| /* |
| ** 2001 September 15 |
| ** |
| ** The author disclaims copyright to this source code. In place of |
| ** a legal notice, here is a blessing: |
| ** |
| ** May you do good and not evil. |
| ** May you find forgiveness for yourself and forgive others. |
| ** May you share freely, never taking more than you give. |
| ** |
| ************************************************************************* |
| ** This file contains C code routines that are called by the parser |
| ** to handle INSERT statements in SQLite. |
| ** |
| ** $Id: insert.c,v 1.156 2006/01/10 17:58:23 danielk1977 Exp $ |
| */ |
| #include "sqliteInt.h" |
| |
| /* |
| ** Set P3 of the most recently inserted opcode to a column affinity |
| ** string for index pIdx. A column affinity string has one character |
| ** for each column in the table, according to the affinity of the column: |
| ** |
| ** Character Column affinity |
| ** ------------------------------ |
| ** 'a' TEXT |
| ** 'b' NONE |
| ** 'c' NUMERIC |
| ** 'd' INTEGER |
| ** 'e' REAL |
| */ |
| void sqlite3IndexAffinityStr(Vdbe *v, Index *pIdx){ |
| if( !pIdx->zColAff ){ |
| /* The first time a column affinity string for a particular index is |
| ** required, it is allocated and populated here. It is then stored as |
| ** a member of the Index structure for subsequent use. |
| ** |
| ** The column affinity string will eventually be deleted by |
| ** sqliteDeleteIndex() when the Index structure itself is cleaned |
| ** up. |
| */ |
| int n; |
| Table *pTab = pIdx->pTable; |
| pIdx->zColAff = (char *)sqliteMalloc(pIdx->nColumn+1); |
| if( !pIdx->zColAff ){ |
| return; |
| } |
| for(n=0; n<pIdx->nColumn; n++){ |
| pIdx->zColAff[n] = pTab->aCol[pIdx->aiColumn[n]].affinity; |
| } |
| pIdx->zColAff[pIdx->nColumn] = '\0'; |
| } |
| |
| sqlite3VdbeChangeP3(v, -1, pIdx->zColAff, 0); |
| } |
| |
| /* |
| ** Set P3 of the most recently inserted opcode to a column affinity |
| ** string for table pTab. A column affinity string has one character |
| ** for each column indexed by the index, according to the affinity of the |
| ** column: |
| ** |
| ** Character Column affinity |
| ** ------------------------------ |
| ** 'a' TEXT |
| ** 'b' NONE |
| ** 'c' NUMERIC |
| ** 'd' INTEGER |
| ** 'e' REAL |
| */ |
| void sqlite3TableAffinityStr(Vdbe *v, Table *pTab){ |
| /* The first time a column affinity string for a particular table |
| ** is required, it is allocated and populated here. It is then |
| ** stored as a member of the Table structure for subsequent use. |
| ** |
| ** The column affinity string will eventually be deleted by |
| ** sqlite3DeleteTable() when the Table structure itself is cleaned up. |
| */ |
| if( !pTab->zColAff ){ |
| char *zColAff; |
| int i; |
| |
| zColAff = (char *)sqliteMalloc(pTab->nCol+1); |
| if( !zColAff ){ |
| return; |
| } |
| |
| for(i=0; i<pTab->nCol; i++){ |
| zColAff[i] = pTab->aCol[i].affinity; |
| } |
| zColAff[pTab->nCol] = '\0'; |
| |
| pTab->zColAff = zColAff; |
| } |
| |
| sqlite3VdbeChangeP3(v, -1, pTab->zColAff, 0); |
| } |
| |
| /* |
| ** Return non-zero if SELECT statement p opens the table with rootpage |
| ** iTab in database iDb. This is used to see if a statement of the form |
| ** "INSERT INTO <iDb, iTab> SELECT ..." can run without using temporary |
| ** table for the results of the SELECT. |
| ** |
| ** No checking is done for sub-selects that are part of expressions. |
| */ |
| static int selectReadsTable(Select *p, Schema *pSchema, int iTab){ |
| int i; |
| struct SrcList_item *pItem; |
| if( p->pSrc==0 ) return 0; |
| for(i=0, pItem=p->pSrc->a; i<p->pSrc->nSrc; i++, pItem++){ |
| if( pItem->pSelect ){ |
| if( selectReadsTable(pItem->pSelect, pSchema, iTab) ) return 1; |
| }else{ |
| if( pItem->pTab->pSchema==pSchema && pItem->pTab->tnum==iTab ) return 1; |
| } |
| } |
| return 0; |
| } |
| |
| /* |
| ** This routine is call to handle SQL of the following forms: |
| ** |
| ** insert into TABLE (IDLIST) values(EXPRLIST) |
| ** insert into TABLE (IDLIST) select |
| ** |
| ** The IDLIST following the table name is always optional. If omitted, |
| ** then a list of all columns for the table is substituted. The IDLIST |
| ** appears in the pColumn parameter. pColumn is NULL if IDLIST is omitted. |
| ** |
| ** The pList parameter holds EXPRLIST in the first form of the INSERT |
| ** statement above, and pSelect is NULL. For the second form, pList is |
| ** NULL and pSelect is a pointer to the select statement used to generate |
| ** data for the insert. |
| ** |
| ** The code generated follows one of three templates. For a simple |
| ** select with data coming from a VALUES clause, the code executes |
| ** once straight down through. The template looks like this: |
| ** |
| ** open write cursor to <table> and its indices |
| ** puts VALUES clause expressions onto the stack |
| ** write the resulting record into <table> |
| ** cleanup |
| ** |
| ** If the statement is of the form |
| ** |
| ** INSERT INTO <table> SELECT ... |
| ** |
| ** And the SELECT clause does not read from <table> at any time, then |
| ** the generated code follows this template: |
| ** |
| ** goto B |
| ** A: setup for the SELECT |
| ** loop over the tables in the SELECT |
| ** gosub C |
| ** end loop |
| ** cleanup after the SELECT |
| ** goto D |
| ** B: open write cursor to <table> and its indices |
| ** goto A |
| ** C: insert the select result into <table> |
| ** return |
| ** D: cleanup |
| ** |
| ** The third template is used if the insert statement takes its |
| ** values from a SELECT but the data is being inserted into a table |
| ** that is also read as part of the SELECT. In the third form, |
| ** we have to use a intermediate table to store the results of |
| ** the select. The template is like this: |
| ** |
| ** goto B |
| ** A: setup for the SELECT |
| ** loop over the tables in the SELECT |
| ** gosub C |
| ** end loop |
| ** cleanup after the SELECT |
| ** goto D |
| ** C: insert the select result into the intermediate table |
| ** return |
| ** B: open a cursor to an intermediate table |
| ** goto A |
| ** D: open write cursor to <table> and its indices |
| ** loop over the intermediate table |
| ** transfer values form intermediate table into <table> |
| ** end the loop |
| ** cleanup |
| */ |
| void sqlite3Insert( |
| Parse *pParse, /* Parser context */ |
| SrcList *pTabList, /* Name of table into which we are inserting */ |
| ExprList *pList, /* List of values to be inserted */ |
| Select *pSelect, /* A SELECT statement to use as the data source */ |
| IdList *pColumn, /* Column names corresponding to IDLIST. */ |
| int onError /* How to handle constraint errors */ |
| ){ |
| Table *pTab; /* The table to insert into */ |
| char *zTab; /* Name of the table into which we are inserting */ |
| const char *zDb; /* Name of the database holding this table */ |
| int i, j, idx; /* Loop counters */ |
| Vdbe *v; /* Generate code into this virtual machine */ |
| Index *pIdx; /* For looping over indices of the table */ |
| int nColumn; /* Number of columns in the data */ |
| int base = 0; /* VDBE Cursor number for pTab */ |
| int iCont=0,iBreak=0; /* Beginning and end of the loop over srcTab */ |
| sqlite3 *db; /* The main database structure */ |
| int keyColumn = -1; /* Column that is the INTEGER PRIMARY KEY */ |
| int endOfLoop; /* Label for the end of the insertion loop */ |
| int useTempTable = 0; /* Store SELECT results in intermediate table */ |
| int srcTab = 0; /* Data comes from this temporary cursor if >=0 */ |
| int iSelectLoop = 0; /* Address of code that implements the SELECT */ |
| int iCleanup = 0; /* Address of the cleanup code */ |
| int iInsertBlock = 0; /* Address of the subroutine used to insert data */ |
| int iCntMem = 0; /* Memory cell used for the row counter */ |
| int newIdx = -1; /* Cursor for the NEW table */ |
| Db *pDb; /* The database containing table being inserted into */ |
| int counterMem = 0; /* Memory cell holding AUTOINCREMENT counter */ |
| int iDb; |
| |
| #ifndef SQLITE_OMIT_TRIGGER |
| int isView; /* True if attempting to insert into a view */ |
| int triggers_exist = 0; /* True if there are FOR EACH ROW triggers */ |
| #endif |
| |
| #ifndef SQLITE_OMIT_AUTOINCREMENT |
| int counterRowid; /* Memory cell holding rowid of autoinc counter */ |
| #endif |
| |
| if( pParse->nErr || sqlite3ThreadData()->mallocFailed ) goto insert_cleanup; |
| db = pParse->db; |
| |
| /* Locate the table into which we will be inserting new information. |
| */ |
| assert( pTabList->nSrc==1 ); |
| zTab = pTabList->a[0].zName; |
| if( zTab==0 ) goto insert_cleanup; |
| pTab = sqlite3SrcListLookup(pParse, pTabList); |
| if( pTab==0 ){ |
| goto insert_cleanup; |
| } |
| iDb = sqlite3SchemaToIndex(db, pTab->pSchema); |
| assert( iDb<db->nDb ); |
| pDb = &db->aDb[iDb]; |
| zDb = pDb->zName; |
| if( sqlite3AuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0, zDb) ){ |
| goto insert_cleanup; |
| } |
| |
| /* Figure out if we have any triggers and if the table being |
| ** inserted into is a view |
| */ |
| #ifndef SQLITE_OMIT_TRIGGER |
| triggers_exist = sqlite3TriggersExist(pParse, pTab, TK_INSERT, 0); |
| isView = pTab->pSelect!=0; |
| #else |
| # define triggers_exist 0 |
| # define isView 0 |
| #endif |
| #ifdef SQLITE_OMIT_VIEW |
| # undef isView |
| # define isView 0 |
| #endif |
| |
| /* Ensure that: |
| * (a) the table is not read-only, |
| * (b) that if it is a view then ON INSERT triggers exist |
| */ |
| if( sqlite3IsReadOnly(pParse, pTab, triggers_exist) ){ |
| goto insert_cleanup; |
| } |
| if( pTab==0 ) goto insert_cleanup; |
| |
| /* If pTab is really a view, make sure it has been initialized. |
| */ |
| if( isView && sqlite3ViewGetColumnNames(pParse, pTab) ){ |
| goto insert_cleanup; |
| } |
| |
| /* Allocate a VDBE |
| */ |
| v = sqlite3GetVdbe(pParse); |
| if( v==0 ) goto insert_cleanup; |
| if( pParse->nested==0 ) sqlite3VdbeCountChanges(v); |
| sqlite3BeginWriteOperation(pParse, pSelect || triggers_exist, iDb); |
| |
| /* if there are row triggers, allocate a temp table for new.* references. */ |
| if( triggers_exist ){ |
| newIdx = pParse->nTab++; |
| } |
| |
| #ifndef SQLITE_OMIT_AUTOINCREMENT |
| /* If this is an AUTOINCREMENT table, look up the sequence number in the |
| ** sqlite_sequence table and store it in memory cell counterMem. Also |
| ** remember the rowid of the sqlite_sequence table entry in memory cell |
| ** counterRowid. |
| */ |
| if( pTab->autoInc ){ |
| int iCur = pParse->nTab; |
| int base = sqlite3VdbeCurrentAddr(v); |
| counterRowid = pParse->nMem++; |
| counterMem = pParse->nMem++; |
| sqlite3OpenTable(pParse, iCur, iDb, pDb->pSchema->pSeqTab, OP_OpenRead); |
| sqlite3VdbeAddOp(v, OP_Rewind, iCur, base+13); |
| sqlite3VdbeAddOp(v, OP_Column, iCur, 0); |
| sqlite3VdbeOp3(v, OP_String8, 0, 0, pTab->zName, 0); |
| sqlite3VdbeAddOp(v, OP_Ne, 0x100, base+12); |
| sqlite3VdbeAddOp(v, OP_Rowid, iCur, 0); |
| sqlite3VdbeAddOp(v, OP_MemStore, counterRowid, 1); |
| sqlite3VdbeAddOp(v, OP_Column, iCur, 1); |
| sqlite3VdbeAddOp(v, OP_MemStore, counterMem, 1); |
| sqlite3VdbeAddOp(v, OP_Goto, 0, base+13); |
| sqlite3VdbeAddOp(v, OP_Next, iCur, base+4); |
| sqlite3VdbeAddOp(v, OP_Close, iCur, 0); |
| } |
| #endif /* SQLITE_OMIT_AUTOINCREMENT */ |
| |
| /* Figure out how many columns of data are supplied. If the data |
| ** is coming from a SELECT statement, then this step also generates |
| ** all the code to implement the SELECT statement and invoke a subroutine |
| ** to process each row of the result. (Template 2.) If the SELECT |
| ** statement uses the the table that is being inserted into, then the |
| ** subroutine is also coded here. That subroutine stores the SELECT |
| ** results in a temporary table. (Template 3.) |
| */ |
| if( pSelect ){ |
| /* Data is coming from a SELECT. Generate code to implement that SELECT |
| */ |
| int rc, iInitCode; |
| iInitCode = sqlite3VdbeAddOp(v, OP_Goto, 0, 0); |
| iSelectLoop = sqlite3VdbeCurrentAddr(v); |
| iInsertBlock = sqlite3VdbeMakeLabel(v); |
| |
| /* Resolve the expressions in the SELECT statement and execute it. */ |
| rc = sqlite3Select(pParse, pSelect, SRT_Subroutine, iInsertBlock,0,0,0,0); |
| if( rc || pParse->nErr || sqlite3ThreadData()->mallocFailed ) goto insert_cleanup; |
| |
| iCleanup = sqlite3VdbeMakeLabel(v); |
| sqlite3VdbeAddOp(v, OP_Goto, 0, iCleanup); |
| assert( pSelect->pEList ); |
| nColumn = pSelect->pEList->nExpr; |
| |
| /* Set useTempTable to TRUE if the result of the SELECT statement |
| ** should be written into a temporary table. Set to FALSE if each |
| ** row of the SELECT can be written directly into the result table. |
| ** |
| ** A temp table must be used if the table being updated is also one |
| ** of the tables being read by the SELECT statement. Also use a |
| ** temp table in the case of row triggers. |
| */ |
| if( triggers_exist || selectReadsTable(pSelect,pTab->pSchema,pTab->tnum) ){ |
| useTempTable = 1; |
| } |
| |
| if( useTempTable ){ |
| /* Generate the subroutine that SELECT calls to process each row of |
| ** the result. Store the result in a temporary table |
| */ |
| srcTab = pParse->nTab++; |
| sqlite3VdbeResolveLabel(v, iInsertBlock); |
| sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0); |
| sqlite3VdbeAddOp(v, OP_NewRowid, srcTab, 0); |
| sqlite3VdbeAddOp(v, OP_Pull, 1, 0); |
| sqlite3VdbeAddOp(v, OP_Insert, srcTab, 0); |
| sqlite3VdbeAddOp(v, OP_Return, 0, 0); |
| |
| /* The following code runs first because the GOTO at the very top |
| ** of the program jumps to it. Create the temporary table, then jump |
| ** back up and execute the SELECT code above. |
| */ |
| sqlite3VdbeJumpHere(v, iInitCode); |
| sqlite3VdbeAddOp(v, OP_OpenVirtual, srcTab, 0); |
| sqlite3VdbeAddOp(v, OP_SetNumColumns, srcTab, nColumn); |
| sqlite3VdbeAddOp(v, OP_Goto, 0, iSelectLoop); |
| sqlite3VdbeResolveLabel(v, iCleanup); |
| }else{ |
| sqlite3VdbeJumpHere(v, iInitCode); |
| } |
| }else{ |
| /* This is the case if the data for the INSERT is coming from a VALUES |
| ** clause |
| */ |
| NameContext sNC; |
| memset(&sNC, 0, sizeof(sNC)); |
| sNC.pParse = pParse; |
| assert( pList!=0 ); |
| srcTab = -1; |
| useTempTable = 0; |
| assert( pList ); |
| nColumn = pList->nExpr; |
| for(i=0; i<nColumn; i++){ |
| if( sqlite3ExprResolveNames(&sNC, pList->a[i].pExpr) ){ |
| goto insert_cleanup; |
| } |
| } |
| } |
| |
| /* Make sure the number of columns in the source data matches the number |
| ** of columns to be inserted into the table. |
| */ |
| if( pColumn==0 && nColumn!=pTab->nCol ){ |
| sqlite3ErrorMsg(pParse, |
| "table %S has %d columns but %d values were supplied", |
| pTabList, 0, pTab->nCol, nColumn); |
| goto insert_cleanup; |
| } |
| if( pColumn!=0 && nColumn!=pColumn->nId ){ |
| sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId); |
| goto insert_cleanup; |
| } |
| |
| /* If the INSERT statement included an IDLIST term, then make sure |
| ** all elements of the IDLIST really are columns of the table and |
| ** remember the column indices. |
| ** |
| ** If the table has an INTEGER PRIMARY KEY column and that column |
| ** is named in the IDLIST, then record in the keyColumn variable |
| ** the index into IDLIST of the primary key column. keyColumn is |
| ** the index of the primary key as it appears in IDLIST, not as |
| ** is appears in the original table. (The index of the primary |
| ** key in the original table is pTab->iPKey.) |
| */ |
| if( pColumn ){ |
| for(i=0; i<pColumn->nId; i++){ |
| pColumn->a[i].idx = -1; |
| } |
| for(i=0; i<pColumn->nId; i++){ |
| for(j=0; j<pTab->nCol; j++){ |
| if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zName)==0 ){ |
| pColumn->a[i].idx = j; |
| if( j==pTab->iPKey ){ |
| keyColumn = i; |
| } |
| break; |
| } |
| } |
| if( j>=pTab->nCol ){ |
| if( sqlite3IsRowid(pColumn->a[i].zName) ){ |
| keyColumn = i; |
| }else{ |
| sqlite3ErrorMsg(pParse, "table %S has no column named %s", |
| pTabList, 0, pColumn->a[i].zName); |
| pParse->nErr++; |
| goto insert_cleanup; |
| } |
| } |
| } |
| } |
| |
| /* If there is no IDLIST term but the table has an integer primary |
| ** key, the set the keyColumn variable to the primary key column index |
| ** in the original table definition. |
| */ |
| if( pColumn==0 ){ |
| keyColumn = pTab->iPKey; |
| } |
| |
| /* Open the temp table for FOR EACH ROW triggers |
| */ |
| if( triggers_exist ){ |
| sqlite3VdbeAddOp(v, OP_OpenPseudo, newIdx, 0); |
| sqlite3VdbeAddOp(v, OP_SetNumColumns, newIdx, pTab->nCol); |
| } |
| |
| /* Initialize the count of rows to be inserted |
| */ |
| if( db->flags & SQLITE_CountRows ){ |
| iCntMem = pParse->nMem++; |
| sqlite3VdbeAddOp(v, OP_MemInt, 0, iCntMem); |
| } |
| |
| /* Open tables and indices if there are no row triggers */ |
| if( !triggers_exist ){ |
| base = pParse->nTab; |
| sqlite3OpenTableAndIndices(pParse, pTab, base, OP_OpenWrite); |
| } |
| |
| /* If the data source is a temporary table, then we have to create |
| ** a loop because there might be multiple rows of data. If the data |
| ** source is a subroutine call from the SELECT statement, then we need |
| ** to launch the SELECT statement processing. |
| */ |
| if( useTempTable ){ |
| iBreak = sqlite3VdbeMakeLabel(v); |
| sqlite3VdbeAddOp(v, OP_Rewind, srcTab, iBreak); |
| iCont = sqlite3VdbeCurrentAddr(v); |
| }else if( pSelect ){ |
| sqlite3VdbeAddOp(v, OP_Goto, 0, iSelectLoop); |
| sqlite3VdbeResolveLabel(v, iInsertBlock); |
| } |
| |
| /* Run the BEFORE and INSTEAD OF triggers, if there are any |
| */ |
| endOfLoop = sqlite3VdbeMakeLabel(v); |
| if( triggers_exist & TRIGGER_BEFORE ){ |
| |
| /* build the NEW.* reference row. Note that if there is an INTEGER |
| ** PRIMARY KEY into which a NULL is being inserted, that NULL will be |
| ** translated into a unique ID for the row. But on a BEFORE trigger, |
| ** we do not know what the unique ID will be (because the insert has |
| ** not happened yet) so we substitute a rowid of -1 |
| */ |
| if( keyColumn<0 ){ |
| sqlite3VdbeAddOp(v, OP_Integer, -1, 0); |
| }else if( useTempTable ){ |
| sqlite3VdbeAddOp(v, OP_Column, srcTab, keyColumn); |
| }else{ |
| assert( pSelect==0 ); /* Otherwise useTempTable is true */ |
| sqlite3ExprCode(pParse, pList->a[keyColumn].pExpr); |
| sqlite3VdbeAddOp(v, OP_NotNull, -1, sqlite3VdbeCurrentAddr(v)+3); |
| sqlite3VdbeAddOp(v, OP_Pop, 1, 0); |
| sqlite3VdbeAddOp(v, OP_Integer, -1, 0); |
| sqlite3VdbeAddOp(v, OP_MustBeInt, 0, 0); |
| } |
| |
| /* Create the new column data |
| */ |
| for(i=0; i<pTab->nCol; i++){ |
| if( pColumn==0 ){ |
| j = i; |
| }else{ |
| for(j=0; j<pColumn->nId; j++){ |
| if( pColumn->a[j].idx==i ) break; |
| } |
| } |
| if( pColumn && j>=pColumn->nId ){ |
| sqlite3ExprCode(pParse, pTab->aCol[i].pDflt); |
| }else if( useTempTable ){ |
| sqlite3VdbeAddOp(v, OP_Column, srcTab, j); |
| }else{ |
| assert( pSelect==0 ); /* Otherwise useTempTable is true */ |
| sqlite3ExprCodeAndCache(pParse, pList->a[j].pExpr); |
| } |
| } |
| sqlite3VdbeAddOp(v, OP_MakeRecord, pTab->nCol, 0); |
| |
| /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger, |
| ** do not attempt any conversions before assembling the record. |
| ** If this is a real table, attempt conversions as required by the |
| ** table column affinities. |
| */ |
| if( !isView ){ |
| sqlite3TableAffinityStr(v, pTab); |
| } |
| sqlite3VdbeAddOp(v, OP_Insert, newIdx, 0); |
| |
| /* Fire BEFORE or INSTEAD OF triggers */ |
| if( sqlite3CodeRowTrigger(pParse, TK_INSERT, 0, TRIGGER_BEFORE, pTab, |
| newIdx, -1, onError, endOfLoop) ){ |
| goto insert_cleanup; |
| } |
| } |
| |
| /* If any triggers exists, the opening of tables and indices is deferred |
| ** until now. |
| */ |
| if( triggers_exist && !isView ){ |
| base = pParse->nTab; |
| sqlite3OpenTableAndIndices(pParse, pTab, base, OP_OpenWrite); |
| } |
| |
| /* Push the record number for the new entry onto the stack. The |
| ** record number is a randomly generate integer created by NewRowid |
| ** except when the table has an INTEGER PRIMARY KEY column, in which |
| ** case the record number is the same as that column. |
| */ |
| if( !isView ){ |
| if( keyColumn>=0 ){ |
| if( useTempTable ){ |
| sqlite3VdbeAddOp(v, OP_Column, srcTab, keyColumn); |
| }else if( pSelect ){ |
| sqlite3VdbeAddOp(v, OP_Dup, nColumn - keyColumn - 1, 1); |
| }else{ |
| sqlite3ExprCode(pParse, pList->a[keyColumn].pExpr); |
| } |
| /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid |
| ** to generate a unique primary key value. |
| */ |
| sqlite3VdbeAddOp(v, OP_NotNull, -1, sqlite3VdbeCurrentAddr(v)+3); |
| sqlite3VdbeAddOp(v, OP_Pop, 1, 0); |
| sqlite3VdbeAddOp(v, OP_NewRowid, base, counterMem); |
| sqlite3VdbeAddOp(v, OP_MustBeInt, 0, 0); |
| }else{ |
| sqlite3VdbeAddOp(v, OP_NewRowid, base, counterMem); |
| } |
| #ifndef SQLITE_OMIT_AUTOINCREMENT |
| if( pTab->autoInc ){ |
| sqlite3VdbeAddOp(v, OP_MemMax, counterMem, 0); |
| } |
| #endif /* SQLITE_OMIT_AUTOINCREMENT */ |
| |
| /* Push onto the stack, data for all columns of the new entry, beginning |
| ** with the first column. |
| */ |
| for(i=0; i<pTab->nCol; i++){ |
| if( i==pTab->iPKey ){ |
| /* The value of the INTEGER PRIMARY KEY column is always a NULL. |
| ** Whenever this column is read, the record number will be substituted |
| ** in its place. So will fill this column with a NULL to avoid |
| ** taking up data space with information that will never be used. */ |
| sqlite3VdbeAddOp(v, OP_Null, 0, 0); |
| continue; |
| } |
| if( pColumn==0 ){ |
| j = i; |
| }else{ |
| for(j=0; j<pColumn->nId; j++){ |
| if( pColumn->a[j].idx==i ) break; |
| } |
| } |
| if( pColumn && j>=pColumn->nId ){ |
| sqlite3ExprCode(pParse, pTab->aCol[i].pDflt); |
| }else if( useTempTable ){ |
| sqlite3VdbeAddOp(v, OP_Column, srcTab, j); |
| }else if( pSelect ){ |
| sqlite3VdbeAddOp(v, OP_Dup, i+nColumn-j, 1); |
| }else{ |
| sqlite3ExprCode(pParse, pList->a[j].pExpr); |
| } |
| } |
| |
| /* Generate code to check constraints and generate index keys and |
| ** do the insertion. |
| */ |
| sqlite3GenerateConstraintChecks(pParse, pTab, base, 0, keyColumn>=0, |
| 0, onError, endOfLoop); |
| sqlite3CompleteInsertion(pParse, pTab, base, 0,0,0, |
| (triggers_exist & TRIGGER_AFTER)!=0 ? newIdx : -1); |
| } |
| |
| /* Update the count of rows that are inserted |
| */ |
| if( (db->flags & SQLITE_CountRows)!=0 ){ |
| sqlite3VdbeAddOp(v, OP_MemIncr, 1, iCntMem); |
| } |
| |
| if( triggers_exist ){ |
| /* Close all tables opened */ |
| if( !isView ){ |
| sqlite3VdbeAddOp(v, OP_Close, base, 0); |
| for(idx=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, idx++){ |
| sqlite3VdbeAddOp(v, OP_Close, idx+base, 0); |
| } |
| } |
| |
| /* Code AFTER triggers */ |
| if( sqlite3CodeRowTrigger(pParse, TK_INSERT, 0, TRIGGER_AFTER, pTab, |
| newIdx, -1, onError, endOfLoop) ){ |
| goto insert_cleanup; |
| } |
| } |
| |
| /* The bottom of the loop, if the data source is a SELECT statement |
| */ |
| sqlite3VdbeResolveLabel(v, endOfLoop); |
| if( useTempTable ){ |
| sqlite3VdbeAddOp(v, OP_Next, srcTab, iCont); |
| sqlite3VdbeResolveLabel(v, iBreak); |
| sqlite3VdbeAddOp(v, OP_Close, srcTab, 0); |
| }else if( pSelect ){ |
| sqlite3VdbeAddOp(v, OP_Pop, nColumn, 0); |
| sqlite3VdbeAddOp(v, OP_Return, 0, 0); |
| sqlite3VdbeResolveLabel(v, iCleanup); |
| } |
| |
| if( !triggers_exist ){ |
| /* Close all tables opened */ |
| sqlite3VdbeAddOp(v, OP_Close, base, 0); |
| for(idx=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, idx++){ |
| sqlite3VdbeAddOp(v, OP_Close, idx+base, 0); |
| } |
| } |
| |
| #ifndef SQLITE_OMIT_AUTOINCREMENT |
| /* Update the sqlite_sequence table by storing the content of the |
| ** counter value in memory counterMem back into the sqlite_sequence |
| ** table. |
| */ |
| if( pTab->autoInc ){ |
| int iCur = pParse->nTab; |
| int base = sqlite3VdbeCurrentAddr(v); |
| sqlite3OpenTable(pParse, iCur, iDb, pDb->pSchema->pSeqTab, OP_OpenWrite); |
| sqlite3VdbeAddOp(v, OP_MemLoad, counterRowid, 0); |
| sqlite3VdbeAddOp(v, OP_NotNull, -1, base+7); |
| sqlite3VdbeAddOp(v, OP_Pop, 1, 0); |
| sqlite3VdbeAddOp(v, OP_NewRowid, iCur, 0); |
| sqlite3VdbeOp3(v, OP_String8, 0, 0, pTab->zName, 0); |
| sqlite3VdbeAddOp(v, OP_MemLoad, counterMem, 0); |
| sqlite3VdbeAddOp(v, OP_MakeRecord, 2, 0); |
| sqlite3VdbeAddOp(v, OP_Insert, iCur, 0); |
| sqlite3VdbeAddOp(v, OP_Close, iCur, 0); |
| } |
| #endif |
| |
| /* |
| ** Return the number of rows inserted. If this routine is |
| ** generating code because of a call to sqlite3NestedParse(), do not |
| ** invoke the callback function. |
| */ |
| if( db->flags & SQLITE_CountRows && pParse->nested==0 && !pParse->trigStack ){ |
| sqlite3VdbeAddOp(v, OP_MemLoad, iCntMem, 0); |
| sqlite3VdbeAddOp(v, OP_Callback, 1, 0); |
| sqlite3VdbeSetNumCols(v, 1); |
| sqlite3VdbeSetColName(v, 0, "rows inserted", P3_STATIC); |
| } |
| |
| insert_cleanup: |
| sqlite3SrcListDelete(pTabList); |
| sqlite3ExprListDelete(pList); |
| sqlite3SelectDelete(pSelect); |
| sqlite3IdListDelete(pColumn); |
| } |
| |
| /* |
| ** Generate code to do a constraint check prior to an INSERT or an UPDATE. |
| ** |
| ** When this routine is called, the stack contains (from bottom to top) |
| ** the following values: |
| ** |
| ** 1. The rowid of the row to be updated before the update. This |
| ** value is omitted unless we are doing an UPDATE that involves a |
| ** change to the record number. |
| ** |
| ** 2. The rowid of the row after the update. |
| ** |
| ** 3. The data in the first column of the entry after the update. |
| ** |
| ** i. Data from middle columns... |
| ** |
| ** N. The data in the last column of the entry after the update. |
| ** |
| ** The old rowid shown as entry (1) above is omitted unless both isUpdate |
| ** and rowidChng are 1. isUpdate is true for UPDATEs and false for |
| ** INSERTs and rowidChng is true if the record number is being changed. |
| ** |
| ** The code generated by this routine pushes additional entries onto |
| ** the stack which are the keys for new index entries for the new record. |
| ** The order of index keys is the same as the order of the indices on |
| ** the pTable->pIndex list. A key is only created for index i if |
| ** aIdxUsed!=0 and aIdxUsed[i]!=0. |
| ** |
| ** This routine also generates code to check constraints. NOT NULL, |
| ** CHECK, and UNIQUE constraints are all checked. If a constraint fails, |
| ** then the appropriate action is performed. There are five possible |
| ** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE. |
| ** |
| ** Constraint type Action What Happens |
| ** --------------- ---------- ---------------------------------------- |
| ** any ROLLBACK The current transaction is rolled back and |
| ** sqlite3_exec() returns immediately with a |
| ** return code of SQLITE_CONSTRAINT. |
| ** |
| ** any ABORT Back out changes from the current command |
| ** only (do not do a complete rollback) then |
| ** cause sqlite3_exec() to return immediately |
| ** with SQLITE_CONSTRAINT. |
| ** |
| ** any FAIL Sqlite_exec() returns immediately with a |
| ** return code of SQLITE_CONSTRAINT. The |
| ** transaction is not rolled back and any |
| ** prior changes are retained. |
| ** |
| ** any IGNORE The record number and data is popped from |
| ** the stack and there is an immediate jump |
| ** to label ignoreDest. |
| ** |
| ** NOT NULL REPLACE The NULL value is replace by the default |
| ** value for that column. If the default value |
| ** is NULL, the action is the same as ABORT. |
| ** |
| ** UNIQUE REPLACE The other row that conflicts with the row |
| ** being inserted is removed. |
| ** |
| ** CHECK REPLACE Illegal. The results in an exception. |
| ** |
| ** Which action to take is determined by the overrideError parameter. |
| ** Or if overrideError==OE_Default, then the pParse->onError parameter |
| ** is used. Or if pParse->onError==OE_Default then the onError value |
| ** for the constraint is used. |
| ** |
| ** The calling routine must open a read/write cursor for pTab with |
| ** cursor number "base". All indices of pTab must also have open |
| ** read/write cursors with cursor number base+i for the i-th cursor. |
| ** Except, if there is no possibility of a REPLACE action then |
| ** cursors do not need to be open for indices where aIdxUsed[i]==0. |
| ** |
| ** If the isUpdate flag is true, it means that the "base" cursor is |
| ** initially pointing to an entry that is being updated. The isUpdate |
| ** flag causes extra code to be generated so that the "base" cursor |
| ** is still pointing at the same entry after the routine returns. |
| ** Without the isUpdate flag, the "base" cursor might be moved. |
| */ |
| void sqlite3GenerateConstraintChecks( |
| Parse *pParse, /* The parser context */ |
| Table *pTab, /* the table into which we are inserting */ |
| int base, /* Index of a read/write cursor pointing at pTab */ |
| char *aIdxUsed, /* Which indices are used. NULL means all are used */ |
| int rowidChng, /* True if the record number will change */ |
| int isUpdate, /* True for UPDATE, False for INSERT */ |
| int overrideError, /* Override onError to this if not OE_Default */ |
| int ignoreDest /* Jump to this label on an OE_Ignore resolution */ |
| ){ |
| int i; |
| Vdbe *v; |
| int nCol; |
| int onError; |
| int addr; |
| int extra; |
| int iCur; |
| Index *pIdx; |
| int seenReplace = 0; |
| int jumpInst1=0, jumpInst2; |
| int hasTwoRowids = (isUpdate && rowidChng); |
| |
| v = sqlite3GetVdbe(pParse); |
| assert( v!=0 ); |
| assert( pTab->pSelect==0 ); /* This table is not a VIEW */ |
| nCol = pTab->nCol; |
| |
| /* Test all NOT NULL constraints. |
| */ |
| for(i=0; i<nCol; i++){ |
| if( i==pTab->iPKey ){ |
| continue; |
| } |
| onError = pTab->aCol[i].notNull; |
| if( onError==OE_None ) continue; |
| if( overrideError!=OE_Default ){ |
| onError = overrideError; |
| }else if( onError==OE_Default ){ |
| onError = OE_Abort; |
| } |
| if( onError==OE_Replace && pTab->aCol[i].pDflt==0 ){ |
| onError = OE_Abort; |
| } |
| sqlite3VdbeAddOp(v, OP_Dup, nCol-1-i, 1); |
| addr = sqlite3VdbeAddOp(v, OP_NotNull, 1, 0); |
| assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail |
| || onError==OE_Ignore || onError==OE_Replace ); |
| switch( onError ){ |
| case OE_Rollback: |
| case OE_Abort: |
| case OE_Fail: { |
| char *zMsg = 0; |
| sqlite3VdbeAddOp(v, OP_Halt, SQLITE_CONSTRAINT, onError); |
| sqlite3SetString(&zMsg, pTab->zName, ".", pTab->aCol[i].zName, |
| " may not be NULL", (char*)0); |
| sqlite3VdbeChangeP3(v, -1, zMsg, P3_DYNAMIC); |
| break; |
| } |
| case OE_Ignore: { |
| sqlite3VdbeAddOp(v, OP_Pop, nCol+1+hasTwoRowids, 0); |
| sqlite3VdbeAddOp(v, OP_Goto, 0, ignoreDest); |
| break; |
| } |
| case OE_Replace: { |
| sqlite3ExprCode(pParse, pTab->aCol[i].pDflt); |
| sqlite3VdbeAddOp(v, OP_Push, nCol-i, 0); |
| break; |
| } |
| } |
| sqlite3VdbeJumpHere(v, addr); |
| } |
| |
| /* Test all CHECK constraints |
| */ |
| #ifndef SQLITE_OMIT_CHECK |
| if( pTab->pCheck && (pParse->db->flags & SQLITE_IgnoreChecks)==0 ){ |
| int allOk = sqlite3VdbeMakeLabel(v); |
| assert( pParse->ckOffset==0 ); |
| pParse->ckOffset = nCol; |
| sqlite3ExprIfTrue(pParse, pTab->pCheck, allOk, 1); |
| assert( pParse->ckOffset==nCol ); |
| pParse->ckOffset = 0; |
| sqlite3VdbeAddOp(v, OP_Halt, SQLITE_CONSTRAINT, OE_Abort); |
| sqlite3VdbeResolveLabel(v, allOk); |
| } |
| #endif /* !defined(SQLITE_OMIT_CHECK) */ |
| |
| /* If we have an INTEGER PRIMARY KEY, make sure the primary key |
| ** of the new record does not previously exist. Except, if this |
| ** is an UPDATE and the primary key is not changing, that is OK. |
| */ |
| if( rowidChng ){ |
| onError = pTab->keyConf; |
| if( overrideError!=OE_Default ){ |
| onError = overrideError; |
| }else if( onError==OE_Default ){ |
| onError = OE_Abort; |
| } |
| |
| if( isUpdate ){ |
| sqlite3VdbeAddOp(v, OP_Dup, nCol+1, 1); |
| sqlite3VdbeAddOp(v, OP_Dup, nCol+1, 1); |
| jumpInst1 = sqlite3VdbeAddOp(v, OP_Eq, 0, 0); |
| } |
| sqlite3VdbeAddOp(v, OP_Dup, nCol, 1); |
| jumpInst2 = sqlite3VdbeAddOp(v, OP_NotExists, base, 0); |
| switch( onError ){ |
| default: { |
| onError = OE_Abort; |
| /* Fall thru into the next case */ |
| } |
| case OE_Rollback: |
| case OE_Abort: |
| case OE_Fail: { |
| sqlite3VdbeOp3(v, OP_Halt, SQLITE_CONSTRAINT, onError, |
| "PRIMARY KEY must be unique", P3_STATIC); |
| break; |
| } |
| case OE_Replace: { |
| sqlite3GenerateRowIndexDelete(pParse->db, v, pTab, base, 0); |
| if( isUpdate ){ |
| sqlite3VdbeAddOp(v, OP_Dup, nCol+hasTwoRowids, 1); |
| sqlite3VdbeAddOp(v, OP_MoveGe, base, 0); |
| } |
| seenReplace = 1; |
| break; |
| } |
| case OE_Ignore: { |
| assert( seenReplace==0 ); |
| sqlite3VdbeAddOp(v, OP_Pop, nCol+1+hasTwoRowids, 0); |
| sqlite3VdbeAddOp(v, OP_Goto, 0, ignoreDest); |
| break; |
| } |
| } |
| sqlite3VdbeJumpHere(v, jumpInst2); |
| if( isUpdate ){ |
| sqlite3VdbeJumpHere(v, jumpInst1); |
| sqlite3VdbeAddOp(v, OP_Dup, nCol+1, 1); |
| sqlite3VdbeAddOp(v, OP_MoveGe, base, 0); |
| } |
| } |
| |
| /* Test all UNIQUE constraints by creating entries for each UNIQUE |
| ** index and making sure that duplicate entries do not already exist. |
| ** Add the new records to the indices as we go. |
| */ |
| extra = -1; |
| for(iCur=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, iCur++){ |
| if( aIdxUsed && aIdxUsed[iCur]==0 ) continue; /* Skip unused indices */ |
| extra++; |
| |
| /* Create a key for accessing the index entry */ |
| sqlite3VdbeAddOp(v, OP_Dup, nCol+extra, 1); |
| for(i=0; i<pIdx->nColumn; i++){ |
| int idx = pIdx->aiColumn[i]; |
| if( idx==pTab->iPKey ){ |
| sqlite3VdbeAddOp(v, OP_Dup, i+extra+nCol+1, 1); |
| }else{ |
| sqlite3VdbeAddOp(v, OP_Dup, i+extra+nCol-idx, 1); |
| } |
| } |
| jumpInst1 = sqlite3VdbeAddOp(v, OP_MakeIdxRec, pIdx->nColumn, 0); |
| sqlite3IndexAffinityStr(v, pIdx); |
| |
| /* Find out what action to take in case there is an indexing conflict */ |
| onError = pIdx->onError; |
| if( onError==OE_None ) continue; /* pIdx is not a UNIQUE index */ |
| if( overrideError!=OE_Default ){ |
| onError = overrideError; |
| }else if( onError==OE_Default ){ |
| onError = OE_Abort; |
| } |
| if( seenReplace ){ |
| if( onError==OE_Ignore ) onError = OE_Replace; |
| else if( onError==OE_Fail ) onError = OE_Abort; |
| } |
| |
| |
| /* Check to see if the new index entry will be unique */ |
| sqlite3VdbeAddOp(v, OP_Dup, extra+nCol+1+hasTwoRowids, 1); |
| jumpInst2 = sqlite3VdbeAddOp(v, OP_IsUnique, base+iCur+1, 0); |
| |
| /* Generate code that executes if the new index entry is not unique */ |
| assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail |
| || onError==OE_Ignore || onError==OE_Replace ); |
| switch( onError ){ |
| case OE_Rollback: |
| case OE_Abort: |
| case OE_Fail: { |
| int j, n1, n2; |
| char zErrMsg[200]; |
| strcpy(zErrMsg, pIdx->nColumn>1 ? "columns " : "column "); |
| n1 = strlen(zErrMsg); |
| for(j=0; j<pIdx->nColumn && n1<sizeof(zErrMsg)-30; j++){ |
| char *zCol = pTab->aCol[pIdx->aiColumn[j]].zName; |
| n2 = strlen(zCol); |
| if( j>0 ){ |
| strcpy(&zErrMsg[n1], ", "); |
| n1 += 2; |
| } |
| if( n1+n2>sizeof(zErrMsg)-30 ){ |
| strcpy(&zErrMsg[n1], "..."); |
| n1 += 3; |
| break; |
| }else{ |
| strcpy(&zErrMsg[n1], zCol); |
| n1 += n2; |
| } |
| } |
| strcpy(&zErrMsg[n1], |
| pIdx->nColumn>1 ? " are not unique" : " is not unique"); |
| sqlite3VdbeOp3(v, OP_Halt, SQLITE_CONSTRAINT, onError, zErrMsg, 0); |
| break; |
| } |
| case OE_Ignore: { |
| assert( seenReplace==0 ); |
| sqlite3VdbeAddOp(v, OP_Pop, nCol+extra+3+hasTwoRowids, 0); |
| sqlite3VdbeAddOp(v, OP_Goto, 0, ignoreDest); |
| break; |
| } |
| case OE_Replace: { |
| sqlite3GenerateRowDelete(pParse->db, v, pTab, base, 0); |
| if( isUpdate ){ |
| sqlite3VdbeAddOp(v, OP_Dup, nCol+extra+1+hasTwoRowids, 1); |
| sqlite3VdbeAddOp(v, OP_MoveGe, base, 0); |
| } |
| seenReplace = 1; |
| break; |
| } |
| } |
| #if NULL_DISTINCT_FOR_UNIQUE |
| sqlite3VdbeJumpHere(v, jumpInst1); |
| #endif |
| sqlite3VdbeJumpHere(v, jumpInst2); |
| } |
| } |
| |
| /* |
| ** This routine generates code to finish the INSERT or UPDATE operation |
| ** that was started by a prior call to sqlite3GenerateConstraintChecks. |
| ** The stack must contain keys for all active indices followed by data |
| ** and the rowid for the new entry. This routine creates the new |
| ** entries in all indices and in the main table. |
| ** |
| ** The arguments to this routine should be the same as the first six |
| ** arguments to sqlite3GenerateConstraintChecks. |
| */ |
| void sqlite3CompleteInsertion( |
| Parse *pParse, /* The parser context */ |
| Table *pTab, /* the table into which we are inserting */ |
| int base, /* Index of a read/write cursor pointing at pTab */ |
| char *aIdxUsed, /* Which indices are used. NULL means all are used */ |
| int rowidChng, /* True if the record number will change */ |
| int isUpdate, /* True for UPDATE, False for INSERT */ |
| int newIdx /* Index of NEW table for triggers. -1 if none */ |
| ){ |
| int i; |
| Vdbe *v; |
| int nIdx; |
| Index *pIdx; |
| int pik_flags; |
| |
| v = sqlite3GetVdbe(pParse); |
| assert( v!=0 ); |
| assert( pTab->pSelect==0 ); /* This table is not a VIEW */ |
| for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){} |
| for(i=nIdx-1; i>=0; i--){ |
| if( aIdxUsed && aIdxUsed[i]==0 ) continue; |
| sqlite3VdbeAddOp(v, OP_IdxInsert, base+i+1, 0); |
| } |
| sqlite3VdbeAddOp(v, OP_MakeRecord, pTab->nCol, 0); |
| sqlite3TableAffinityStr(v, pTab); |
| #ifndef SQLITE_OMIT_TRIGGER |
| if( newIdx>=0 ){ |
| sqlite3VdbeAddOp(v, OP_Dup, 1, 0); |
| sqlite3VdbeAddOp(v, OP_Dup, 1, 0); |
| sqlite3VdbeAddOp(v, OP_Insert, newIdx, 0); |
| } |
| #endif |
| if( pParse->nested ){ |
| pik_flags = 0; |
| }else{ |
| pik_flags = OPFLAG_NCHANGE; |
| pik_flags |= (isUpdate?OPFLAG_ISUPDATE:OPFLAG_LASTROWID); |
| } |
| sqlite3VdbeAddOp(v, OP_Insert, base, pik_flags); |
| if( !pParse->nested ){ |
| sqlite3VdbeChangeP3(v, -1, pTab->zName, P3_STATIC); |
| } |
| |
| if( isUpdate && rowidChng ){ |
| sqlite3VdbeAddOp(v, OP_Pop, 1, 0); |
| } |
| } |
| |
| /* |
| ** Generate code that will open cursors for a table and for all |
| ** indices of that table. The "base" parameter is the cursor number used |
| ** for the table. Indices are opened on subsequent cursors. |
| */ |
| void sqlite3OpenTableAndIndices( |
| Parse *pParse, /* Parsing context */ |
| Table *pTab, /* Table to be opened */ |
| int base, /* Cursor number assigned to the table */ |
| int op /* OP_OpenRead or OP_OpenWrite */ |
| ){ |
| int i; |
| int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); |
| Index *pIdx; |
| Vdbe *v = sqlite3GetVdbe(pParse); |
| assert( v!=0 ); |
| sqlite3OpenTable(pParse, base, iDb, pTab, op); |
| for(i=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ |
| KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx); |
| assert( pIdx->pSchema==pTab->pSchema ); |
| sqlite3VdbeAddOp(v, OP_Integer, iDb, 0); |
| VdbeComment((v, "# %s", pIdx->zName)); |
| sqlite3VdbeOp3(v, op, i+base, pIdx->tnum, (char*)pKey, P3_KEYINFO_HANDOFF); |
| } |
| if( pParse->nTab<=base+i ){ |
| pParse->nTab = base+i; |
| } |
| } |