| return 0; |
| } |
| assert( target>0 ); |
| n = pList->nExpr; |
| for(pItem=pList->a, i=0; i<n; i++, pItem++){ |
| sqlite3ExprCode(pParse, pItem->pExpr, target+i); |
| if( doHardCopy ) sqlite3ExprHardCopy(pParse, target, n); |
| } |
| return n; |
| } |
| |
| /* |
| ** Generate code for a boolean expression such that a jump is made |
| ** to the label "dest" if the expression is true but execution |
| ** continues straight thru if the expression is false. |
| ** |
| ** If the expression evaluates to NULL (neither true nor false), then |
| ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL. |
| ** |
| ** This code depends on the fact that certain token values (ex: TK_EQ) |
| ** are the same as opcode values (ex: OP_Eq) that implement the corresponding |
| ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in |
| ** the make process cause these values to align. Assert()s in the code |
| ** below verify that the numbers are aligned correctly. |
| */ |
| void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ |
| Vdbe *v = pParse->pVdbe; |
| int op = 0; |
| int regFree1 = 0; |
| int regFree2 = 0; |
| int r1, r2; |
| |
| assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); |
| if( v==0 || pExpr==0 ) return; |
| op = pExpr->op; |
| switch( op ){ |
| case TK_AND: { |
| int d2 = sqlite3VdbeMakeLabel(v); |
| testcase( jumpIfNull==0 ); |
| testcase( pParse->disableColCache==0 ); |
| sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL); |
| pParse->disableColCache++; |
| sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); |
| assert( pParse->disableColCache>0 ); |
| pParse->disableColCache--; |
| sqlite3VdbeResolveLabel(v, d2); |
| break; |
| } |
| case TK_OR: { |
| testcase( jumpIfNull==0 ); |
| testcase( pParse->disableColCache==0 ); |
| sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); |
| pParse->disableColCache++; |
| sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); |
| assert( pParse->disableColCache>0 ); |
| pParse->disableColCache--; |
| break; |
| } |
| case TK_NOT: { |
| testcase( jumpIfNull==0 ); |
| sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); |
| break; |
| } |
| case TK_LT: |
| case TK_LE: |
| case TK_GT: |
| case TK_GE: |
| case TK_NE: |
| case TK_EQ: { |
| assert( TK_LT==OP_Lt ); |
| assert( TK_LE==OP_Le ); |
| assert( TK_GT==OP_Gt ); |
| assert( TK_GE==OP_Ge ); |
| assert( TK_EQ==OP_Eq ); |
| assert( TK_NE==OP_Ne ); |
| testcase( op==TK_LT ); |
| testcase( op==TK_LE ); |
| testcase( op==TK_GT ); |
| testcase( op==TK_GE ); |
| testcase( op==TK_EQ ); |
| testcase( op==TK_NE ); |
| testcase( jumpIfNull==0 ); |
| codeCompareOperands(pParse, pExpr->pLeft, &r1, ®Free1, |
| pExpr->pRight, &r2, ®Free2); |
| codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, |
| r1, r2, dest, jumpIfNull); |
| testcase( regFree1==0 ); |
| testcase( regFree2==0 ); |
| break; |
| } |
| case TK_ISNULL: |
| case TK_NOTNULL: { |
| assert( TK_ISNULL==OP_IsNull ); |
| assert( TK_NOTNULL==OP_NotNull ); |
| testcase( op==TK_ISNULL ); |
| testcase( op==TK_NOTNULL ); |
| r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); |
| sqlite3VdbeAddOp2(v, op, r1, dest); |
| testcase( regFree1==0 ); |
| break; |
| } |
| case TK_BETWEEN: { |
| /* x BETWEEN y AND z |
| ** |
| ** Is equivalent to |
| ** |
| ** x>=y AND x<=z |
| ** |
| ** Code it as such, taking care to do the common subexpression |
| ** elementation of x. |
| */ |
| Expr exprAnd; |
| Expr compLeft; |
| Expr compRight; |
| Expr exprX; |
| |
| exprX = *pExpr->pLeft; |
| exprAnd.op = TK_AND; |
| exprAnd.pLeft = &compLeft; |
| exprAnd.pRight = &compRight; |
| compLeft.op = TK_GE; |
| compLeft.pLeft = &exprX; |
| compLeft.pRight = pExpr->pList->a[0].pExpr; |
| compRight.op = TK_LE; |
| compRight.pLeft = &exprX; |
| compRight.pRight = pExpr->pList->a[1].pExpr; |
| exprX.iTable = sqlite3ExprCodeTemp(pParse, &exprX, ®Free1); |
| testcase( regFree1==0 ); |
| exprX.op = TK_REGISTER; |
| testcase( jumpIfNull==0 ); |
| sqlite3ExprIfTrue(pParse, &exprAnd, dest, jumpIfNull); |
| break; |
| } |
| default: { |
| r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); |
| sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0); |
| testcase( regFree1==0 ); |
| testcase( jumpIfNull==0 ); |
| break; |
| } |
| } |
| sqlite3ReleaseTempReg(pParse, regFree1); |
| sqlite3ReleaseTempReg(pParse, regFree2); |
| } |
| |
| /* |
| ** Generate code for a boolean expression such that a jump is made |
| ** to the label "dest" if the expression is false but execution |
| ** continues straight thru if the expression is true. |
| ** |
| ** If the expression evaluates to NULL (neither true nor false) then |
| ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull |
| ** is 0. |
| */ |
| void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ |
| Vdbe *v = pParse->pVdbe; |
| int op = 0; |
| int regFree1 = 0; |
| int regFree2 = 0; |
| int r1, r2; |
| |
| assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); |
| if( v==0 || pExpr==0 ) return; |
| |
| /* The value of pExpr->op and op are related as follows: |
| ** |
| ** pExpr->op op |
| ** --------- ---------- |
| ** TK_ISNULL OP_NotNull |
| ** TK_NOTNULL OP_IsNull |
| ** TK_NE OP_Eq |
| ** TK_EQ OP_Ne |
| ** TK_GT OP_Le |
| ** TK_LE OP_Gt |
| ** TK_GE OP_Lt |
| ** TK_LT OP_Ge |
| ** |
| ** For other values of pExpr->op, op is undefined and unused. |
| ** The value of TK_ and OP_ constants are arranged such that we |
| ** can compute the mapping above using the following expression. |
| ** Assert()s verify that the computation is correct. |
| */ |
| op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1); |
| |
| /* Verify correct alignment of TK_ and OP_ constants |
| */ |
| assert( pExpr->op!=TK_ISNULL || op==OP_NotNull ); |
| assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull ); |
| assert( pExpr->op!=TK_NE || op==OP_Eq ); |
| assert( pExpr->op!=TK_EQ || op==OP_Ne ); |
| assert( pExpr->op!=TK_LT || op==OP_Ge ); |
| assert( pExpr->op!=TK_LE || op==OP_Gt ); |
| assert( pExpr->op!=TK_GT || op==OP_Le ); |
| assert( pExpr->op!=TK_GE || op==OP_Lt ); |
| |
| switch( pExpr->op ){ |
| case TK_AND: { |
| testcase( jumpIfNull==0 ); |
| testcase( pParse->disableColCache==0 ); |
| sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); |
| pParse->disableColCache++; |
| sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); |
| assert( pParse->disableColCache>0 ); |
| pParse->disableColCache--; |
| break; |
| } |
| case TK_OR: { |
| int d2 = sqlite3VdbeMakeLabel(v); |
| testcase( jumpIfNull==0 ); |
| testcase( pParse->disableColCache==0 ); |
| sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL); |
| pParse->disableColCache++; |
| sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); |
| assert( pParse->disableColCache>0 ); |
| pParse->disableColCache--; |
| sqlite3VdbeResolveLabel(v, d2); |
| break; |
| } |
| case TK_NOT: { |
| sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); |
| break; |
| } |
| case TK_LT: |
| case TK_LE: |
| case TK_GT: |
| case TK_GE: |
| case TK_NE: |
| case TK_EQ: { |
| testcase( op==TK_LT ); |
| testcase( op==TK_LE ); |
| testcase( op==TK_GT ); |
| testcase( op==TK_GE ); |
| testcase( op==TK_EQ ); |
| testcase( op==TK_NE ); |
| testcase( jumpIfNull==0 ); |
| codeCompareOperands(pParse, pExpr->pLeft, &r1, ®Free1, |
| pExpr->pRight, &r2, ®Free2); |
| codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, |
| r1, r2, dest, jumpIfNull); |
| testcase( regFree1==0 ); |
| testcase( regFree2==0 ); |
| break; |
| } |
| case TK_ISNULL: |
| case TK_NOTNULL: { |
| testcase( op==TK_ISNULL ); |
| testcase( op==TK_NOTNULL ); |
| r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); |
| sqlite3VdbeAddOp2(v, op, r1, dest); |
| testcase( regFree1==0 ); |
| break; |
| } |
| case TK_BETWEEN: { |
| /* x BETWEEN y AND z |
| ** |
| ** Is equivalent to |
| ** |
| ** x>=y AND x<=z |
| ** |
| ** Code it as such, taking care to do the common subexpression |
| ** elementation of x. |
| */ |
| Expr exprAnd; |
| Expr compLeft; |
| Expr compRight; |
| Expr exprX; |
| |
| exprX = *pExpr->pLeft; |
| exprAnd.op = TK_AND; |
| exprAnd.pLeft = &compLeft; |
| exprAnd.pRight = &compRight; |
| compLeft.op = TK_GE; |
| compLeft.pLeft = &exprX; |
| compLeft.pRight = pExpr->pList->a[0].pExpr; |
| compRight.op = TK_LE; |
| compRight.pLeft = &exprX; |
| compRight.pRight = pExpr->pList->a[1].pExpr; |
| exprX.iTable = sqlite3ExprCodeTemp(pParse, &exprX, ®Free1); |
| testcase( regFree1==0 ); |
| exprX.op = TK_REGISTER; |
| testcase( jumpIfNull==0 ); |
| sqlite3ExprIfFalse(pParse, &exprAnd, dest, jumpIfNull); |
| break; |
| } |
| default: { |
| r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); |
| sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0); |
| testcase( regFree1==0 ); |
| testcase( jumpIfNull==0 ); |
| break; |
| } |
| } |
| sqlite3ReleaseTempReg(pParse, regFree1); |
| sqlite3ReleaseTempReg(pParse, regFree2); |
| } |
| |
| /* |
| ** Do a deep comparison of two expression trees. Return TRUE (non-zero) |
| ** if they are identical and return FALSE if they differ in any way. |
| ** |
| ** Sometimes this routine will return FALSE even if the two expressions |
| ** really are equivalent. If we cannot prove that the expressions are |
| ** identical, we return FALSE just to be safe. So if this routine |
| ** returns false, then you do not really know for certain if the two |
| ** expressions are the same. But if you get a TRUE return, then you |
| ** can be sure the expressions are the same. In the places where |
| ** this routine is used, it does not hurt to get an extra FALSE - that |
| ** just might result in some slightly slower code. But returning |
| ** an incorrect TRUE could lead to a malfunction. |
| */ |
| int sqlite3ExprCompare(Expr *pA, Expr *pB){ |
| int i; |
| if( pA==0||pB==0 ){ |
| return pB==pA; |
| } |
| if( pA->op!=pB->op ) return 0; |
| if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 0; |
| if( !sqlite3ExprCompare(pA->pLeft, pB->pLeft) ) return 0; |
| if( !sqlite3ExprCompare(pA->pRight, pB->pRight) ) return 0; |
| if( pA->pList ){ |
| if( pB->pList==0 ) return 0; |
| if( pA->pList->nExpr!=pB->pList->nExpr ) return 0; |
| for(i=0; i<pA->pList->nExpr; i++){ |
| if( !sqlite3ExprCompare(pA->pList->a[i].pExpr, pB->pList->a[i].pExpr) ){ |
| return 0; |
| } |
| } |
| }else if( pB->pList ){ |
| return 0; |
| } |
| if( pA->pSelect || pB->pSelect ) return 0; |
| if( pA->iTable!=pB->iTable || pA->iColumn!=pB->iColumn ) return 0; |
| if( pA->op!=TK_COLUMN && pA->token.z ){ |
| if( pB->token.z==0 ) return 0; |
| if( pB->token.n!=pA->token.n ) return 0; |
| if( sqlite3StrNICmp((char*)pA->token.z,(char*)pB->token.z,pB->token.n)!=0 ){ |
| return 0; |
| } |
| } |
| return 1; |
| } |
| |
| |
| /* |
| ** Add a new element to the pAggInfo->aCol[] array. Return the index of |
| ** the new element. Return a negative number if malloc fails. |
| */ |
| static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){ |
| int i; |
| pInfo->aCol = sqlite3ArrayAllocate( |
| db, |
| pInfo->aCol, |
| sizeof(pInfo->aCol[0]), |
| 3, |
| &pInfo->nColumn, |
| &pInfo->nColumnAlloc, |
| &i |
| ); |
| return i; |
| } |
| |
| /* |
| ** Add a new element to the pAggInfo->aFunc[] array. Return the index of |
| ** the new element. Return a negative number if malloc fails. |
| */ |
| static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){ |
| int i; |
| pInfo->aFunc = sqlite3ArrayAllocate( |
| db, |
| pInfo->aFunc, |
| sizeof(pInfo->aFunc[0]), |
| 3, |
| &pInfo->nFunc, |
| &pInfo->nFuncAlloc, |
| &i |
| ); |
| return i; |
| } |
| |
| /* |
| ** This is an xFunc for walkExprTree() used to implement |
| ** sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates |
| ** for additional information. |
| ** |
| ** This routine analyzes the aggregate function at pExpr. |
| */ |
| static int analyzeAggregate(void *pArg, Expr *pExpr){ |
| int i; |
| NameContext *pNC = (NameContext *)pArg; |
| Parse *pParse = pNC->pParse; |
| SrcList *pSrcList = pNC->pSrcList; |
| AggInfo *pAggInfo = pNC->pAggInfo; |
| |
| switch( pExpr->op ){ |
| case TK_AGG_COLUMN: |
| case TK_COLUMN: { |
| /* Check to see if the column is in one of the tables in the FROM |
| ** clause of the aggregate query */ |
| if( pSrcList ){ |
| struct SrcList_item *pItem = pSrcList->a; |
| for(i=0; i<pSrcList->nSrc; i++, pItem++){ |
| struct AggInfo_col *pCol; |
| if( pExpr->iTable==pItem->iCursor ){ |
| /* If we reach this point, it means that pExpr refers to a table |
| ** that is in the FROM clause of the aggregate query. |
| ** |
| ** Make an entry for the column in pAggInfo->aCol[] if there |
| ** is not an entry there already. |
| */ |
| int k; |
| pCol = pAggInfo->aCol; |
| for(k=0; k<pAggInfo->nColumn; k++, pCol++){ |
| if( pCol->iTable==pExpr->iTable && |
| pCol->iColumn==pExpr->iColumn ){ |
| break; |
| } |
| } |
| if( (k>=pAggInfo->nColumn) |
| && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 |
| ){ |
| pCol = &pAggInfo->aCol[k]; |
| pCol->pTab = pExpr->pTab; |
| pCol->iTable = pExpr->iTable; |
| pCol->iColumn = pExpr->iColumn; |
| pCol->iMem = ++pParse->nMem; |
| pCol->iSorterColumn = -1; |
| pCol->pExpr = pExpr; |
| if( pAggInfo->pGroupBy ){ |
| int j, n; |
| ExprList *pGB = pAggInfo->pGroupBy; |
| struct ExprList_item *pTerm = pGB->a; |
| n = pGB->nExpr; |
| for(j=0; j<n; j++, pTerm++){ |
| Expr *pE = pTerm->pExpr; |
| if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable && |
| pE->iColumn==pExpr->iColumn ){ |
| pCol->iSorterColumn = j; |
| break; |
| } |
| } |
| } |
| if( pCol->iSorterColumn<0 ){ |
| pCol->iSorterColumn = pAggInfo->nSortingColumn++; |
| } |
| } |
| /* There is now an entry for pExpr in pAggInfo->aCol[] (either |
| ** because it was there before or because we just created it). |
| ** Convert the pExpr to be a TK_AGG_COLUMN referring to that |
| ** pAggInfo->aCol[] entry. |
| */ |
| pExpr->pAggInfo = pAggInfo; |
| pExpr->op = TK_AGG_COLUMN; |
| pExpr->iAgg = k; |
| break; |
| } /* endif pExpr->iTable==pItem->iCursor */ |
| } /* end loop over pSrcList */ |
| } |
| return 1; |
| } |
| case TK_AGG_FUNCTION: { |
| /* The pNC->nDepth==0 test causes aggregate functions in subqueries |
| ** to be ignored */ |
| if( pNC->nDepth==0 ){ |
| /* Check to see if pExpr is a duplicate of another aggregate |
| ** function that is already in the pAggInfo structure |
| */ |
| struct AggInfo_func *pItem = pAggInfo->aFunc; |
| for(i=0; i<pAggInfo->nFunc; i++, pItem++){ |
| if( sqlite3ExprCompare(pItem->pExpr, pExpr) ){ |
| break; |
| } |
| } |
| if( i>=pAggInfo->nFunc ){ |
| /* pExpr is original. Make a new entry in pAggInfo->aFunc[] |
| */ |
| u8 enc = ENC(pParse->db); |
| i = addAggInfoFunc(pParse->db, pAggInfo); |
| if( i>=0 ){ |
| pItem = &pAggInfo->aFunc[i]; |
| pItem->pExpr = pExpr; |
| pItem->iMem = ++pParse->nMem; |
| pItem->pFunc = sqlite3FindFunction(pParse->db, |
| (char*)pExpr->token.z, pExpr->token.n, |
| pExpr->pList ? pExpr->pList->nExpr : 0, enc, 0); |
| if( pExpr->flags & EP_Distinct ){ |
| pItem->iDistinct = pParse->nTab++; |
| }else{ |
| pItem->iDistinct = -1; |
| } |
| } |
| } |
| /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry |
| */ |
| pExpr->iAgg = i; |
| pExpr->pAggInfo = pAggInfo; |
| return 1; |
| } |
| } |
| } |
| |
| /* Recursively walk subqueries looking for TK_COLUMN nodes that need |
| ** to be changed to TK_AGG_COLUMN. But increment nDepth so that |
| ** TK_AGG_FUNCTION nodes in subqueries will be unchanged. |
| */ |
| if( pExpr->pSelect ){ |
| pNC->nDepth++; |
| walkSelectExpr(pExpr->pSelect, analyzeAggregate, pNC); |
| pNC->nDepth--; |
| } |
| return 0; |
| } |
| |
| /* |
| ** Analyze the given expression looking for aggregate functions and |
| ** for variables that need to be added to the pParse->aAgg[] array. |
| ** Make additional entries to the pParse->aAgg[] array as necessary. |
| ** |
| ** This routine should only be called after the expression has been |
| ** analyzed by sqlite3ExprResolveNames(). |
| */ |
| void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){ |
| walkExprTree(pExpr, analyzeAggregate, pNC); |
| } |
| |
| /* |
| ** Call sqlite3ExprAnalyzeAggregates() for every expression in an |
| ** expression list. Return the number of errors. |
| ** |
| ** If an error is found, the analysis is cut short. |
| */ |
| void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){ |
| struct ExprList_item *pItem; |
| int i; |
| if( pList ){ |
| for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ |
| sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr); |
| } |
| } |
| } |
| |
| /* |
| ** Allocate or deallocate temporary use registers during code generation. |
| */ |
| int sqlite3GetTempReg(Parse *pParse){ |
| int i, r; |
| if( pParse->nTempReg==0 ){ |
| return ++pParse->nMem; |
| } |
| for(i=0; i<pParse->nTempReg; i++){ |
| r = pParse->aTempReg[i]; |
| if( usedAsColumnCache(pParse, r, r) ) continue; |
| } |
| if( i>=pParse->nTempReg ){ |
| return ++pParse->nMem; |
| } |
| while( i<pParse->nTempReg-1 ){ |
| pParse->aTempReg[i] = pParse->aTempReg[i+1]; |
| } |
| pParse->nTempReg--; |
| return r; |
| } |
| void sqlite3ReleaseTempReg(Parse *pParse, int iReg){ |
| if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){ |
| pParse->aTempReg[pParse->nTempReg++] = iReg; |
| } |
| } |
| |
| /* |
| ** Allocate or deallocate a block of nReg consecutive registers |
| */ |
| int sqlite3GetTempRange(Parse *pParse, int nReg){ |
| int i, n; |
| i = pParse->iRangeReg; |
| n = pParse->nRangeReg; |
| if( nReg<=n && !usedAsColumnCache(pParse, i, i+n-1) ){ |
| pParse->iRangeReg += nReg; |
| pParse->nRangeReg -= nReg; |
| }else{ |
| i = pParse->nMem+1; |
| pParse->nMem += nReg; |
| } |
| return i; |
| } |
| void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){ |
| if( nReg>pParse->nRangeReg ){ |
| pParse->nRangeReg = nReg; |
| pParse->iRangeReg = iReg; |
| } |
| } |