Jungshik Shin | 87232d8 | 2017-05-13 21:10:13 -0700 | [diff] [blame] | 1 | // © 2016 and later: Unicode, Inc. and others. |
Jungshik Shin | 5feb9ad | 2016-10-21 12:52:48 -0700 | [diff] [blame] | 2 | // License & terms of use: http://www.unicode.org/copyright.html |
jshin@chromium.org | 6f31ac3 | 2014-03-26 22:15:14 +0000 | [diff] [blame] | 3 | /* |
| 4 | ****************************************************************************** |
| 5 | * |
| 6 | * Copyright (C) 2007-2012, International Business Machines |
| 7 | * Corporation and others. All Rights Reserved. |
| 8 | * |
| 9 | ****************************************************************************** |
| 10 | * file name: unisetspan.cpp |
Jungshik Shin | 87232d8 | 2017-05-13 21:10:13 -0700 | [diff] [blame] | 11 | * encoding: UTF-8 |
jshin@chromium.org | 6f31ac3 | 2014-03-26 22:15:14 +0000 | [diff] [blame] | 12 | * tab size: 8 (not used) |
| 13 | * indentation:4 |
| 14 | * |
| 15 | * created on: 2007mar01 |
| 16 | * created by: Markus W. Scherer |
| 17 | */ |
| 18 | |
| 19 | #include "unicode/utypes.h" |
| 20 | #include "unicode/uniset.h" |
| 21 | #include "unicode/ustring.h" |
| 22 | #include "unicode/utf8.h" |
| 23 | #include "unicode/utf16.h" |
| 24 | #include "cmemory.h" |
| 25 | #include "uvector.h" |
| 26 | #include "unisetspan.h" |
| 27 | |
| 28 | U_NAMESPACE_BEGIN |
| 29 | |
| 30 | /* |
| 31 | * List of offsets from the current position from where to try matching |
| 32 | * a code point or a string. |
| 33 | * Store offsets rather than indexes to simplify the code and use the same list |
| 34 | * for both increments (in span()) and decrements (in spanBack()). |
| 35 | * |
| 36 | * Assumption: The maximum offset is limited, and the offsets that are stored |
| 37 | * at any one time are relatively dense, that is, there are normally no gaps of |
| 38 | * hundreds or thousands of offset values. |
| 39 | * |
| 40 | * The implementation uses a circular buffer of byte flags, |
| 41 | * each indicating whether the corresponding offset is in the list. |
| 42 | * This avoids inserting into a sorted list of offsets (or absolute indexes) and |
| 43 | * physically moving part of the list. |
| 44 | * |
| 45 | * Note: In principle, the caller should setMaxLength() to the maximum of the |
| 46 | * max string length and U16_LENGTH/U8_LENGTH to account for |
| 47 | * "long" single code points. |
| 48 | * However, this implementation uses at least a staticList with more than |
| 49 | * U8_LENGTH entries anyway. |
| 50 | * |
| 51 | * Note: If maxLength were guaranteed to be no more than 32 or 64, |
| 52 | * the list could be stored as bit flags in a single integer. |
| 53 | * Rather than handling a circular buffer with a start list index, |
| 54 | * the integer would simply be shifted when lower offsets are removed. |
| 55 | * UnicodeSet does not have a limit on the lengths of strings. |
| 56 | */ |
| 57 | class OffsetList { // Only ever stack-allocated, does not need to inherit UMemory. |
| 58 | public: |
| 59 | OffsetList() : list(staticList), capacity(0), length(0), start(0) {} |
| 60 | |
| 61 | ~OffsetList() { |
| 62 | if(list!=staticList) { |
| 63 | uprv_free(list); |
| 64 | } |
| 65 | } |
| 66 | |
| 67 | // Call exactly once if the list is to be used. |
| 68 | void setMaxLength(int32_t maxLength) { |
| 69 | if(maxLength<=(int32_t)sizeof(staticList)) { |
| 70 | capacity=(int32_t)sizeof(staticList); |
| 71 | } else { |
| 72 | UBool *l=(UBool *)uprv_malloc(maxLength); |
| 73 | if(l!=NULL) { |
| 74 | list=l; |
| 75 | capacity=maxLength; |
| 76 | } |
| 77 | } |
| 78 | uprv_memset(list, 0, capacity); |
| 79 | } |
| 80 | |
| 81 | void clear() { |
| 82 | uprv_memset(list, 0, capacity); |
| 83 | start=length=0; |
| 84 | } |
| 85 | |
| 86 | UBool isEmpty() const { |
| 87 | return (UBool)(length==0); |
| 88 | } |
| 89 | |
| 90 | // Reduce all stored offsets by delta, used when the current position |
| 91 | // moves by delta. |
| 92 | // There must not be any offsets lower than delta. |
| 93 | // If there is an offset equal to delta, it is removed. |
| 94 | // delta=[1..maxLength] |
| 95 | void shift(int32_t delta) { |
| 96 | int32_t i=start+delta; |
| 97 | if(i>=capacity) { |
| 98 | i-=capacity; |
| 99 | } |
| 100 | if(list[i]) { |
| 101 | list[i]=FALSE; |
| 102 | --length; |
| 103 | } |
| 104 | start=i; |
| 105 | } |
| 106 | |
| 107 | // Add an offset. The list must not contain it yet. |
| 108 | // offset=[1..maxLength] |
| 109 | void addOffset(int32_t offset) { |
| 110 | int32_t i=start+offset; |
| 111 | if(i>=capacity) { |
| 112 | i-=capacity; |
| 113 | } |
| 114 | list[i]=TRUE; |
| 115 | ++length; |
| 116 | } |
| 117 | |
| 118 | // offset=[1..maxLength] |
| 119 | UBool containsOffset(int32_t offset) const { |
| 120 | int32_t i=start+offset; |
| 121 | if(i>=capacity) { |
| 122 | i-=capacity; |
| 123 | } |
| 124 | return list[i]; |
| 125 | } |
| 126 | |
| 127 | // Find the lowest stored offset from a non-empty list, remove it, |
| 128 | // and reduce all other offsets by this minimum. |
| 129 | // Returns [1..maxLength]. |
| 130 | int32_t popMinimum() { |
| 131 | // Look for the next offset in list[start+1..capacity-1]. |
| 132 | int32_t i=start, result; |
| 133 | while(++i<capacity) { |
| 134 | if(list[i]) { |
| 135 | list[i]=FALSE; |
| 136 | --length; |
| 137 | result=i-start; |
| 138 | start=i; |
| 139 | return result; |
| 140 | } |
| 141 | } |
| 142 | // i==capacity |
| 143 | |
| 144 | // Wrap around and look for the next offset in list[0..start]. |
| 145 | // Since the list is not empty, there will be one. |
| 146 | result=capacity-start; |
| 147 | i=0; |
| 148 | while(!list[i]) { |
| 149 | ++i; |
| 150 | } |
| 151 | list[i]=FALSE; |
| 152 | --length; |
| 153 | start=i; |
| 154 | return result+=i; |
| 155 | } |
| 156 | |
| 157 | private: |
| 158 | UBool *list; |
| 159 | int32_t capacity; |
| 160 | int32_t length; |
| 161 | int32_t start; |
| 162 | |
| 163 | UBool staticList[16]; |
| 164 | }; |
| 165 | |
| 166 | // Get the number of UTF-8 bytes for a UTF-16 (sub)string. |
| 167 | static int32_t |
| 168 | getUTF8Length(const UChar *s, int32_t length) { |
| 169 | UErrorCode errorCode=U_ZERO_ERROR; |
| 170 | int32_t length8=0; |
| 171 | u_strToUTF8(NULL, 0, &length8, s, length, &errorCode); |
| 172 | if(U_SUCCESS(errorCode) || errorCode==U_BUFFER_OVERFLOW_ERROR) { |
| 173 | return length8; |
| 174 | } else { |
| 175 | // The string contains an unpaired surrogate. |
| 176 | // Ignore this string. |
| 177 | return 0; |
| 178 | } |
| 179 | } |
| 180 | |
| 181 | // Append the UTF-8 version of the string to t and return the appended UTF-8 length. |
| 182 | static int32_t |
| 183 | appendUTF8(const UChar *s, int32_t length, uint8_t *t, int32_t capacity) { |
| 184 | UErrorCode errorCode=U_ZERO_ERROR; |
| 185 | int32_t length8=0; |
| 186 | u_strToUTF8((char *)t, capacity, &length8, s, length, &errorCode); |
| 187 | if(U_SUCCESS(errorCode)) { |
| 188 | return length8; |
| 189 | } else { |
| 190 | // The string contains an unpaired surrogate. |
| 191 | // Ignore this string. |
| 192 | return 0; |
| 193 | } |
| 194 | } |
| 195 | |
| 196 | static inline uint8_t |
| 197 | makeSpanLengthByte(int32_t spanLength) { |
| 198 | // 0xfe==UnicodeSetStringSpan::LONG_SPAN |
| 199 | return spanLength<0xfe ? (uint8_t)spanLength : (uint8_t)0xfe; |
| 200 | } |
| 201 | |
| 202 | // Construct for all variants of span(), or only for any one variant. |
| 203 | // Initialize as little as possible, for single use. |
| 204 | UnicodeSetStringSpan::UnicodeSetStringSpan(const UnicodeSet &set, |
| 205 | const UVector &setStrings, |
| 206 | uint32_t which) |
| 207 | : spanSet(0, 0x10ffff), pSpanNotSet(NULL), strings(setStrings), |
| 208 | utf8Lengths(NULL), spanLengths(NULL), utf8(NULL), |
| 209 | utf8Length(0), |
| 210 | maxLength16(0), maxLength8(0), |
| 211 | all((UBool)(which==ALL)) { |
| 212 | spanSet.retainAll(set); |
| 213 | if(which&NOT_CONTAINED) { |
| 214 | // Default to the same sets. |
| 215 | // addToSpanNotSet() will create a separate set if necessary. |
| 216 | pSpanNotSet=&spanSet; |
| 217 | } |
| 218 | |
| 219 | // Determine if the strings even need to be taken into account at all for span() etc. |
| 220 | // If any string is relevant, then all strings need to be used for |
| 221 | // span(longest match) but only the relevant ones for span(while contained). |
| 222 | // TODO: Possible optimization: Distinguish CONTAINED vs. LONGEST_MATCH |
| 223 | // and do not store UTF-8 strings if !thisRelevant and CONTAINED. |
| 224 | // (Only store irrelevant UTF-8 strings for LONGEST_MATCH where they are relevant after all.) |
| 225 | // Also count the lengths of the UTF-8 versions of the strings for memory allocation. |
| 226 | int32_t stringsLength=strings.size(); |
| 227 | |
| 228 | int32_t i, spanLength; |
| 229 | UBool someRelevant=FALSE; |
| 230 | for(i=0; i<stringsLength; ++i) { |
| 231 | const UnicodeString &string=*(const UnicodeString *)strings.elementAt(i); |
| 232 | const UChar *s16=string.getBuffer(); |
| 233 | int32_t length16=string.length(); |
| 234 | UBool thisRelevant; |
| 235 | spanLength=spanSet.span(s16, length16, USET_SPAN_CONTAINED); |
| 236 | if(spanLength<length16) { // Relevant string. |
| 237 | someRelevant=thisRelevant=TRUE; |
| 238 | } else { |
| 239 | thisRelevant=FALSE; |
| 240 | } |
| 241 | if((which&UTF16) && length16>maxLength16) { |
| 242 | maxLength16=length16; |
| 243 | } |
| 244 | if((which&UTF8) && (thisRelevant || (which&CONTAINED))) { |
| 245 | int32_t length8=getUTF8Length(s16, length16); |
| 246 | utf8Length+=length8; |
| 247 | if(length8>maxLength8) { |
| 248 | maxLength8=length8; |
| 249 | } |
| 250 | } |
| 251 | } |
| 252 | if(!someRelevant) { |
| 253 | maxLength16=maxLength8=0; |
| 254 | return; |
| 255 | } |
| 256 | |
| 257 | // Freeze after checking for the need to use strings at all because freezing |
| 258 | // a set takes some time and memory which are wasted if there are no relevant strings. |
| 259 | if(all) { |
| 260 | spanSet.freeze(); |
| 261 | } |
| 262 | |
| 263 | uint8_t *spanBackLengths; |
| 264 | uint8_t *spanUTF8Lengths; |
| 265 | uint8_t *spanBackUTF8Lengths; |
| 266 | |
| 267 | // Allocate a block of meta data. |
| 268 | int32_t allocSize; |
| 269 | if(all) { |
| 270 | // UTF-8 lengths, 4 sets of span lengths, UTF-8 strings. |
| 271 | allocSize=stringsLength*(4+1+1+1+1)+utf8Length; |
| 272 | } else { |
| 273 | allocSize=stringsLength; // One set of span lengths. |
| 274 | if(which&UTF8) { |
| 275 | // UTF-8 lengths and UTF-8 strings. |
| 276 | allocSize+=stringsLength*4+utf8Length; |
| 277 | } |
| 278 | } |
| 279 | if(allocSize<=(int32_t)sizeof(staticLengths)) { |
| 280 | utf8Lengths=staticLengths; |
| 281 | } else { |
| 282 | utf8Lengths=(int32_t *)uprv_malloc(allocSize); |
| 283 | if(utf8Lengths==NULL) { |
| 284 | maxLength16=maxLength8=0; // Prevent usage by making needsStringSpanUTF16/8() return FALSE. |
| 285 | return; // Out of memory. |
| 286 | } |
| 287 | } |
| 288 | |
| 289 | if(all) { |
| 290 | // Store span lengths for all span() variants. |
| 291 | spanLengths=(uint8_t *)(utf8Lengths+stringsLength); |
| 292 | spanBackLengths=spanLengths+stringsLength; |
| 293 | spanUTF8Lengths=spanBackLengths+stringsLength; |
| 294 | spanBackUTF8Lengths=spanUTF8Lengths+stringsLength; |
| 295 | utf8=spanBackUTF8Lengths+stringsLength; |
| 296 | } else { |
| 297 | // Store span lengths for only one span() variant. |
| 298 | if(which&UTF8) { |
| 299 | spanLengths=(uint8_t *)(utf8Lengths+stringsLength); |
| 300 | utf8=spanLengths+stringsLength; |
| 301 | } else { |
| 302 | spanLengths=(uint8_t *)utf8Lengths; |
| 303 | } |
| 304 | spanBackLengths=spanUTF8Lengths=spanBackUTF8Lengths=spanLengths; |
| 305 | } |
| 306 | |
| 307 | // Set the meta data and pSpanNotSet and write the UTF-8 strings. |
| 308 | int32_t utf8Count=0; // Count UTF-8 bytes written so far. |
| 309 | |
| 310 | for(i=0; i<stringsLength; ++i) { |
| 311 | const UnicodeString &string=*(const UnicodeString *)strings.elementAt(i); |
| 312 | const UChar *s16=string.getBuffer(); |
| 313 | int32_t length16=string.length(); |
| 314 | spanLength=spanSet.span(s16, length16, USET_SPAN_CONTAINED); |
| 315 | if(spanLength<length16) { // Relevant string. |
| 316 | if(which&UTF16) { |
| 317 | if(which&CONTAINED) { |
| 318 | if(which&FWD) { |
| 319 | spanLengths[i]=makeSpanLengthByte(spanLength); |
| 320 | } |
| 321 | if(which&BACK) { |
| 322 | spanLength=length16-spanSet.spanBack(s16, length16, USET_SPAN_CONTAINED); |
| 323 | spanBackLengths[i]=makeSpanLengthByte(spanLength); |
| 324 | } |
| 325 | } else /* not CONTAINED, not all, but NOT_CONTAINED */ { |
| 326 | spanLengths[i]=spanBackLengths[i]=0; // Only store a relevant/irrelevant flag. |
| 327 | } |
| 328 | } |
| 329 | if(which&UTF8) { |
| 330 | uint8_t *s8=utf8+utf8Count; |
| 331 | int32_t length8=appendUTF8(s16, length16, s8, utf8Length-utf8Count); |
| 332 | utf8Count+=utf8Lengths[i]=length8; |
| 333 | if(length8==0) { // Irrelevant for UTF-8 because not representable in UTF-8. |
| 334 | spanUTF8Lengths[i]=spanBackUTF8Lengths[i]=(uint8_t)ALL_CP_CONTAINED; |
| 335 | } else { // Relevant for UTF-8. |
| 336 | if(which&CONTAINED) { |
| 337 | if(which&FWD) { |
| 338 | spanLength=spanSet.spanUTF8((const char *)s8, length8, USET_SPAN_CONTAINED); |
| 339 | spanUTF8Lengths[i]=makeSpanLengthByte(spanLength); |
| 340 | } |
| 341 | if(which&BACK) { |
| 342 | spanLength=length8-spanSet.spanBackUTF8((const char *)s8, length8, USET_SPAN_CONTAINED); |
| 343 | spanBackUTF8Lengths[i]=makeSpanLengthByte(spanLength); |
| 344 | } |
| 345 | } else /* not CONTAINED, not all, but NOT_CONTAINED */ { |
| 346 | spanUTF8Lengths[i]=spanBackUTF8Lengths[i]=0; // Only store a relevant/irrelevant flag. |
| 347 | } |
| 348 | } |
| 349 | } |
| 350 | if(which&NOT_CONTAINED) { |
| 351 | // Add string start and end code points to the spanNotSet so that |
| 352 | // a span(while not contained) stops before any string. |
| 353 | UChar32 c; |
| 354 | if(which&FWD) { |
| 355 | int32_t len=0; |
| 356 | U16_NEXT(s16, len, length16, c); |
| 357 | addToSpanNotSet(c); |
| 358 | } |
| 359 | if(which&BACK) { |
| 360 | int32_t len=length16; |
| 361 | U16_PREV(s16, 0, len, c); |
| 362 | addToSpanNotSet(c); |
| 363 | } |
| 364 | } |
| 365 | } else { // Irrelevant string. |
| 366 | if(which&UTF8) { |
| 367 | if(which&CONTAINED) { // Only necessary for LONGEST_MATCH. |
| 368 | uint8_t *s8=utf8+utf8Count; |
| 369 | int32_t length8=appendUTF8(s16, length16, s8, utf8Length-utf8Count); |
| 370 | utf8Count+=utf8Lengths[i]=length8; |
| 371 | } else { |
| 372 | utf8Lengths[i]=0; |
| 373 | } |
| 374 | } |
| 375 | if(all) { |
| 376 | spanLengths[i]=spanBackLengths[i]= |
| 377 | spanUTF8Lengths[i]=spanBackUTF8Lengths[i]= |
| 378 | (uint8_t)ALL_CP_CONTAINED; |
| 379 | } else { |
| 380 | // All spanXYZLengths pointers contain the same address. |
| 381 | spanLengths[i]=(uint8_t)ALL_CP_CONTAINED; |
| 382 | } |
| 383 | } |
| 384 | } |
| 385 | |
| 386 | // Finish. |
| 387 | if(all) { |
| 388 | pSpanNotSet->freeze(); |
| 389 | } |
| 390 | } |
| 391 | |
| 392 | // Copy constructor. Assumes which==ALL for a frozen set. |
| 393 | UnicodeSetStringSpan::UnicodeSetStringSpan(const UnicodeSetStringSpan &otherStringSpan, |
| 394 | const UVector &newParentSetStrings) |
| 395 | : spanSet(otherStringSpan.spanSet), pSpanNotSet(NULL), strings(newParentSetStrings), |
| 396 | utf8Lengths(NULL), spanLengths(NULL), utf8(NULL), |
| 397 | utf8Length(otherStringSpan.utf8Length), |
| 398 | maxLength16(otherStringSpan.maxLength16), maxLength8(otherStringSpan.maxLength8), |
| 399 | all(TRUE) { |
| 400 | if(otherStringSpan.pSpanNotSet==&otherStringSpan.spanSet) { |
| 401 | pSpanNotSet=&spanSet; |
| 402 | } else { |
| 403 | pSpanNotSet=(UnicodeSet *)otherStringSpan.pSpanNotSet->clone(); |
| 404 | } |
| 405 | |
| 406 | // Allocate a block of meta data. |
| 407 | // UTF-8 lengths, 4 sets of span lengths, UTF-8 strings. |
| 408 | int32_t stringsLength=strings.size(); |
| 409 | int32_t allocSize=stringsLength*(4+1+1+1+1)+utf8Length; |
| 410 | if(allocSize<=(int32_t)sizeof(staticLengths)) { |
| 411 | utf8Lengths=staticLengths; |
| 412 | } else { |
| 413 | utf8Lengths=(int32_t *)uprv_malloc(allocSize); |
| 414 | if(utf8Lengths==NULL) { |
| 415 | maxLength16=maxLength8=0; // Prevent usage by making needsStringSpanUTF16/8() return FALSE. |
| 416 | return; // Out of memory. |
| 417 | } |
| 418 | } |
| 419 | |
| 420 | spanLengths=(uint8_t *)(utf8Lengths+stringsLength); |
| 421 | utf8=spanLengths+stringsLength*4; |
| 422 | uprv_memcpy(utf8Lengths, otherStringSpan.utf8Lengths, allocSize); |
| 423 | } |
| 424 | |
| 425 | UnicodeSetStringSpan::~UnicodeSetStringSpan() { |
| 426 | if(pSpanNotSet!=NULL && pSpanNotSet!=&spanSet) { |
| 427 | delete pSpanNotSet; |
| 428 | } |
| 429 | if(utf8Lengths!=NULL && utf8Lengths!=staticLengths) { |
| 430 | uprv_free(utf8Lengths); |
| 431 | } |
| 432 | } |
| 433 | |
| 434 | void UnicodeSetStringSpan::addToSpanNotSet(UChar32 c) { |
| 435 | if(pSpanNotSet==NULL || pSpanNotSet==&spanSet) { |
| 436 | if(spanSet.contains(c)) { |
| 437 | return; // Nothing to do. |
| 438 | } |
| 439 | UnicodeSet *newSet=(UnicodeSet *)spanSet.cloneAsThawed(); |
| 440 | if(newSet==NULL) { |
| 441 | return; // Out of memory. |
| 442 | } else { |
| 443 | pSpanNotSet=newSet; |
| 444 | } |
| 445 | } |
| 446 | pSpanNotSet->add(c); |
| 447 | } |
| 448 | |
| 449 | // Compare strings without any argument checks. Requires length>0. |
| 450 | static inline UBool |
| 451 | matches16(const UChar *s, const UChar *t, int32_t length) { |
| 452 | do { |
| 453 | if(*s++!=*t++) { |
| 454 | return FALSE; |
| 455 | } |
| 456 | } while(--length>0); |
| 457 | return TRUE; |
| 458 | } |
| 459 | |
| 460 | static inline UBool |
| 461 | matches8(const uint8_t *s, const uint8_t *t, int32_t length) { |
| 462 | do { |
| 463 | if(*s++!=*t++) { |
| 464 | return FALSE; |
| 465 | } |
| 466 | } while(--length>0); |
| 467 | return TRUE; |
| 468 | } |
| 469 | |
| 470 | // Compare 16-bit Unicode strings (which may be malformed UTF-16) |
| 471 | // at code point boundaries. |
| 472 | // That is, each edge of a match must not be in the middle of a surrogate pair. |
| 473 | static inline UBool |
| 474 | matches16CPB(const UChar *s, int32_t start, int32_t limit, const UChar *t, int32_t length) { |
| 475 | s+=start; |
| 476 | limit-=start; |
| 477 | return matches16(s, t, length) && |
| 478 | !(0<start && U16_IS_LEAD(s[-1]) && U16_IS_TRAIL(s[0])) && |
| 479 | !(length<limit && U16_IS_LEAD(s[length-1]) && U16_IS_TRAIL(s[length])); |
| 480 | } |
| 481 | |
| 482 | // Does the set contain the next code point? |
| 483 | // If so, return its length; otherwise return its negative length. |
| 484 | static inline int32_t |
| 485 | spanOne(const UnicodeSet &set, const UChar *s, int32_t length) { |
| 486 | UChar c=*s, c2; |
| 487 | if(c>=0xd800 && c<=0xdbff && length>=2 && U16_IS_TRAIL(c2=s[1])) { |
| 488 | return set.contains(U16_GET_SUPPLEMENTARY(c, c2)) ? 2 : -2; |
| 489 | } |
| 490 | return set.contains(c) ? 1 : -1; |
| 491 | } |
| 492 | |
| 493 | static inline int32_t |
| 494 | spanOneBack(const UnicodeSet &set, const UChar *s, int32_t length) { |
| 495 | UChar c=s[length-1], c2; |
| 496 | if(c>=0xdc00 && c<=0xdfff && length>=2 && U16_IS_LEAD(c2=s[length-2])) { |
| 497 | return set.contains(U16_GET_SUPPLEMENTARY(c2, c)) ? 2 : -2; |
| 498 | } |
| 499 | return set.contains(c) ? 1 : -1; |
| 500 | } |
| 501 | |
| 502 | static inline int32_t |
| 503 | spanOneUTF8(const UnicodeSet &set, const uint8_t *s, int32_t length) { |
| 504 | UChar32 c=*s; |
Jungshik Shin | b318966 | 2017-11-07 11:18:34 -0800 | [diff] [blame^] | 505 | if(U8_IS_SINGLE(c)) { |
jshin@chromium.org | 6f31ac3 | 2014-03-26 22:15:14 +0000 | [diff] [blame] | 506 | return set.contains(c) ? 1 : -1; |
| 507 | } |
| 508 | // Take advantage of non-ASCII fastpaths in U8_NEXT_OR_FFFD(). |
| 509 | int32_t i=0; |
| 510 | U8_NEXT_OR_FFFD(s, i, length, c); |
| 511 | return set.contains(c) ? i : -i; |
| 512 | } |
| 513 | |
| 514 | static inline int32_t |
| 515 | spanOneBackUTF8(const UnicodeSet &set, const uint8_t *s, int32_t length) { |
| 516 | UChar32 c=s[length-1]; |
Jungshik Shin | b318966 | 2017-11-07 11:18:34 -0800 | [diff] [blame^] | 517 | if(U8_IS_SINGLE(c)) { |
jshin@chromium.org | 6f31ac3 | 2014-03-26 22:15:14 +0000 | [diff] [blame] | 518 | return set.contains(c) ? 1 : -1; |
| 519 | } |
| 520 | int32_t i=length-1; |
| 521 | c=utf8_prevCharSafeBody(s, 0, &i, c, -3); |
| 522 | length-=i; |
| 523 | return set.contains(c) ? length : -length; |
| 524 | } |
| 525 | |
| 526 | /* |
| 527 | * Note: In span() when spanLength==0 (after a string match, or at the beginning |
| 528 | * after an empty code point span) and in spanNot() and spanNotUTF8(), |
| 529 | * string matching could use a binary search |
| 530 | * because all string matches are done from the same start index. |
| 531 | * |
| 532 | * For UTF-8, this would require a comparison function that returns UTF-16 order. |
| 533 | * |
| 534 | * This optimization should not be necessary for normal UnicodeSets because |
| 535 | * most sets have no strings, and most sets with strings have |
| 536 | * very few very short strings. |
| 537 | * For cases with many strings, it might be better to use a different API |
| 538 | * and implementation with a DFA (state machine). |
| 539 | */ |
| 540 | |
| 541 | /* |
| 542 | * Algorithm for span(USET_SPAN_CONTAINED) |
| 543 | * |
| 544 | * Theoretical algorithm: |
| 545 | * - Iterate through the string, and at each code point boundary: |
| 546 | * + If the code point there is in the set, then remember to continue after it. |
| 547 | * + If a set string matches at the current position, then remember to continue after it. |
| 548 | * + Either recursively span for each code point or string match, |
| 549 | * or recursively span for all but the shortest one and |
| 550 | * iteratively continue the span with the shortest local match. |
| 551 | * + Remember the longest recursive span (the farthest end point). |
| 552 | * + If there is no match at the current position, neither for the code point there |
| 553 | * nor for any set string, then stop and return the longest recursive span length. |
| 554 | * |
| 555 | * Optimized implementation: |
| 556 | * |
| 557 | * (We assume that most sets will have very few very short strings. |
| 558 | * A span using a string-less set is extremely fast.) |
| 559 | * |
| 560 | * Create and cache a spanSet which contains all of the single code points |
| 561 | * of the original set but none of its strings. |
| 562 | * |
| 563 | * - Start with spanLength=spanSet.span(USET_SPAN_CONTAINED). |
| 564 | * - Loop: |
| 565 | * + Try to match each set string at the end of the spanLength. |
| 566 | * ~ Set strings that start with set-contained code points must be matched |
| 567 | * with a partial overlap because the recursive algorithm would have tried |
| 568 | * to match them at every position. |
| 569 | * ~ Set strings that entirely consist of set-contained code points |
| 570 | * are irrelevant for span(USET_SPAN_CONTAINED) because the |
| 571 | * recursive algorithm would continue after them anyway |
| 572 | * and find the longest recursive match from their end. |
| 573 | * ~ Rather than recursing, note each end point of a set string match. |
| 574 | * + If no set string matched after spanSet.span(), then return |
| 575 | * with where the spanSet.span() ended. |
| 576 | * + If at least one set string matched after spanSet.span(), then |
| 577 | * pop the shortest string match end point and continue |
| 578 | * the loop, trying to match all set strings from there. |
| 579 | * + If at least one more set string matched after a previous string match, |
| 580 | * then test if the code point after the previous string match is also |
| 581 | * contained in the set. |
| 582 | * Continue the loop with the shortest end point of either this code point |
| 583 | * or a matching set string. |
| 584 | * + If no more set string matched after a previous string match, |
| 585 | * then try another spanLength=spanSet.span(USET_SPAN_CONTAINED). |
| 586 | * Stop if spanLength==0, otherwise continue the loop. |
| 587 | * |
| 588 | * By noting each end point of a set string match, |
| 589 | * the function visits each string position at most once and finishes |
| 590 | * in linear time. |
| 591 | * |
| 592 | * The recursive algorithm may visit the same string position many times |
| 593 | * if multiple paths lead to it and finishes in exponential time. |
| 594 | */ |
| 595 | |
| 596 | /* |
| 597 | * Algorithm for span(USET_SPAN_SIMPLE) |
| 598 | * |
| 599 | * Theoretical algorithm: |
| 600 | * - Iterate through the string, and at each code point boundary: |
| 601 | * + If the code point there is in the set, then remember to continue after it. |
| 602 | * + If a set string matches at the current position, then remember to continue after it. |
| 603 | * + Continue from the farthest match position and ignore all others. |
| 604 | * + If there is no match at the current position, |
| 605 | * then stop and return the current position. |
| 606 | * |
| 607 | * Optimized implementation: |
| 608 | * |
| 609 | * (Same assumption and spanSet as above.) |
| 610 | * |
| 611 | * - Start with spanLength=spanSet.span(USET_SPAN_CONTAINED). |
| 612 | * - Loop: |
| 613 | * + Try to match each set string at the end of the spanLength. |
| 614 | * ~ Set strings that start with set-contained code points must be matched |
| 615 | * with a partial overlap because the standard algorithm would have tried |
| 616 | * to match them earlier. |
| 617 | * ~ Set strings that entirely consist of set-contained code points |
| 618 | * must be matched with a full overlap because the longest-match algorithm |
| 619 | * would hide set string matches that end earlier. |
| 620 | * Such set strings need not be matched earlier inside the code point span |
| 621 | * because the standard algorithm would then have continued after |
| 622 | * the set string match anyway. |
| 623 | * ~ Remember the longest set string match (farthest end point) from the earliest |
| 624 | * starting point. |
| 625 | * + If no set string matched after spanSet.span(), then return |
| 626 | * with where the spanSet.span() ended. |
| 627 | * + If at least one set string matched, then continue the loop after the |
| 628 | * longest match from the earliest position. |
| 629 | * + If no more set string matched after a previous string match, |
| 630 | * then try another spanLength=spanSet.span(USET_SPAN_CONTAINED). |
| 631 | * Stop if spanLength==0, otherwise continue the loop. |
| 632 | */ |
| 633 | |
| 634 | int32_t UnicodeSetStringSpan::span(const UChar *s, int32_t length, USetSpanCondition spanCondition) const { |
| 635 | if(spanCondition==USET_SPAN_NOT_CONTAINED) { |
| 636 | return spanNot(s, length); |
| 637 | } |
| 638 | int32_t spanLength=spanSet.span(s, length, USET_SPAN_CONTAINED); |
| 639 | if(spanLength==length) { |
| 640 | return length; |
| 641 | } |
| 642 | |
| 643 | // Consider strings; they may overlap with the span. |
| 644 | OffsetList offsets; |
| 645 | if(spanCondition==USET_SPAN_CONTAINED) { |
| 646 | // Use offset list to try all possibilities. |
| 647 | offsets.setMaxLength(maxLength16); |
| 648 | } |
| 649 | int32_t pos=spanLength, rest=length-pos; |
| 650 | int32_t i, stringsLength=strings.size(); |
| 651 | for(;;) { |
| 652 | if(spanCondition==USET_SPAN_CONTAINED) { |
| 653 | for(i=0; i<stringsLength; ++i) { |
| 654 | int32_t overlap=spanLengths[i]; |
| 655 | if(overlap==ALL_CP_CONTAINED) { |
| 656 | continue; // Irrelevant string. |
| 657 | } |
| 658 | const UnicodeString &string=*(const UnicodeString *)strings.elementAt(i); |
| 659 | const UChar *s16=string.getBuffer(); |
| 660 | int32_t length16=string.length(); |
| 661 | |
| 662 | // Try to match this string at pos-overlap..pos. |
| 663 | if(overlap>=LONG_SPAN) { |
| 664 | overlap=length16; |
| 665 | // While contained: No point matching fully inside the code point span. |
| 666 | U16_BACK_1(s16, 0, overlap); // Length of the string minus the last code point. |
| 667 | } |
| 668 | if(overlap>spanLength) { |
| 669 | overlap=spanLength; |
| 670 | } |
| 671 | int32_t inc=length16-overlap; // Keep overlap+inc==length16. |
| 672 | for(;;) { |
| 673 | if(inc>rest) { |
| 674 | break; |
| 675 | } |
| 676 | // Try to match if the increment is not listed already. |
| 677 | if(!offsets.containsOffset(inc) && matches16CPB(s, pos-overlap, length, s16, length16)) { |
| 678 | if(inc==rest) { |
| 679 | return length; // Reached the end of the string. |
| 680 | } |
| 681 | offsets.addOffset(inc); |
| 682 | } |
| 683 | if(overlap==0) { |
| 684 | break; |
| 685 | } |
| 686 | --overlap; |
| 687 | ++inc; |
| 688 | } |
| 689 | } |
| 690 | } else /* USET_SPAN_SIMPLE */ { |
| 691 | int32_t maxInc=0, maxOverlap=0; |
| 692 | for(i=0; i<stringsLength; ++i) { |
| 693 | int32_t overlap=spanLengths[i]; |
| 694 | // For longest match, we do need to try to match even an all-contained string |
| 695 | // to find the match from the earliest start. |
| 696 | |
| 697 | const UnicodeString &string=*(const UnicodeString *)strings.elementAt(i); |
| 698 | const UChar *s16=string.getBuffer(); |
| 699 | int32_t length16=string.length(); |
| 700 | |
| 701 | // Try to match this string at pos-overlap..pos. |
| 702 | if(overlap>=LONG_SPAN) { |
| 703 | overlap=length16; |
| 704 | // Longest match: Need to match fully inside the code point span |
| 705 | // to find the match from the earliest start. |
| 706 | } |
| 707 | if(overlap>spanLength) { |
| 708 | overlap=spanLength; |
| 709 | } |
| 710 | int32_t inc=length16-overlap; // Keep overlap+inc==length16. |
| 711 | for(;;) { |
| 712 | if(inc>rest || overlap<maxOverlap) { |
| 713 | break; |
| 714 | } |
| 715 | // Try to match if the string is longer or starts earlier. |
| 716 | if( (overlap>maxOverlap || /* redundant overlap==maxOverlap && */ inc>maxInc) && |
| 717 | matches16CPB(s, pos-overlap, length, s16, length16) |
| 718 | ) { |
| 719 | maxInc=inc; // Longest match from earliest start. |
| 720 | maxOverlap=overlap; |
| 721 | break; |
| 722 | } |
| 723 | --overlap; |
| 724 | ++inc; |
| 725 | } |
| 726 | } |
| 727 | |
| 728 | if(maxInc!=0 || maxOverlap!=0) { |
| 729 | // Longest-match algorithm, and there was a string match. |
| 730 | // Simply continue after it. |
| 731 | pos+=maxInc; |
| 732 | rest-=maxInc; |
| 733 | if(rest==0) { |
| 734 | return length; // Reached the end of the string. |
| 735 | } |
| 736 | spanLength=0; // Match strings from after a string match. |
| 737 | continue; |
| 738 | } |
| 739 | } |
| 740 | // Finished trying to match all strings at pos. |
| 741 | |
| 742 | if(spanLength!=0 || pos==0) { |
| 743 | // The position is after an unlimited code point span (spanLength!=0), |
| 744 | // not after a string match. |
| 745 | // The only position where spanLength==0 after a span is pos==0. |
| 746 | // Otherwise, an unlimited code point span is only tried again when no |
| 747 | // strings match, and if such a non-initial span fails we stop. |
| 748 | if(offsets.isEmpty()) { |
| 749 | return pos; // No strings matched after a span. |
| 750 | } |
| 751 | // Match strings from after the next string match. |
| 752 | } else { |
| 753 | // The position is after a string match (or a single code point). |
| 754 | if(offsets.isEmpty()) { |
| 755 | // No more strings matched after a previous string match. |
| 756 | // Try another code point span from after the last string match. |
| 757 | spanLength=spanSet.span(s+pos, rest, USET_SPAN_CONTAINED); |
| 758 | if( spanLength==rest || // Reached the end of the string, or |
| 759 | spanLength==0 // neither strings nor span progressed. |
| 760 | ) { |
| 761 | return pos+spanLength; |
| 762 | } |
| 763 | pos+=spanLength; |
| 764 | rest-=spanLength; |
| 765 | continue; // spanLength>0: Match strings from after a span. |
| 766 | } else { |
| 767 | // Try to match only one code point from after a string match if some |
| 768 | // string matched beyond it, so that we try all possible positions |
| 769 | // and don't overshoot. |
| 770 | spanLength=spanOne(spanSet, s+pos, rest); |
| 771 | if(spanLength>0) { |
| 772 | if(spanLength==rest) { |
| 773 | return length; // Reached the end of the string. |
| 774 | } |
| 775 | // Match strings after this code point. |
| 776 | // There cannot be any increments below it because UnicodeSet strings |
| 777 | // contain multiple code points. |
| 778 | pos+=spanLength; |
| 779 | rest-=spanLength; |
| 780 | offsets.shift(spanLength); |
| 781 | spanLength=0; |
| 782 | continue; // Match strings from after a single code point. |
| 783 | } |
| 784 | // Match strings from after the next string match. |
| 785 | } |
| 786 | } |
| 787 | int32_t minOffset=offsets.popMinimum(); |
| 788 | pos+=minOffset; |
| 789 | rest-=minOffset; |
| 790 | spanLength=0; // Match strings from after a string match. |
| 791 | } |
| 792 | } |
| 793 | |
| 794 | int32_t UnicodeSetStringSpan::spanBack(const UChar *s, int32_t length, USetSpanCondition spanCondition) const { |
| 795 | if(spanCondition==USET_SPAN_NOT_CONTAINED) { |
| 796 | return spanNotBack(s, length); |
| 797 | } |
| 798 | int32_t pos=spanSet.spanBack(s, length, USET_SPAN_CONTAINED); |
| 799 | if(pos==0) { |
| 800 | return 0; |
| 801 | } |
| 802 | int32_t spanLength=length-pos; |
| 803 | |
| 804 | // Consider strings; they may overlap with the span. |
| 805 | OffsetList offsets; |
| 806 | if(spanCondition==USET_SPAN_CONTAINED) { |
| 807 | // Use offset list to try all possibilities. |
| 808 | offsets.setMaxLength(maxLength16); |
| 809 | } |
| 810 | int32_t i, stringsLength=strings.size(); |
| 811 | uint8_t *spanBackLengths=spanLengths; |
| 812 | if(all) { |
| 813 | spanBackLengths+=stringsLength; |
| 814 | } |
| 815 | for(;;) { |
| 816 | if(spanCondition==USET_SPAN_CONTAINED) { |
| 817 | for(i=0; i<stringsLength; ++i) { |
| 818 | int32_t overlap=spanBackLengths[i]; |
| 819 | if(overlap==ALL_CP_CONTAINED) { |
| 820 | continue; // Irrelevant string. |
| 821 | } |
| 822 | const UnicodeString &string=*(const UnicodeString *)strings.elementAt(i); |
| 823 | const UChar *s16=string.getBuffer(); |
| 824 | int32_t length16=string.length(); |
| 825 | |
| 826 | // Try to match this string at pos-(length16-overlap)..pos-length16. |
| 827 | if(overlap>=LONG_SPAN) { |
| 828 | overlap=length16; |
| 829 | // While contained: No point matching fully inside the code point span. |
| 830 | int32_t len1=0; |
| 831 | U16_FWD_1(s16, len1, overlap); |
| 832 | overlap-=len1; // Length of the string minus the first code point. |
| 833 | } |
| 834 | if(overlap>spanLength) { |
| 835 | overlap=spanLength; |
| 836 | } |
| 837 | int32_t dec=length16-overlap; // Keep dec+overlap==length16. |
| 838 | for(;;) { |
| 839 | if(dec>pos) { |
| 840 | break; |
| 841 | } |
| 842 | // Try to match if the decrement is not listed already. |
| 843 | if(!offsets.containsOffset(dec) && matches16CPB(s, pos-dec, length, s16, length16)) { |
| 844 | if(dec==pos) { |
| 845 | return 0; // Reached the start of the string. |
| 846 | } |
| 847 | offsets.addOffset(dec); |
| 848 | } |
| 849 | if(overlap==0) { |
| 850 | break; |
| 851 | } |
| 852 | --overlap; |
| 853 | ++dec; |
| 854 | } |
| 855 | } |
| 856 | } else /* USET_SPAN_SIMPLE */ { |
| 857 | int32_t maxDec=0, maxOverlap=0; |
| 858 | for(i=0; i<stringsLength; ++i) { |
| 859 | int32_t overlap=spanBackLengths[i]; |
| 860 | // For longest match, we do need to try to match even an all-contained string |
| 861 | // to find the match from the latest end. |
| 862 | |
| 863 | const UnicodeString &string=*(const UnicodeString *)strings.elementAt(i); |
| 864 | const UChar *s16=string.getBuffer(); |
| 865 | int32_t length16=string.length(); |
| 866 | |
| 867 | // Try to match this string at pos-(length16-overlap)..pos-length16. |
| 868 | if(overlap>=LONG_SPAN) { |
| 869 | overlap=length16; |
| 870 | // Longest match: Need to match fully inside the code point span |
| 871 | // to find the match from the latest end. |
| 872 | } |
| 873 | if(overlap>spanLength) { |
| 874 | overlap=spanLength; |
| 875 | } |
| 876 | int32_t dec=length16-overlap; // Keep dec+overlap==length16. |
| 877 | for(;;) { |
| 878 | if(dec>pos || overlap<maxOverlap) { |
| 879 | break; |
| 880 | } |
| 881 | // Try to match if the string is longer or ends later. |
| 882 | if( (overlap>maxOverlap || /* redundant overlap==maxOverlap && */ dec>maxDec) && |
| 883 | matches16CPB(s, pos-dec, length, s16, length16) |
| 884 | ) { |
| 885 | maxDec=dec; // Longest match from latest end. |
| 886 | maxOverlap=overlap; |
| 887 | break; |
| 888 | } |
| 889 | --overlap; |
| 890 | ++dec; |
| 891 | } |
| 892 | } |
| 893 | |
| 894 | if(maxDec!=0 || maxOverlap!=0) { |
| 895 | // Longest-match algorithm, and there was a string match. |
| 896 | // Simply continue before it. |
| 897 | pos-=maxDec; |
| 898 | if(pos==0) { |
| 899 | return 0; // Reached the start of the string. |
| 900 | } |
| 901 | spanLength=0; // Match strings from before a string match. |
| 902 | continue; |
| 903 | } |
| 904 | } |
| 905 | // Finished trying to match all strings at pos. |
| 906 | |
| 907 | if(spanLength!=0 || pos==length) { |
| 908 | // The position is before an unlimited code point span (spanLength!=0), |
| 909 | // not before a string match. |
| 910 | // The only position where spanLength==0 before a span is pos==length. |
| 911 | // Otherwise, an unlimited code point span is only tried again when no |
| 912 | // strings match, and if such a non-initial span fails we stop. |
| 913 | if(offsets.isEmpty()) { |
| 914 | return pos; // No strings matched before a span. |
| 915 | } |
| 916 | // Match strings from before the next string match. |
| 917 | } else { |
| 918 | // The position is before a string match (or a single code point). |
| 919 | if(offsets.isEmpty()) { |
| 920 | // No more strings matched before a previous string match. |
| 921 | // Try another code point span from before the last string match. |
| 922 | int32_t oldPos=pos; |
| 923 | pos=spanSet.spanBack(s, oldPos, USET_SPAN_CONTAINED); |
| 924 | spanLength=oldPos-pos; |
| 925 | if( pos==0 || // Reached the start of the string, or |
| 926 | spanLength==0 // neither strings nor span progressed. |
| 927 | ) { |
| 928 | return pos; |
| 929 | } |
| 930 | continue; // spanLength>0: Match strings from before a span. |
| 931 | } else { |
| 932 | // Try to match only one code point from before a string match if some |
| 933 | // string matched beyond it, so that we try all possible positions |
| 934 | // and don't overshoot. |
| 935 | spanLength=spanOneBack(spanSet, s, pos); |
| 936 | if(spanLength>0) { |
| 937 | if(spanLength==pos) { |
| 938 | return 0; // Reached the start of the string. |
| 939 | } |
| 940 | // Match strings before this code point. |
| 941 | // There cannot be any decrements below it because UnicodeSet strings |
| 942 | // contain multiple code points. |
| 943 | pos-=spanLength; |
| 944 | offsets.shift(spanLength); |
| 945 | spanLength=0; |
| 946 | continue; // Match strings from before a single code point. |
| 947 | } |
| 948 | // Match strings from before the next string match. |
| 949 | } |
| 950 | } |
| 951 | pos-=offsets.popMinimum(); |
| 952 | spanLength=0; // Match strings from before a string match. |
| 953 | } |
| 954 | } |
| 955 | |
| 956 | int32_t UnicodeSetStringSpan::spanUTF8(const uint8_t *s, int32_t length, USetSpanCondition spanCondition) const { |
| 957 | if(spanCondition==USET_SPAN_NOT_CONTAINED) { |
| 958 | return spanNotUTF8(s, length); |
| 959 | } |
| 960 | int32_t spanLength=spanSet.spanUTF8((const char *)s, length, USET_SPAN_CONTAINED); |
| 961 | if(spanLength==length) { |
| 962 | return length; |
| 963 | } |
| 964 | |
| 965 | // Consider strings; they may overlap with the span. |
| 966 | OffsetList offsets; |
| 967 | if(spanCondition==USET_SPAN_CONTAINED) { |
| 968 | // Use offset list to try all possibilities. |
| 969 | offsets.setMaxLength(maxLength8); |
| 970 | } |
| 971 | int32_t pos=spanLength, rest=length-pos; |
| 972 | int32_t i, stringsLength=strings.size(); |
| 973 | uint8_t *spanUTF8Lengths=spanLengths; |
| 974 | if(all) { |
| 975 | spanUTF8Lengths+=2*stringsLength; |
| 976 | } |
| 977 | for(;;) { |
| 978 | const uint8_t *s8=utf8; |
| 979 | int32_t length8; |
| 980 | if(spanCondition==USET_SPAN_CONTAINED) { |
| 981 | for(i=0; i<stringsLength; ++i) { |
| 982 | length8=utf8Lengths[i]; |
| 983 | if(length8==0) { |
| 984 | continue; // String not representable in UTF-8. |
| 985 | } |
| 986 | int32_t overlap=spanUTF8Lengths[i]; |
| 987 | if(overlap==ALL_CP_CONTAINED) { |
| 988 | s8+=length8; |
| 989 | continue; // Irrelevant string. |
| 990 | } |
| 991 | |
| 992 | // Try to match this string at pos-overlap..pos. |
| 993 | if(overlap>=LONG_SPAN) { |
| 994 | overlap=length8; |
| 995 | // While contained: No point matching fully inside the code point span. |
| 996 | U8_BACK_1(s8, 0, overlap); // Length of the string minus the last code point. |
| 997 | } |
| 998 | if(overlap>spanLength) { |
| 999 | overlap=spanLength; |
| 1000 | } |
| 1001 | int32_t inc=length8-overlap; // Keep overlap+inc==length8. |
| 1002 | for(;;) { |
| 1003 | if(inc>rest) { |
| 1004 | break; |
| 1005 | } |
| 1006 | // Try to match if the increment is not listed already. |
| 1007 | // Match at code point boundaries. (The UTF-8 strings were converted |
| 1008 | // from UTF-16 and are guaranteed to be well-formed.) |
Jungshik Shin | b318966 | 2017-11-07 11:18:34 -0800 | [diff] [blame^] | 1009 | if(!U8_IS_TRAIL(s[pos-overlap]) && |
| 1010 | !offsets.containsOffset(inc) && |
| 1011 | matches8(s+pos-overlap, s8, length8)) { |
jshin@chromium.org | 6f31ac3 | 2014-03-26 22:15:14 +0000 | [diff] [blame] | 1012 | if(inc==rest) { |
| 1013 | return length; // Reached the end of the string. |
| 1014 | } |
| 1015 | offsets.addOffset(inc); |
| 1016 | } |
| 1017 | if(overlap==0) { |
| 1018 | break; |
| 1019 | } |
| 1020 | --overlap; |
| 1021 | ++inc; |
| 1022 | } |
| 1023 | s8+=length8; |
| 1024 | } |
| 1025 | } else /* USET_SPAN_SIMPLE */ { |
| 1026 | int32_t maxInc=0, maxOverlap=0; |
| 1027 | for(i=0; i<stringsLength; ++i) { |
| 1028 | length8=utf8Lengths[i]; |
| 1029 | if(length8==0) { |
| 1030 | continue; // String not representable in UTF-8. |
| 1031 | } |
| 1032 | int32_t overlap=spanUTF8Lengths[i]; |
| 1033 | // For longest match, we do need to try to match even an all-contained string |
| 1034 | // to find the match from the earliest start. |
| 1035 | |
| 1036 | // Try to match this string at pos-overlap..pos. |
| 1037 | if(overlap>=LONG_SPAN) { |
| 1038 | overlap=length8; |
| 1039 | // Longest match: Need to match fully inside the code point span |
| 1040 | // to find the match from the earliest start. |
| 1041 | } |
| 1042 | if(overlap>spanLength) { |
| 1043 | overlap=spanLength; |
| 1044 | } |
| 1045 | int32_t inc=length8-overlap; // Keep overlap+inc==length8. |
| 1046 | for(;;) { |
| 1047 | if(inc>rest || overlap<maxOverlap) { |
| 1048 | break; |
| 1049 | } |
| 1050 | // Try to match if the string is longer or starts earlier. |
| 1051 | // Match at code point boundaries. (The UTF-8 strings were converted |
| 1052 | // from UTF-16 and are guaranteed to be well-formed.) |
Jungshik Shin | b318966 | 2017-11-07 11:18:34 -0800 | [diff] [blame^] | 1053 | if(!U8_IS_TRAIL(s[pos-overlap]) && |
| 1054 | (overlap>maxOverlap || |
| 1055 | /* redundant overlap==maxOverlap && */ inc>maxInc) && |
| 1056 | matches8(s+pos-overlap, s8, length8)) { |
jshin@chromium.org | 6f31ac3 | 2014-03-26 22:15:14 +0000 | [diff] [blame] | 1057 | maxInc=inc; // Longest match from earliest start. |
| 1058 | maxOverlap=overlap; |
| 1059 | break; |
| 1060 | } |
| 1061 | --overlap; |
| 1062 | ++inc; |
| 1063 | } |
| 1064 | s8+=length8; |
| 1065 | } |
| 1066 | |
| 1067 | if(maxInc!=0 || maxOverlap!=0) { |
| 1068 | // Longest-match algorithm, and there was a string match. |
| 1069 | // Simply continue after it. |
| 1070 | pos+=maxInc; |
| 1071 | rest-=maxInc; |
| 1072 | if(rest==0) { |
| 1073 | return length; // Reached the end of the string. |
| 1074 | } |
| 1075 | spanLength=0; // Match strings from after a string match. |
| 1076 | continue; |
| 1077 | } |
| 1078 | } |
| 1079 | // Finished trying to match all strings at pos. |
| 1080 | |
| 1081 | if(spanLength!=0 || pos==0) { |
| 1082 | // The position is after an unlimited code point span (spanLength!=0), |
| 1083 | // not after a string match. |
| 1084 | // The only position where spanLength==0 after a span is pos==0. |
| 1085 | // Otherwise, an unlimited code point span is only tried again when no |
| 1086 | // strings match, and if such a non-initial span fails we stop. |
| 1087 | if(offsets.isEmpty()) { |
| 1088 | return pos; // No strings matched after a span. |
| 1089 | } |
| 1090 | // Match strings from after the next string match. |
| 1091 | } else { |
| 1092 | // The position is after a string match (or a single code point). |
| 1093 | if(offsets.isEmpty()) { |
| 1094 | // No more strings matched after a previous string match. |
| 1095 | // Try another code point span from after the last string match. |
| 1096 | spanLength=spanSet.spanUTF8((const char *)s+pos, rest, USET_SPAN_CONTAINED); |
| 1097 | if( spanLength==rest || // Reached the end of the string, or |
| 1098 | spanLength==0 // neither strings nor span progressed. |
| 1099 | ) { |
| 1100 | return pos+spanLength; |
| 1101 | } |
| 1102 | pos+=spanLength; |
| 1103 | rest-=spanLength; |
| 1104 | continue; // spanLength>0: Match strings from after a span. |
| 1105 | } else { |
| 1106 | // Try to match only one code point from after a string match if some |
| 1107 | // string matched beyond it, so that we try all possible positions |
| 1108 | // and don't overshoot. |
| 1109 | spanLength=spanOneUTF8(spanSet, s+pos, rest); |
| 1110 | if(spanLength>0) { |
| 1111 | if(spanLength==rest) { |
| 1112 | return length; // Reached the end of the string. |
| 1113 | } |
| 1114 | // Match strings after this code point. |
| 1115 | // There cannot be any increments below it because UnicodeSet strings |
| 1116 | // contain multiple code points. |
| 1117 | pos+=spanLength; |
| 1118 | rest-=spanLength; |
| 1119 | offsets.shift(spanLength); |
| 1120 | spanLength=0; |
| 1121 | continue; // Match strings from after a single code point. |
| 1122 | } |
| 1123 | // Match strings from after the next string match. |
| 1124 | } |
| 1125 | } |
| 1126 | int32_t minOffset=offsets.popMinimum(); |
| 1127 | pos+=minOffset; |
| 1128 | rest-=minOffset; |
| 1129 | spanLength=0; // Match strings from after a string match. |
| 1130 | } |
| 1131 | } |
| 1132 | |
| 1133 | int32_t UnicodeSetStringSpan::spanBackUTF8(const uint8_t *s, int32_t length, USetSpanCondition spanCondition) const { |
| 1134 | if(spanCondition==USET_SPAN_NOT_CONTAINED) { |
| 1135 | return spanNotBackUTF8(s, length); |
| 1136 | } |
| 1137 | int32_t pos=spanSet.spanBackUTF8((const char *)s, length, USET_SPAN_CONTAINED); |
| 1138 | if(pos==0) { |
| 1139 | return 0; |
| 1140 | } |
| 1141 | int32_t spanLength=length-pos; |
| 1142 | |
| 1143 | // Consider strings; they may overlap with the span. |
| 1144 | OffsetList offsets; |
| 1145 | if(spanCondition==USET_SPAN_CONTAINED) { |
| 1146 | // Use offset list to try all possibilities. |
| 1147 | offsets.setMaxLength(maxLength8); |
| 1148 | } |
| 1149 | int32_t i, stringsLength=strings.size(); |
| 1150 | uint8_t *spanBackUTF8Lengths=spanLengths; |
| 1151 | if(all) { |
| 1152 | spanBackUTF8Lengths+=3*stringsLength; |
| 1153 | } |
| 1154 | for(;;) { |
| 1155 | const uint8_t *s8=utf8; |
| 1156 | int32_t length8; |
| 1157 | if(spanCondition==USET_SPAN_CONTAINED) { |
| 1158 | for(i=0; i<stringsLength; ++i) { |
| 1159 | length8=utf8Lengths[i]; |
| 1160 | if(length8==0) { |
| 1161 | continue; // String not representable in UTF-8. |
| 1162 | } |
| 1163 | int32_t overlap=spanBackUTF8Lengths[i]; |
| 1164 | if(overlap==ALL_CP_CONTAINED) { |
| 1165 | s8+=length8; |
| 1166 | continue; // Irrelevant string. |
| 1167 | } |
| 1168 | |
| 1169 | // Try to match this string at pos-(length8-overlap)..pos-length8. |
| 1170 | if(overlap>=LONG_SPAN) { |
| 1171 | overlap=length8; |
| 1172 | // While contained: No point matching fully inside the code point span. |
| 1173 | int32_t len1=0; |
| 1174 | U8_FWD_1(s8, len1, overlap); |
| 1175 | overlap-=len1; // Length of the string minus the first code point. |
| 1176 | } |
| 1177 | if(overlap>spanLength) { |
| 1178 | overlap=spanLength; |
| 1179 | } |
| 1180 | int32_t dec=length8-overlap; // Keep dec+overlap==length8. |
| 1181 | for(;;) { |
| 1182 | if(dec>pos) { |
| 1183 | break; |
| 1184 | } |
| 1185 | // Try to match if the decrement is not listed already. |
| 1186 | // Match at code point boundaries. (The UTF-8 strings were converted |
| 1187 | // from UTF-16 and are guaranteed to be well-formed.) |
| 1188 | if( !U8_IS_TRAIL(s[pos-dec]) && |
| 1189 | !offsets.containsOffset(dec) && |
| 1190 | matches8(s+pos-dec, s8, length8) |
| 1191 | ) { |
| 1192 | if(dec==pos) { |
| 1193 | return 0; // Reached the start of the string. |
| 1194 | } |
| 1195 | offsets.addOffset(dec); |
| 1196 | } |
| 1197 | if(overlap==0) { |
| 1198 | break; |
| 1199 | } |
| 1200 | --overlap; |
| 1201 | ++dec; |
| 1202 | } |
| 1203 | s8+=length8; |
| 1204 | } |
| 1205 | } else /* USET_SPAN_SIMPLE */ { |
| 1206 | int32_t maxDec=0, maxOverlap=0; |
| 1207 | for(i=0; i<stringsLength; ++i) { |
| 1208 | length8=utf8Lengths[i]; |
| 1209 | if(length8==0) { |
| 1210 | continue; // String not representable in UTF-8. |
| 1211 | } |
| 1212 | int32_t overlap=spanBackUTF8Lengths[i]; |
| 1213 | // For longest match, we do need to try to match even an all-contained string |
| 1214 | // to find the match from the latest end. |
| 1215 | |
| 1216 | // Try to match this string at pos-(length8-overlap)..pos-length8. |
| 1217 | if(overlap>=LONG_SPAN) { |
| 1218 | overlap=length8; |
| 1219 | // Longest match: Need to match fully inside the code point span |
| 1220 | // to find the match from the latest end. |
| 1221 | } |
| 1222 | if(overlap>spanLength) { |
| 1223 | overlap=spanLength; |
| 1224 | } |
| 1225 | int32_t dec=length8-overlap; // Keep dec+overlap==length8. |
| 1226 | for(;;) { |
| 1227 | if(dec>pos || overlap<maxOverlap) { |
| 1228 | break; |
| 1229 | } |
| 1230 | // Try to match if the string is longer or ends later. |
| 1231 | // Match at code point boundaries. (The UTF-8 strings were converted |
| 1232 | // from UTF-16 and are guaranteed to be well-formed.) |
| 1233 | if( !U8_IS_TRAIL(s[pos-dec]) && |
| 1234 | (overlap>maxOverlap || /* redundant overlap==maxOverlap && */ dec>maxDec) && |
| 1235 | matches8(s+pos-dec, s8, length8) |
| 1236 | ) { |
| 1237 | maxDec=dec; // Longest match from latest end. |
| 1238 | maxOverlap=overlap; |
| 1239 | break; |
| 1240 | } |
| 1241 | --overlap; |
| 1242 | ++dec; |
| 1243 | } |
| 1244 | s8+=length8; |
| 1245 | } |
| 1246 | |
| 1247 | if(maxDec!=0 || maxOverlap!=0) { |
| 1248 | // Longest-match algorithm, and there was a string match. |
| 1249 | // Simply continue before it. |
| 1250 | pos-=maxDec; |
| 1251 | if(pos==0) { |
| 1252 | return 0; // Reached the start of the string. |
| 1253 | } |
| 1254 | spanLength=0; // Match strings from before a string match. |
| 1255 | continue; |
| 1256 | } |
| 1257 | } |
| 1258 | // Finished trying to match all strings at pos. |
| 1259 | |
| 1260 | if(spanLength!=0 || pos==length) { |
| 1261 | // The position is before an unlimited code point span (spanLength!=0), |
| 1262 | // not before a string match. |
| 1263 | // The only position where spanLength==0 before a span is pos==length. |
| 1264 | // Otherwise, an unlimited code point span is only tried again when no |
| 1265 | // strings match, and if such a non-initial span fails we stop. |
| 1266 | if(offsets.isEmpty()) { |
| 1267 | return pos; // No strings matched before a span. |
| 1268 | } |
| 1269 | // Match strings from before the next string match. |
| 1270 | } else { |
| 1271 | // The position is before a string match (or a single code point). |
| 1272 | if(offsets.isEmpty()) { |
| 1273 | // No more strings matched before a previous string match. |
| 1274 | // Try another code point span from before the last string match. |
| 1275 | int32_t oldPos=pos; |
| 1276 | pos=spanSet.spanBackUTF8((const char *)s, oldPos, USET_SPAN_CONTAINED); |
| 1277 | spanLength=oldPos-pos; |
| 1278 | if( pos==0 || // Reached the start of the string, or |
| 1279 | spanLength==0 // neither strings nor span progressed. |
| 1280 | ) { |
| 1281 | return pos; |
| 1282 | } |
| 1283 | continue; // spanLength>0: Match strings from before a span. |
| 1284 | } else { |
| 1285 | // Try to match only one code point from before a string match if some |
| 1286 | // string matched beyond it, so that we try all possible positions |
| 1287 | // and don't overshoot. |
| 1288 | spanLength=spanOneBackUTF8(spanSet, s, pos); |
| 1289 | if(spanLength>0) { |
| 1290 | if(spanLength==pos) { |
| 1291 | return 0; // Reached the start of the string. |
| 1292 | } |
| 1293 | // Match strings before this code point. |
| 1294 | // There cannot be any decrements below it because UnicodeSet strings |
| 1295 | // contain multiple code points. |
| 1296 | pos-=spanLength; |
| 1297 | offsets.shift(spanLength); |
| 1298 | spanLength=0; |
| 1299 | continue; // Match strings from before a single code point. |
| 1300 | } |
| 1301 | // Match strings from before the next string match. |
| 1302 | } |
| 1303 | } |
| 1304 | pos-=offsets.popMinimum(); |
| 1305 | spanLength=0; // Match strings from before a string match. |
| 1306 | } |
| 1307 | } |
| 1308 | |
| 1309 | /* |
| 1310 | * Algorithm for spanNot()==span(USET_SPAN_NOT_CONTAINED) |
| 1311 | * |
| 1312 | * Theoretical algorithm: |
| 1313 | * - Iterate through the string, and at each code point boundary: |
| 1314 | * + If the code point there is in the set, then return with the current position. |
| 1315 | * + If a set string matches at the current position, then return with the current position. |
| 1316 | * |
| 1317 | * Optimized implementation: |
| 1318 | * |
| 1319 | * (Same assumption as for span() above.) |
| 1320 | * |
| 1321 | * Create and cache a spanNotSet which contains all of the single code points |
| 1322 | * of the original set but none of its strings. |
| 1323 | * For each set string add its initial code point to the spanNotSet. |
| 1324 | * (Also add its final code point for spanNotBack().) |
| 1325 | * |
| 1326 | * - Loop: |
| 1327 | * + Do spanLength=spanNotSet.span(USET_SPAN_NOT_CONTAINED). |
| 1328 | * + If the current code point is in the original set, then |
| 1329 | * return the current position. |
| 1330 | * + If any set string matches at the current position, then |
| 1331 | * return the current position. |
| 1332 | * + If there is no match at the current position, neither for the code point there |
| 1333 | * nor for any set string, then skip this code point and continue the loop. |
| 1334 | * This happens for set-string-initial code points that were added to spanNotSet |
| 1335 | * when there is not actually a match for such a set string. |
| 1336 | */ |
| 1337 | |
| 1338 | int32_t UnicodeSetStringSpan::spanNot(const UChar *s, int32_t length) const { |
| 1339 | int32_t pos=0, rest=length; |
| 1340 | int32_t i, stringsLength=strings.size(); |
| 1341 | do { |
| 1342 | // Span until we find a code point from the set, |
| 1343 | // or a code point that starts or ends some string. |
| 1344 | i=pSpanNotSet->span(s+pos, rest, USET_SPAN_NOT_CONTAINED); |
| 1345 | if(i==rest) { |
| 1346 | return length; // Reached the end of the string. |
| 1347 | } |
| 1348 | pos+=i; |
| 1349 | rest-=i; |
| 1350 | |
| 1351 | // Check whether the current code point is in the original set, |
| 1352 | // without the string starts and ends. |
| 1353 | int32_t cpLength=spanOne(spanSet, s+pos, rest); |
| 1354 | if(cpLength>0) { |
| 1355 | return pos; // There is a set element at pos. |
| 1356 | } |
| 1357 | |
| 1358 | // Try to match the strings at pos. |
| 1359 | for(i=0; i<stringsLength; ++i) { |
| 1360 | if(spanLengths[i]==ALL_CP_CONTAINED) { |
| 1361 | continue; // Irrelevant string. |
| 1362 | } |
| 1363 | const UnicodeString &string=*(const UnicodeString *)strings.elementAt(i); |
| 1364 | const UChar *s16=string.getBuffer(); |
| 1365 | int32_t length16=string.length(); |
| 1366 | if(length16<=rest && matches16CPB(s, pos, length, s16, length16)) { |
| 1367 | return pos; // There is a set element at pos. |
| 1368 | } |
| 1369 | } |
| 1370 | |
| 1371 | // The span(while not contained) ended on a string start/end which is |
| 1372 | // not in the original set. Skip this code point and continue. |
| 1373 | // cpLength<0 |
| 1374 | pos-=cpLength; |
| 1375 | rest+=cpLength; |
| 1376 | } while(rest!=0); |
| 1377 | return length; // Reached the end of the string. |
| 1378 | } |
| 1379 | |
| 1380 | int32_t UnicodeSetStringSpan::spanNotBack(const UChar *s, int32_t length) const { |
| 1381 | int32_t pos=length; |
| 1382 | int32_t i, stringsLength=strings.size(); |
| 1383 | do { |
| 1384 | // Span until we find a code point from the set, |
| 1385 | // or a code point that starts or ends some string. |
| 1386 | pos=pSpanNotSet->spanBack(s, pos, USET_SPAN_NOT_CONTAINED); |
| 1387 | if(pos==0) { |
| 1388 | return 0; // Reached the start of the string. |
| 1389 | } |
| 1390 | |
| 1391 | // Check whether the current code point is in the original set, |
| 1392 | // without the string starts and ends. |
| 1393 | int32_t cpLength=spanOneBack(spanSet, s, pos); |
| 1394 | if(cpLength>0) { |
| 1395 | return pos; // There is a set element at pos. |
| 1396 | } |
| 1397 | |
| 1398 | // Try to match the strings at pos. |
| 1399 | for(i=0; i<stringsLength; ++i) { |
| 1400 | // Use spanLengths rather than a spanBackLengths pointer because |
| 1401 | // it is easier and we only need to know whether the string is irrelevant |
| 1402 | // which is the same in either array. |
| 1403 | if(spanLengths[i]==ALL_CP_CONTAINED) { |
| 1404 | continue; // Irrelevant string. |
| 1405 | } |
| 1406 | const UnicodeString &string=*(const UnicodeString *)strings.elementAt(i); |
| 1407 | const UChar *s16=string.getBuffer(); |
| 1408 | int32_t length16=string.length(); |
| 1409 | if(length16<=pos && matches16CPB(s, pos-length16, length, s16, length16)) { |
| 1410 | return pos; // There is a set element at pos. |
| 1411 | } |
| 1412 | } |
| 1413 | |
| 1414 | // The span(while not contained) ended on a string start/end which is |
| 1415 | // not in the original set. Skip this code point and continue. |
| 1416 | // cpLength<0 |
| 1417 | pos+=cpLength; |
| 1418 | } while(pos!=0); |
| 1419 | return 0; // Reached the start of the string. |
| 1420 | } |
| 1421 | |
| 1422 | int32_t UnicodeSetStringSpan::spanNotUTF8(const uint8_t *s, int32_t length) const { |
| 1423 | int32_t pos=0, rest=length; |
| 1424 | int32_t i, stringsLength=strings.size(); |
| 1425 | uint8_t *spanUTF8Lengths=spanLengths; |
| 1426 | if(all) { |
| 1427 | spanUTF8Lengths+=2*stringsLength; |
| 1428 | } |
| 1429 | do { |
| 1430 | // Span until we find a code point from the set, |
| 1431 | // or a code point that starts or ends some string. |
| 1432 | i=pSpanNotSet->spanUTF8((const char *)s+pos, rest, USET_SPAN_NOT_CONTAINED); |
| 1433 | if(i==rest) { |
| 1434 | return length; // Reached the end of the string. |
| 1435 | } |
| 1436 | pos+=i; |
| 1437 | rest-=i; |
| 1438 | |
| 1439 | // Check whether the current code point is in the original set, |
| 1440 | // without the string starts and ends. |
| 1441 | int32_t cpLength=spanOneUTF8(spanSet, s+pos, rest); |
| 1442 | if(cpLength>0) { |
| 1443 | return pos; // There is a set element at pos. |
| 1444 | } |
| 1445 | |
| 1446 | // Try to match the strings at pos. |
| 1447 | const uint8_t *s8=utf8; |
| 1448 | int32_t length8; |
| 1449 | for(i=0; i<stringsLength; ++i) { |
| 1450 | length8=utf8Lengths[i]; |
| 1451 | // ALL_CP_CONTAINED: Irrelevant string. |
| 1452 | if(length8!=0 && spanUTF8Lengths[i]!=ALL_CP_CONTAINED && length8<=rest && matches8(s+pos, s8, length8)) { |
| 1453 | return pos; // There is a set element at pos. |
| 1454 | } |
| 1455 | s8+=length8; |
| 1456 | } |
| 1457 | |
| 1458 | // The span(while not contained) ended on a string start/end which is |
| 1459 | // not in the original set. Skip this code point and continue. |
| 1460 | // cpLength<0 |
| 1461 | pos-=cpLength; |
| 1462 | rest+=cpLength; |
| 1463 | } while(rest!=0); |
| 1464 | return length; // Reached the end of the string. |
| 1465 | } |
| 1466 | |
| 1467 | int32_t UnicodeSetStringSpan::spanNotBackUTF8(const uint8_t *s, int32_t length) const { |
| 1468 | int32_t pos=length; |
| 1469 | int32_t i, stringsLength=strings.size(); |
| 1470 | uint8_t *spanBackUTF8Lengths=spanLengths; |
| 1471 | if(all) { |
| 1472 | spanBackUTF8Lengths+=3*stringsLength; |
| 1473 | } |
| 1474 | do { |
| 1475 | // Span until we find a code point from the set, |
| 1476 | // or a code point that starts or ends some string. |
| 1477 | pos=pSpanNotSet->spanBackUTF8((const char *)s, pos, USET_SPAN_NOT_CONTAINED); |
| 1478 | if(pos==0) { |
| 1479 | return 0; // Reached the start of the string. |
| 1480 | } |
| 1481 | |
| 1482 | // Check whether the current code point is in the original set, |
| 1483 | // without the string starts and ends. |
| 1484 | int32_t cpLength=spanOneBackUTF8(spanSet, s, pos); |
| 1485 | if(cpLength>0) { |
| 1486 | return pos; // There is a set element at pos. |
| 1487 | } |
| 1488 | |
| 1489 | // Try to match the strings at pos. |
| 1490 | const uint8_t *s8=utf8; |
| 1491 | int32_t length8; |
| 1492 | for(i=0; i<stringsLength; ++i) { |
| 1493 | length8=utf8Lengths[i]; |
| 1494 | // ALL_CP_CONTAINED: Irrelevant string. |
| 1495 | if(length8!=0 && spanBackUTF8Lengths[i]!=ALL_CP_CONTAINED && length8<=pos && matches8(s+pos-length8, s8, length8)) { |
| 1496 | return pos; // There is a set element at pos. |
| 1497 | } |
| 1498 | s8+=length8; |
| 1499 | } |
| 1500 | |
| 1501 | // The span(while not contained) ended on a string start/end which is |
| 1502 | // not in the original set. Skip this code point and continue. |
| 1503 | // cpLength<0 |
| 1504 | pos+=cpLength; |
| 1505 | } while(pos!=0); |
| 1506 | return 0; // Reached the start of the string. |
| 1507 | } |
| 1508 | |
| 1509 | U_NAMESPACE_END |