| /* ----------------------------------------------------------------------- * |
| * |
| * Copyright 1996-2018 The NASM Authors - All Rights Reserved |
| * See the file AUTHORS included with the NASM distribution for |
| * the specific copyright holders. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following |
| * conditions are met: |
| * |
| * * Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * * Redistributions in binary form must reproduce the above |
| * copyright notice, this list of conditions and the following |
| * disclaimer in the documentation and/or other materials provided |
| * with the distribution. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND |
| * CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, |
| * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF |
| * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
| * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR |
| * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR |
| * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, |
| * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| * |
| * ----------------------------------------------------------------------- */ |
| |
| /* |
| * hashtbl.c |
| * |
| * Efficient dictionary hash table class. |
| */ |
| |
| #include "compiler.h" |
| |
| #include "nasm.h" |
| #include "hashtbl.h" |
| |
| #define HASH_MAX_LOAD 2 /* Higher = more memory-efficient, slower */ |
| #define HASH_INIT_SIZE 16 /* Initial size (power of 2, min 4) */ |
| |
| #define hash_calc(key,keylen) crc64b(CRC64_INIT, (key), (keylen)) |
| #define hash_calci(key,keylen) crc64ib(CRC64_INIT, (key), (keylen)) |
| #define hash_max_load(size) ((size) * (HASH_MAX_LOAD - 1) / HASH_MAX_LOAD) |
| #define hash_expand(size) ((size) << 1) |
| #define hash_mask(size) ((size) - 1) |
| #define hash_pos(hash, mask) ((hash) & (mask)) |
| #define hash_inc(hash, mask) ((((hash) >> 32) & (mask)) | 1) /* always odd */ |
| #define hash_pos_next(pos, inc, mask) (((pos) + (inc)) & (mask)) |
| |
| static void hash_init(struct hash_table *head) |
| { |
| head->size = HASH_INIT_SIZE; |
| head->load = 0; |
| head->max_load = hash_max_load(head->size); |
| nasm_newn(head->table, head->size); |
| } |
| |
| /* |
| * Find an entry in a hash table. The key can be any binary object. |
| * |
| * On failure, if "insert" is non-NULL, store data in that structure |
| * which can be used to insert that node using hash_add(). |
| * See hash_add() for constraints on the uses of the insert object. |
| * |
| * On success, return a pointer to the "data" element of the hash |
| * structure. |
| */ |
| void **hash_findb(struct hash_table *head, const void *key, |
| size_t keylen, struct hash_insert *insert) |
| { |
| struct hash_node *np = NULL; |
| struct hash_node *tbl = head->table; |
| uint64_t hash = hash_calc(key, keylen); |
| size_t mask = hash_mask(head->size); |
| size_t pos = hash_pos(hash, mask); |
| size_t inc = hash_inc(hash, mask); |
| |
| if (likely(tbl)) { |
| while ((np = &tbl[pos])->key) { |
| if (hash == np->hash && |
| keylen == np->keylen && |
| !memcmp(key, np->key, keylen)) |
| return &np->data; |
| pos = hash_pos_next(pos, inc, mask); |
| } |
| } |
| |
| /* Not found. Store info for insert if requested. */ |
| if (insert) { |
| insert->node.hash = hash; |
| insert->node.key = key; |
| insert->node.keylen = keylen; |
| insert->node.data = NULL; |
| insert->head = head; |
| insert->where = np; |
| } |
| return NULL; |
| } |
| |
| /* |
| * Same as hash_findb(), but for a C string. |
| */ |
| void **hash_find(struct hash_table *head, const char *key, |
| struct hash_insert *insert) |
| { |
| return hash_findb(head, key, strlen(key)+1, insert); |
| } |
| |
| /* |
| * Same as hash_findb(), but for case-insensitive hashing. |
| */ |
| void **hash_findib(struct hash_table *head, const void *key, size_t keylen, |
| struct hash_insert *insert) |
| { |
| struct hash_node *np = NULL; |
| struct hash_node *tbl = head->table; |
| uint64_t hash = hash_calci(key, keylen); |
| size_t mask = hash_mask(head->size); |
| size_t pos = hash_pos(hash, mask); |
| size_t inc = hash_inc(hash, mask); |
| |
| if (likely(tbl)) { |
| while ((np = &tbl[pos])->key) { |
| if (hash == np->hash && |
| keylen == np->keylen && |
| !nasm_memicmp(key, np->key, keylen)) |
| return &np->data; |
| pos = hash_pos_next(pos, inc, mask); |
| } |
| } |
| |
| /* Not found. Store info for insert if requested. */ |
| if (insert) { |
| insert->node.hash = hash; |
| insert->node.key = key; |
| insert->node.keylen = keylen; |
| insert->node.data = NULL; |
| insert->head = head; |
| insert->where = np; |
| } |
| return NULL; |
| } |
| |
| /* |
| * Same as hash_find(), but for case-insensitive hashing. |
| */ |
| void **hash_findi(struct hash_table *head, const char *key, |
| struct hash_insert *insert) |
| { |
| return hash_findib(head, key, strlen(key)+1, insert); |
| } |
| |
| /* |
| * Insert node. Return a pointer to the "data" element of the newly |
| * created hash node. |
| * |
| * The following constraints apply: |
| * 1. A call to hash_add() invalidates all other outstanding hash_insert |
| * objects; attempting to use them causes a wild pointer reference. |
| * 2. The key provided must exactly match the key passed to hash_find*(), |
| * but it does not have to point to the same storage address. The key |
| * buffer provided to this function must not be freed for the lifespan |
| * of the hash. NULL will use the same pointer that was passed to |
| * hash_find*(). |
| */ |
| void **hash_add(struct hash_insert *insert, const void *key, void *data) |
| { |
| struct hash_table *head = insert->head; |
| struct hash_node *np = insert->where; |
| |
| if (unlikely(!np)) { |
| hash_init(head); |
| /* The hash table is empty, so we don't need to iterate here */ |
| np = &head->table[hash_pos(insert->node.hash, hash_mask(head->size))]; |
| } |
| |
| /* |
| * Insert node. We can always do this, even if we need to |
| * rebalance immediately after. |
| */ |
| *np = insert->node; |
| np->data = data; |
| if (key) |
| np->key = key; |
| |
| if (unlikely(++head->load > head->max_load)) { |
| /* Need to expand the table */ |
| size_t newsize = hash_expand(head->size); |
| struct hash_node *newtbl; |
| size_t mask = hash_mask(newsize); |
| struct hash_node *op, *xp; |
| size_t i; |
| |
| nasm_newn(newtbl, newsize); |
| |
| /* Rebalance all the entries */ |
| for (i = 0, op = head->table; i < head->size; i++, op++) { |
| if (op->key) { |
| size_t pos = hash_pos(op->hash, mask); |
| size_t inc = hash_inc(op->hash, mask); |
| |
| while ((xp = &newtbl[pos])->key) |
| pos = hash_pos_next(pos, inc, mask); |
| |
| *xp = *op; |
| if (op == np) |
| np = xp; |
| } |
| } |
| nasm_free(head->table); |
| |
| head->table = newtbl; |
| head->size = newsize; |
| head->max_load = hash_max_load(newsize); |
| } |
| |
| return &np->data; |
| } |
| |
| /* |
| * Iterate over all members of a hash set. For the first call, iter |
| * should be as initialized by hash_iterator_init(). Returns a struct |
| * hash_node representing the current object, or NULL if we have |
| * reached the end of the hash table. |
| * |
| * Calling hash_add() will invalidate the iterator. |
| */ |
| const struct hash_node *hash_iterate(struct hash_iterator *iter) |
| { |
| const struct hash_table *head = iter->head; |
| const struct hash_node *cp = iter->next; |
| const struct hash_node *ep = head->table + head->size; |
| |
| /* For an empty table, cp == ep == NULL */ |
| while (cp < ep) { |
| if (cp->key) { |
| iter->next = cp+1; |
| return cp; |
| } |
| cp++; |
| } |
| |
| iter->next = head->table; |
| return NULL; |
| } |
| |
| /* |
| * Free the hash itself. Doesn't free the data elements; use |
| * hash_iterate() to do that first, if needed. This function is normally |
| * used when the hash data entries are either freed separately, or |
| * compound objects which can't be freed in a single operation. |
| */ |
| void hash_free(struct hash_table *head) |
| { |
| void *p = head->table; |
| memset(head, 0, sizeof *head); |
| nasm_free(p); |
| } |
| |
| /* |
| * Frees the hash *and* all data elements. This is applicable only in |
| * the case where the data element is a single allocation. If the |
| * second argument is false, the key string is part of the data |
| * allocation or belongs to an allocation which will be freed |
| * separately, if it is true the keys are also freed. |
| */ |
| void hash_free_all(struct hash_table *head, bool free_keys) |
| { |
| struct hash_iterator it; |
| const struct hash_node *np; |
| |
| hash_for_each(head, it, np) { |
| if (np->data) |
| nasm_free(np->data); |
| if (free_keys && np->key) |
| nasm_free((void *)np->key); |
| } |
| |
| hash_free(head); |
| } |