jshin@chromium.org | 6f31ac3 | 2014-03-26 22:15:14 +0000 | [diff] [blame] | 1 | /* |
| 2 | ******************************************************************************* |
Jungshik Shin | 70f8250 | 2016-01-29 00:32:36 -0800 | [diff] [blame^] | 3 | * Copyright (C) 1997-2014, International Business Machines Corporation and * |
jshin@chromium.org | 6f31ac3 | 2014-03-26 22:15:14 +0000 | [diff] [blame] | 4 | * others. All Rights Reserved. * |
| 5 | ******************************************************************************* |
| 6 | * |
| 7 | * File FMTABLE.CPP |
| 8 | * |
| 9 | * Modification History: |
| 10 | * |
| 11 | * Date Name Description |
| 12 | * 03/25/97 clhuang Initial Implementation. |
| 13 | ******************************************************************************** |
| 14 | */ |
| 15 | |
| 16 | #include "unicode/utypes.h" |
| 17 | |
| 18 | #if !UCONFIG_NO_FORMATTING |
| 19 | |
| 20 | #include <math.h> |
| 21 | #include "unicode/fmtable.h" |
| 22 | #include "unicode/ustring.h" |
| 23 | #include "unicode/measure.h" |
| 24 | #include "unicode/curramt.h" |
| 25 | #include "unicode/uformattable.h" |
| 26 | #include "charstr.h" |
| 27 | #include "cmemory.h" |
| 28 | #include "cstring.h" |
| 29 | #include "decNumber.h" |
| 30 | #include "digitlst.h" |
Jungshik Shin | 70f8250 | 2016-01-29 00:32:36 -0800 | [diff] [blame^] | 31 | #include "fmtableimp.h" |
jshin@chromium.org | 6f31ac3 | 2014-03-26 22:15:14 +0000 | [diff] [blame] | 32 | |
| 33 | // ***************************************************************************** |
| 34 | // class Formattable |
| 35 | // ***************************************************************************** |
| 36 | |
| 37 | U_NAMESPACE_BEGIN |
| 38 | |
| 39 | UOBJECT_DEFINE_RTTI_IMPLEMENTATION(Formattable) |
| 40 | |
jshin@chromium.org | 6f31ac3 | 2014-03-26 22:15:14 +0000 | [diff] [blame] | 41 | |
| 42 | //-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-. |
| 43 | |
| 44 | // NOTE: As of 3.0, there are limitations to the UObject API. It does |
| 45 | // not (yet) support cloning, operator=, nor operator==. To |
| 46 | // work around this, I implement some simple inlines here. Later |
| 47 | // these can be modified or removed. [alan] |
| 48 | |
| 49 | // NOTE: These inlines assume that all fObjects are in fact instances |
| 50 | // of the Measure class, which is true as of 3.0. [alan] |
| 51 | |
| 52 | // Return TRUE if *a == *b. |
| 53 | static inline UBool objectEquals(const UObject* a, const UObject* b) { |
| 54 | // LATER: return *a == *b; |
| 55 | return *((const Measure*) a) == *((const Measure*) b); |
| 56 | } |
| 57 | |
| 58 | // Return a clone of *a. |
| 59 | static inline UObject* objectClone(const UObject* a) { |
| 60 | // LATER: return a->clone(); |
| 61 | return ((const Measure*) a)->clone(); |
| 62 | } |
| 63 | |
| 64 | // Return TRUE if *a is an instance of Measure. |
| 65 | static inline UBool instanceOfMeasure(const UObject* a) { |
| 66 | return dynamic_cast<const Measure*>(a) != NULL; |
| 67 | } |
| 68 | |
| 69 | /** |
| 70 | * Creates a new Formattable array and copies the values from the specified |
| 71 | * original. |
| 72 | * @param array the original array |
| 73 | * @param count the original array count |
| 74 | * @return the new Formattable array. |
| 75 | */ |
| 76 | static Formattable* createArrayCopy(const Formattable* array, int32_t count) { |
| 77 | Formattable *result = new Formattable[count]; |
| 78 | if (result != NULL) { |
| 79 | for (int32_t i=0; i<count; ++i) |
| 80 | result[i] = array[i]; // Don't memcpy! |
| 81 | } |
| 82 | return result; |
| 83 | } |
| 84 | |
| 85 | //-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-. |
| 86 | |
| 87 | /** |
| 88 | * Set 'ec' to 'err' only if 'ec' is not already set to a failing UErrorCode. |
| 89 | */ |
| 90 | static void setError(UErrorCode& ec, UErrorCode err) { |
| 91 | if (U_SUCCESS(ec)) { |
| 92 | ec = err; |
| 93 | } |
| 94 | } |
| 95 | |
| 96 | // |
| 97 | // Common initialization code, shared by constructors. |
| 98 | // Put everything into a known state. |
| 99 | // |
| 100 | void Formattable::init() { |
| 101 | fValue.fInt64 = 0; |
| 102 | fType = kLong; |
| 103 | fDecimalStr = NULL; |
| 104 | fDecimalNum = NULL; |
| 105 | fBogus.setToBogus(); |
| 106 | } |
| 107 | |
| 108 | // ------------------------------------- |
| 109 | // default constructor. |
| 110 | // Creates a formattable object with a long value 0. |
| 111 | |
| 112 | Formattable::Formattable() { |
| 113 | init(); |
| 114 | } |
| 115 | |
| 116 | // ------------------------------------- |
| 117 | // Creates a formattable object with a Date instance. |
| 118 | |
| 119 | Formattable::Formattable(UDate date, ISDATE /*isDate*/) |
| 120 | { |
| 121 | init(); |
| 122 | fType = kDate; |
| 123 | fValue.fDate = date; |
| 124 | } |
| 125 | |
| 126 | // ------------------------------------- |
| 127 | // Creates a formattable object with a double value. |
| 128 | |
| 129 | Formattable::Formattable(double value) |
| 130 | { |
| 131 | init(); |
| 132 | fType = kDouble; |
| 133 | fValue.fDouble = value; |
| 134 | } |
| 135 | |
| 136 | // ------------------------------------- |
| 137 | // Creates a formattable object with an int32_t value. |
| 138 | |
| 139 | Formattable::Formattable(int32_t value) |
| 140 | { |
| 141 | init(); |
| 142 | fValue.fInt64 = value; |
| 143 | } |
| 144 | |
| 145 | // ------------------------------------- |
| 146 | // Creates a formattable object with an int64_t value. |
| 147 | |
| 148 | Formattable::Formattable(int64_t value) |
| 149 | { |
| 150 | init(); |
| 151 | fType = kInt64; |
| 152 | fValue.fInt64 = value; |
| 153 | } |
| 154 | |
| 155 | // ------------------------------------- |
| 156 | // Creates a formattable object with a decimal number value from a string. |
| 157 | |
| 158 | Formattable::Formattable(const StringPiece &number, UErrorCode &status) { |
| 159 | init(); |
| 160 | setDecimalNumber(number, status); |
| 161 | } |
| 162 | |
| 163 | |
| 164 | // ------------------------------------- |
| 165 | // Creates a formattable object with a UnicodeString instance. |
| 166 | |
| 167 | Formattable::Formattable(const UnicodeString& stringToCopy) |
| 168 | { |
| 169 | init(); |
| 170 | fType = kString; |
| 171 | fValue.fString = new UnicodeString(stringToCopy); |
| 172 | } |
| 173 | |
| 174 | // ------------------------------------- |
| 175 | // Creates a formattable object with a UnicodeString* value. |
| 176 | // (adopting symantics) |
| 177 | |
| 178 | Formattable::Formattable(UnicodeString* stringToAdopt) |
| 179 | { |
| 180 | init(); |
| 181 | fType = kString; |
| 182 | fValue.fString = stringToAdopt; |
| 183 | } |
| 184 | |
| 185 | Formattable::Formattable(UObject* objectToAdopt) |
| 186 | { |
| 187 | init(); |
| 188 | fType = kObject; |
| 189 | fValue.fObject = objectToAdopt; |
| 190 | } |
| 191 | |
| 192 | // ------------------------------------- |
| 193 | |
| 194 | Formattable::Formattable(const Formattable* arrayToCopy, int32_t count) |
| 195 | : UObject(), fType(kArray) |
| 196 | { |
| 197 | init(); |
| 198 | fType = kArray; |
| 199 | fValue.fArrayAndCount.fArray = createArrayCopy(arrayToCopy, count); |
| 200 | fValue.fArrayAndCount.fCount = count; |
| 201 | } |
| 202 | |
| 203 | // ------------------------------------- |
| 204 | // copy constructor |
| 205 | |
| 206 | |
| 207 | Formattable::Formattable(const Formattable &source) |
| 208 | : UObject(*this) |
| 209 | { |
| 210 | init(); |
| 211 | *this = source; |
| 212 | } |
| 213 | |
| 214 | // ------------------------------------- |
| 215 | // assignment operator |
| 216 | |
| 217 | Formattable& |
| 218 | Formattable::operator=(const Formattable& source) |
| 219 | { |
| 220 | if (this != &source) |
| 221 | { |
| 222 | // Disposes the current formattable value/setting. |
| 223 | dispose(); |
| 224 | |
| 225 | // Sets the correct data type for this value. |
| 226 | fType = source.fType; |
| 227 | switch (fType) |
| 228 | { |
| 229 | case kArray: |
| 230 | // Sets each element in the array one by one and records the array count. |
| 231 | fValue.fArrayAndCount.fCount = source.fValue.fArrayAndCount.fCount; |
| 232 | fValue.fArrayAndCount.fArray = createArrayCopy(source.fValue.fArrayAndCount.fArray, |
| 233 | source.fValue.fArrayAndCount.fCount); |
| 234 | break; |
| 235 | case kString: |
| 236 | // Sets the string value. |
| 237 | fValue.fString = new UnicodeString(*source.fValue.fString); |
| 238 | break; |
| 239 | case kDouble: |
| 240 | // Sets the double value. |
| 241 | fValue.fDouble = source.fValue.fDouble; |
| 242 | break; |
| 243 | case kLong: |
| 244 | case kInt64: |
| 245 | // Sets the long value. |
| 246 | fValue.fInt64 = source.fValue.fInt64; |
| 247 | break; |
| 248 | case kDate: |
| 249 | // Sets the Date value. |
| 250 | fValue.fDate = source.fValue.fDate; |
| 251 | break; |
| 252 | case kObject: |
| 253 | fValue.fObject = objectClone(source.fValue.fObject); |
| 254 | break; |
| 255 | } |
| 256 | |
| 257 | UErrorCode status = U_ZERO_ERROR; |
| 258 | if (source.fDecimalNum != NULL) { |
| 259 | fDecimalNum = new DigitList(*source.fDecimalNum); // TODO: use internal digit list |
| 260 | } |
| 261 | if (source.fDecimalStr != NULL) { |
| 262 | fDecimalStr = new CharString(*source.fDecimalStr, status); |
| 263 | if (U_FAILURE(status)) { |
| 264 | delete fDecimalStr; |
| 265 | fDecimalStr = NULL; |
| 266 | } |
| 267 | } |
| 268 | } |
| 269 | return *this; |
| 270 | } |
| 271 | |
| 272 | // ------------------------------------- |
| 273 | |
| 274 | UBool |
| 275 | Formattable::operator==(const Formattable& that) const |
| 276 | { |
| 277 | int32_t i; |
| 278 | |
| 279 | if (this == &that) return TRUE; |
| 280 | |
| 281 | // Returns FALSE if the data types are different. |
| 282 | if (fType != that.fType) return FALSE; |
| 283 | |
| 284 | // Compares the actual data values. |
| 285 | UBool equal = TRUE; |
| 286 | switch (fType) { |
| 287 | case kDate: |
| 288 | equal = (fValue.fDate == that.fValue.fDate); |
| 289 | break; |
| 290 | case kDouble: |
| 291 | equal = (fValue.fDouble == that.fValue.fDouble); |
| 292 | break; |
| 293 | case kLong: |
| 294 | case kInt64: |
| 295 | equal = (fValue.fInt64 == that.fValue.fInt64); |
| 296 | break; |
| 297 | case kString: |
| 298 | equal = (*(fValue.fString) == *(that.fValue.fString)); |
| 299 | break; |
| 300 | case kArray: |
| 301 | if (fValue.fArrayAndCount.fCount != that.fValue.fArrayAndCount.fCount) { |
| 302 | equal = FALSE; |
| 303 | break; |
| 304 | } |
| 305 | // Checks each element for equality. |
| 306 | for (i=0; i<fValue.fArrayAndCount.fCount; ++i) { |
| 307 | if (fValue.fArrayAndCount.fArray[i] != that.fValue.fArrayAndCount.fArray[i]) { |
| 308 | equal = FALSE; |
| 309 | break; |
| 310 | } |
| 311 | } |
| 312 | break; |
| 313 | case kObject: |
| 314 | if (fValue.fObject == NULL || that.fValue.fObject == NULL) { |
| 315 | equal = FALSE; |
| 316 | } else { |
| 317 | equal = objectEquals(fValue.fObject, that.fValue.fObject); |
| 318 | } |
| 319 | break; |
| 320 | } |
| 321 | |
| 322 | // TODO: compare digit lists if numeric. |
| 323 | return equal; |
| 324 | } |
| 325 | |
| 326 | // ------------------------------------- |
| 327 | |
| 328 | Formattable::~Formattable() |
| 329 | { |
| 330 | dispose(); |
| 331 | } |
| 332 | |
| 333 | // ------------------------------------- |
| 334 | |
| 335 | void Formattable::dispose() |
| 336 | { |
| 337 | // Deletes the data value if necessary. |
| 338 | switch (fType) { |
| 339 | case kString: |
| 340 | delete fValue.fString; |
| 341 | break; |
| 342 | case kArray: |
| 343 | delete[] fValue.fArrayAndCount.fArray; |
| 344 | break; |
| 345 | case kObject: |
| 346 | delete fValue.fObject; |
| 347 | break; |
| 348 | default: |
| 349 | break; |
| 350 | } |
| 351 | |
| 352 | fType = kLong; |
| 353 | fValue.fInt64 = 0; |
| 354 | |
| 355 | delete fDecimalStr; |
| 356 | fDecimalStr = NULL; |
| 357 | |
| 358 | FmtStackData *stackData = (FmtStackData*)fStackData; |
| 359 | if(fDecimalNum != &(stackData->stackDecimalNum)) { |
| 360 | delete fDecimalNum; |
| 361 | } else { |
| 362 | fDecimalNum->~DigitList(); // destruct, don't deallocate |
| 363 | } |
| 364 | fDecimalNum = NULL; |
| 365 | } |
| 366 | |
| 367 | Formattable * |
| 368 | Formattable::clone() const { |
| 369 | return new Formattable(*this); |
| 370 | } |
| 371 | |
| 372 | // ------------------------------------- |
| 373 | // Gets the data type of this Formattable object. |
| 374 | Formattable::Type |
| 375 | Formattable::getType() const |
| 376 | { |
| 377 | return fType; |
| 378 | } |
| 379 | |
| 380 | UBool |
| 381 | Formattable::isNumeric() const { |
| 382 | switch (fType) { |
| 383 | case kDouble: |
| 384 | case kLong: |
| 385 | case kInt64: |
| 386 | return TRUE; |
| 387 | default: |
| 388 | return FALSE; |
| 389 | } |
| 390 | } |
| 391 | |
| 392 | // ------------------------------------- |
| 393 | int32_t |
| 394 | //Formattable::getLong(UErrorCode* status) const |
| 395 | Formattable::getLong(UErrorCode& status) const |
| 396 | { |
| 397 | if (U_FAILURE(status)) { |
| 398 | return 0; |
| 399 | } |
| 400 | |
| 401 | switch (fType) { |
| 402 | case Formattable::kLong: |
| 403 | return (int32_t)fValue.fInt64; |
| 404 | case Formattable::kInt64: |
| 405 | if (fValue.fInt64 > INT32_MAX) { |
| 406 | status = U_INVALID_FORMAT_ERROR; |
| 407 | return INT32_MAX; |
| 408 | } else if (fValue.fInt64 < INT32_MIN) { |
| 409 | status = U_INVALID_FORMAT_ERROR; |
| 410 | return INT32_MIN; |
| 411 | } else { |
| 412 | return (int32_t)fValue.fInt64; |
| 413 | } |
| 414 | case Formattable::kDouble: |
| 415 | if (fValue.fDouble > INT32_MAX) { |
| 416 | status = U_INVALID_FORMAT_ERROR; |
| 417 | return INT32_MAX; |
| 418 | } else if (fValue.fDouble < INT32_MIN) { |
| 419 | status = U_INVALID_FORMAT_ERROR; |
| 420 | return INT32_MIN; |
| 421 | } else { |
| 422 | return (int32_t)fValue.fDouble; // loses fraction |
| 423 | } |
| 424 | case Formattable::kObject: |
| 425 | if (fValue.fObject == NULL) { |
| 426 | status = U_MEMORY_ALLOCATION_ERROR; |
| 427 | return 0; |
| 428 | } |
| 429 | // TODO Later replace this with instanceof call |
| 430 | if (instanceOfMeasure(fValue.fObject)) { |
| 431 | return ((const Measure*) fValue.fObject)-> |
| 432 | getNumber().getLong(status); |
| 433 | } |
| 434 | default: |
| 435 | status = U_INVALID_FORMAT_ERROR; |
| 436 | return 0; |
| 437 | } |
| 438 | } |
| 439 | |
| 440 | // ------------------------------------- |
| 441 | // Maximum int that can be represented exactly in a double. (53 bits) |
| 442 | // Larger ints may be rounded to a near-by value as not all are representable. |
| 443 | // TODO: move this constant elsewhere, possibly configure it for different |
| 444 | // floating point formats, if any non-standard ones are still in use. |
| 445 | static const int64_t U_DOUBLE_MAX_EXACT_INT = 9007199254740992LL; |
| 446 | |
| 447 | int64_t |
| 448 | Formattable::getInt64(UErrorCode& status) const |
| 449 | { |
| 450 | if (U_FAILURE(status)) { |
| 451 | return 0; |
| 452 | } |
| 453 | |
| 454 | switch (fType) { |
| 455 | case Formattable::kLong: |
| 456 | case Formattable::kInt64: |
| 457 | return fValue.fInt64; |
| 458 | case Formattable::kDouble: |
| 459 | if (fValue.fDouble > (double)U_INT64_MAX) { |
| 460 | status = U_INVALID_FORMAT_ERROR; |
| 461 | return U_INT64_MAX; |
| 462 | } else if (fValue.fDouble < (double)U_INT64_MIN) { |
| 463 | status = U_INVALID_FORMAT_ERROR; |
| 464 | return U_INT64_MIN; |
| 465 | } else if (fabs(fValue.fDouble) > U_DOUBLE_MAX_EXACT_INT && fDecimalNum != NULL) { |
| 466 | int64_t val = fDecimalNum->getInt64(); |
| 467 | if (val != 0) { |
| 468 | return val; |
| 469 | } else { |
| 470 | status = U_INVALID_FORMAT_ERROR; |
| 471 | return fValue.fDouble > 0 ? U_INT64_MAX : U_INT64_MIN; |
| 472 | } |
| 473 | } else { |
| 474 | return (int64_t)fValue.fDouble; |
| 475 | } |
| 476 | case Formattable::kObject: |
| 477 | if (fValue.fObject == NULL) { |
| 478 | status = U_MEMORY_ALLOCATION_ERROR; |
| 479 | return 0; |
| 480 | } |
| 481 | if (instanceOfMeasure(fValue.fObject)) { |
| 482 | return ((const Measure*) fValue.fObject)-> |
| 483 | getNumber().getInt64(status); |
| 484 | } |
| 485 | default: |
| 486 | status = U_INVALID_FORMAT_ERROR; |
| 487 | return 0; |
| 488 | } |
| 489 | } |
| 490 | |
| 491 | // ------------------------------------- |
| 492 | double |
| 493 | Formattable::getDouble(UErrorCode& status) const |
| 494 | { |
| 495 | if (U_FAILURE(status)) { |
| 496 | return 0; |
| 497 | } |
| 498 | |
| 499 | switch (fType) { |
| 500 | case Formattable::kLong: |
| 501 | case Formattable::kInt64: // loses precision |
| 502 | return (double)fValue.fInt64; |
| 503 | case Formattable::kDouble: |
| 504 | return fValue.fDouble; |
| 505 | case Formattable::kObject: |
| 506 | if (fValue.fObject == NULL) { |
| 507 | status = U_MEMORY_ALLOCATION_ERROR; |
| 508 | return 0; |
| 509 | } |
| 510 | // TODO Later replace this with instanceof call |
| 511 | if (instanceOfMeasure(fValue.fObject)) { |
| 512 | return ((const Measure*) fValue.fObject)-> |
| 513 | getNumber().getDouble(status); |
| 514 | } |
| 515 | default: |
| 516 | status = U_INVALID_FORMAT_ERROR; |
| 517 | return 0; |
| 518 | } |
| 519 | } |
| 520 | |
| 521 | const UObject* |
| 522 | Formattable::getObject() const { |
| 523 | return (fType == kObject) ? fValue.fObject : NULL; |
| 524 | } |
| 525 | |
| 526 | // ------------------------------------- |
| 527 | // Sets the value to a double value d. |
| 528 | |
| 529 | void |
| 530 | Formattable::setDouble(double d) |
| 531 | { |
| 532 | dispose(); |
| 533 | fType = kDouble; |
| 534 | fValue.fDouble = d; |
| 535 | } |
| 536 | |
| 537 | // ------------------------------------- |
| 538 | // Sets the value to a long value l. |
| 539 | |
| 540 | void |
| 541 | Formattable::setLong(int32_t l) |
| 542 | { |
| 543 | dispose(); |
| 544 | fType = kLong; |
| 545 | fValue.fInt64 = l; |
| 546 | } |
| 547 | |
| 548 | // ------------------------------------- |
| 549 | // Sets the value to an int64 value ll. |
| 550 | |
| 551 | void |
| 552 | Formattable::setInt64(int64_t ll) |
| 553 | { |
| 554 | dispose(); |
| 555 | fType = kInt64; |
| 556 | fValue.fInt64 = ll; |
| 557 | } |
| 558 | |
| 559 | // ------------------------------------- |
| 560 | // Sets the value to a Date instance d. |
| 561 | |
| 562 | void |
| 563 | Formattable::setDate(UDate d) |
| 564 | { |
| 565 | dispose(); |
| 566 | fType = kDate; |
| 567 | fValue.fDate = d; |
| 568 | } |
| 569 | |
| 570 | // ------------------------------------- |
| 571 | // Sets the value to a string value stringToCopy. |
| 572 | |
| 573 | void |
| 574 | Formattable::setString(const UnicodeString& stringToCopy) |
| 575 | { |
| 576 | dispose(); |
| 577 | fType = kString; |
| 578 | fValue.fString = new UnicodeString(stringToCopy); |
| 579 | } |
| 580 | |
| 581 | // ------------------------------------- |
| 582 | // Sets the value to an array of Formattable objects. |
| 583 | |
| 584 | void |
| 585 | Formattable::setArray(const Formattable* array, int32_t count) |
| 586 | { |
| 587 | dispose(); |
| 588 | fType = kArray; |
| 589 | fValue.fArrayAndCount.fArray = createArrayCopy(array, count); |
| 590 | fValue.fArrayAndCount.fCount = count; |
| 591 | } |
| 592 | |
| 593 | // ------------------------------------- |
| 594 | // Adopts the stringToAdopt value. |
| 595 | |
| 596 | void |
| 597 | Formattable::adoptString(UnicodeString* stringToAdopt) |
| 598 | { |
| 599 | dispose(); |
| 600 | fType = kString; |
| 601 | fValue.fString = stringToAdopt; |
| 602 | } |
| 603 | |
| 604 | // ------------------------------------- |
| 605 | // Adopts the array value and its count. |
| 606 | |
| 607 | void |
| 608 | Formattable::adoptArray(Formattable* array, int32_t count) |
| 609 | { |
| 610 | dispose(); |
| 611 | fType = kArray; |
| 612 | fValue.fArrayAndCount.fArray = array; |
| 613 | fValue.fArrayAndCount.fCount = count; |
| 614 | } |
| 615 | |
| 616 | void |
| 617 | Formattable::adoptObject(UObject* objectToAdopt) { |
| 618 | dispose(); |
| 619 | fType = kObject; |
| 620 | fValue.fObject = objectToAdopt; |
| 621 | } |
| 622 | |
| 623 | // ------------------------------------- |
| 624 | UnicodeString& |
| 625 | Formattable::getString(UnicodeString& result, UErrorCode& status) const |
| 626 | { |
| 627 | if (fType != kString) { |
| 628 | setError(status, U_INVALID_FORMAT_ERROR); |
| 629 | result.setToBogus(); |
| 630 | } else { |
| 631 | if (fValue.fString == NULL) { |
| 632 | setError(status, U_MEMORY_ALLOCATION_ERROR); |
| 633 | } else { |
| 634 | result = *fValue.fString; |
| 635 | } |
| 636 | } |
| 637 | return result; |
| 638 | } |
| 639 | |
| 640 | // ------------------------------------- |
| 641 | const UnicodeString& |
| 642 | Formattable::getString(UErrorCode& status) const |
| 643 | { |
| 644 | if (fType != kString) { |
| 645 | setError(status, U_INVALID_FORMAT_ERROR); |
| 646 | return *getBogus(); |
| 647 | } |
| 648 | if (fValue.fString == NULL) { |
| 649 | setError(status, U_MEMORY_ALLOCATION_ERROR); |
| 650 | return *getBogus(); |
| 651 | } |
| 652 | return *fValue.fString; |
| 653 | } |
| 654 | |
| 655 | // ------------------------------------- |
| 656 | UnicodeString& |
| 657 | Formattable::getString(UErrorCode& status) |
| 658 | { |
| 659 | if (fType != kString) { |
| 660 | setError(status, U_INVALID_FORMAT_ERROR); |
| 661 | return *getBogus(); |
| 662 | } |
| 663 | if (fValue.fString == NULL) { |
| 664 | setError(status, U_MEMORY_ALLOCATION_ERROR); |
| 665 | return *getBogus(); |
| 666 | } |
| 667 | return *fValue.fString; |
| 668 | } |
| 669 | |
| 670 | // ------------------------------------- |
| 671 | const Formattable* |
| 672 | Formattable::getArray(int32_t& count, UErrorCode& status) const |
| 673 | { |
| 674 | if (fType != kArray) { |
| 675 | setError(status, U_INVALID_FORMAT_ERROR); |
| 676 | count = 0; |
| 677 | return NULL; |
| 678 | } |
| 679 | count = fValue.fArrayAndCount.fCount; |
| 680 | return fValue.fArrayAndCount.fArray; |
| 681 | } |
| 682 | |
| 683 | // ------------------------------------- |
| 684 | // Gets the bogus string, ensures mondo bogosity. |
| 685 | |
| 686 | UnicodeString* |
| 687 | Formattable::getBogus() const |
| 688 | { |
| 689 | return (UnicodeString*)&fBogus; /* cast away const :-( */ |
| 690 | } |
| 691 | |
| 692 | |
| 693 | // -------------------------------------- |
| 694 | StringPiece Formattable::getDecimalNumber(UErrorCode &status) { |
| 695 | if (U_FAILURE(status)) { |
| 696 | return ""; |
| 697 | } |
| 698 | if (fDecimalStr != NULL) { |
| 699 | return fDecimalStr->toStringPiece(); |
| 700 | } |
| 701 | |
| 702 | CharString *decimalStr = internalGetCharString(status); |
| 703 | if(decimalStr == NULL) { |
| 704 | return ""; // getDecimalNumber returns "" for error cases |
| 705 | } else { |
| 706 | return decimalStr->toStringPiece(); |
| 707 | } |
| 708 | } |
| 709 | |
| 710 | CharString *Formattable::internalGetCharString(UErrorCode &status) { |
| 711 | if(fDecimalStr == NULL) { |
| 712 | if (fDecimalNum == NULL) { |
| 713 | // No decimal number for the formattable yet. Which means the value was |
| 714 | // set directly by the user as an int, int64 or double. If the value came |
| 715 | // from parsing, or from the user setting a decimal number, fDecimalNum |
| 716 | // would already be set. |
| 717 | // |
| 718 | fDecimalNum = new DigitList; // TODO: use internal digit list |
| 719 | if (fDecimalNum == NULL) { |
| 720 | status = U_MEMORY_ALLOCATION_ERROR; |
| 721 | return NULL; |
| 722 | } |
| 723 | |
| 724 | switch (fType) { |
| 725 | case kDouble: |
| 726 | fDecimalNum->set(this->getDouble()); |
| 727 | break; |
| 728 | case kLong: |
| 729 | fDecimalNum->set(this->getLong()); |
| 730 | break; |
| 731 | case kInt64: |
| 732 | fDecimalNum->set(this->getInt64()); |
| 733 | break; |
| 734 | default: |
| 735 | // The formattable's value is not a numeric type. |
| 736 | status = U_INVALID_STATE_ERROR; |
| 737 | return NULL; |
| 738 | } |
| 739 | } |
| 740 | |
| 741 | fDecimalStr = new CharString; |
| 742 | if (fDecimalStr == NULL) { |
| 743 | status = U_MEMORY_ALLOCATION_ERROR; |
| 744 | return NULL; |
| 745 | } |
| 746 | fDecimalNum->getDecimal(*fDecimalStr, status); |
| 747 | } |
| 748 | return fDecimalStr; |
| 749 | } |
| 750 | |
| 751 | |
| 752 | DigitList * |
| 753 | Formattable::getInternalDigitList() { |
| 754 | FmtStackData *stackData = (FmtStackData*)fStackData; |
| 755 | if(fDecimalNum != &(stackData->stackDecimalNum)) { |
| 756 | delete fDecimalNum; |
| 757 | fDecimalNum = new (&(stackData->stackDecimalNum), kOnStack) DigitList(); |
| 758 | } else { |
| 759 | fDecimalNum->clear(); |
| 760 | } |
| 761 | return fDecimalNum; |
| 762 | } |
| 763 | |
| 764 | // --------------------------------------- |
| 765 | void |
| 766 | Formattable::adoptDigitList(DigitList *dl) { |
| 767 | if(fDecimalNum==dl) { |
| 768 | fDecimalNum = NULL; // don't delete |
| 769 | } |
| 770 | dispose(); |
| 771 | |
| 772 | fDecimalNum = dl; |
| 773 | |
| 774 | if(dl==NULL) { // allow adoptDigitList(NULL) to clear |
| 775 | return; |
| 776 | } |
| 777 | |
| 778 | // Set the value into the Union of simple type values. |
| 779 | // Cannot use the set() functions because they would delete the fDecimalNum value, |
| 780 | |
| 781 | if (fDecimalNum->fitsIntoLong(FALSE)) { |
| 782 | fType = kLong; |
| 783 | fValue.fInt64 = fDecimalNum->getLong(); |
| 784 | } else if (fDecimalNum->fitsIntoInt64(FALSE)) { |
| 785 | fType = kInt64; |
| 786 | fValue.fInt64 = fDecimalNum->getInt64(); |
| 787 | } else { |
| 788 | fType = kDouble; |
| 789 | fValue.fDouble = fDecimalNum->getDouble(); |
| 790 | } |
| 791 | } |
| 792 | |
| 793 | |
| 794 | // --------------------------------------- |
| 795 | void |
| 796 | Formattable::setDecimalNumber(const StringPiece &numberString, UErrorCode &status) { |
| 797 | if (U_FAILURE(status)) { |
| 798 | return; |
| 799 | } |
| 800 | dispose(); |
| 801 | |
| 802 | // Copy the input string and nul-terminate it. |
| 803 | // The decNumber library requires nul-terminated input. StringPiece input |
| 804 | // is not guaranteed nul-terminated. Too bad. |
| 805 | // CharString automatically adds the nul. |
| 806 | DigitList *dnum = new DigitList(); // TODO: use getInternalDigitList |
| 807 | if (dnum == NULL) { |
| 808 | status = U_MEMORY_ALLOCATION_ERROR; |
| 809 | return; |
| 810 | } |
| 811 | dnum->set(CharString(numberString, status).toStringPiece(), status); |
| 812 | if (U_FAILURE(status)) { |
| 813 | delete dnum; |
| 814 | return; // String didn't contain a decimal number. |
| 815 | } |
| 816 | adoptDigitList(dnum); |
| 817 | |
| 818 | // Note that we do not hang on to the caller's input string. |
| 819 | // If we are asked for the string, we will regenerate one from fDecimalNum. |
| 820 | } |
| 821 | |
| 822 | #if 0 |
| 823 | //---------------------------------------------------- |
| 824 | // console I/O |
| 825 | //---------------------------------------------------- |
| 826 | #ifdef _DEBUG |
| 827 | |
| 828 | #include <iostream> |
| 829 | using namespace std; |
| 830 | |
| 831 | #include "unicode/datefmt.h" |
| 832 | #include "unistrm.h" |
| 833 | |
| 834 | class FormattableStreamer /* not : public UObject because all methods are static */ { |
| 835 | public: |
| 836 | static void streamOut(ostream& stream, const Formattable& obj); |
| 837 | |
| 838 | private: |
| 839 | FormattableStreamer() {} // private - forbid instantiation |
| 840 | }; |
| 841 | |
| 842 | // This is for debugging purposes only. This will send a displayable |
| 843 | // form of the Formattable object to the output stream. |
| 844 | |
| 845 | void |
| 846 | FormattableStreamer::streamOut(ostream& stream, const Formattable& obj) |
| 847 | { |
| 848 | static DateFormat *defDateFormat = 0; |
| 849 | |
| 850 | UnicodeString buffer; |
| 851 | switch(obj.getType()) { |
| 852 | case Formattable::kDate : |
| 853 | // Creates a DateFormat instance for formatting the |
| 854 | // Date instance. |
| 855 | if (defDateFormat == 0) { |
| 856 | defDateFormat = DateFormat::createInstance(); |
| 857 | } |
| 858 | defDateFormat->format(obj.getDate(), buffer); |
| 859 | stream << buffer; |
| 860 | break; |
| 861 | case Formattable::kDouble : |
| 862 | // Output the double as is. |
| 863 | stream << obj.getDouble() << 'D'; |
| 864 | break; |
| 865 | case Formattable::kLong : |
| 866 | // Output the double as is. |
| 867 | stream << obj.getLong() << 'L'; |
| 868 | break; |
| 869 | case Formattable::kString: |
| 870 | // Output the double as is. Please see UnicodeString console |
| 871 | // I/O routine for more details. |
| 872 | stream << '"' << obj.getString(buffer) << '"'; |
| 873 | break; |
| 874 | case Formattable::kArray: |
| 875 | int32_t i, count; |
| 876 | const Formattable* array; |
| 877 | array = obj.getArray(count); |
| 878 | stream << '['; |
| 879 | // Recursively calling the console I/O routine for each element in the array. |
| 880 | for (i=0; i<count; ++i) { |
| 881 | FormattableStreamer::streamOut(stream, array[i]); |
| 882 | stream << ( (i==(count-1)) ? "" : ", " ); |
| 883 | } |
| 884 | stream << ']'; |
| 885 | break; |
| 886 | default: |
| 887 | // Not a recognizable Formattable object. |
| 888 | stream << "INVALID_Formattable"; |
| 889 | } |
| 890 | stream.flush(); |
| 891 | } |
| 892 | #endif |
| 893 | |
| 894 | #endif |
| 895 | |
| 896 | U_NAMESPACE_END |
| 897 | |
| 898 | /* ---- UFormattable implementation ---- */ |
| 899 | |
| 900 | U_NAMESPACE_USE |
| 901 | |
| 902 | U_DRAFT UFormattable* U_EXPORT2 |
| 903 | ufmt_open(UErrorCode *status) { |
| 904 | if( U_FAILURE(*status) ) { |
| 905 | return NULL; |
| 906 | } |
| 907 | UFormattable *fmt = (new Formattable())->toUFormattable(); |
| 908 | |
| 909 | if( fmt == NULL ) { |
| 910 | *status = U_MEMORY_ALLOCATION_ERROR; |
| 911 | } |
| 912 | return fmt; |
| 913 | } |
| 914 | |
| 915 | U_DRAFT void U_EXPORT2 |
| 916 | ufmt_close(UFormattable *fmt) { |
| 917 | Formattable *obj = Formattable::fromUFormattable(fmt); |
| 918 | |
| 919 | delete obj; |
| 920 | } |
| 921 | |
| 922 | U_INTERNAL UFormattableType U_EXPORT2 |
| 923 | ufmt_getType(const UFormattable *fmt, UErrorCode *status) { |
| 924 | if(U_FAILURE(*status)) { |
| 925 | return (UFormattableType)UFMT_COUNT; |
| 926 | } |
| 927 | const Formattable *obj = Formattable::fromUFormattable(fmt); |
| 928 | return (UFormattableType)obj->getType(); |
| 929 | } |
| 930 | |
| 931 | |
| 932 | U_INTERNAL UBool U_EXPORT2 |
| 933 | ufmt_isNumeric(const UFormattable *fmt) { |
| 934 | const Formattable *obj = Formattable::fromUFormattable(fmt); |
| 935 | return obj->isNumeric(); |
| 936 | } |
| 937 | |
| 938 | U_DRAFT UDate U_EXPORT2 |
| 939 | ufmt_getDate(const UFormattable *fmt, UErrorCode *status) { |
| 940 | const Formattable *obj = Formattable::fromUFormattable(fmt); |
| 941 | |
| 942 | return obj->getDate(*status); |
| 943 | } |
| 944 | |
| 945 | U_DRAFT double U_EXPORT2 |
| 946 | ufmt_getDouble(UFormattable *fmt, UErrorCode *status) { |
| 947 | Formattable *obj = Formattable::fromUFormattable(fmt); |
| 948 | |
| 949 | return obj->getDouble(*status); |
| 950 | } |
| 951 | |
| 952 | U_DRAFT int32_t U_EXPORT2 |
| 953 | ufmt_getLong(UFormattable *fmt, UErrorCode *status) { |
| 954 | Formattable *obj = Formattable::fromUFormattable(fmt); |
| 955 | |
| 956 | return obj->getLong(*status); |
| 957 | } |
| 958 | |
| 959 | |
| 960 | U_DRAFT const void *U_EXPORT2 |
| 961 | ufmt_getObject(const UFormattable *fmt, UErrorCode *status) { |
| 962 | const Formattable *obj = Formattable::fromUFormattable(fmt); |
| 963 | |
| 964 | const void *ret = obj->getObject(); |
| 965 | if( ret==NULL && |
| 966 | (obj->getType() != Formattable::kObject) && |
| 967 | U_SUCCESS( *status )) { |
| 968 | *status = U_INVALID_FORMAT_ERROR; |
| 969 | } |
| 970 | return ret; |
| 971 | } |
| 972 | |
| 973 | U_DRAFT const UChar* U_EXPORT2 |
| 974 | ufmt_getUChars(UFormattable *fmt, int32_t *len, UErrorCode *status) { |
| 975 | Formattable *obj = Formattable::fromUFormattable(fmt); |
| 976 | |
| 977 | // avoid bogosity by checking the type first. |
| 978 | if( obj->getType() != Formattable::kString ) { |
| 979 | if( U_SUCCESS(*status) ){ |
| 980 | *status = U_INVALID_FORMAT_ERROR; |
| 981 | } |
| 982 | return NULL; |
| 983 | } |
| 984 | |
| 985 | // This should return a valid string |
| 986 | UnicodeString &str = obj->getString(*status); |
| 987 | if( U_SUCCESS(*status) && len != NULL ) { |
| 988 | *len = str.length(); |
| 989 | } |
| 990 | return str.getTerminatedBuffer(); |
| 991 | } |
| 992 | |
| 993 | U_DRAFT int32_t U_EXPORT2 |
| 994 | ufmt_getArrayLength(const UFormattable* fmt, UErrorCode *status) { |
| 995 | const Formattable *obj = Formattable::fromUFormattable(fmt); |
| 996 | |
| 997 | int32_t count; |
| 998 | (void)obj->getArray(count, *status); |
| 999 | return count; |
| 1000 | } |
| 1001 | |
| 1002 | U_DRAFT UFormattable * U_EXPORT2 |
| 1003 | ufmt_getArrayItemByIndex(UFormattable* fmt, int32_t n, UErrorCode *status) { |
| 1004 | Formattable *obj = Formattable::fromUFormattable(fmt); |
| 1005 | int32_t count; |
| 1006 | (void)obj->getArray(count, *status); |
| 1007 | if(U_FAILURE(*status)) { |
| 1008 | return NULL; |
| 1009 | } else if(n<0 || n>=count) { |
| 1010 | setError(*status, U_INDEX_OUTOFBOUNDS_ERROR); |
| 1011 | return NULL; |
| 1012 | } else { |
| 1013 | return (*obj)[n].toUFormattable(); // returns non-const Formattable |
| 1014 | } |
| 1015 | } |
| 1016 | |
| 1017 | U_DRAFT const char * U_EXPORT2 |
| 1018 | ufmt_getDecNumChars(UFormattable *fmt, int32_t *len, UErrorCode *status) { |
| 1019 | if(U_FAILURE(*status)) { |
| 1020 | return ""; |
| 1021 | } |
| 1022 | Formattable *obj = Formattable::fromUFormattable(fmt); |
| 1023 | CharString *charString = obj->internalGetCharString(*status); |
| 1024 | if(U_FAILURE(*status)) { |
| 1025 | return ""; |
| 1026 | } |
| 1027 | if(charString == NULL) { |
| 1028 | *status = U_MEMORY_ALLOCATION_ERROR; |
| 1029 | return ""; |
| 1030 | } else { |
| 1031 | if(len!=NULL) { |
| 1032 | *len = charString->length(); |
| 1033 | } |
| 1034 | return charString->data(); |
| 1035 | } |
| 1036 | } |
| 1037 | |
| 1038 | U_DRAFT int64_t U_EXPORT2 |
| 1039 | ufmt_getInt64(UFormattable *fmt, UErrorCode *status) { |
| 1040 | Formattable *obj = Formattable::fromUFormattable(fmt); |
| 1041 | return obj->getInt64(*status); |
| 1042 | } |
| 1043 | |
| 1044 | #endif /* #if !UCONFIG_NO_FORMATTING */ |
| 1045 | |
| 1046 | //eof |