H. Peter Anvin | 76690a1 | 2002-04-30 20:52:49 +0000 | [diff] [blame^] | 1 | /* eval.c expression evaluator for the Netwide Assembler |
| 2 | * |
| 3 | * The Netwide Assembler is copyright (C) 1996 Simon Tatham and |
| 4 | * Julian Hall. All rights reserved. The software is |
| 5 | * redistributable under the licence given in the file "Licence" |
| 6 | * distributed in the NASM archive. |
| 7 | * |
| 8 | * initial version 27/iii/95 by Simon Tatham |
| 9 | */ |
| 10 | |
| 11 | #include <stdio.h> |
| 12 | #include <stdlib.h> |
| 13 | #include <stddef.h> |
| 14 | #include <string.h> |
| 15 | #include <ctype.h> |
| 16 | |
| 17 | #include "nasm.h" |
| 18 | #include "nasmlib.h" |
| 19 | #include "eval.h" |
| 20 | |
| 21 | static expr **tempexprs = NULL; |
| 22 | static int ntempexprs, tempexprs_size = 0; |
| 23 | #define TEMPEXPRS_DELTA 128 |
| 24 | |
| 25 | static expr *tempexpr; |
| 26 | static int ntempexpr, tempexpr_size; |
| 27 | #define TEMPEXPR_DELTA 8 |
| 28 | |
| 29 | static scanner scan; |
| 30 | static void *scpriv; |
| 31 | static struct tokenval *tokval; |
| 32 | static efunc error; |
| 33 | static int i; |
| 34 | static int seg, ofs; |
| 35 | static char *label = NULL, special_empty_string[] = ""; |
| 36 | static lfunc labelfunc; |
| 37 | static struct ofmt *outfmt; |
| 38 | static int *forward; |
| 39 | |
| 40 | static struct eval_hints *hint; |
| 41 | |
| 42 | /* |
| 43 | * Construct a temporary expression. |
| 44 | */ |
| 45 | static void begintemp(void) { |
| 46 | tempexpr = NULL; |
| 47 | tempexpr_size = ntempexpr = 0; |
| 48 | } |
| 49 | |
| 50 | static void addtotemp(long type, long value) { |
| 51 | while (ntempexpr >= tempexpr_size) { |
| 52 | tempexpr_size += TEMPEXPR_DELTA; |
| 53 | tempexpr = nasm_realloc(tempexpr, |
| 54 | tempexpr_size*sizeof(*tempexpr)); |
| 55 | } |
| 56 | tempexpr[ntempexpr].type = type; |
| 57 | tempexpr[ntempexpr++].value = value; |
| 58 | } |
| 59 | |
| 60 | static expr *finishtemp(void) { |
| 61 | addtotemp (0L, 0L); /* terminate */ |
| 62 | while (ntempexprs >= tempexprs_size) { |
| 63 | tempexprs_size += TEMPEXPRS_DELTA; |
| 64 | tempexprs = nasm_realloc(tempexprs, |
| 65 | tempexprs_size*sizeof(*tempexprs)); |
| 66 | } |
| 67 | return tempexprs[ntempexprs++] = tempexpr; |
| 68 | } |
| 69 | |
| 70 | /* |
| 71 | * Add two vector datatypes. We have some bizarre behaviour on far- |
| 72 | * absolute segment types: we preserve them during addition _only_ |
| 73 | * if one of the segments is a truly pure scalar. |
| 74 | */ |
| 75 | static expr *add_vectors(expr *p, expr *q) { |
| 76 | int preserve; |
| 77 | |
| 78 | preserve = is_really_simple(p) || is_really_simple(q); |
| 79 | |
| 80 | begintemp(); |
| 81 | |
| 82 | while (p->type && q->type && |
| 83 | p->type < EXPR_SEGBASE+SEG_ABS && |
| 84 | q->type < EXPR_SEGBASE+SEG_ABS) { |
| 85 | int lasttype; |
| 86 | |
| 87 | if (p->type > q->type) { |
| 88 | addtotemp(q->type, q->value); |
| 89 | lasttype = q++->type; |
| 90 | } else if (p->type < q->type) { |
| 91 | addtotemp(p->type, p->value); |
| 92 | lasttype = p++->type; |
| 93 | } else { /* *p and *q have same type */ |
| 94 | addtotemp(p->type, p->value + q->value); |
| 95 | lasttype = p->type; |
| 96 | p++, q++; |
| 97 | } |
| 98 | if (lasttype == EXPR_UNKNOWN) { |
| 99 | return finishtemp(); |
| 100 | } |
| 101 | } |
| 102 | while (p->type && |
| 103 | (preserve || p->type < EXPR_SEGBASE+SEG_ABS)) { |
| 104 | addtotemp(p->type, p->value); |
| 105 | p++; |
| 106 | } |
| 107 | while (q->type && |
| 108 | (preserve || q->type < EXPR_SEGBASE+SEG_ABS)) { |
| 109 | addtotemp(q->type, q->value); |
| 110 | q++; |
| 111 | } |
| 112 | |
| 113 | return finishtemp(); |
| 114 | } |
| 115 | |
| 116 | /* |
| 117 | * Multiply a vector by a scalar. Strip far-absolute segment part |
| 118 | * if present. |
| 119 | * |
| 120 | * Explicit treatment of UNKNOWN is not required in this routine, |
| 121 | * since it will silently do the Right Thing anyway. |
| 122 | * |
| 123 | * If `affect_hints' is set, we also change the hint type to |
| 124 | * NOTBASE if a MAKEBASE hint points at a register being |
| 125 | * multiplied. This allows [eax*1+ebx] to hint EBX rather than EAX |
| 126 | * as the base register. |
| 127 | */ |
| 128 | static expr *scalar_mult(expr *vect, long scalar, int affect_hints) { |
| 129 | expr *p = vect; |
| 130 | |
| 131 | while (p->type && p->type < EXPR_SEGBASE+SEG_ABS) { |
| 132 | p->value = scalar * (p->value); |
| 133 | if (hint && hint->type == EAH_MAKEBASE && |
| 134 | p->type == hint->base && affect_hints) |
| 135 | hint->type = EAH_NOTBASE; |
| 136 | p++; |
| 137 | } |
| 138 | p->type = 0; |
| 139 | |
| 140 | return vect; |
| 141 | } |
| 142 | |
| 143 | static expr *scalarvect (long scalar) { |
| 144 | begintemp(); |
| 145 | addtotemp(EXPR_SIMPLE, scalar); |
| 146 | return finishtemp(); |
| 147 | } |
| 148 | |
| 149 | static expr *unknown_expr (void) { |
| 150 | begintemp(); |
| 151 | addtotemp(EXPR_UNKNOWN, 1L); |
| 152 | return finishtemp(); |
| 153 | } |
| 154 | |
| 155 | /* |
| 156 | * The SEG operator: calculate the segment part of a relocatable |
| 157 | * value. Return NULL, as usual, if an error occurs. Report the |
| 158 | * error too. |
| 159 | */ |
| 160 | static expr *segment_part (expr *e) { |
| 161 | long seg; |
| 162 | |
| 163 | if (is_unknown(e)) |
| 164 | return unknown_expr(); |
| 165 | |
| 166 | if (!is_reloc(e)) { |
| 167 | error(ERR_NONFATAL, "cannot apply SEG to a non-relocatable value"); |
| 168 | return NULL; |
| 169 | } |
| 170 | |
| 171 | seg = reloc_seg(e); |
| 172 | if (seg == NO_SEG) { |
| 173 | error(ERR_NONFATAL, "cannot apply SEG to a non-relocatable value"); |
| 174 | return NULL; |
| 175 | } else if (seg & SEG_ABS) { |
| 176 | return scalarvect(seg & ~SEG_ABS); |
| 177 | } else if (seg & 1) { |
| 178 | error(ERR_NONFATAL, "SEG applied to something which" |
| 179 | " is already a segment base"); |
| 180 | return NULL; |
| 181 | } |
| 182 | else { |
| 183 | long base = outfmt->segbase(seg+1); |
| 184 | |
| 185 | begintemp(); |
| 186 | addtotemp((base == NO_SEG ? EXPR_UNKNOWN : EXPR_SEGBASE+base), 1L); |
| 187 | return finishtemp(); |
| 188 | } |
| 189 | } |
| 190 | |
| 191 | /* |
| 192 | * Recursive-descent parser. Called with a single boolean operand, |
| 193 | * which is TRUE if the evaluation is critical (i.e. unresolved |
| 194 | * symbols are an error condition). Must update the global `i' to |
| 195 | * reflect the token after the parsed string. May return NULL. |
| 196 | * |
| 197 | * evaluate() should report its own errors: on return it is assumed |
| 198 | * that if NULL has been returned, the error has already been |
| 199 | * reported. |
| 200 | */ |
| 201 | |
| 202 | /* |
| 203 | * Grammar parsed is: |
| 204 | * |
| 205 | * expr : bexpr [ WRT expr6 ] |
| 206 | * bexpr : rexp0 or expr0 depending on relative-mode setting |
| 207 | * rexp0 : rexp1 [ {||} rexp1...] |
| 208 | * rexp1 : rexp2 [ {^^} rexp2...] |
| 209 | * rexp2 : rexp3 [ {&&} rexp3...] |
| 210 | * rexp3 : expr0 [ {=,==,<>,!=,<,>,<=,>=} expr0 ] |
| 211 | * expr0 : expr1 [ {|} expr1...] |
| 212 | * expr1 : expr2 [ {^} expr2...] |
| 213 | * expr2 : expr3 [ {&} expr3...] |
| 214 | * expr3 : expr4 [ {<<,>>} expr4...] |
| 215 | * expr4 : expr5 [ {+,-} expr5...] |
| 216 | * expr5 : expr6 [ {*,/,%,//,%%} expr6...] |
| 217 | * expr6 : { ~,+,-,SEG } expr6 |
| 218 | * | (bexpr) |
| 219 | * | symbol |
| 220 | * | $ |
| 221 | * | number |
| 222 | */ |
| 223 | |
| 224 | static expr *rexp0(int), *rexp1(int), *rexp2(int), *rexp3(int); |
| 225 | |
| 226 | static expr *expr0(int), *expr1(int), *expr2(int), *expr3(int); |
| 227 | static expr *expr4(int), *expr5(int), *expr6(int); |
| 228 | |
| 229 | static expr *(*bexpr)(int); |
| 230 | |
| 231 | static expr *rexp0(int critical) { |
| 232 | expr *e, *f; |
| 233 | |
| 234 | e = rexp1(critical); |
| 235 | if (!e) |
| 236 | return NULL; |
| 237 | while (i == TOKEN_DBL_OR) { |
| 238 | i = scan(scpriv, tokval); |
| 239 | f = rexp1(critical); |
| 240 | if (!f) |
| 241 | return NULL; |
| 242 | if (!(is_simple(e) || is_just_unknown(e)) || |
| 243 | !(is_simple(f) || is_just_unknown(f))) { |
| 244 | error(ERR_NONFATAL, "`|' operator may only be applied to" |
| 245 | " scalar values"); |
| 246 | } |
| 247 | if (is_just_unknown(e) || is_just_unknown(f)) |
| 248 | e = unknown_expr(); |
| 249 | else |
| 250 | e = scalarvect ((long) (reloc_value(e) || reloc_value(f))); |
| 251 | } |
| 252 | return e; |
| 253 | } |
| 254 | |
| 255 | static expr *rexp1(int critical) { |
| 256 | expr *e, *f; |
| 257 | |
| 258 | e = rexp2(critical); |
| 259 | if (!e) |
| 260 | return NULL; |
| 261 | while (i == TOKEN_DBL_XOR) { |
| 262 | i = scan(scpriv, tokval); |
| 263 | f = rexp2(critical); |
| 264 | if (!f) |
| 265 | return NULL; |
| 266 | if (!(is_simple(e) || is_just_unknown(e)) || |
| 267 | !(is_simple(f) || is_just_unknown(f))) { |
| 268 | error(ERR_NONFATAL, "`^' operator may only be applied to" |
| 269 | " scalar values"); |
| 270 | } |
| 271 | if (is_just_unknown(e) || is_just_unknown(f)) |
| 272 | e = unknown_expr(); |
| 273 | else |
| 274 | e = scalarvect ((long) (!reloc_value(e) ^ !reloc_value(f))); |
| 275 | } |
| 276 | return e; |
| 277 | } |
| 278 | |
| 279 | static expr *rexp2(int critical) { |
| 280 | expr *e, *f; |
| 281 | |
| 282 | e = rexp3(critical); |
| 283 | if (!e) |
| 284 | return NULL; |
| 285 | while (i == TOKEN_DBL_AND) { |
| 286 | i = scan(scpriv, tokval); |
| 287 | f = rexp3(critical); |
| 288 | if (!f) |
| 289 | return NULL; |
| 290 | if (!(is_simple(e) || is_just_unknown(e)) || |
| 291 | !(is_simple(f) || is_just_unknown(f))) { |
| 292 | error(ERR_NONFATAL, "`&' operator may only be applied to" |
| 293 | " scalar values"); |
| 294 | } |
| 295 | if (is_just_unknown(e) || is_just_unknown(f)) |
| 296 | e = unknown_expr(); |
| 297 | else |
| 298 | e = scalarvect ((long) (reloc_value(e) && reloc_value(f))); |
| 299 | } |
| 300 | return e; |
| 301 | } |
| 302 | |
| 303 | static expr *rexp3(int critical) { |
| 304 | expr *e, *f; |
| 305 | long v; |
| 306 | |
| 307 | e = expr0(critical); |
| 308 | if (!e) |
| 309 | return NULL; |
| 310 | while (i == TOKEN_EQ || i == TOKEN_LT || i == TOKEN_GT || |
| 311 | i == TOKEN_NE || i == TOKEN_LE || i == TOKEN_GE) { |
| 312 | int j = i; |
| 313 | i = scan(scpriv, tokval); |
| 314 | f = expr0(critical); |
| 315 | if (!f) |
| 316 | return NULL; |
| 317 | e = add_vectors (e, scalar_mult(f, -1L, FALSE)); |
| 318 | switch (j) { |
| 319 | case TOKEN_EQ: case TOKEN_NE: |
| 320 | if (is_unknown(e)) |
| 321 | v = -1; /* means unknown */ |
| 322 | else if (!is_really_simple(e) || reloc_value(e) != 0) |
| 323 | v = (j == TOKEN_NE); /* unequal, so return TRUE if NE */ |
| 324 | else |
| 325 | v = (j == TOKEN_EQ); /* equal, so return TRUE if EQ */ |
| 326 | break; |
| 327 | default: |
| 328 | if (is_unknown(e)) |
| 329 | v = -1; /* means unknown */ |
| 330 | else if (!is_really_simple(e)) { |
| 331 | error(ERR_NONFATAL, "`%s': operands differ by a non-scalar", |
| 332 | (j == TOKEN_LE ? "<=" : j == TOKEN_LT ? "<" : |
| 333 | j == TOKEN_GE ? ">=" : ">")); |
| 334 | v = 0; /* must set it to _something_ */ |
| 335 | } else { |
| 336 | int vv = reloc_value(e); |
| 337 | if (vv == 0) |
| 338 | v = (j == TOKEN_LE || j == TOKEN_GE); |
| 339 | else if (vv > 0) |
| 340 | v = (j == TOKEN_GE || j == TOKEN_GT); |
| 341 | else /* vv < 0 */ |
| 342 | v = (j == TOKEN_LE || j == TOKEN_LT); |
| 343 | } |
| 344 | break; |
| 345 | } |
| 346 | if (v == -1) |
| 347 | e = unknown_expr(); |
| 348 | else |
| 349 | e = scalarvect(v); |
| 350 | } |
| 351 | return e; |
| 352 | } |
| 353 | |
| 354 | static expr *expr0(int critical) { |
| 355 | expr *e, *f; |
| 356 | |
| 357 | e = expr1(critical); |
| 358 | if (!e) |
| 359 | return NULL; |
| 360 | while (i == '|') { |
| 361 | i = scan(scpriv, tokval); |
| 362 | f = expr1(critical); |
| 363 | if (!f) |
| 364 | return NULL; |
| 365 | if (!(is_simple(e) || is_just_unknown(e)) || |
| 366 | !(is_simple(f) || is_just_unknown(f))) { |
| 367 | error(ERR_NONFATAL, "`|' operator may only be applied to" |
| 368 | " scalar values"); |
| 369 | } |
| 370 | if (is_just_unknown(e) || is_just_unknown(f)) |
| 371 | e = unknown_expr(); |
| 372 | else |
| 373 | e = scalarvect (reloc_value(e) | reloc_value(f)); |
| 374 | } |
| 375 | return e; |
| 376 | } |
| 377 | |
| 378 | static expr *expr1(int critical) { |
| 379 | expr *e, *f; |
| 380 | |
| 381 | e = expr2(critical); |
| 382 | if (!e) |
| 383 | return NULL; |
| 384 | while (i == '^') { |
| 385 | i = scan(scpriv, tokval); |
| 386 | f = expr2(critical); |
| 387 | if (!f) |
| 388 | return NULL; |
| 389 | if (!(is_simple(e) || is_just_unknown(e)) || |
| 390 | !(is_simple(f) || is_just_unknown(f))) { |
| 391 | error(ERR_NONFATAL, "`^' operator may only be applied to" |
| 392 | " scalar values"); |
| 393 | } |
| 394 | if (is_just_unknown(e) || is_just_unknown(f)) |
| 395 | e = unknown_expr(); |
| 396 | else |
| 397 | e = scalarvect (reloc_value(e) ^ reloc_value(f)); |
| 398 | } |
| 399 | return e; |
| 400 | } |
| 401 | |
| 402 | static expr *expr2(int critical) { |
| 403 | expr *e, *f; |
| 404 | |
| 405 | e = expr3(critical); |
| 406 | if (!e) |
| 407 | return NULL; |
| 408 | while (i == '&') { |
| 409 | i = scan(scpriv, tokval); |
| 410 | f = expr3(critical); |
| 411 | if (!f) |
| 412 | return NULL; |
| 413 | if (!(is_simple(e) || is_just_unknown(e)) || |
| 414 | !(is_simple(f) || is_just_unknown(f))) { |
| 415 | error(ERR_NONFATAL, "`&' operator may only be applied to" |
| 416 | " scalar values"); |
| 417 | } |
| 418 | if (is_just_unknown(e) || is_just_unknown(f)) |
| 419 | e = unknown_expr(); |
| 420 | else |
| 421 | e = scalarvect (reloc_value(e) & reloc_value(f)); |
| 422 | } |
| 423 | return e; |
| 424 | } |
| 425 | |
| 426 | static expr *expr3(int critical) { |
| 427 | expr *e, *f; |
| 428 | |
| 429 | e = expr4(critical); |
| 430 | if (!e) |
| 431 | return NULL; |
| 432 | while (i == TOKEN_SHL || i == TOKEN_SHR) { |
| 433 | int j = i; |
| 434 | i = scan(scpriv, tokval); |
| 435 | f = expr4(critical); |
| 436 | if (!f) |
| 437 | return NULL; |
| 438 | if (!(is_simple(e) || is_just_unknown(e)) || |
| 439 | !(is_simple(f) || is_just_unknown(f))) { |
| 440 | error(ERR_NONFATAL, "shift operator may only be applied to" |
| 441 | " scalar values"); |
| 442 | } else if (is_just_unknown(e) || is_just_unknown(f)) { |
| 443 | e = unknown_expr(); |
| 444 | } else switch (j) { |
| 445 | case TOKEN_SHL: |
| 446 | e = scalarvect (reloc_value(e) << reloc_value(f)); |
| 447 | break; |
| 448 | case TOKEN_SHR: |
| 449 | e = scalarvect (((unsigned long)reloc_value(e)) >> |
| 450 | reloc_value(f)); |
| 451 | break; |
| 452 | } |
| 453 | } |
| 454 | return e; |
| 455 | } |
| 456 | |
| 457 | static expr *expr4(int critical) { |
| 458 | expr *e, *f; |
| 459 | |
| 460 | e = expr5(critical); |
| 461 | if (!e) |
| 462 | return NULL; |
| 463 | while (i == '+' || i == '-') { |
| 464 | int j = i; |
| 465 | i = scan(scpriv, tokval); |
| 466 | f = expr5(critical); |
| 467 | if (!f) |
| 468 | return NULL; |
| 469 | switch (j) { |
| 470 | case '+': |
| 471 | e = add_vectors (e, f); |
| 472 | break; |
| 473 | case '-': |
| 474 | e = add_vectors (e, scalar_mult(f, -1L, FALSE)); |
| 475 | break; |
| 476 | } |
| 477 | } |
| 478 | return e; |
| 479 | } |
| 480 | |
| 481 | static expr *expr5(int critical) { |
| 482 | expr *e, *f; |
| 483 | |
| 484 | e = expr6(critical); |
| 485 | if (!e) |
| 486 | return NULL; |
| 487 | while (i == '*' || i == '/' || i == '%' || |
| 488 | i == TOKEN_SDIV || i == TOKEN_SMOD) { |
| 489 | int j = i; |
| 490 | i = scan(scpriv, tokval); |
| 491 | f = expr6(critical); |
| 492 | if (!f) |
| 493 | return NULL; |
| 494 | if (j != '*' && (!(is_simple(e) || is_just_unknown(e)) || |
| 495 | !(is_simple(f) || is_just_unknown(f)))) { |
| 496 | error(ERR_NONFATAL, "division operator may only be applied to" |
| 497 | " scalar values"); |
| 498 | return NULL; |
| 499 | } |
| 500 | if (j != '*' && !is_unknown(f) && reloc_value(f) == 0) { |
| 501 | error(ERR_NONFATAL, "division by zero"); |
| 502 | return NULL; |
| 503 | } |
| 504 | switch (j) { |
| 505 | case '*': |
| 506 | if (is_simple(e)) |
| 507 | e = scalar_mult (f, reloc_value(e), TRUE); |
| 508 | else if (is_simple(f)) |
| 509 | e = scalar_mult (e, reloc_value(f), TRUE); |
| 510 | else if (is_just_unknown(e) && is_just_unknown(f)) |
| 511 | e = unknown_expr(); |
| 512 | else { |
| 513 | error(ERR_NONFATAL, "unable to multiply two " |
| 514 | "non-scalar objects"); |
| 515 | return NULL; |
| 516 | } |
| 517 | break; |
| 518 | case '/': |
| 519 | if (is_just_unknown(e) || is_just_unknown(f)) |
| 520 | e = unknown_expr(); |
| 521 | else |
| 522 | e = scalarvect (((unsigned long)reloc_value(e)) / |
| 523 | ((unsigned long)reloc_value(f))); |
| 524 | break; |
| 525 | case '%': |
| 526 | if (is_just_unknown(e) || is_just_unknown(f)) |
| 527 | e = unknown_expr(); |
| 528 | else |
| 529 | e = scalarvect (((unsigned long)reloc_value(e)) % |
| 530 | ((unsigned long)reloc_value(f))); |
| 531 | break; |
| 532 | case TOKEN_SDIV: |
| 533 | if (is_just_unknown(e) || is_just_unknown(f)) |
| 534 | e = unknown_expr(); |
| 535 | else |
| 536 | e = scalarvect (((signed long)reloc_value(e)) / |
| 537 | ((signed long)reloc_value(f))); |
| 538 | break; |
| 539 | case TOKEN_SMOD: |
| 540 | if (is_just_unknown(e) || is_just_unknown(f)) |
| 541 | e = unknown_expr(); |
| 542 | else |
| 543 | e = scalarvect (((signed long)reloc_value(e)) % |
| 544 | ((signed long)reloc_value(f))); |
| 545 | break; |
| 546 | } |
| 547 | } |
| 548 | return e; |
| 549 | } |
| 550 | |
| 551 | static expr *expr6(int critical) { |
| 552 | long type; |
| 553 | expr *e; |
| 554 | long label_seg, label_ofs; |
| 555 | |
| 556 | if (i == '-') { |
| 557 | i = scan(scpriv, tokval); |
| 558 | e = expr6(critical); |
| 559 | if (!e) |
| 560 | return NULL; |
| 561 | return scalar_mult (e, -1L, FALSE); |
| 562 | } else if (i == '+') { |
| 563 | i = scan(scpriv, tokval); |
| 564 | return expr6(critical); |
| 565 | } else if (i == '~') { |
| 566 | i = scan(scpriv, tokval); |
| 567 | e = expr6(critical); |
| 568 | if (!e) |
| 569 | return NULL; |
| 570 | if (is_just_unknown(e)) |
| 571 | return unknown_expr(); |
| 572 | else if (!is_simple(e)) { |
| 573 | error(ERR_NONFATAL, "`~' operator may only be applied to" |
| 574 | " scalar values"); |
| 575 | return NULL; |
| 576 | } |
| 577 | return scalarvect(~reloc_value(e)); |
| 578 | } else if (i == TOKEN_SEG) { |
| 579 | i = scan(scpriv, tokval); |
| 580 | e = expr6(critical); |
| 581 | if (!e) |
| 582 | return NULL; |
| 583 | e = segment_part(e); |
| 584 | if (is_unknown(e) && critical) { |
| 585 | error(ERR_NONFATAL, "unable to determine segment base"); |
| 586 | return NULL; |
| 587 | } |
| 588 | return e; |
| 589 | } else if (i == '(') { |
| 590 | i = scan(scpriv, tokval); |
| 591 | e = bexpr(critical); |
| 592 | if (!e) |
| 593 | return NULL; |
| 594 | if (i != ')') { |
| 595 | error(ERR_NONFATAL, "expecting `)'"); |
| 596 | return NULL; |
| 597 | } |
| 598 | i = scan(scpriv, tokval); |
| 599 | return e; |
| 600 | } else if (i == TOKEN_NUM || i == TOKEN_REG || i == TOKEN_ID || |
| 601 | i == TOKEN_HERE || i == TOKEN_BASE) { |
| 602 | begintemp(); |
| 603 | switch (i) { |
| 604 | case TOKEN_NUM: |
| 605 | addtotemp(EXPR_SIMPLE, tokval->t_integer); |
| 606 | break; |
| 607 | case TOKEN_REG: |
| 608 | addtotemp(tokval->t_integer, 1L); |
| 609 | if (hint && hint->type == EAH_NOHINT) |
| 610 | hint->base = tokval->t_integer, hint->type = EAH_MAKEBASE; |
| 611 | break; |
| 612 | case TOKEN_ID: |
| 613 | case TOKEN_HERE: |
| 614 | case TOKEN_BASE: |
| 615 | /* |
| 616 | * If "label" begins with "%", this indicates that no |
| 617 | * symbol, Here or Base references are valid because we |
| 618 | * are in preprocess-only mode. |
| 619 | */ |
| 620 | if (*label == '%') { |
| 621 | error(ERR_NONFATAL, |
| 622 | "%s not supported in preprocess-only mode", |
| 623 | (i == TOKEN_ID ? "symbol references" : |
| 624 | i == TOKEN_HERE ? "`$'" : "`$$'")); |
| 625 | addtotemp(EXPR_UNKNOWN, 1L); |
| 626 | break; |
| 627 | } |
| 628 | |
| 629 | /* |
| 630 | * Since the whole line is parsed before the label it |
| 631 | * defines is given to the label manager, we have |
| 632 | * problems with lines such as |
| 633 | * |
| 634 | * end: TIMES 512-(end-start) DB 0 |
| 635 | * |
| 636 | * where `end' is not known on pass one, despite not |
| 637 | * really being a forward reference, and due to |
| 638 | * criticality it is _needed_. Hence we check our label |
| 639 | * against the currently defined one, and do our own |
| 640 | * resolution of it if we have to. |
| 641 | */ |
| 642 | type = EXPR_SIMPLE; /* might get overridden by UNKNOWN */ |
| 643 | if (i == TOKEN_BASE) { |
| 644 | label_seg = seg; |
| 645 | label_ofs = 0; |
| 646 | } else if (i == TOKEN_HERE || !strcmp(tokval->t_charptr, label)) { |
| 647 | label_seg = seg; |
| 648 | label_ofs = ofs; |
| 649 | } else if (!labelfunc(tokval->t_charptr,&label_seg,&label_ofs)) { |
| 650 | if (critical == 2) { |
| 651 | error (ERR_NONFATAL, "symbol `%s' undefined", |
| 652 | tokval->t_charptr); |
| 653 | return NULL; |
| 654 | } else if (critical == 1) { |
| 655 | error (ERR_NONFATAL, "symbol `%s' not defined before use", |
| 656 | tokval->t_charptr); |
| 657 | return NULL; |
| 658 | } else { |
| 659 | if (forward) |
| 660 | *forward = TRUE; |
| 661 | type = EXPR_UNKNOWN; |
| 662 | label_seg = NO_SEG; |
| 663 | label_ofs = 1; |
| 664 | } |
| 665 | } |
| 666 | addtotemp(type, label_ofs); |
| 667 | if (label_seg!=NO_SEG) |
| 668 | addtotemp(EXPR_SEGBASE + label_seg, 1L); |
| 669 | break; |
| 670 | } |
| 671 | i = scan(scpriv, tokval); |
| 672 | return finishtemp(); |
| 673 | } else { |
| 674 | error(ERR_NONFATAL, "expression syntax error"); |
| 675 | return NULL; |
| 676 | } |
| 677 | } |
| 678 | |
| 679 | void eval_global_info (struct ofmt *output, lfunc lookup_label) { |
| 680 | outfmt = output; |
| 681 | labelfunc = lookup_label; |
| 682 | } |
| 683 | |
| 684 | void eval_info (char *labelname, long segment, long offset) { |
| 685 | if (label != special_empty_string) |
| 686 | nasm_free (label); |
| 687 | if (labelname) |
| 688 | label = nasm_strdup(labelname); |
| 689 | else { |
| 690 | label = special_empty_string; |
| 691 | seg = segment; |
| 692 | ofs = offset; |
| 693 | } |
| 694 | } |
| 695 | |
| 696 | expr *evaluate (scanner sc, void *scprivate, struct tokenval *tv, |
| 697 | int *fwref, int critical, efunc report_error, |
| 698 | struct eval_hints *hints) { |
| 699 | expr *e; |
| 700 | expr *f = NULL; |
| 701 | |
| 702 | hint = hints; |
| 703 | if (hint) |
| 704 | hint->type = EAH_NOHINT; |
| 705 | |
| 706 | if (critical & 0x10) { |
| 707 | critical &= ~0x10; |
| 708 | bexpr = rexp0; |
| 709 | } else |
| 710 | bexpr = expr0; |
| 711 | |
| 712 | scan = sc; |
| 713 | scpriv = scprivate; |
| 714 | tokval = tv; |
| 715 | error = report_error; |
| 716 | forward = fwref; |
| 717 | |
| 718 | if (tokval->t_type == TOKEN_INVALID) |
| 719 | i = scan(scpriv, tokval); |
| 720 | else |
| 721 | i = tokval->t_type; |
| 722 | |
| 723 | while (ntempexprs) /* initialise temporary storage */ |
| 724 | nasm_free (tempexprs[--ntempexprs]); |
| 725 | |
| 726 | e = bexpr (critical); |
| 727 | if (!e) |
| 728 | return NULL; |
| 729 | |
| 730 | if (i == TOKEN_WRT) { |
| 731 | i = scan(scpriv, tokval); /* eat the WRT */ |
| 732 | f = expr6 (critical); |
| 733 | if (!f) |
| 734 | return NULL; |
| 735 | } |
| 736 | e = scalar_mult (e, 1L, FALSE); /* strip far-absolute segment part */ |
| 737 | if (f) { |
| 738 | expr *g; |
| 739 | if (is_just_unknown(f)) |
| 740 | g = unknown_expr(); |
| 741 | else { |
| 742 | long value; |
| 743 | begintemp(); |
| 744 | if (!is_reloc(f)) { |
| 745 | error(ERR_NONFATAL, "invalid right-hand operand to WRT"); |
| 746 | return NULL; |
| 747 | } |
| 748 | value = reloc_seg(f); |
| 749 | if (value == NO_SEG) |
| 750 | value = reloc_value(f) | SEG_ABS; |
| 751 | else if (!(value & SEG_ABS) && !(value % 2) && critical) { |
| 752 | error(ERR_NONFATAL, "invalid right-hand operand to WRT"); |
| 753 | return NULL; |
| 754 | } |
| 755 | addtotemp(EXPR_WRT, value); |
| 756 | g = finishtemp(); |
| 757 | } |
| 758 | e = add_vectors (e, g); |
| 759 | } |
| 760 | return e; |
| 761 | } |