| /* |
| ** 2001 September 15 |
| ** |
| ** The author disclaims copyright to this source code. In place of |
| ** a legal notice, here is a blessing: |
| ** |
| ** May you do good and not evil. |
| ** May you find forgiveness for yourself and forgive others. |
| ** May you share freely, never taking more than you give. |
| ** |
| ************************************************************************* |
| ** This file contains C code routines that are called by the parser |
| ** to handle INSERT statements in SQLite. |
| ** |
| ** $Id: insert.c,v 1.89 2003/08/05 13:13:38 drh Exp $ |
| */ |
| #include "sqliteInt.h" |
| |
| /* |
| ** This routine is call to handle SQL of the following forms: |
| ** |
| ** insert into TABLE (IDLIST) values(EXPRLIST) |
| ** insert into TABLE (IDLIST) select |
| ** |
| ** The IDLIST following the table name is always optional. If omitted, |
| ** then a list of all columns for the table is substituted. The IDLIST |
| ** appears in the pColumn parameter. pColumn is NULL if IDLIST is omitted. |
| ** |
| ** The pList parameter holds EXPRLIST in the first form of the INSERT |
| ** statement above, and pSelect is NULL. For the second form, pList is |
| ** NULL and pSelect is a pointer to the select statement used to generate |
| ** data for the insert. |
| ** |
| ** The code generated follows one of three templates. For a simple |
| ** select with data coming from a VALUES clause, the code executes |
| ** once straight down through. The template looks like this: |
| ** |
| ** open write cursor to <table> and its indices |
| ** puts VALUES clause expressions onto the stack |
| ** write the resulting record into <table> |
| ** cleanup |
| ** |
| ** If the statement is of the form |
| ** |
| ** INSERT INTO <table> SELECT ... |
| ** |
| ** And the SELECT clause does not read from <table> at any time, then |
| ** the generated code follows this template: |
| ** |
| ** goto B |
| ** A: setup for the SELECT |
| ** loop over the tables in the SELECT |
| ** gosub C |
| ** end loop |
| ** cleanup after the SELECT |
| ** goto D |
| ** B: open write cursor to <table> and its indices |
| ** goto A |
| ** C: insert the select result into <table> |
| ** return |
| ** D: cleanup |
| ** |
| ** The third template is used if the insert statement takes its |
| ** values from a SELECT but the data is being inserted into a table |
| ** that is also read as part of the SELECT. In the third form, |
| ** we have to use a intermediate table to store the results of |
| ** the select. The template is like this: |
| ** |
| ** goto B |
| ** A: setup for the SELECT |
| ** loop over the tables in the SELECT |
| ** gosub C |
| ** end loop |
| ** cleanup after the SELECT |
| ** goto D |
| ** C: insert the select result into the intermediate table |
| ** return |
| ** B: open a cursor to an intermediate table |
| ** goto A |
| ** D: open write cursor to <table> and its indices |
| ** loop over the intermediate table |
| ** transfer values form intermediate table into <table> |
| ** end the loop |
| ** cleanup |
| */ |
| void sqliteInsert( |
| Parse *pParse, /* Parser context */ |
| SrcList *pTabList, /* Name of table into which we are inserting */ |
| ExprList *pList, /* List of values to be inserted */ |
| Select *pSelect, /* A SELECT statement to use as the data source */ |
| IdList *pColumn, /* Column names corresponding to IDLIST. */ |
| int onError /* How to handle constraint errors */ |
| ){ |
| Table *pTab; /* The table to insert into */ |
| char *zTab; /* Name of the table into which we are inserting */ |
| const char *zDb; /* Name of the database holding this table */ |
| int i, j, idx; /* Loop counters */ |
| Vdbe *v; /* Generate code into this virtual machine */ |
| Index *pIdx; /* For looping over indices of the table */ |
| int nColumn; /* Number of columns in the data */ |
| int base; /* VDBE Cursor number for pTab */ |
| int iCont, iBreak; /* Beginning and end of the loop over srcTab */ |
| sqlite *db; /* The main database structure */ |
| int keyColumn = -1; /* Column that is the INTEGER PRIMARY KEY */ |
| int endOfLoop; /* Label for the end of the insertion loop */ |
| int useTempTable; /* Store SELECT results in intermediate table */ |
| int srcTab; /* Data comes from this temporary cursor if >=0 */ |
| int iSelectLoop; /* Address of code that implements the SELECT */ |
| int iCleanup; /* Address of the cleanup code */ |
| int iInsertBlock; /* Address of the subroutine used to insert data */ |
| int iCntMem; /* Memory cell used for the row counter */ |
| int isView; /* True if attempting to insert into a view */ |
| |
| int row_triggers_exist = 0; /* True if there are FOR EACH ROW triggers */ |
| int before_triggers; /* True if there are BEFORE triggers */ |
| int after_triggers; /* True if there are AFTER triggers */ |
| int newIdx = -1; /* Cursor for the NEW table */ |
| |
| if( pParse->nErr || sqlite_malloc_failed ) goto insert_cleanup; |
| db = pParse->db; |
| |
| /* Locate the table into which we will be inserting new information. |
| */ |
| assert( pTabList->nSrc==1 ); |
| zTab = pTabList->a[0].zName; |
| if( zTab==0 ) goto insert_cleanup; |
| pTab = sqliteSrcListLookup(pParse, pTabList); |
| if( pTab==0 ){ |
| goto insert_cleanup; |
| } |
| assert( pTab->iDb<db->nDb ); |
| zDb = db->aDb[pTab->iDb].zName; |
| if( sqliteAuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0, zDb) ){ |
| goto insert_cleanup; |
| } |
| |
| /* Ensure that: |
| * (a) the table is not read-only, |
| * (b) that if it is a view then ON INSERT triggers exist |
| */ |
| before_triggers = sqliteTriggersExist(pParse, pTab->pTrigger, TK_INSERT, |
| TK_BEFORE, TK_ROW, 0); |
| after_triggers = sqliteTriggersExist(pParse, pTab->pTrigger, TK_INSERT, |
| TK_AFTER, TK_ROW, 0); |
| row_triggers_exist = before_triggers || after_triggers; |
| isView = pTab->pSelect!=0; |
| if( sqliteIsReadOnly(pParse, pTab, before_triggers) ){ |
| goto insert_cleanup; |
| } |
| if( pTab==0 ) goto insert_cleanup; |
| |
| /* If pTab is really a view, make sure it has been initialized. |
| */ |
| if( isView && sqliteViewGetColumnNames(pParse, pTab) ){ |
| goto insert_cleanup; |
| } |
| |
| /* Allocate a VDBE |
| */ |
| v = sqliteGetVdbe(pParse); |
| if( v==0 ) goto insert_cleanup; |
| sqliteBeginWriteOperation(pParse, pSelect || row_triggers_exist, pTab->iDb); |
| |
| /* if there are row triggers, allocate a temp table for new.* references. */ |
| if( row_triggers_exist ){ |
| newIdx = pParse->nTab++; |
| } |
| |
| /* Figure out how many columns of data are supplied. If the data |
| ** is coming from a SELECT statement, then this step also generates |
| ** all the code to implement the SELECT statement and invoke a subroutine |
| ** to process each row of the result. (Template 2.) If the SELECT |
| ** statement uses the the table that is being inserted into, then the |
| ** subroutine is also coded here. That subroutine stores the SELECT |
| ** results in a temporary table. (Template 3.) |
| */ |
| if( pSelect ){ |
| /* Data is coming from a SELECT. Generate code to implement that SELECT |
| */ |
| int rc, iInitCode; |
| iInitCode = sqliteVdbeAddOp(v, OP_Goto, 0, 0); |
| iSelectLoop = sqliteVdbeCurrentAddr(v); |
| iInsertBlock = sqliteVdbeMakeLabel(v); |
| rc = sqliteSelect(pParse, pSelect, SRT_Subroutine, iInsertBlock, 0,0,0); |
| if( rc || pParse->nErr || sqlite_malloc_failed ) goto insert_cleanup; |
| iCleanup = sqliteVdbeMakeLabel(v); |
| sqliteVdbeAddOp(v, OP_Goto, 0, iCleanup); |
| assert( pSelect->pEList ); |
| nColumn = pSelect->pEList->nExpr; |
| |
| /* Set useTempTable to TRUE if the result of the SELECT statement |
| ** should be written into a temporary table. Set to FALSE if each |
| ** row of the SELECT can be written directly into the result table. |
| ** |
| ** A temp table must be used if the table being updated is also one |
| ** of the tables being read by the SELECT statement. Also use a |
| ** temp table in the case of row triggers. |
| */ |
| if( row_triggers_exist ){ |
| useTempTable = 1; |
| }else{ |
| int addr = sqliteVdbeFindOp(v, OP_OpenRead, pTab->tnum); |
| useTempTable = 0; |
| if( addr>0 ){ |
| VdbeOp *pOp = sqliteVdbeGetOp(v, addr-2); |
| if( pOp->opcode==OP_Integer && pOp->p1==pTab->iDb ){ |
| useTempTable = 1; |
| } |
| } |
| } |
| |
| if( useTempTable ){ |
| /* Generate the subroutine that SELECT calls to process each row of |
| ** the result. Store the result in a temporary table |
| */ |
| srcTab = pParse->nTab++; |
| sqliteVdbeResolveLabel(v, iInsertBlock); |
| sqliteVdbeAddOp(v, OP_MakeRecord, nColumn, 0); |
| sqliteVdbeAddOp(v, OP_NewRecno, srcTab, 0); |
| sqliteVdbeAddOp(v, OP_Pull, 1, 0); |
| sqliteVdbeAddOp(v, OP_PutIntKey, srcTab, 0); |
| sqliteVdbeAddOp(v, OP_Return, 0, 0); |
| |
| /* The following code runs first because the GOTO at the very top |
| ** of the program jumps to it. Create the temporary table, then jump |
| ** back up and execute the SELECT code above. |
| */ |
| sqliteVdbeChangeP2(v, iInitCode, sqliteVdbeCurrentAddr(v)); |
| sqliteVdbeAddOp(v, OP_OpenTemp, srcTab, 0); |
| sqliteVdbeAddOp(v, OP_Goto, 0, iSelectLoop); |
| sqliteVdbeResolveLabel(v, iCleanup); |
| }else{ |
| sqliteVdbeChangeP2(v, iInitCode, sqliteVdbeCurrentAddr(v)); |
| } |
| }else{ |
| /* This is the case if the data for the INSERT is coming from a VALUES |
| ** clause |
| */ |
| SrcList dummy; |
| assert( pList!=0 ); |
| srcTab = -1; |
| useTempTable = 0; |
| assert( pList ); |
| nColumn = pList->nExpr; |
| dummy.nSrc = 0; |
| for(i=0; i<nColumn; i++){ |
| if( sqliteExprResolveIds(pParse, &dummy, 0, pList->a[i].pExpr) ){ |
| goto insert_cleanup; |
| } |
| if( sqliteExprCheck(pParse, pList->a[i].pExpr, 0, 0) ){ |
| goto insert_cleanup; |
| } |
| } |
| } |
| |
| /* Make sure the number of columns in the source data matches the number |
| ** of columns to be inserted into the table. |
| */ |
| if( pColumn==0 && nColumn!=pTab->nCol ){ |
| sqliteErrorMsg(pParse, |
| "table %S has %d columns but %d values were supplied", |
| pTabList, 0, pTab->nCol, nColumn); |
| goto insert_cleanup; |
| } |
| if( pColumn!=0 && nColumn!=pColumn->nId ){ |
| sqliteErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId); |
| goto insert_cleanup; |
| } |
| |
| /* If the INSERT statement included an IDLIST term, then make sure |
| ** all elements of the IDLIST really are columns of the table and |
| ** remember the column indices. |
| ** |
| ** If the table has an INTEGER PRIMARY KEY column and that column |
| ** is named in the IDLIST, then record in the keyColumn variable |
| ** the index into IDLIST of the primary key column. keyColumn is |
| ** the index of the primary key as it appears in IDLIST, not as |
| ** is appears in the original table. (The index of the primary |
| ** key in the original table is pTab->iPKey.) |
| */ |
| if( pColumn ){ |
| for(i=0; i<pColumn->nId; i++){ |
| pColumn->a[i].idx = -1; |
| } |
| for(i=0; i<pColumn->nId; i++){ |
| for(j=0; j<pTab->nCol; j++){ |
| if( sqliteStrICmp(pColumn->a[i].zName, pTab->aCol[j].zName)==0 ){ |
| pColumn->a[i].idx = j; |
| if( j==pTab->iPKey ){ |
| keyColumn = i; |
| } |
| break; |
| } |
| } |
| if( j>=pTab->nCol ){ |
| if( sqliteIsRowid(pColumn->a[i].zName) ){ |
| keyColumn = i; |
| }else{ |
| sqliteErrorMsg(pParse, "table %S has no column named %s", |
| pTabList, 0, pColumn->a[i].zName); |
| pParse->nErr++; |
| goto insert_cleanup; |
| } |
| } |
| } |
| } |
| |
| /* If there is no IDLIST term but the table has an integer primary |
| ** key, the set the keyColumn variable to the primary key column index |
| ** in the original table definition. |
| */ |
| if( pColumn==0 ){ |
| keyColumn = pTab->iPKey; |
| } |
| |
| /* Open the temp table for FOR EACH ROW triggers |
| */ |
| if( row_triggers_exist ){ |
| sqliteVdbeAddOp(v, OP_OpenPseudo, newIdx, 0); |
| } |
| |
| /* Initialize the count of rows to be inserted |
| */ |
| if( db->flags & SQLITE_CountRows ){ |
| iCntMem = pParse->nMem++; |
| sqliteVdbeAddOp(v, OP_Integer, 0, 0); |
| sqliteVdbeAddOp(v, OP_MemStore, iCntMem, 1); |
| } |
| |
| /* Open tables and indices if there are no row triggers */ |
| if( !row_triggers_exist ){ |
| base = pParse->nTab; |
| sqliteVdbeAddOp(v, OP_Integer, pTab->iDb, 0); |
| sqliteVdbeAddOp(v, OP_OpenWrite, base, pTab->tnum); |
| sqliteVdbeChangeP3(v, -1, pTab->zName, P3_STATIC); |
| for(idx=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, idx++){ |
| sqliteVdbeAddOp(v, OP_Integer, pIdx->iDb, 0); |
| sqliteVdbeAddOp(v, OP_OpenWrite, idx+base, pIdx->tnum); |
| sqliteVdbeChangeP3(v, -1, pIdx->zName, P3_STATIC); |
| } |
| pParse->nTab += idx; |
| } |
| |
| /* If the data source is a temporary table, then we have to create |
| ** a loop because there might be multiple rows of data. If the data |
| ** source is a subroutine call from the SELECT statement, then we need |
| ** to launch the SELECT statement processing. |
| */ |
| if( useTempTable ){ |
| iBreak = sqliteVdbeMakeLabel(v); |
| sqliteVdbeAddOp(v, OP_Rewind, srcTab, iBreak); |
| iCont = sqliteVdbeCurrentAddr(v); |
| }else if( pSelect ){ |
| sqliteVdbeAddOp(v, OP_Goto, 0, iSelectLoop); |
| sqliteVdbeResolveLabel(v, iInsertBlock); |
| } |
| |
| /* Run the BEFORE and INSTEAD OF triggers, if there are any |
| */ |
| endOfLoop = sqliteVdbeMakeLabel(v); |
| if( before_triggers ){ |
| |
| /* build the NEW.* reference row. Note that if there is an INTEGER |
| ** PRIMARY KEY into which a NULL is being inserted, that NULL will be |
| ** translated into a unique ID for the row. But on a BEFORE trigger, |
| ** we do not know what the unique ID will be (because the insert has |
| ** not happened yet) so we substitute a rowid of -1 |
| */ |
| if( keyColumn<0 ){ |
| sqliteVdbeAddOp(v, OP_Integer, -1, 0); |
| }else if( useTempTable ){ |
| sqliteVdbeAddOp(v, OP_Column, srcTab, keyColumn); |
| }else if( pSelect ){ |
| sqliteVdbeAddOp(v, OP_Dup, nColumn - keyColumn - 1, 1); |
| }else{ |
| sqliteExprCode(pParse, pList->a[keyColumn].pExpr); |
| sqliteVdbeAddOp(v, OP_NotNull, -1, sqliteVdbeCurrentAddr(v)+3); |
| sqliteVdbeAddOp(v, OP_Pop, 1, 0); |
| sqliteVdbeAddOp(v, OP_Integer, -1, 0); |
| sqliteVdbeAddOp(v, OP_MustBeInt, 0, 0); |
| } |
| |
| /* Create the new column data |
| */ |
| for(i=0; i<pTab->nCol; i++){ |
| if( pColumn==0 ){ |
| j = i; |
| }else{ |
| for(j=0; j<pColumn->nId; j++){ |
| if( pColumn->a[j].idx==i ) break; |
| } |
| } |
| if( pColumn && j>=pColumn->nId ){ |
| sqliteVdbeAddOp(v, OP_String, 0, 0); |
| sqliteVdbeChangeP3(v, -1, pTab->aCol[i].zDflt, P3_STATIC); |
| }else if( useTempTable ){ |
| sqliteVdbeAddOp(v, OP_Column, srcTab, j); |
| }else if( pSelect ){ |
| sqliteVdbeAddOp(v, OP_Dup, nColumn-j-1, 1); |
| }else{ |
| sqliteExprCode(pParse, pList->a[j].pExpr); |
| } |
| } |
| sqliteVdbeAddOp(v, OP_MakeRecord, pTab->nCol, 0); |
| sqliteVdbeAddOp(v, OP_PutIntKey, newIdx, 0); |
| |
| /* Fire BEFORE or INSTEAD OF triggers */ |
| if( sqliteCodeRowTrigger(pParse, TK_INSERT, 0, TK_BEFORE, pTab, |
| newIdx, -1, onError, endOfLoop) ){ |
| goto insert_cleanup; |
| } |
| } |
| |
| /* If any triggers exists, the opening of tables and indices is deferred |
| ** until now. |
| */ |
| if( row_triggers_exist && !isView ){ |
| base = pParse->nTab; |
| sqliteVdbeAddOp(v, OP_Integer, pTab->iDb, 0); |
| sqliteVdbeAddOp(v, OP_OpenWrite, base, pTab->tnum); |
| sqliteVdbeChangeP3(v, -1, pTab->zName, P3_STATIC); |
| for(idx=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, idx++){ |
| sqliteVdbeAddOp(v, OP_Integer, pIdx->iDb, 0); |
| sqliteVdbeAddOp(v, OP_OpenWrite, idx+base, pIdx->tnum); |
| sqliteVdbeChangeP3(v, -1, pIdx->zName, P3_STATIC); |
| } |
| pParse->nTab += idx; |
| } |
| |
| /* Push the record number for the new entry onto the stack. The |
| ** record number is a randomly generate integer created by NewRecno |
| ** except when the table has an INTEGER PRIMARY KEY column, in which |
| ** case the record number is the same as that column. |
| */ |
| if( !isView ){ |
| if( keyColumn>=0 ){ |
| if( useTempTable ){ |
| sqliteVdbeAddOp(v, OP_Column, srcTab, keyColumn); |
| }else if( pSelect ){ |
| sqliteVdbeAddOp(v, OP_Dup, nColumn - keyColumn - 1, 1); |
| }else{ |
| sqliteExprCode(pParse, pList->a[keyColumn].pExpr); |
| } |
| /* If the PRIMARY KEY expression is NULL, then use OP_NewRecno |
| ** to generate a unique primary key value. |
| */ |
| sqliteVdbeAddOp(v, OP_NotNull, -1, sqliteVdbeCurrentAddr(v)+3); |
| sqliteVdbeAddOp(v, OP_Pop, 1, 0); |
| sqliteVdbeAddOp(v, OP_NewRecno, base, 0); |
| sqliteVdbeAddOp(v, OP_MustBeInt, 0, 0); |
| }else{ |
| sqliteVdbeAddOp(v, OP_NewRecno, base, 0); |
| } |
| |
| /* Push onto the stack, data for all columns of the new entry, beginning |
| ** with the first column. |
| */ |
| for(i=0; i<pTab->nCol; i++){ |
| if( i==pTab->iPKey ){ |
| /* The value of the INTEGER PRIMARY KEY column is always a NULL. |
| ** Whenever this column is read, the record number will be substituted |
| ** in its place. So will fill this column with a NULL to avoid |
| ** taking up data space with information that will never be used. */ |
| sqliteVdbeAddOp(v, OP_String, 0, 0); |
| continue; |
| } |
| if( pColumn==0 ){ |
| j = i; |
| }else{ |
| for(j=0; j<pColumn->nId; j++){ |
| if( pColumn->a[j].idx==i ) break; |
| } |
| } |
| if( pColumn && j>=pColumn->nId ){ |
| sqliteVdbeAddOp(v, OP_String, 0, 0); |
| sqliteVdbeChangeP3(v, -1, pTab->aCol[i].zDflt, P3_STATIC); |
| }else if( useTempTable ){ |
| sqliteVdbeAddOp(v, OP_Column, srcTab, j); |
| }else if( pSelect ){ |
| sqliteVdbeAddOp(v, OP_Dup, i+nColumn-j, 1); |
| }else{ |
| sqliteExprCode(pParse, pList->a[j].pExpr); |
| } |
| } |
| |
| /* Generate code to check constraints and generate index keys and |
| ** do the insertion. |
| */ |
| sqliteGenerateConstraintChecks(pParse, pTab, base, 0, keyColumn>=0, |
| 0, onError, endOfLoop); |
| sqliteCompleteInsertion(pParse, pTab, base, 0,0,0, |
| after_triggers ? newIdx : -1); |
| } |
| |
| /* Update the count of rows that are inserted |
| */ |
| if( (db->flags & SQLITE_CountRows)!=0 ){ |
| sqliteVdbeAddOp(v, OP_MemIncr, iCntMem, 0); |
| } |
| |
| if( row_triggers_exist ){ |
| /* Close all tables opened */ |
| if( !isView ){ |
| sqliteVdbeAddOp(v, OP_Close, base, 0); |
| for(idx=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, idx++){ |
| sqliteVdbeAddOp(v, OP_Close, idx+base, 0); |
| } |
| } |
| |
| /* Code AFTER triggers */ |
| if( sqliteCodeRowTrigger(pParse, TK_INSERT, 0, TK_AFTER, pTab, newIdx, -1, |
| onError, endOfLoop) ){ |
| goto insert_cleanup; |
| } |
| } |
| |
| /* The bottom of the loop, if the data source is a SELECT statement |
| */ |
| sqliteVdbeResolveLabel(v, endOfLoop); |
| if( useTempTable ){ |
| sqliteVdbeAddOp(v, OP_Next, srcTab, iCont); |
| sqliteVdbeResolveLabel(v, iBreak); |
| sqliteVdbeAddOp(v, OP_Close, srcTab, 0); |
| }else if( pSelect ){ |
| sqliteVdbeAddOp(v, OP_Pop, nColumn, 0); |
| sqliteVdbeAddOp(v, OP_Return, 0, 0); |
| sqliteVdbeResolveLabel(v, iCleanup); |
| } |
| |
| if( !row_triggers_exist ){ |
| /* Close all tables opened */ |
| sqliteVdbeAddOp(v, OP_Close, base, 0); |
| for(idx=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, idx++){ |
| sqliteVdbeAddOp(v, OP_Close, idx+base, 0); |
| } |
| } |
| |
| sqliteEndWriteOperation(pParse); |
| |
| /* |
| ** Return the number of rows inserted. |
| */ |
| if( db->flags & SQLITE_CountRows ){ |
| sqliteVdbeAddOp(v, OP_ColumnName, 0, 0); |
| sqliteVdbeChangeP3(v, -1, "rows inserted", P3_STATIC); |
| sqliteVdbeAddOp(v, OP_MemLoad, iCntMem, 0); |
| sqliteVdbeAddOp(v, OP_Callback, 1, 0); |
| } |
| |
| insert_cleanup: |
| sqliteSrcListDelete(pTabList); |
| if( pList ) sqliteExprListDelete(pList); |
| if( pSelect ) sqliteSelectDelete(pSelect); |
| sqliteIdListDelete(pColumn); |
| } |
| |
| /* |
| ** Generate code to do a constraint check prior to an INSERT or an UPDATE. |
| ** |
| ** When this routine is called, the stack contains (from bottom to top) |
| ** the following values: |
| ** |
| ** 1. The recno of the row to be updated before the update. This |
| ** value is omitted unless we are doing an UPDATE that involves a |
| ** change to the record number. |
| ** |
| ** 2. The recno of the row after the update. |
| ** |
| ** 3. The data in the first column of the entry after the update. |
| ** |
| ** i. Data from middle columns... |
| ** |
| ** N. The data in the last column of the entry after the update. |
| ** |
| ** The old recno shown as entry (1) above is omitted unless both isUpdate |
| ** and recnoChng are 1. isUpdate is true for UPDATEs and false for |
| ** INSERTs and recnoChng is true if the record number is being changed. |
| ** |
| ** The code generated by this routine pushes additional entries onto |
| ** the stack which are the keys for new index entries for the new record. |
| ** The order of index keys is the same as the order of the indices on |
| ** the pTable->pIndex list. A key is only created for index i if |
| ** aIdxUsed!=0 and aIdxUsed[i]!=0. |
| ** |
| ** This routine also generates code to check constraints. NOT NULL, |
| ** CHECK, and UNIQUE constraints are all checked. If a constraint fails, |
| ** then the appropriate action is performed. There are five possible |
| ** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE. |
| ** |
| ** Constraint type Action What Happens |
| ** --------------- ---------- ---------------------------------------- |
| ** any ROLLBACK The current transaction is rolled back and |
| ** sqlite_exec() returns immediately with a |
| ** return code of SQLITE_CONSTRAINT. |
| ** |
| ** any ABORT Back out changes from the current command |
| ** only (do not do a complete rollback) then |
| ** cause sqlite_exec() to return immediately |
| ** with SQLITE_CONSTRAINT. |
| ** |
| ** any FAIL Sqlite_exec() returns immediately with a |
| ** return code of SQLITE_CONSTRAINT. The |
| ** transaction is not rolled back and any |
| ** prior changes are retained. |
| ** |
| ** any IGNORE The record number and data is popped from |
| ** the stack and there is an immediate jump |
| ** to label ignoreDest. |
| ** |
| ** NOT NULL REPLACE The NULL value is replace by the default |
| ** value for that column. If the default value |
| ** is NULL, the action is the same as ABORT. |
| ** |
| ** UNIQUE REPLACE The other row that conflicts with the row |
| ** being inserted is removed. |
| ** |
| ** CHECK REPLACE Illegal. The results in an exception. |
| ** |
| ** Which action to take is determined by the overrideError parameter. |
| ** Or if overrideError==OE_Default, then the pParse->onError parameter |
| ** is used. Or if pParse->onError==OE_Default then the onError value |
| ** for the constraint is used. |
| ** |
| ** The calling routine must open a read/write cursor for pTab with |
| ** cursor number "base". All indices of pTab must also have open |
| ** read/write cursors with cursor number base+i for the i-th cursor. |
| ** Except, if there is no possibility of a REPLACE action then |
| ** cursors do not need to be open for indices where aIdxUsed[i]==0. |
| ** |
| ** If the isUpdate flag is true, it means that the "base" cursor is |
| ** initially pointing to an entry that is being updated. The isUpdate |
| ** flag causes extra code to be generated so that the "base" cursor |
| ** is still pointing at the same entry after the routine returns. |
| ** Without the isUpdate flag, the "base" cursor might be moved. |
| */ |
| void sqliteGenerateConstraintChecks( |
| Parse *pParse, /* The parser context */ |
| Table *pTab, /* the table into which we are inserting */ |
| int base, /* Index of a read/write cursor pointing at pTab */ |
| char *aIdxUsed, /* Which indices are used. NULL means all are used */ |
| int recnoChng, /* True if the record number will change */ |
| int isUpdate, /* True for UPDATE, False for INSERT */ |
| int overrideError, /* Override onError to this if not OE_Default */ |
| int ignoreDest /* Jump to this label on an OE_Ignore resolution */ |
| ){ |
| int i; |
| Vdbe *v; |
| int nCol; |
| int onError; |
| int addr; |
| int extra; |
| int iCur; |
| Index *pIdx; |
| int seenReplace = 0; |
| int jumpInst1, jumpInst2; |
| int contAddr; |
| int hasTwoRecnos = (isUpdate && recnoChng); |
| |
| v = sqliteGetVdbe(pParse); |
| assert( v!=0 ); |
| assert( pTab->pSelect==0 ); /* This table is not a VIEW */ |
| nCol = pTab->nCol; |
| |
| /* Test all NOT NULL constraints. |
| */ |
| for(i=0; i<nCol; i++){ |
| if( i==pTab->iPKey ){ |
| continue; |
| } |
| onError = pTab->aCol[i].notNull; |
| if( onError==OE_None ) continue; |
| if( overrideError!=OE_Default ){ |
| onError = overrideError; |
| }else if( pParse->db->onError!=OE_Default ){ |
| onError = pParse->db->onError; |
| }else if( onError==OE_Default ){ |
| onError = OE_Abort; |
| } |
| if( onError==OE_Replace && pTab->aCol[i].zDflt==0 ){ |
| onError = OE_Abort; |
| } |
| sqliteVdbeAddOp(v, OP_Dup, nCol-1-i, 1); |
| addr = sqliteVdbeAddOp(v, OP_NotNull, 1, 0); |
| switch( onError ){ |
| case OE_Rollback: |
| case OE_Abort: |
| case OE_Fail: { |
| char *zMsg = 0; |
| sqliteVdbeAddOp(v, OP_Halt, SQLITE_CONSTRAINT, onError); |
| sqliteSetString(&zMsg, pTab->zName, ".", pTab->aCol[i].zName, |
| " may not be NULL", 0); |
| sqliteVdbeChangeP3(v, -1, zMsg, P3_DYNAMIC); |
| break; |
| } |
| case OE_Ignore: { |
| sqliteVdbeAddOp(v, OP_Pop, nCol+1+hasTwoRecnos, 0); |
| sqliteVdbeAddOp(v, OP_Goto, 0, ignoreDest); |
| break; |
| } |
| case OE_Replace: { |
| sqliteVdbeAddOp(v, OP_String, 0, 0); |
| sqliteVdbeChangeP3(v, -1, pTab->aCol[i].zDflt, P3_STATIC); |
| sqliteVdbeAddOp(v, OP_Push, nCol-i, 0); |
| break; |
| } |
| default: assert(0); |
| } |
| sqliteVdbeChangeP2(v, addr, sqliteVdbeCurrentAddr(v)); |
| } |
| |
| /* Test all CHECK constraints |
| */ |
| /**** TBD ****/ |
| |
| /* If we have an INTEGER PRIMARY KEY, make sure the primary key |
| ** of the new record does not previously exist. Except, if this |
| ** is an UPDATE and the primary key is not changing, that is OK. |
| */ |
| if( recnoChng ){ |
| onError = pTab->keyConf; |
| if( overrideError!=OE_Default ){ |
| onError = overrideError; |
| }else if( pParse->db->onError!=OE_Default ){ |
| onError = pParse->db->onError; |
| }else if( onError==OE_Default ){ |
| onError = OE_Abort; |
| } |
| |
| if( isUpdate ){ |
| sqliteVdbeAddOp(v, OP_Dup, nCol+1, 1); |
| sqliteVdbeAddOp(v, OP_Dup, nCol+1, 1); |
| jumpInst1 = sqliteVdbeAddOp(v, OP_Eq, 0, 0); |
| } |
| sqliteVdbeAddOp(v, OP_Dup, nCol, 1); |
| jumpInst2 = sqliteVdbeAddOp(v, OP_NotExists, base, 0); |
| switch( onError ){ |
| default: { |
| onError = OE_Abort; |
| /* Fall thru into the next case */ |
| } |
| case OE_Rollback: |
| case OE_Abort: |
| case OE_Fail: { |
| sqliteVdbeAddOp(v, OP_Halt, SQLITE_CONSTRAINT, onError); |
| sqliteVdbeChangeP3(v, -1, "PRIMARY KEY must be unique", P3_STATIC); |
| break; |
| } |
| case OE_Replace: { |
| sqliteGenerateRowIndexDelete(pParse->db, v, pTab, base, 0); |
| if( isUpdate ){ |
| sqliteVdbeAddOp(v, OP_Dup, nCol+hasTwoRecnos, 1); |
| sqliteVdbeAddOp(v, OP_MoveTo, base, 0); |
| } |
| seenReplace = 1; |
| break; |
| } |
| case OE_Ignore: { |
| assert( seenReplace==0 ); |
| sqliteVdbeAddOp(v, OP_Pop, nCol+1+hasTwoRecnos, 0); |
| sqliteVdbeAddOp(v, OP_Goto, 0, ignoreDest); |
| break; |
| } |
| } |
| contAddr = sqliteVdbeCurrentAddr(v); |
| sqliteVdbeChangeP2(v, jumpInst2, contAddr); |
| if( isUpdate ){ |
| sqliteVdbeChangeP2(v, jumpInst1, contAddr); |
| sqliteVdbeAddOp(v, OP_Dup, nCol+1, 1); |
| sqliteVdbeAddOp(v, OP_MoveTo, base, 0); |
| } |
| } |
| |
| /* Test all UNIQUE constraints by creating entries for each UNIQUE |
| ** index and making sure that duplicate entries do not already exist. |
| ** Add the new records to the indices as we go. |
| */ |
| extra = -1; |
| for(iCur=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, iCur++){ |
| if( aIdxUsed && aIdxUsed[iCur]==0 ) continue; /* Skip unused indices */ |
| extra++; |
| |
| /* Create a key for accessing the index entry */ |
| sqliteVdbeAddOp(v, OP_Dup, nCol+extra, 1); |
| for(i=0; i<pIdx->nColumn; i++){ |
| int idx = pIdx->aiColumn[i]; |
| if( idx==pTab->iPKey ){ |
| sqliteVdbeAddOp(v, OP_Dup, i+extra+nCol+1, 1); |
| }else{ |
| sqliteVdbeAddOp(v, OP_Dup, i+extra+nCol-idx, 1); |
| } |
| } |
| jumpInst1 = sqliteVdbeAddOp(v, OP_MakeIdxKey, pIdx->nColumn, 0); |
| if( pParse->db->file_format>=4 ) sqliteAddIdxKeyType(v, pIdx); |
| |
| /* Find out what action to take in case there is an indexing conflict */ |
| onError = pIdx->onError; |
| if( onError==OE_None ) continue; /* pIdx is not a UNIQUE index */ |
| if( overrideError!=OE_Default ){ |
| onError = overrideError; |
| }else if( pParse->db->onError!=OE_Default ){ |
| onError = pParse->db->onError; |
| }else if( onError==OE_Default ){ |
| onError = OE_Abort; |
| } |
| if( seenReplace ){ |
| if( onError==OE_Ignore ) onError = OE_Replace; |
| else if( onError==OE_Fail ) onError = OE_Abort; |
| } |
| |
| |
| /* Check to see if the new index entry will be unique */ |
| sqliteVdbeAddOp(v, OP_Dup, extra+nCol+1+hasTwoRecnos, 1); |
| jumpInst2 = sqliteVdbeAddOp(v, OP_IsUnique, base+iCur+1, 0); |
| |
| /* Generate code that executes if the new index entry is not unique */ |
| switch( onError ){ |
| case OE_Rollback: |
| case OE_Abort: |
| case OE_Fail: { |
| int j, n1, n2; |
| char zErrMsg[200]; |
| strcpy(zErrMsg, pIdx->nColumn>1 ? "columns " : "column "); |
| n1 = strlen(zErrMsg); |
| for(j=0; j<pIdx->nColumn && n1<sizeof(zErrMsg)-30; j++){ |
| char *zCol = pTab->aCol[pIdx->aiColumn[j]].zName; |
| n2 = strlen(zCol); |
| if( j>0 ){ |
| strcpy(&zErrMsg[n1], ", "); |
| n1 += 2; |
| } |
| if( n1+n2>sizeof(zErrMsg)-30 ){ |
| strcpy(&zErrMsg[n1], "..."); |
| n1 += 3; |
| break; |
| }else{ |
| strcpy(&zErrMsg[n1], zCol); |
| n1 += n2; |
| } |
| } |
| strcpy(&zErrMsg[n1], |
| pIdx->nColumn>1 ? " are not unique" : " is not unique"); |
| sqliteVdbeAddOp(v, OP_Halt, SQLITE_CONSTRAINT, onError); |
| sqliteVdbeChangeP3(v, -1, sqliteStrDup(zErrMsg), P3_DYNAMIC); |
| break; |
| } |
| case OE_Ignore: { |
| assert( seenReplace==0 ); |
| sqliteVdbeAddOp(v, OP_Pop, nCol+extra+3+hasTwoRecnos, 0); |
| sqliteVdbeAddOp(v, OP_Goto, 0, ignoreDest); |
| break; |
| } |
| case OE_Replace: { |
| sqliteGenerateRowDelete(pParse->db, v, pTab, base, 0); |
| if( isUpdate ){ |
| sqliteVdbeAddOp(v, OP_Dup, nCol+extra+1+hasTwoRecnos, 1); |
| sqliteVdbeAddOp(v, OP_MoveTo, base, 0); |
| } |
| seenReplace = 1; |
| break; |
| } |
| default: assert(0); |
| } |
| contAddr = sqliteVdbeCurrentAddr(v); |
| #if NULL_DISTINCT_FOR_UNIQUE |
| sqliteVdbeChangeP2(v, jumpInst1, contAddr); |
| #endif |
| sqliteVdbeChangeP2(v, jumpInst2, contAddr); |
| } |
| } |
| |
| /* |
| ** This routine generates code to finish the INSERT or UPDATE operation |
| ** that was started by a prior call to sqliteGenerateConstraintChecks. |
| ** The stack must contain keys for all active indices followed by data |
| ** and the recno for the new entry. This routine creates the new |
| ** entries in all indices and in the main table. |
| ** |
| ** The arguments to this routine should be the same as the first six |
| ** arguments to sqliteGenerateConstraintChecks. |
| */ |
| void sqliteCompleteInsertion( |
| Parse *pParse, /* The parser context */ |
| Table *pTab, /* the table into which we are inserting */ |
| int base, /* Index of a read/write cursor pointing at pTab */ |
| char *aIdxUsed, /* Which indices are used. NULL means all are used */ |
| int recnoChng, /* True if the record number will change */ |
| int isUpdate, /* True for UPDATE, False for INSERT */ |
| int newIdx /* Index of NEW table for triggers. -1 if none */ |
| ){ |
| int i; |
| Vdbe *v; |
| int nIdx; |
| Index *pIdx; |
| |
| v = sqliteGetVdbe(pParse); |
| assert( v!=0 ); |
| assert( pTab->pSelect==0 ); /* This table is not a VIEW */ |
| for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){} |
| for(i=nIdx-1; i>=0; i--){ |
| if( aIdxUsed && aIdxUsed[i]==0 ) continue; |
| sqliteVdbeAddOp(v, OP_IdxPut, base+i+1, 0); |
| } |
| sqliteVdbeAddOp(v, OP_MakeRecord, pTab->nCol, 0); |
| if( newIdx>=0 ){ |
| sqliteVdbeAddOp(v, OP_Dup, 1, 0); |
| sqliteVdbeAddOp(v, OP_Dup, 1, 0); |
| sqliteVdbeAddOp(v, OP_PutIntKey, newIdx, 0); |
| } |
| sqliteVdbeAddOp(v, OP_PutIntKey, base, pParse->trigStack?0:1); |
| if( isUpdate && recnoChng ){ |
| sqliteVdbeAddOp(v, OP_Pop, 1, 0); |
| } |
| } |