Jungshik Shin | 87232d8 | 2017-05-13 21:10:13 -0700 | [diff] [blame] | 1 | // © 2016 and later: Unicode, Inc. and others. |
Jungshik Shin | 5feb9ad | 2016-10-21 12:52:48 -0700 | [diff] [blame] | 2 | // License & terms of use: http://www.unicode.org/copyright.html |
jshin@chromium.org | 6f31ac3 | 2014-03-26 22:15:14 +0000 | [diff] [blame] | 3 | /************************************************************************ |
| 4 | * Copyright (C) 1996-2012, International Business Machines Corporation |
| 5 | * and others. All Rights Reserved. |
| 6 | ************************************************************************ |
| 7 | * 2003-nov-07 srl Port from Java |
| 8 | */ |
| 9 | |
| 10 | #include "astro.h" |
| 11 | |
| 12 | #if !UCONFIG_NO_FORMATTING |
| 13 | |
| 14 | #include "unicode/calendar.h" |
| 15 | #include <math.h> |
| 16 | #include <float.h> |
| 17 | #include "unicode/putil.h" |
| 18 | #include "uhash.h" |
| 19 | #include "umutex.h" |
| 20 | #include "ucln_in.h" |
| 21 | #include "putilimp.h" |
| 22 | #include <stdio.h> // for toString() |
| 23 | |
| 24 | #if defined (PI) |
| 25 | #undef PI |
| 26 | #endif |
| 27 | |
| 28 | #ifdef U_DEBUG_ASTRO |
| 29 | # include "uresimp.h" // for debugging |
| 30 | |
| 31 | static void debug_astro_loc(const char *f, int32_t l) |
| 32 | { |
| 33 | fprintf(stderr, "%s:%d: ", f, l); |
| 34 | } |
| 35 | |
| 36 | static void debug_astro_msg(const char *pat, ...) |
| 37 | { |
| 38 | va_list ap; |
| 39 | va_start(ap, pat); |
| 40 | vfprintf(stderr, pat, ap); |
| 41 | fflush(stderr); |
| 42 | } |
| 43 | #include "unicode/datefmt.h" |
| 44 | #include "unicode/ustring.h" |
| 45 | static const char * debug_astro_date(UDate d) { |
| 46 | static char gStrBuf[1024]; |
| 47 | static DateFormat *df = NULL; |
| 48 | if(df == NULL) { |
| 49 | df = DateFormat::createDateTimeInstance(DateFormat::MEDIUM, DateFormat::MEDIUM, Locale::getUS()); |
| 50 | df->adoptTimeZone(TimeZone::getGMT()->clone()); |
| 51 | } |
| 52 | UnicodeString str; |
| 53 | df->format(d,str); |
| 54 | u_austrncpy(gStrBuf,str.getTerminatedBuffer(),sizeof(gStrBuf)-1); |
| 55 | return gStrBuf; |
| 56 | } |
| 57 | |
| 58 | // must use double parens, i.e.: U_DEBUG_ASTRO_MSG(("four is: %d",4)); |
| 59 | #define U_DEBUG_ASTRO_MSG(x) {debug_astro_loc(__FILE__,__LINE__);debug_astro_msg x;} |
| 60 | #else |
| 61 | #define U_DEBUG_ASTRO_MSG(x) |
| 62 | #endif |
| 63 | |
| 64 | static inline UBool isINVALID(double d) { |
| 65 | return(uprv_isNaN(d)); |
| 66 | } |
| 67 | |
Frank Tang | b869661 | 2019-10-25 14:58:21 -0700 | [diff] [blame] | 68 | static icu::UMutex ccLock; |
jshin@chromium.org | 6f31ac3 | 2014-03-26 22:15:14 +0000 | [diff] [blame] | 69 | |
| 70 | U_CDECL_BEGIN |
| 71 | static UBool calendar_astro_cleanup(void) { |
Frank Tang | 1f164ee | 2022-11-08 12:31:27 -0800 | [diff] [blame^] | 72 | return true; |
jshin@chromium.org | 6f31ac3 | 2014-03-26 22:15:14 +0000 | [diff] [blame] | 73 | } |
| 74 | U_CDECL_END |
| 75 | |
| 76 | U_NAMESPACE_BEGIN |
| 77 | |
| 78 | /** |
| 79 | * The number of standard hours in one sidereal day. |
| 80 | * Approximately 24.93. |
| 81 | * @internal |
| 82 | * @deprecated ICU 2.4. This class may be removed or modified. |
| 83 | */ |
| 84 | #define SIDEREAL_DAY (23.93446960027) |
| 85 | |
| 86 | /** |
| 87 | * The number of sidereal hours in one mean solar day. |
| 88 | * Approximately 24.07. |
| 89 | * @internal |
| 90 | * @deprecated ICU 2.4. This class may be removed or modified. |
| 91 | */ |
| 92 | #define SOLAR_DAY (24.065709816) |
| 93 | |
| 94 | /** |
| 95 | * The average number of solar days from one new moon to the next. This is the time |
| 96 | * it takes for the moon to return the same ecliptic longitude as the sun. |
| 97 | * It is longer than the sidereal month because the sun's longitude increases |
| 98 | * during the year due to the revolution of the earth around the sun. |
| 99 | * Approximately 29.53. |
| 100 | * |
| 101 | * @see #SIDEREAL_MONTH |
| 102 | * @internal |
| 103 | * @deprecated ICU 2.4. This class may be removed or modified. |
| 104 | */ |
| 105 | const double CalendarAstronomer::SYNODIC_MONTH = 29.530588853; |
| 106 | |
| 107 | /** |
| 108 | * The average number of days it takes |
| 109 | * for the moon to return to the same ecliptic longitude relative to the |
| 110 | * stellar background. This is referred to as the sidereal month. |
| 111 | * It is shorter than the synodic month due to |
| 112 | * the revolution of the earth around the sun. |
| 113 | * Approximately 27.32. |
| 114 | * |
| 115 | * @see #SYNODIC_MONTH |
| 116 | * @internal |
| 117 | * @deprecated ICU 2.4. This class may be removed or modified. |
| 118 | */ |
| 119 | #define SIDEREAL_MONTH 27.32166 |
| 120 | |
| 121 | /** |
| 122 | * The average number number of days between successive vernal equinoxes. |
| 123 | * Due to the precession of the earth's |
| 124 | * axis, this is not precisely the same as the sidereal year. |
| 125 | * Approximately 365.24 |
| 126 | * |
| 127 | * @see #SIDEREAL_YEAR |
| 128 | * @internal |
| 129 | * @deprecated ICU 2.4. This class may be removed or modified. |
| 130 | */ |
| 131 | #define TROPICAL_YEAR 365.242191 |
| 132 | |
| 133 | /** |
| 134 | * The average number of days it takes |
| 135 | * for the sun to return to the same position against the fixed stellar |
| 136 | * background. This is the duration of one orbit of the earth about the sun |
| 137 | * as it would appear to an outside observer. |
| 138 | * Due to the precession of the earth's |
| 139 | * axis, this is not precisely the same as the tropical year. |
| 140 | * Approximately 365.25. |
| 141 | * |
| 142 | * @see #TROPICAL_YEAR |
| 143 | * @internal |
| 144 | * @deprecated ICU 2.4. This class may be removed or modified. |
| 145 | */ |
| 146 | #define SIDEREAL_YEAR 365.25636 |
| 147 | |
| 148 | //------------------------------------------------------------------------- |
| 149 | // Time-related constants |
| 150 | //------------------------------------------------------------------------- |
| 151 | |
| 152 | /** |
| 153 | * The number of milliseconds in one second. |
| 154 | * @internal |
| 155 | * @deprecated ICU 2.4. This class may be removed or modified. |
| 156 | */ |
| 157 | #define SECOND_MS U_MILLIS_PER_SECOND |
| 158 | |
| 159 | /** |
| 160 | * The number of milliseconds in one minute. |
| 161 | * @internal |
| 162 | * @deprecated ICU 2.4. This class may be removed or modified. |
| 163 | */ |
| 164 | #define MINUTE_MS U_MILLIS_PER_MINUTE |
| 165 | |
| 166 | /** |
| 167 | * The number of milliseconds in one hour. |
| 168 | * @internal |
| 169 | * @deprecated ICU 2.4. This class may be removed or modified. |
| 170 | */ |
| 171 | #define HOUR_MS U_MILLIS_PER_HOUR |
| 172 | |
| 173 | /** |
| 174 | * The number of milliseconds in one day. |
| 175 | * @internal |
| 176 | * @deprecated ICU 2.4. This class may be removed or modified. |
| 177 | */ |
| 178 | #define DAY_MS U_MILLIS_PER_DAY |
| 179 | |
| 180 | /** |
| 181 | * The start of the julian day numbering scheme used by astronomers, which |
| 182 | * is 1/1/4713 BC (Julian), 12:00 GMT. This is given as the number of milliseconds |
| 183 | * since 1/1/1970 AD (Gregorian), a negative number. |
| 184 | * Note that julian day numbers and |
| 185 | * the Julian calendar are <em>not</em> the same thing. Also note that |
| 186 | * julian days start at <em>noon</em>, not midnight. |
| 187 | * @internal |
| 188 | * @deprecated ICU 2.4. This class may be removed or modified. |
| 189 | */ |
| 190 | #define JULIAN_EPOCH_MS -210866760000000.0 |
| 191 | |
| 192 | |
| 193 | /** |
| 194 | * Milliseconds value for 0.0 January 2000 AD. |
| 195 | */ |
| 196 | #define EPOCH_2000_MS 946598400000.0 |
| 197 | |
| 198 | //------------------------------------------------------------------------- |
| 199 | // Assorted private data used for conversions |
| 200 | //------------------------------------------------------------------------- |
| 201 | |
| 202 | // My own copies of these so compilers are more likely to optimize them away |
| 203 | const double CalendarAstronomer::PI = 3.14159265358979323846; |
| 204 | |
| 205 | #define CalendarAstronomer_PI2 (CalendarAstronomer::PI*2.0) |
| 206 | #define RAD_HOUR ( 12 / CalendarAstronomer::PI ) // radians -> hours |
| 207 | #define DEG_RAD ( CalendarAstronomer::PI / 180 ) // degrees -> radians |
| 208 | #define RAD_DEG ( 180 / CalendarAstronomer::PI ) // radians -> degrees |
| 209 | |
| 210 | /*** |
| 211 | * Given 'value', add or subtract 'range' until 0 <= 'value' < range. |
| 212 | * The modulus operator. |
| 213 | */ |
| 214 | inline static double normalize(double value, double range) { |
| 215 | return value - range * ClockMath::floorDivide(value, range); |
| 216 | } |
| 217 | |
| 218 | /** |
| 219 | * Normalize an angle so that it's in the range 0 - 2pi. |
| 220 | * For positive angles this is just (angle % 2pi), but the Java |
| 221 | * mod operator doesn't work that way for negative numbers.... |
| 222 | */ |
| 223 | inline static double norm2PI(double angle) { |
| 224 | return normalize(angle, CalendarAstronomer::PI * 2.0); |
| 225 | } |
| 226 | |
| 227 | /** |
| 228 | * Normalize an angle into the range -PI - PI |
| 229 | */ |
| 230 | inline static double normPI(double angle) { |
| 231 | return normalize(angle + CalendarAstronomer::PI, CalendarAstronomer::PI * 2.0) - CalendarAstronomer::PI; |
| 232 | } |
| 233 | |
| 234 | //------------------------------------------------------------------------- |
| 235 | // Constructors |
| 236 | //------------------------------------------------------------------------- |
| 237 | |
| 238 | /** |
| 239 | * Construct a new <code>CalendarAstronomer</code> object that is initialized to |
| 240 | * the current date and time. |
| 241 | * @internal |
| 242 | * @deprecated ICU 2.4. This class may be removed or modified. |
| 243 | */ |
| 244 | CalendarAstronomer::CalendarAstronomer(): |
Frank Tang | 1f164ee | 2022-11-08 12:31:27 -0800 | [diff] [blame^] | 245 | fTime(Calendar::getNow()), fLongitude(0.0), fLatitude(0.0), fGmtOffset(0.0), moonPosition(0,0), moonPositionSet(false) { |
jshin@chromium.org | 6f31ac3 | 2014-03-26 22:15:14 +0000 | [diff] [blame] | 246 | clearCache(); |
| 247 | } |
| 248 | |
| 249 | /** |
| 250 | * Construct a new <code>CalendarAstronomer</code> object that is initialized to |
| 251 | * the specified date and time. |
| 252 | * @internal |
| 253 | * @deprecated ICU 2.4. This class may be removed or modified. |
| 254 | */ |
Frank Tang | 1f164ee | 2022-11-08 12:31:27 -0800 | [diff] [blame^] | 255 | CalendarAstronomer::CalendarAstronomer(UDate d): fTime(d), fLongitude(0.0), fLatitude(0.0), fGmtOffset(0.0), moonPosition(0,0), moonPositionSet(false) { |
jshin@chromium.org | 6f31ac3 | 2014-03-26 22:15:14 +0000 | [diff] [blame] | 256 | clearCache(); |
| 257 | } |
| 258 | |
| 259 | /** |
| 260 | * Construct a new <code>CalendarAstronomer</code> object with the given |
| 261 | * latitude and longitude. The object's time is set to the current |
| 262 | * date and time. |
| 263 | * <p> |
| 264 | * @param longitude The desired longitude, in <em>degrees</em> east of |
| 265 | * the Greenwich meridian. |
| 266 | * |
| 267 | * @param latitude The desired latitude, in <em>degrees</em>. Positive |
| 268 | * values signify North, negative South. |
| 269 | * |
| 270 | * @see java.util.Date#getTime() |
| 271 | * @internal |
| 272 | * @deprecated ICU 2.4. This class may be removed or modified. |
| 273 | */ |
| 274 | CalendarAstronomer::CalendarAstronomer(double longitude, double latitude) : |
Frank Tang | 1f164ee | 2022-11-08 12:31:27 -0800 | [diff] [blame^] | 275 | fTime(Calendar::getNow()), moonPosition(0,0), moonPositionSet(false) { |
jshin@chromium.org | 6f31ac3 | 2014-03-26 22:15:14 +0000 | [diff] [blame] | 276 | fLongitude = normPI(longitude * (double)DEG_RAD); |
| 277 | fLatitude = normPI(latitude * (double)DEG_RAD); |
| 278 | fGmtOffset = (double)(fLongitude * 24. * (double)HOUR_MS / (double)CalendarAstronomer_PI2); |
| 279 | clearCache(); |
| 280 | } |
| 281 | |
| 282 | CalendarAstronomer::~CalendarAstronomer() |
| 283 | { |
| 284 | } |
| 285 | |
| 286 | //------------------------------------------------------------------------- |
| 287 | // Time and date getters and setters |
| 288 | //------------------------------------------------------------------------- |
| 289 | |
| 290 | /** |
| 291 | * Set the current date and time of this <code>CalendarAstronomer</code> object. All |
| 292 | * astronomical calculations are performed based on this time setting. |
| 293 | * |
| 294 | * @param aTime the date and time, expressed as the number of milliseconds since |
| 295 | * 1/1/1970 0:00 GMT (Gregorian). |
| 296 | * |
| 297 | * @see #setDate |
| 298 | * @see #getTime |
| 299 | * @internal |
| 300 | * @deprecated ICU 2.4. This class may be removed or modified. |
| 301 | */ |
| 302 | void CalendarAstronomer::setTime(UDate aTime) { |
| 303 | fTime = aTime; |
| 304 | U_DEBUG_ASTRO_MSG(("setTime(%.1lf, %sL)\n", aTime, debug_astro_date(aTime+fGmtOffset))); |
| 305 | clearCache(); |
| 306 | } |
| 307 | |
| 308 | /** |
| 309 | * Set the current date and time of this <code>CalendarAstronomer</code> object. All |
| 310 | * astronomical calculations are performed based on this time setting. |
| 311 | * |
| 312 | * @param jdn the desired time, expressed as a "julian day number", |
| 313 | * which is the number of elapsed days since |
| 314 | * 1/1/4713 BC (Julian), 12:00 GMT. Note that julian day |
| 315 | * numbers start at <em>noon</em>. To get the jdn for |
| 316 | * the corresponding midnight, subtract 0.5. |
| 317 | * |
| 318 | * @see #getJulianDay |
| 319 | * @see #JULIAN_EPOCH_MS |
| 320 | * @internal |
| 321 | * @deprecated ICU 2.4. This class may be removed or modified. |
| 322 | */ |
| 323 | void CalendarAstronomer::setJulianDay(double jdn) { |
| 324 | fTime = (double)(jdn * DAY_MS) + JULIAN_EPOCH_MS; |
| 325 | clearCache(); |
| 326 | julianDay = jdn; |
| 327 | } |
| 328 | |
| 329 | /** |
| 330 | * Get the current time of this <code>CalendarAstronomer</code> object, |
| 331 | * represented as the number of milliseconds since |
| 332 | * 1/1/1970 AD 0:00 GMT (Gregorian). |
| 333 | * |
| 334 | * @see #setTime |
| 335 | * @see #getDate |
| 336 | * @internal |
| 337 | * @deprecated ICU 2.4. This class may be removed or modified. |
| 338 | */ |
| 339 | UDate CalendarAstronomer::getTime() { |
| 340 | return fTime; |
| 341 | } |
| 342 | |
| 343 | /** |
| 344 | * Get the current time of this <code>CalendarAstronomer</code> object, |
| 345 | * expressed as a "julian day number", which is the number of elapsed |
| 346 | * days since 1/1/4713 BC (Julian), 12:00 GMT. |
| 347 | * |
| 348 | * @see #setJulianDay |
| 349 | * @see #JULIAN_EPOCH_MS |
| 350 | * @internal |
| 351 | * @deprecated ICU 2.4. This class may be removed or modified. |
| 352 | */ |
| 353 | double CalendarAstronomer::getJulianDay() { |
| 354 | if (isINVALID(julianDay)) { |
| 355 | julianDay = (fTime - (double)JULIAN_EPOCH_MS) / (double)DAY_MS; |
| 356 | } |
| 357 | return julianDay; |
| 358 | } |
| 359 | |
| 360 | /** |
| 361 | * Return this object's time expressed in julian centuries: |
| 362 | * the number of centuries after 1/1/1900 AD, 12:00 GMT |
| 363 | * |
| 364 | * @see #getJulianDay |
| 365 | * @internal |
| 366 | * @deprecated ICU 2.4. This class may be removed or modified. |
| 367 | */ |
| 368 | double CalendarAstronomer::getJulianCentury() { |
| 369 | if (isINVALID(julianCentury)) { |
| 370 | julianCentury = (getJulianDay() - 2415020.0) / 36525.0; |
| 371 | } |
| 372 | return julianCentury; |
| 373 | } |
| 374 | |
| 375 | /** |
| 376 | * Returns the current Greenwich sidereal time, measured in hours |
| 377 | * @internal |
| 378 | * @deprecated ICU 2.4. This class may be removed or modified. |
| 379 | */ |
| 380 | double CalendarAstronomer::getGreenwichSidereal() { |
| 381 | if (isINVALID(siderealTime)) { |
Frank Tang | 3e05d9d | 2021-11-08 14:04:04 -0800 | [diff] [blame] | 382 | // See page 86 of "Practical Astronomy with your Calculator", |
jshin@chromium.org | 6f31ac3 | 2014-03-26 22:15:14 +0000 | [diff] [blame] | 383 | // by Peter Duffet-Smith, for details on the algorithm. |
| 384 | |
| 385 | double UT = normalize(fTime/(double)HOUR_MS, 24.); |
| 386 | |
| 387 | siderealTime = normalize(getSiderealOffset() + UT*1.002737909, 24.); |
| 388 | } |
| 389 | return siderealTime; |
| 390 | } |
| 391 | |
| 392 | double CalendarAstronomer::getSiderealOffset() { |
| 393 | if (isINVALID(siderealT0)) { |
| 394 | double JD = uprv_floor(getJulianDay() - 0.5) + 0.5; |
| 395 | double S = JD - 2451545.0; |
| 396 | double T = S / 36525.0; |
| 397 | siderealT0 = normalize(6.697374558 + 2400.051336*T + 0.000025862*T*T, 24); |
| 398 | } |
| 399 | return siderealT0; |
| 400 | } |
| 401 | |
| 402 | /** |
| 403 | * Returns the current local sidereal time, measured in hours |
| 404 | * @internal |
| 405 | * @deprecated ICU 2.4. This class may be removed or modified. |
| 406 | */ |
| 407 | double CalendarAstronomer::getLocalSidereal() { |
| 408 | return normalize(getGreenwichSidereal() + (fGmtOffset/(double)HOUR_MS), 24.); |
| 409 | } |
| 410 | |
| 411 | /** |
| 412 | * Converts local sidereal time to Universal Time. |
| 413 | * |
| 414 | * @param lst The Local Sidereal Time, in hours since sidereal midnight |
| 415 | * on this object's current date. |
| 416 | * |
| 417 | * @return The corresponding Universal Time, in milliseconds since |
| 418 | * 1 Jan 1970, GMT. |
| 419 | */ |
| 420 | double CalendarAstronomer::lstToUT(double lst) { |
| 421 | // Convert to local mean time |
| 422 | double lt = normalize((lst - getSiderealOffset()) * 0.9972695663, 24); |
| 423 | |
| 424 | // Then find local midnight on this day |
| 425 | double base = (DAY_MS * ClockMath::floorDivide(fTime + fGmtOffset,(double)DAY_MS)) - fGmtOffset; |
| 426 | |
| 427 | //out(" lt =" + lt + " hours"); |
| 428 | //out(" base=" + new Date(base)); |
| 429 | |
| 430 | return base + (long)(lt * HOUR_MS); |
| 431 | } |
| 432 | |
| 433 | |
| 434 | //------------------------------------------------------------------------- |
| 435 | // Coordinate transformations, all based on the current time of this object |
| 436 | //------------------------------------------------------------------------- |
| 437 | |
| 438 | /** |
| 439 | * Convert from ecliptic to equatorial coordinates. |
| 440 | * |
| 441 | * @param ecliptic A point in the sky in ecliptic coordinates. |
| 442 | * @return The corresponding point in equatorial coordinates. |
| 443 | * @internal |
| 444 | * @deprecated ICU 2.4. This class may be removed or modified. |
| 445 | */ |
| 446 | CalendarAstronomer::Equatorial& CalendarAstronomer::eclipticToEquatorial(CalendarAstronomer::Equatorial& result, const CalendarAstronomer::Ecliptic& ecliptic) |
| 447 | { |
| 448 | return eclipticToEquatorial(result, ecliptic.longitude, ecliptic.latitude); |
| 449 | } |
| 450 | |
| 451 | /** |
| 452 | * Convert from ecliptic to equatorial coordinates. |
| 453 | * |
| 454 | * @param eclipLong The ecliptic longitude |
| 455 | * @param eclipLat The ecliptic latitude |
| 456 | * |
| 457 | * @return The corresponding point in equatorial coordinates. |
| 458 | * @internal |
| 459 | * @deprecated ICU 2.4. This class may be removed or modified. |
| 460 | */ |
| 461 | CalendarAstronomer::Equatorial& CalendarAstronomer::eclipticToEquatorial(CalendarAstronomer::Equatorial& result, double eclipLong, double eclipLat) |
| 462 | { |
Frank Tang | 3e05d9d | 2021-11-08 14:04:04 -0800 | [diff] [blame] | 463 | // See page 42 of "Practical Astronomy with your Calculator", |
jshin@chromium.org | 6f31ac3 | 2014-03-26 22:15:14 +0000 | [diff] [blame] | 464 | // by Peter Duffet-Smith, for details on the algorithm. |
| 465 | |
| 466 | double obliq = eclipticObliquity(); |
| 467 | double sinE = ::sin(obliq); |
| 468 | double cosE = cos(obliq); |
| 469 | |
| 470 | double sinL = ::sin(eclipLong); |
| 471 | double cosL = cos(eclipLong); |
| 472 | |
| 473 | double sinB = ::sin(eclipLat); |
| 474 | double cosB = cos(eclipLat); |
| 475 | double tanB = tan(eclipLat); |
| 476 | |
| 477 | result.set(atan2(sinL*cosE - tanB*sinE, cosL), |
| 478 | asin(sinB*cosE + cosB*sinE*sinL) ); |
| 479 | return result; |
| 480 | } |
| 481 | |
| 482 | /** |
| 483 | * Convert from ecliptic longitude to equatorial coordinates. |
| 484 | * |
| 485 | * @param eclipLong The ecliptic longitude |
| 486 | * |
| 487 | * @return The corresponding point in equatorial coordinates. |
| 488 | * @internal |
| 489 | * @deprecated ICU 2.4. This class may be removed or modified. |
| 490 | */ |
| 491 | CalendarAstronomer::Equatorial& CalendarAstronomer::eclipticToEquatorial(CalendarAstronomer::Equatorial& result, double eclipLong) |
| 492 | { |
| 493 | return eclipticToEquatorial(result, eclipLong, 0); // TODO: optimize |
| 494 | } |
| 495 | |
| 496 | /** |
| 497 | * @internal |
| 498 | * @deprecated ICU 2.4. This class may be removed or modified. |
| 499 | */ |
| 500 | CalendarAstronomer::Horizon& CalendarAstronomer::eclipticToHorizon(CalendarAstronomer::Horizon& result, double eclipLong) |
| 501 | { |
| 502 | Equatorial equatorial; |
| 503 | eclipticToEquatorial(equatorial, eclipLong); |
| 504 | |
| 505 | double H = getLocalSidereal()*CalendarAstronomer::PI/12 - equatorial.ascension; // Hour-angle |
| 506 | |
| 507 | double sinH = ::sin(H); |
| 508 | double cosH = cos(H); |
| 509 | double sinD = ::sin(equatorial.declination); |
| 510 | double cosD = cos(equatorial.declination); |
| 511 | double sinL = ::sin(fLatitude); |
| 512 | double cosL = cos(fLatitude); |
| 513 | |
| 514 | double altitude = asin(sinD*sinL + cosD*cosL*cosH); |
| 515 | double azimuth = atan2(-cosD*cosL*sinH, sinD - sinL * ::sin(altitude)); |
| 516 | |
| 517 | result.set(azimuth, altitude); |
| 518 | return result; |
| 519 | } |
| 520 | |
| 521 | |
| 522 | //------------------------------------------------------------------------- |
| 523 | // The Sun |
| 524 | //------------------------------------------------------------------------- |
| 525 | |
| 526 | // |
| 527 | // Parameters of the Sun's orbit as of the epoch Jan 0.0 1990 |
| 528 | // Angles are in radians (after multiplying by CalendarAstronomer::PI/180) |
| 529 | // |
| 530 | #define JD_EPOCH 2447891.5 // Julian day of epoch |
| 531 | |
| 532 | #define SUN_ETA_G (279.403303 * CalendarAstronomer::PI/180) // Ecliptic longitude at epoch |
| 533 | #define SUN_OMEGA_G (282.768422 * CalendarAstronomer::PI/180) // Ecliptic longitude of perigee |
| 534 | #define SUN_E 0.016713 // Eccentricity of orbit |
| 535 | //double sunR0 1.495585e8 // Semi-major axis in KM |
| 536 | //double sunTheta0 (0.533128 * CalendarAstronomer::PI/180) // Angular diameter at R0 |
| 537 | |
| 538 | // The following three methods, which compute the sun parameters |
| 539 | // given above for an arbitrary epoch (whatever time the object is |
| 540 | // set to), make only a small difference as compared to using the |
| 541 | // above constants. E.g., Sunset times might differ by ~12 |
| 542 | // seconds. Furthermore, the eta-g computation is befuddled by |
| 543 | // Duffet-Smith's incorrect coefficients (p.86). I've corrected |
| 544 | // the first-order coefficient but the others may be off too - no |
| 545 | // way of knowing without consulting another source. |
| 546 | |
| 547 | // /** |
| 548 | // * Return the sun's ecliptic longitude at perigee for the current time. |
| 549 | // * See Duffett-Smith, p. 86. |
| 550 | // * @return radians |
| 551 | // */ |
| 552 | // private double getSunOmegaG() { |
| 553 | // double T = getJulianCentury(); |
| 554 | // return (281.2208444 + (1.719175 + 0.000452778*T)*T) * DEG_RAD; |
| 555 | // } |
| 556 | |
| 557 | // /** |
| 558 | // * Return the sun's ecliptic longitude for the current time. |
| 559 | // * See Duffett-Smith, p. 86. |
| 560 | // * @return radians |
| 561 | // */ |
| 562 | // private double getSunEtaG() { |
| 563 | // double T = getJulianCentury(); |
| 564 | // //return (279.6966778 + (36000.76892 + 0.0003025*T)*T) * DEG_RAD; |
| 565 | // // |
| 566 | // // The above line is from Duffett-Smith, and yields manifestly wrong |
| 567 | // // results. The below constant is derived empirically to match the |
| 568 | // // constant he gives for the 1990 EPOCH. |
| 569 | // // |
| 570 | // return (279.6966778 + (-0.3262541582718024 + 0.0003025*T)*T) * DEG_RAD; |
| 571 | // } |
| 572 | |
| 573 | // /** |
| 574 | // * Return the sun's eccentricity of orbit for the current time. |
| 575 | // * See Duffett-Smith, p. 86. |
| 576 | // * @return double |
| 577 | // */ |
| 578 | // private double getSunE() { |
| 579 | // double T = getJulianCentury(); |
| 580 | // return 0.01675104 - (0.0000418 + 0.000000126*T)*T; |
| 581 | // } |
| 582 | |
| 583 | /** |
| 584 | * Find the "true anomaly" (longitude) of an object from |
| 585 | * its mean anomaly and the eccentricity of its orbit. This uses |
| 586 | * an iterative solution to Kepler's equation. |
| 587 | * |
| 588 | * @param meanAnomaly The object's longitude calculated as if it were in |
| 589 | * a regular, circular orbit, measured in radians |
| 590 | * from the point of perigee. |
| 591 | * |
| 592 | * @param eccentricity The eccentricity of the orbit |
| 593 | * |
| 594 | * @return The true anomaly (longitude) measured in radians |
| 595 | */ |
| 596 | static double trueAnomaly(double meanAnomaly, double eccentricity) |
| 597 | { |
| 598 | // First, solve Kepler's equation iteratively |
| 599 | // Duffett-Smith, p.90 |
| 600 | double delta; |
| 601 | double E = meanAnomaly; |
| 602 | do { |
| 603 | delta = E - eccentricity * ::sin(E) - meanAnomaly; |
| 604 | E = E - delta / (1 - eccentricity * ::cos(E)); |
| 605 | } |
| 606 | while (uprv_fabs(delta) > 1e-5); // epsilon = 1e-5 rad |
| 607 | |
| 608 | return 2.0 * ::atan( ::tan(E/2) * ::sqrt( (1+eccentricity) |
| 609 | /(1-eccentricity) ) ); |
| 610 | } |
| 611 | |
| 612 | /** |
| 613 | * The longitude of the sun at the time specified by this object. |
| 614 | * The longitude is measured in radians along the ecliptic |
| 615 | * from the "first point of Aries," the point at which the ecliptic |
| 616 | * crosses the earth's equatorial plane at the vernal equinox. |
| 617 | * <p> |
| 618 | * Currently, this method uses an approximation of the two-body Kepler's |
| 619 | * equation for the earth and the sun. It does not take into account the |
| 620 | * perturbations caused by the other planets, the moon, etc. |
| 621 | * @internal |
| 622 | * @deprecated ICU 2.4. This class may be removed or modified. |
| 623 | */ |
| 624 | double CalendarAstronomer::getSunLongitude() |
| 625 | { |
Frank Tang | 3e05d9d | 2021-11-08 14:04:04 -0800 | [diff] [blame] | 626 | // See page 86 of "Practical Astronomy with your Calculator", |
jshin@chromium.org | 6f31ac3 | 2014-03-26 22:15:14 +0000 | [diff] [blame] | 627 | // by Peter Duffet-Smith, for details on the algorithm. |
| 628 | |
| 629 | if (isINVALID(sunLongitude)) { |
| 630 | getSunLongitude(getJulianDay(), sunLongitude, meanAnomalySun); |
| 631 | } |
| 632 | return sunLongitude; |
| 633 | } |
| 634 | |
| 635 | /** |
| 636 | * TODO Make this public when the entire class is package-private. |
| 637 | */ |
| 638 | /*public*/ void CalendarAstronomer::getSunLongitude(double jDay, double &longitude, double &meanAnomaly) |
| 639 | { |
Frank Tang | 3e05d9d | 2021-11-08 14:04:04 -0800 | [diff] [blame] | 640 | // See page 86 of "Practical Astronomy with your Calculator", |
jshin@chromium.org | 6f31ac3 | 2014-03-26 22:15:14 +0000 | [diff] [blame] | 641 | // by Peter Duffet-Smith, for details on the algorithm. |
| 642 | |
| 643 | double day = jDay - JD_EPOCH; // Days since epoch |
| 644 | |
| 645 | // Find the angular distance the sun in a fictitious |
| 646 | // circular orbit has travelled since the epoch. |
| 647 | double epochAngle = norm2PI(CalendarAstronomer_PI2/TROPICAL_YEAR*day); |
| 648 | |
| 649 | // The epoch wasn't at the sun's perigee; find the angular distance |
| 650 | // since perigee, which is called the "mean anomaly" |
| 651 | meanAnomaly = norm2PI(epochAngle + SUN_ETA_G - SUN_OMEGA_G); |
| 652 | |
| 653 | // Now find the "true anomaly", e.g. the real solar longitude |
| 654 | // by solving Kepler's equation for an elliptical orbit |
| 655 | // NOTE: The 3rd ed. of the book lists omega_g and eta_g in different |
| 656 | // equations; omega_g is to be correct. |
| 657 | longitude = norm2PI(trueAnomaly(meanAnomaly, SUN_E) + SUN_OMEGA_G); |
| 658 | } |
| 659 | |
| 660 | /** |
| 661 | * The position of the sun at this object's current date and time, |
| 662 | * in equatorial coordinates. |
| 663 | * @internal |
| 664 | * @deprecated ICU 2.4. This class may be removed or modified. |
| 665 | */ |
| 666 | CalendarAstronomer::Equatorial& CalendarAstronomer::getSunPosition(CalendarAstronomer::Equatorial& result) { |
| 667 | return eclipticToEquatorial(result, getSunLongitude(), 0); |
| 668 | } |
| 669 | |
| 670 | |
| 671 | /** |
| 672 | * Constant representing the vernal equinox. |
| 673 | * For use with {@link #getSunTime getSunTime}. |
| 674 | * Note: In this case, "vernal" refers to the northern hemisphere's seasons. |
| 675 | * @internal |
| 676 | * @deprecated ICU 2.4. This class may be removed or modified. |
| 677 | */ |
| 678 | /*double CalendarAstronomer::VERNAL_EQUINOX() { |
| 679 | return 0; |
| 680 | }*/ |
| 681 | |
| 682 | /** |
| 683 | * Constant representing the summer solstice. |
| 684 | * For use with {@link #getSunTime getSunTime}. |
| 685 | * Note: In this case, "summer" refers to the northern hemisphere's seasons. |
| 686 | * @internal |
| 687 | * @deprecated ICU 2.4. This class may be removed or modified. |
| 688 | */ |
| 689 | double CalendarAstronomer::SUMMER_SOLSTICE() { |
| 690 | return (CalendarAstronomer::PI/2); |
| 691 | } |
| 692 | |
| 693 | /** |
| 694 | * Constant representing the autumnal equinox. |
| 695 | * For use with {@link #getSunTime getSunTime}. |
| 696 | * Note: In this case, "autumn" refers to the northern hemisphere's seasons. |
| 697 | * @internal |
| 698 | * @deprecated ICU 2.4. This class may be removed or modified. |
| 699 | */ |
| 700 | /*double CalendarAstronomer::AUTUMN_EQUINOX() { |
| 701 | return (CalendarAstronomer::PI); |
| 702 | }*/ |
| 703 | |
| 704 | /** |
| 705 | * Constant representing the winter solstice. |
| 706 | * For use with {@link #getSunTime getSunTime}. |
| 707 | * Note: In this case, "winter" refers to the northern hemisphere's seasons. |
| 708 | * @internal |
| 709 | * @deprecated ICU 2.4. This class may be removed or modified. |
| 710 | */ |
| 711 | double CalendarAstronomer::WINTER_SOLSTICE() { |
| 712 | return ((CalendarAstronomer::PI*3)/2); |
| 713 | } |
| 714 | |
| 715 | CalendarAstronomer::AngleFunc::~AngleFunc() {} |
| 716 | |
| 717 | /** |
| 718 | * Find the next time at which the sun's ecliptic longitude will have |
| 719 | * the desired value. |
| 720 | * @internal |
| 721 | * @deprecated ICU 2.4. This class may be removed or modified. |
| 722 | */ |
| 723 | class SunTimeAngleFunc : public CalendarAstronomer::AngleFunc { |
| 724 | public: |
| 725 | virtual ~SunTimeAngleFunc(); |
Frank Tang | 3e05d9d | 2021-11-08 14:04:04 -0800 | [diff] [blame] | 726 | virtual double eval(CalendarAstronomer& a) override { return a.getSunLongitude(); } |
jshin@chromium.org | 6f31ac3 | 2014-03-26 22:15:14 +0000 | [diff] [blame] | 727 | }; |
| 728 | |
| 729 | SunTimeAngleFunc::~SunTimeAngleFunc() {} |
| 730 | |
| 731 | UDate CalendarAstronomer::getSunTime(double desired, UBool next) |
| 732 | { |
| 733 | SunTimeAngleFunc func; |
| 734 | return timeOfAngle( func, |
| 735 | desired, |
| 736 | TROPICAL_YEAR, |
| 737 | MINUTE_MS, |
| 738 | next); |
| 739 | } |
| 740 | |
| 741 | CalendarAstronomer::CoordFunc::~CoordFunc() {} |
| 742 | |
| 743 | class RiseSetCoordFunc : public CalendarAstronomer::CoordFunc { |
| 744 | public: |
| 745 | virtual ~RiseSetCoordFunc(); |
Frank Tang | 3e05d9d | 2021-11-08 14:04:04 -0800 | [diff] [blame] | 746 | virtual void eval(CalendarAstronomer::Equatorial& result, CalendarAstronomer& a) override { a.getSunPosition(result); } |
jshin@chromium.org | 6f31ac3 | 2014-03-26 22:15:14 +0000 | [diff] [blame] | 747 | }; |
| 748 | |
| 749 | RiseSetCoordFunc::~RiseSetCoordFunc() {} |
| 750 | |
| 751 | UDate CalendarAstronomer::getSunRiseSet(UBool rise) |
| 752 | { |
| 753 | UDate t0 = fTime; |
| 754 | |
| 755 | // Make a rough guess: 6am or 6pm local time on the current day |
| 756 | double noon = ClockMath::floorDivide(fTime + fGmtOffset, (double)DAY_MS)*DAY_MS - fGmtOffset + (12*HOUR_MS); |
| 757 | |
| 758 | U_DEBUG_ASTRO_MSG(("Noon=%.2lf, %sL, gmtoff %.2lf\n", noon, debug_astro_date(noon+fGmtOffset), fGmtOffset)); |
| 759 | setTime(noon + ((rise ? -6 : 6) * HOUR_MS)); |
| 760 | U_DEBUG_ASTRO_MSG(("added %.2lf ms as a guess,\n", ((rise ? -6. : 6.) * HOUR_MS))); |
| 761 | |
| 762 | RiseSetCoordFunc func; |
| 763 | double t = riseOrSet(func, |
| 764 | rise, |
| 765 | .533 * DEG_RAD, // Angular Diameter |
| 766 | 34. /60.0 * DEG_RAD, // Refraction correction |
| 767 | MINUTE_MS / 12.); // Desired accuracy |
| 768 | |
| 769 | setTime(t0); |
| 770 | return t; |
| 771 | } |
| 772 | |
| 773 | // Commented out - currently unused. ICU 2.6, Alan |
| 774 | // //------------------------------------------------------------------------- |
| 775 | // // Alternate Sun Rise/Set |
| 776 | // // See Duffett-Smith p.93 |
| 777 | // //------------------------------------------------------------------------- |
| 778 | // |
| 779 | // // This yields worse results (as compared to USNO data) than getSunRiseSet(). |
| 780 | // /** |
| 781 | // * TODO Make this when the entire class is package-private. |
| 782 | // */ |
| 783 | // /*public*/ long getSunRiseSet2(boolean rise) { |
| 784 | // // 1. Calculate coordinates of the sun's center for midnight |
| 785 | // double jd = uprv_floor(getJulianDay() - 0.5) + 0.5; |
| 786 | // double[] sl = getSunLongitude(jd);// double lambda1 = sl[0]; |
| 787 | // Equatorial pos1 = eclipticToEquatorial(lambda1, 0); |
| 788 | // |
| 789 | // // 2. Add ... to lambda to get position 24 hours later |
| 790 | // double lambda2 = lambda1 + 0.985647*DEG_RAD; |
| 791 | // Equatorial pos2 = eclipticToEquatorial(lambda2, 0); |
| 792 | // |
| 793 | // // 3. Calculate LSTs of rising and setting for these two positions |
| 794 | // double tanL = ::tan(fLatitude); |
| 795 | // double H = ::acos(-tanL * ::tan(pos1.declination)); |
| 796 | // double lst1r = (CalendarAstronomer_PI2 + pos1.ascension - H) * 24 / CalendarAstronomer_PI2; |
| 797 | // double lst1s = (pos1.ascension + H) * 24 / CalendarAstronomer_PI2; |
| 798 | // H = ::acos(-tanL * ::tan(pos2.declination)); |
| 799 | // double lst2r = (CalendarAstronomer_PI2-H + pos2.ascension ) * 24 / CalendarAstronomer_PI2; |
| 800 | // double lst2s = (H + pos2.ascension ) * 24 / CalendarAstronomer_PI2; |
| 801 | // if (lst1r > 24) lst1r -= 24; |
| 802 | // if (lst1s > 24) lst1s -= 24; |
| 803 | // if (lst2r > 24) lst2r -= 24; |
| 804 | // if (lst2s > 24) lst2s -= 24; |
| 805 | // |
| 806 | // // 4. Convert LSTs to GSTs. If GST1 > GST2, add 24 to GST2. |
| 807 | // double gst1r = lstToGst(lst1r); |
| 808 | // double gst1s = lstToGst(lst1s); |
| 809 | // double gst2r = lstToGst(lst2r); |
| 810 | // double gst2s = lstToGst(lst2s); |
| 811 | // if (gst1r > gst2r) gst2r += 24; |
| 812 | // if (gst1s > gst2s) gst2s += 24; |
| 813 | // |
| 814 | // // 5. Calculate GST at 0h UT of this date |
| 815 | // double t00 = utToGst(0); |
| 816 | // |
| 817 | // // 6. Calculate GST at 0h on the observer's longitude |
| 818 | // double offset = ::round(fLongitude*12/PI); // p.95 step 6; he _rounds_ to nearest 15 deg. |
| 819 | // double t00p = t00 - offset*1.002737909; |
| 820 | // if (t00p < 0) t00p += 24; // do NOT normalize |
| 821 | // |
| 822 | // // 7. Adjust |
| 823 | // if (gst1r < t00p) { |
| 824 | // gst1r += 24; |
| 825 | // gst2r += 24; |
| 826 | // } |
| 827 | // if (gst1s < t00p) { |
| 828 | // gst1s += 24; |
| 829 | // gst2s += 24; |
| 830 | // } |
| 831 | // |
| 832 | // // 8. |
| 833 | // double gstr = (24.07*gst1r-t00*(gst2r-gst1r))/(24.07+gst1r-gst2r); |
| 834 | // double gsts = (24.07*gst1s-t00*(gst2s-gst1s))/(24.07+gst1s-gst2s); |
| 835 | // |
| 836 | // // 9. Correct for parallax, refraction, and sun's diameter |
| 837 | // double dec = (pos1.declination + pos2.declination) / 2; |
| 838 | // double psi = ::acos(sin(fLatitude) / cos(dec)); |
| 839 | // double x = 0.830725 * DEG_RAD; // parallax+refraction+diameter |
| 840 | // double y = ::asin(sin(x) / ::sin(psi)) * RAD_DEG; |
| 841 | // double delta_t = 240 * y / cos(dec) / 3600; // hours |
| 842 | // |
| 843 | // // 10. Add correction to GSTs, subtract from GSTr |
| 844 | // gstr -= delta_t; |
| 845 | // gsts += delta_t; |
| 846 | // |
| 847 | // // 11. Convert GST to UT and then to local civil time |
| 848 | // double ut = gstToUt(rise ? gstr : gsts); |
| 849 | // //System.out.println((rise?"rise=":"set=") + ut + ", delta_t=" + delta_t); |
| 850 | // long midnight = DAY_MS * (time / DAY_MS); // Find UT midnight on this day |
| 851 | // return midnight + (long) (ut * 3600000); |
| 852 | // } |
| 853 | |
| 854 | // Commented out - currently unused. ICU 2.6, Alan |
| 855 | // /** |
| 856 | // * Convert local sidereal time to Greenwich sidereal time. |
| 857 | // * Section 15. Duffett-Smith p.21 |
| 858 | // * @param lst in hours (0..24) |
| 859 | // * @return GST in hours (0..24) |
| 860 | // */ |
| 861 | // double lstToGst(double lst) { |
| 862 | // double delta = fLongitude * 24 / CalendarAstronomer_PI2; |
| 863 | // return normalize(lst - delta, 24); |
| 864 | // } |
| 865 | |
| 866 | // Commented out - currently unused. ICU 2.6, Alan |
| 867 | // /** |
| 868 | // * Convert UT to GST on this date. |
| 869 | // * Section 12. Duffett-Smith p.17 |
| 870 | // * @param ut in hours |
| 871 | // * @return GST in hours |
| 872 | // */ |
| 873 | // double utToGst(double ut) { |
| 874 | // return normalize(getT0() + ut*1.002737909, 24); |
| 875 | // } |
| 876 | |
| 877 | // Commented out - currently unused. ICU 2.6, Alan |
| 878 | // /** |
| 879 | // * Convert GST to UT on this date. |
| 880 | // * Section 13. Duffett-Smith p.18 |
| 881 | // * @param gst in hours |
| 882 | // * @return UT in hours |
| 883 | // */ |
| 884 | // double gstToUt(double gst) { |
| 885 | // return normalize(gst - getT0(), 24) * 0.9972695663; |
| 886 | // } |
| 887 | |
| 888 | // Commented out - currently unused. ICU 2.6, Alan |
| 889 | // double getT0() { |
| 890 | // // Common computation for UT <=> GST |
| 891 | // |
| 892 | // // Find JD for 0h UT |
| 893 | // double jd = uprv_floor(getJulianDay() - 0.5) + 0.5; |
| 894 | // |
| 895 | // double s = jd - 2451545.0; |
| 896 | // double t = s / 36525.0; |
| 897 | // double t0 = 6.697374558 + (2400.051336 + 0.000025862*t)*t; |
| 898 | // return t0; |
| 899 | // } |
| 900 | |
| 901 | // Commented out - currently unused. ICU 2.6, Alan |
| 902 | // //------------------------------------------------------------------------- |
| 903 | // // Alternate Sun Rise/Set |
| 904 | // // See sci.astro FAQ |
| 905 | // // http://www.faqs.org/faqs/astronomy/faq/part3/section-5.html |
| 906 | // //------------------------------------------------------------------------- |
| 907 | // |
| 908 | // // Note: This method appears to produce inferior accuracy as |
| 909 | // // compared to getSunRiseSet(). |
| 910 | // |
| 911 | // /** |
| 912 | // * TODO Make this when the entire class is package-private. |
| 913 | // */ |
| 914 | // /*public*/ long getSunRiseSet3(boolean rise) { |
| 915 | // |
| 916 | // // Compute day number for 0.0 Jan 2000 epoch |
| 917 | // double d = (double)(time - EPOCH_2000_MS) / DAY_MS; |
| 918 | // |
| 919 | // // Now compute the Local Sidereal Time, LST: |
| 920 | // // |
| 921 | // double LST = 98.9818 + 0.985647352 * d + /*UT*15 + long*/ |
| 922 | // fLongitude*RAD_DEG; |
| 923 | // // |
| 924 | // // (east long. positive). Note that LST is here expressed in degrees, |
| 925 | // // where 15 degrees corresponds to one hour. Since LST really is an angle, |
| 926 | // // it's convenient to use one unit---degrees---throughout. |
| 927 | // |
| 928 | // // COMPUTING THE SUN'S POSITION |
| 929 | // // ---------------------------- |
| 930 | // // |
| 931 | // // To be able to compute the Sun's rise/set times, you need to be able to |
| 932 | // // compute the Sun's position at any time. First compute the "day |
| 933 | // // number" d as outlined above, for the desired moment. Next compute: |
| 934 | // // |
| 935 | // double oblecl = 23.4393 - 3.563E-7 * d; |
| 936 | // // |
| 937 | // double w = 282.9404 + 4.70935E-5 * d; |
| 938 | // double M = 356.0470 + 0.9856002585 * d; |
| 939 | // double e = 0.016709 - 1.151E-9 * d; |
| 940 | // // |
| 941 | // // This is the obliquity of the ecliptic, plus some of the elements of |
| 942 | // // the Sun's apparent orbit (i.e., really the Earth's orbit): w = |
| 943 | // // argument of perihelion, M = mean anomaly, e = eccentricity. |
| 944 | // // Semi-major axis is here assumed to be exactly 1.0 (while not strictly |
| 945 | // // true, this is still an accurate approximation). Next compute E, the |
| 946 | // // eccentric anomaly: |
| 947 | // // |
| 948 | // double E = M + e*(180/PI) * ::sin(M*DEG_RAD) * ( 1.0 + e*cos(M*DEG_RAD) ); |
| 949 | // // |
| 950 | // // where E and M are in degrees. This is it---no further iterations are |
| 951 | // // needed because we know e has a sufficiently small value. Next compute |
| 952 | // // the true anomaly, v, and the distance, r: |
| 953 | // // |
| 954 | // /* r * cos(v) = */ double A = cos(E*DEG_RAD) - e; |
| 955 | // /* r * ::sin(v) = */ double B = ::sqrt(1 - e*e) * ::sin(E*DEG_RAD); |
| 956 | // // |
| 957 | // // and |
| 958 | // // |
| 959 | // // r = sqrt( A*A + B*B ) |
| 960 | // double v = ::atan2( B, A )*RAD_DEG; |
| 961 | // // |
| 962 | // // The Sun's true longitude, slon, can now be computed: |
| 963 | // // |
| 964 | // double slon = v + w; |
| 965 | // // |
| 966 | // // Since the Sun is always at the ecliptic (or at least very very close to |
| 967 | // // it), we can use simplified formulae to convert slon (the Sun's ecliptic |
| 968 | // // longitude) to sRA and sDec (the Sun's RA and Dec): |
| 969 | // // |
| 970 | // // ::sin(slon) * cos(oblecl) |
| 971 | // // tan(sRA) = ------------------------- |
| 972 | // // cos(slon) |
| 973 | // // |
| 974 | // // ::sin(sDec) = ::sin(oblecl) * ::sin(slon) |
| 975 | // // |
| 976 | // // As was the case when computing az, the Azimuth, if possible use an |
| 977 | // // atan2() function to compute sRA. |
| 978 | // |
| 979 | // double sRA = ::atan2(sin(slon*DEG_RAD) * cos(oblecl*DEG_RAD), cos(slon*DEG_RAD))*RAD_DEG; |
| 980 | // |
| 981 | // double sin_sDec = ::sin(oblecl*DEG_RAD) * ::sin(slon*DEG_RAD); |
| 982 | // double sDec = ::asin(sin_sDec)*RAD_DEG; |
| 983 | // |
| 984 | // // COMPUTING RISE AND SET TIMES |
| 985 | // // ---------------------------- |
| 986 | // // |
| 987 | // // To compute when an object rises or sets, you must compute when it |
| 988 | // // passes the meridian and the HA of rise/set. Then the rise time is |
| 989 | // // the meridian time minus HA for rise/set, and the set time is the |
| 990 | // // meridian time plus the HA for rise/set. |
| 991 | // // |
| 992 | // // To find the meridian time, compute the Local Sidereal Time at 0h local |
| 993 | // // time (or 0h UT if you prefer to work in UT) as outlined above---name |
| 994 | // // that quantity LST0. The Meridian Time, MT, will now be: |
| 995 | // // |
| 996 | // // MT = RA - LST0 |
| 997 | // double MT = normalize(sRA - LST, 360); |
| 998 | // // |
| 999 | // // where "RA" is the object's Right Ascension (in degrees!). If negative, |
| 1000 | // // add 360 deg to MT. If the object is the Sun, leave the time as it is, |
| 1001 | // // but if it's stellar, multiply MT by 365.2422/366.2422, to convert from |
| 1002 | // // sidereal to solar time. Now, compute HA for rise/set, name that |
| 1003 | // // quantity HA0: |
| 1004 | // // |
| 1005 | // // ::sin(h0) - ::sin(lat) * ::sin(Dec) |
| 1006 | // // cos(HA0) = --------------------------------- |
| 1007 | // // cos(lat) * cos(Dec) |
| 1008 | // // |
| 1009 | // // where h0 is the altitude selected to represent rise/set. For a purely |
| 1010 | // // mathematical horizon, set h0 = 0 and simplify to: |
| 1011 | // // |
| 1012 | // // cos(HA0) = - tan(lat) * tan(Dec) |
| 1013 | // // |
| 1014 | // // If you want to account for refraction on the atmosphere, set h0 = -35/60 |
| 1015 | // // degrees (-35 arc minutes), and if you want to compute the rise/set times |
| 1016 | // // for the Sun's upper limb, set h0 = -50/60 (-50 arc minutes). |
| 1017 | // // |
| 1018 | // double h0 = -50/60 * DEG_RAD; |
| 1019 | // |
| 1020 | // double HA0 = ::acos( |
| 1021 | // (sin(h0) - ::sin(fLatitude) * sin_sDec) / |
| 1022 | // (cos(fLatitude) * cos(sDec*DEG_RAD)))*RAD_DEG; |
| 1023 | // |
| 1024 | // // When HA0 has been computed, leave it as it is for the Sun but multiply |
| 1025 | // // by 365.2422/366.2422 for stellar objects, to convert from sidereal to |
| 1026 | // // solar time. Finally compute: |
| 1027 | // // |
| 1028 | // // Rise time = MT - HA0 |
| 1029 | // // Set time = MT + HA0 |
| 1030 | // // |
| 1031 | // // convert the times from degrees to hours by dividing by 15. |
| 1032 | // // |
| 1033 | // // If you'd like to check that your calculations are accurate or just |
| 1034 | // // need a quick result, check the USNO's Sun or Moon Rise/Set Table, |
| 1035 | // // <URL:http://aa.usno.navy.mil/AA/data/docs/RS_OneYear.html>. |
| 1036 | // |
| 1037 | // double result = MT + (rise ? -HA0 : HA0); // in degrees |
| 1038 | // |
| 1039 | // // Find UT midnight on this day |
| 1040 | // long midnight = DAY_MS * (time / DAY_MS); |
| 1041 | // |
| 1042 | // return midnight + (long) (result * 3600000 / 15); |
| 1043 | // } |
| 1044 | |
| 1045 | //------------------------------------------------------------------------- |
| 1046 | // The Moon |
| 1047 | //------------------------------------------------------------------------- |
| 1048 | |
| 1049 | #define moonL0 (318.351648 * CalendarAstronomer::PI/180 ) // Mean long. at epoch |
| 1050 | #define moonP0 ( 36.340410 * CalendarAstronomer::PI/180 ) // Mean long. of perigee |
| 1051 | #define moonN0 ( 318.510107 * CalendarAstronomer::PI/180 ) // Mean long. of node |
| 1052 | #define moonI ( 5.145366 * CalendarAstronomer::PI/180 ) // Inclination of orbit |
| 1053 | #define moonE ( 0.054900 ) // Eccentricity of orbit |
| 1054 | |
| 1055 | // These aren't used right now |
| 1056 | #define moonA ( 3.84401e5 ) // semi-major axis (km) |
| 1057 | #define moonT0 ( 0.5181 * CalendarAstronomer::PI/180 ) // Angular size at distance A |
| 1058 | #define moonPi ( 0.9507 * CalendarAstronomer::PI/180 ) // Parallax at distance A |
| 1059 | |
| 1060 | /** |
| 1061 | * The position of the moon at the time set on this |
| 1062 | * object, in equatorial coordinates. |
| 1063 | * @internal |
| 1064 | * @deprecated ICU 2.4. This class may be removed or modified. |
| 1065 | */ |
| 1066 | const CalendarAstronomer::Equatorial& CalendarAstronomer::getMoonPosition() |
| 1067 | { |
| 1068 | // |
Frank Tang | 3e05d9d | 2021-11-08 14:04:04 -0800 | [diff] [blame] | 1069 | // See page 142 of "Practical Astronomy with your Calculator", |
jshin@chromium.org | 6f31ac3 | 2014-03-26 22:15:14 +0000 | [diff] [blame] | 1070 | // by Peter Duffet-Smith, for details on the algorithm. |
| 1071 | // |
Frank Tang | 1f164ee | 2022-11-08 12:31:27 -0800 | [diff] [blame^] | 1072 | if (moonPositionSet == false) { |
jshin@chromium.org | 6f31ac3 | 2014-03-26 22:15:14 +0000 | [diff] [blame] | 1073 | // Calculate the solar longitude. Has the side effect of |
| 1074 | // filling in "meanAnomalySun" as well. |
| 1075 | getSunLongitude(); |
| 1076 | |
| 1077 | // |
| 1078 | // Find the # of days since the epoch of our orbital parameters. |
| 1079 | // TODO: Convert the time of day portion into ephemeris time |
| 1080 | // |
| 1081 | double day = getJulianDay() - JD_EPOCH; // Days since epoch |
| 1082 | |
| 1083 | // Calculate the mean longitude and anomaly of the moon, based on |
| 1084 | // a circular orbit. Similar to the corresponding solar calculation. |
| 1085 | double meanLongitude = norm2PI(13.1763966*PI/180*day + moonL0); |
| 1086 | meanAnomalyMoon = norm2PI(meanLongitude - 0.1114041*PI/180 * day - moonP0); |
| 1087 | |
| 1088 | // |
| 1089 | // Calculate the following corrections: |
| 1090 | // Evection: the sun's gravity affects the moon's eccentricity |
| 1091 | // Annual Eqn: variation in the effect due to earth-sun distance |
| 1092 | // A3: correction factor (for ???) |
| 1093 | // |
| 1094 | double evection = 1.2739*PI/180 * ::sin(2 * (meanLongitude - sunLongitude) |
| 1095 | - meanAnomalyMoon); |
| 1096 | double annual = 0.1858*PI/180 * ::sin(meanAnomalySun); |
| 1097 | double a3 = 0.3700*PI/180 * ::sin(meanAnomalySun); |
| 1098 | |
| 1099 | meanAnomalyMoon += evection - annual - a3; |
| 1100 | |
| 1101 | // |
| 1102 | // More correction factors: |
| 1103 | // center equation of the center correction |
| 1104 | // a4 yet another error correction (???) |
| 1105 | // |
| 1106 | // TODO: Skip the equation of the center correction and solve Kepler's eqn? |
| 1107 | // |
| 1108 | double center = 6.2886*PI/180 * ::sin(meanAnomalyMoon); |
| 1109 | double a4 = 0.2140*PI/180 * ::sin(2 * meanAnomalyMoon); |
| 1110 | |
| 1111 | // Now find the moon's corrected longitude |
| 1112 | moonLongitude = meanLongitude + evection + center - annual + a4; |
| 1113 | |
| 1114 | // |
| 1115 | // And finally, find the variation, caused by the fact that the sun's |
| 1116 | // gravitational pull on the moon varies depending on which side of |
| 1117 | // the earth the moon is on |
| 1118 | // |
| 1119 | double variation = 0.6583*CalendarAstronomer::PI/180 * ::sin(2*(moonLongitude - sunLongitude)); |
| 1120 | |
| 1121 | moonLongitude += variation; |
| 1122 | |
| 1123 | // |
| 1124 | // What we've calculated so far is the moon's longitude in the plane |
| 1125 | // of its own orbit. Now map to the ecliptic to get the latitude |
| 1126 | // and longitude. First we need to find the longitude of the ascending |
| 1127 | // node, the position on the ecliptic where it is crossed by the moon's |
| 1128 | // orbit as it crosses from the southern to the northern hemisphere. |
| 1129 | // |
| 1130 | double nodeLongitude = norm2PI(moonN0 - 0.0529539*PI/180 * day); |
| 1131 | |
| 1132 | nodeLongitude -= 0.16*PI/180 * ::sin(meanAnomalySun); |
| 1133 | |
| 1134 | double y = ::sin(moonLongitude - nodeLongitude); |
| 1135 | double x = cos(moonLongitude - nodeLongitude); |
| 1136 | |
| 1137 | moonEclipLong = ::atan2(y*cos(moonI), x) + nodeLongitude; |
| 1138 | double moonEclipLat = ::asin(y * ::sin(moonI)); |
| 1139 | |
| 1140 | eclipticToEquatorial(moonPosition, moonEclipLong, moonEclipLat); |
Frank Tang | 1f164ee | 2022-11-08 12:31:27 -0800 | [diff] [blame^] | 1141 | moonPositionSet = true; |
jshin@chromium.org | 6f31ac3 | 2014-03-26 22:15:14 +0000 | [diff] [blame] | 1142 | } |
| 1143 | return moonPosition; |
| 1144 | } |
| 1145 | |
| 1146 | /** |
| 1147 | * The "age" of the moon at the time specified in this object. |
| 1148 | * This is really the angle between the |
| 1149 | * current ecliptic longitudes of the sun and the moon, |
| 1150 | * measured in radians. |
| 1151 | * |
| 1152 | * @see #getMoonPhase |
| 1153 | * @internal |
| 1154 | * @deprecated ICU 2.4. This class may be removed or modified. |
| 1155 | */ |
| 1156 | double CalendarAstronomer::getMoonAge() { |
Frank Tang | 3e05d9d | 2021-11-08 14:04:04 -0800 | [diff] [blame] | 1157 | // See page 147 of "Practical Astronomy with your Calculator", |
jshin@chromium.org | 6f31ac3 | 2014-03-26 22:15:14 +0000 | [diff] [blame] | 1158 | // by Peter Duffet-Smith, for details on the algorithm. |
| 1159 | // |
| 1160 | // Force the moon's position to be calculated. We're going to use |
| 1161 | // some the intermediate results cached during that calculation. |
| 1162 | // |
| 1163 | getMoonPosition(); |
| 1164 | |
| 1165 | return norm2PI(moonEclipLong - sunLongitude); |
| 1166 | } |
| 1167 | |
| 1168 | /** |
| 1169 | * Calculate the phase of the moon at the time set in this object. |
| 1170 | * The returned phase is a <code>double</code> in the range |
| 1171 | * <code>0 <= phase < 1</code>, interpreted as follows: |
| 1172 | * <ul> |
| 1173 | * <li>0.00: New moon |
| 1174 | * <li>0.25: First quarter |
| 1175 | * <li>0.50: Full moon |
| 1176 | * <li>0.75: Last quarter |
| 1177 | * </ul> |
| 1178 | * |
| 1179 | * @see #getMoonAge |
| 1180 | * @internal |
| 1181 | * @deprecated ICU 2.4. This class may be removed or modified. |
| 1182 | */ |
| 1183 | double CalendarAstronomer::getMoonPhase() { |
Frank Tang | 3e05d9d | 2021-11-08 14:04:04 -0800 | [diff] [blame] | 1184 | // See page 147 of "Practical Astronomy with your Calculator", |
jshin@chromium.org | 6f31ac3 | 2014-03-26 22:15:14 +0000 | [diff] [blame] | 1185 | // by Peter Duffet-Smith, for details on the algorithm. |
| 1186 | return 0.5 * (1 - cos(getMoonAge())); |
| 1187 | } |
| 1188 | |
| 1189 | /** |
| 1190 | * Constant representing a new moon. |
| 1191 | * For use with {@link #getMoonTime getMoonTime} |
| 1192 | * @internal |
| 1193 | * @deprecated ICU 2.4. This class may be removed or modified. |
| 1194 | */ |
| 1195 | const CalendarAstronomer::MoonAge CalendarAstronomer::NEW_MOON() { |
| 1196 | return CalendarAstronomer::MoonAge(0); |
| 1197 | } |
| 1198 | |
| 1199 | /** |
| 1200 | * Constant representing the moon's first quarter. |
| 1201 | * For use with {@link #getMoonTime getMoonTime} |
| 1202 | * @internal |
| 1203 | * @deprecated ICU 2.4. This class may be removed or modified. |
| 1204 | */ |
| 1205 | /*const CalendarAstronomer::MoonAge CalendarAstronomer::FIRST_QUARTER() { |
| 1206 | return CalendarAstronomer::MoonAge(CalendarAstronomer::PI/2); |
| 1207 | }*/ |
| 1208 | |
| 1209 | /** |
| 1210 | * Constant representing a full moon. |
| 1211 | * For use with {@link #getMoonTime getMoonTime} |
| 1212 | * @internal |
| 1213 | * @deprecated ICU 2.4. This class may be removed or modified. |
| 1214 | */ |
| 1215 | const CalendarAstronomer::MoonAge CalendarAstronomer::FULL_MOON() { |
| 1216 | return CalendarAstronomer::MoonAge(CalendarAstronomer::PI); |
| 1217 | } |
| 1218 | /** |
| 1219 | * Constant representing the moon's last quarter. |
| 1220 | * For use with {@link #getMoonTime getMoonTime} |
| 1221 | * @internal |
| 1222 | * @deprecated ICU 2.4. This class may be removed or modified. |
| 1223 | */ |
| 1224 | |
| 1225 | class MoonTimeAngleFunc : public CalendarAstronomer::AngleFunc { |
| 1226 | public: |
| 1227 | virtual ~MoonTimeAngleFunc(); |
Frank Tang | 3e05d9d | 2021-11-08 14:04:04 -0800 | [diff] [blame] | 1228 | virtual double eval(CalendarAstronomer& a) override { return a.getMoonAge(); } |
jshin@chromium.org | 6f31ac3 | 2014-03-26 22:15:14 +0000 | [diff] [blame] | 1229 | }; |
| 1230 | |
| 1231 | MoonTimeAngleFunc::~MoonTimeAngleFunc() {} |
| 1232 | |
| 1233 | /*const CalendarAstronomer::MoonAge CalendarAstronomer::LAST_QUARTER() { |
| 1234 | return CalendarAstronomer::MoonAge((CalendarAstronomer::PI*3)/2); |
| 1235 | }*/ |
| 1236 | |
| 1237 | /** |
| 1238 | * Find the next or previous time at which the Moon's ecliptic |
| 1239 | * longitude will have the desired value. |
| 1240 | * <p> |
| 1241 | * @param desired The desired longitude. |
Frank Tang | 3e05d9d | 2021-11-08 14:04:04 -0800 | [diff] [blame] | 1242 | * @param next <tt>true</tt> if the next occurrence of the phase |
| 1243 | * is desired, <tt>false</tt> for the previous occurrence. |
jshin@chromium.org | 6f31ac3 | 2014-03-26 22:15:14 +0000 | [diff] [blame] | 1244 | * @internal |
| 1245 | * @deprecated ICU 2.4. This class may be removed or modified. |
| 1246 | */ |
| 1247 | UDate CalendarAstronomer::getMoonTime(double desired, UBool next) |
| 1248 | { |
| 1249 | MoonTimeAngleFunc func; |
| 1250 | return timeOfAngle( func, |
| 1251 | desired, |
| 1252 | SYNODIC_MONTH, |
| 1253 | MINUTE_MS, |
| 1254 | next); |
| 1255 | } |
| 1256 | |
| 1257 | /** |
| 1258 | * Find the next or previous time at which the moon will be in the |
| 1259 | * desired phase. |
| 1260 | * <p> |
| 1261 | * @param desired The desired phase of the moon. |
Frank Tang | 3e05d9d | 2021-11-08 14:04:04 -0800 | [diff] [blame] | 1262 | * @param next <tt>true</tt> if the next occurrence of the phase |
| 1263 | * is desired, <tt>false</tt> for the previous occurrence. |
jshin@chromium.org | 6f31ac3 | 2014-03-26 22:15:14 +0000 | [diff] [blame] | 1264 | * @internal |
| 1265 | * @deprecated ICU 2.4. This class may be removed or modified. |
| 1266 | */ |
| 1267 | UDate CalendarAstronomer::getMoonTime(const CalendarAstronomer::MoonAge& desired, UBool next) { |
| 1268 | return getMoonTime(desired.value, next); |
| 1269 | } |
| 1270 | |
| 1271 | class MoonRiseSetCoordFunc : public CalendarAstronomer::CoordFunc { |
| 1272 | public: |
| 1273 | virtual ~MoonRiseSetCoordFunc(); |
Frank Tang | 3e05d9d | 2021-11-08 14:04:04 -0800 | [diff] [blame] | 1274 | virtual void eval(CalendarAstronomer::Equatorial& result, CalendarAstronomer& a) override { result = a.getMoonPosition(); } |
jshin@chromium.org | 6f31ac3 | 2014-03-26 22:15:14 +0000 | [diff] [blame] | 1275 | }; |
| 1276 | |
| 1277 | MoonRiseSetCoordFunc::~MoonRiseSetCoordFunc() {} |
| 1278 | |
| 1279 | /** |
| 1280 | * Returns the time (GMT) of sunrise or sunset on the local date to which |
| 1281 | * this calendar is currently set. |
| 1282 | * @internal |
| 1283 | * @deprecated ICU 2.4. This class may be removed or modified. |
| 1284 | */ |
| 1285 | UDate CalendarAstronomer::getMoonRiseSet(UBool rise) |
| 1286 | { |
| 1287 | MoonRiseSetCoordFunc func; |
| 1288 | return riseOrSet(func, |
| 1289 | rise, |
| 1290 | .533 * DEG_RAD, // Angular Diameter |
| 1291 | 34 /60.0 * DEG_RAD, // Refraction correction |
| 1292 | MINUTE_MS); // Desired accuracy |
| 1293 | } |
| 1294 | |
| 1295 | //------------------------------------------------------------------------- |
| 1296 | // Interpolation methods for finding the time at which a given event occurs |
| 1297 | //------------------------------------------------------------------------- |
| 1298 | |
| 1299 | UDate CalendarAstronomer::timeOfAngle(AngleFunc& func, double desired, |
| 1300 | double periodDays, double epsilon, UBool next) |
| 1301 | { |
| 1302 | // Find the value of the function at the current time |
| 1303 | double lastAngle = func.eval(*this); |
| 1304 | |
| 1305 | // Find out how far we are from the desired angle |
| 1306 | double deltaAngle = norm2PI(desired - lastAngle) ; |
| 1307 | |
| 1308 | // Using the average period, estimate the next (or previous) time at |
| 1309 | // which the desired angle occurs. |
| 1310 | double deltaT = (deltaAngle + (next ? 0.0 : - CalendarAstronomer_PI2 )) * (periodDays*DAY_MS) / CalendarAstronomer_PI2; |
| 1311 | |
| 1312 | double lastDeltaT = deltaT; // Liu |
| 1313 | UDate startTime = fTime; // Liu |
| 1314 | |
| 1315 | setTime(fTime + uprv_ceil(deltaT)); |
| 1316 | |
| 1317 | // Now iterate until we get the error below epsilon. Throughout |
| 1318 | // this loop we use normPI to get values in the range -Pi to Pi, |
| 1319 | // since we're using them as correction factors rather than absolute angles. |
| 1320 | do { |
| 1321 | // Evaluate the function at the time we've estimated |
| 1322 | double angle = func.eval(*this); |
| 1323 | |
| 1324 | // Find the # of milliseconds per radian at this point on the curve |
| 1325 | double factor = uprv_fabs(deltaT / normPI(angle-lastAngle)); |
| 1326 | |
| 1327 | // Correct the time estimate based on how far off the angle is |
| 1328 | deltaT = normPI(desired - angle) * factor; |
| 1329 | |
| 1330 | // HACK: |
| 1331 | // |
| 1332 | // If abs(deltaT) begins to diverge we need to quit this loop. |
| 1333 | // This only appears to happen when attempting to locate, for |
| 1334 | // example, a new moon on the day of the new moon. E.g.: |
| 1335 | // |
| 1336 | // This result is correct: |
| 1337 | // newMoon(7508(Mon Jul 23 00:00:00 CST 1990,false))= |
| 1338 | // Sun Jul 22 10:57:41 CST 1990 |
| 1339 | // |
| 1340 | // But attempting to make the same call a day earlier causes deltaT |
| 1341 | // to diverge: |
| 1342 | // CalendarAstronomer.timeOfAngle() diverging: 1.348508727575625E9 -> |
| 1343 | // 1.3649828540224032E9 |
| 1344 | // newMoon(7507(Sun Jul 22 00:00:00 CST 1990,false))= |
| 1345 | // Sun Jul 08 13:56:15 CST 1990 |
| 1346 | // |
| 1347 | // As a temporary solution, we catch this specific condition and |
| 1348 | // adjust our start time by one eighth period days (either forward |
| 1349 | // or backward) and try again. |
| 1350 | // Liu 11/9/00 |
| 1351 | if (uprv_fabs(deltaT) > uprv_fabs(lastDeltaT)) { |
| 1352 | double delta = uprv_ceil (periodDays * DAY_MS / 8.0); |
| 1353 | setTime(startTime + (next ? delta : -delta)); |
| 1354 | return timeOfAngle(func, desired, periodDays, epsilon, next); |
| 1355 | } |
| 1356 | |
| 1357 | lastDeltaT = deltaT; |
| 1358 | lastAngle = angle; |
| 1359 | |
| 1360 | setTime(fTime + uprv_ceil(deltaT)); |
| 1361 | } |
| 1362 | while (uprv_fabs(deltaT) > epsilon); |
| 1363 | |
| 1364 | return fTime; |
| 1365 | } |
| 1366 | |
| 1367 | UDate CalendarAstronomer::riseOrSet(CoordFunc& func, UBool rise, |
| 1368 | double diameter, double refraction, |
| 1369 | double epsilon) |
| 1370 | { |
| 1371 | Equatorial pos; |
| 1372 | double tanL = ::tan(fLatitude); |
| 1373 | double deltaT = 0; |
| 1374 | int32_t count = 0; |
| 1375 | |
| 1376 | // |
| 1377 | // Calculate the object's position at the current time, then use that |
| 1378 | // position to calculate the time of rising or setting. The position |
| 1379 | // will be different at that time, so iterate until the error is allowable. |
| 1380 | // |
| 1381 | U_DEBUG_ASTRO_MSG(("setup rise=%s, dia=%.3lf, ref=%.3lf, eps=%.3lf\n", |
| 1382 | rise?"T":"F", diameter, refraction, epsilon)); |
| 1383 | do { |
| 1384 | // See "Practical Astronomy With Your Calculator, section 33. |
| 1385 | func.eval(pos, *this); |
| 1386 | double angle = ::acos(-tanL * ::tan(pos.declination)); |
| 1387 | double lst = ((rise ? CalendarAstronomer_PI2-angle : angle) + pos.ascension ) * 24 / CalendarAstronomer_PI2; |
| 1388 | |
| 1389 | // Convert from LST to Universal Time. |
| 1390 | UDate newTime = lstToUT( lst ); |
| 1391 | |
| 1392 | deltaT = newTime - fTime; |
| 1393 | setTime(newTime); |
| 1394 | U_DEBUG_ASTRO_MSG(("%d] dT=%.3lf, angle=%.3lf, lst=%.3lf, A=%.3lf/D=%.3lf\n", |
| 1395 | count, deltaT, angle, lst, pos.ascension, pos.declination)); |
| 1396 | } |
| 1397 | while (++ count < 5 && uprv_fabs(deltaT) > epsilon); |
| 1398 | |
| 1399 | // Calculate the correction due to refraction and the object's angular diameter |
| 1400 | double cosD = ::cos(pos.declination); |
| 1401 | double psi = ::acos(sin(fLatitude) / cosD); |
| 1402 | double x = diameter / 2 + refraction; |
| 1403 | double y = ::asin(sin(x) / ::sin(psi)); |
| 1404 | long delta = (long)((240 * y * RAD_DEG / cosD)*SECOND_MS); |
| 1405 | |
| 1406 | return fTime + (rise ? -delta : delta); |
| 1407 | } |
| 1408 | /** |
| 1409 | * Return the obliquity of the ecliptic (the angle between the ecliptic |
| 1410 | * and the earth's equator) at the current time. This varies due to |
| 1411 | * the precession of the earth's axis. |
| 1412 | * |
| 1413 | * @return the obliquity of the ecliptic relative to the equator, |
| 1414 | * measured in radians. |
| 1415 | */ |
| 1416 | double CalendarAstronomer::eclipticObliquity() { |
| 1417 | if (isINVALID(eclipObliquity)) { |
| 1418 | const double epoch = 2451545.0; // 2000 AD, January 1.5 |
| 1419 | |
| 1420 | double T = (getJulianDay() - epoch) / 36525; |
| 1421 | |
| 1422 | eclipObliquity = 23.439292 |
| 1423 | - 46.815/3600 * T |
| 1424 | - 0.0006/3600 * T*T |
| 1425 | + 0.00181/3600 * T*T*T; |
| 1426 | |
| 1427 | eclipObliquity *= DEG_RAD; |
| 1428 | } |
| 1429 | return eclipObliquity; |
| 1430 | } |
| 1431 | |
| 1432 | |
| 1433 | //------------------------------------------------------------------------- |
| 1434 | // Private data |
| 1435 | //------------------------------------------------------------------------- |
| 1436 | void CalendarAstronomer::clearCache() { |
| 1437 | const double INVALID = uprv_getNaN(); |
| 1438 | |
| 1439 | julianDay = INVALID; |
| 1440 | julianCentury = INVALID; |
| 1441 | sunLongitude = INVALID; |
| 1442 | meanAnomalySun = INVALID; |
| 1443 | moonLongitude = INVALID; |
| 1444 | moonEclipLong = INVALID; |
| 1445 | meanAnomalyMoon = INVALID; |
| 1446 | eclipObliquity = INVALID; |
| 1447 | siderealTime = INVALID; |
| 1448 | siderealT0 = INVALID; |
Frank Tang | 1f164ee | 2022-11-08 12:31:27 -0800 | [diff] [blame^] | 1449 | moonPositionSet = false; |
jshin@chromium.org | 6f31ac3 | 2014-03-26 22:15:14 +0000 | [diff] [blame] | 1450 | } |
| 1451 | |
| 1452 | //private static void out(String s) { |
| 1453 | // System.out.println(s); |
| 1454 | //} |
| 1455 | |
| 1456 | //private static String deg(double rad) { |
| 1457 | // return Double.toString(rad * RAD_DEG); |
| 1458 | //} |
| 1459 | |
| 1460 | //private static String hours(long ms) { |
| 1461 | // return Double.toString((double)ms / HOUR_MS) + " hours"; |
| 1462 | //} |
| 1463 | |
| 1464 | /** |
| 1465 | * @internal |
| 1466 | * @deprecated ICU 2.4. This class may be removed or modified. |
| 1467 | */ |
| 1468 | /*UDate CalendarAstronomer::local(UDate localMillis) { |
| 1469 | // TODO - srl ? |
| 1470 | TimeZone *tz = TimeZone::createDefault(); |
| 1471 | int32_t rawOffset; |
| 1472 | int32_t dstOffset; |
| 1473 | UErrorCode status = U_ZERO_ERROR; |
Frank Tang | 1f164ee | 2022-11-08 12:31:27 -0800 | [diff] [blame^] | 1474 | tz->getOffset(localMillis, true, rawOffset, dstOffset, status); |
jshin@chromium.org | 6f31ac3 | 2014-03-26 22:15:14 +0000 | [diff] [blame] | 1475 | delete tz; |
| 1476 | return localMillis - rawOffset; |
| 1477 | }*/ |
| 1478 | |
| 1479 | // Debugging functions |
| 1480 | UnicodeString CalendarAstronomer::Ecliptic::toString() const |
| 1481 | { |
| 1482 | #ifdef U_DEBUG_ASTRO |
| 1483 | char tmp[800]; |
| 1484 | sprintf(tmp, "[%.5f,%.5f]", longitude*RAD_DEG, latitude*RAD_DEG); |
| 1485 | return UnicodeString(tmp, ""); |
| 1486 | #else |
| 1487 | return UnicodeString(); |
| 1488 | #endif |
| 1489 | } |
| 1490 | |
| 1491 | UnicodeString CalendarAstronomer::Equatorial::toString() const |
| 1492 | { |
| 1493 | #ifdef U_DEBUG_ASTRO |
| 1494 | char tmp[400]; |
| 1495 | sprintf(tmp, "%f,%f", |
| 1496 | (ascension*RAD_DEG), (declination*RAD_DEG)); |
| 1497 | return UnicodeString(tmp, ""); |
| 1498 | #else |
| 1499 | return UnicodeString(); |
| 1500 | #endif |
| 1501 | } |
| 1502 | |
| 1503 | UnicodeString CalendarAstronomer::Horizon::toString() const |
| 1504 | { |
| 1505 | #ifdef U_DEBUG_ASTRO |
| 1506 | char tmp[800]; |
| 1507 | sprintf(tmp, "[%.5f,%.5f]", altitude*RAD_DEG, azimuth*RAD_DEG); |
| 1508 | return UnicodeString(tmp, ""); |
| 1509 | #else |
| 1510 | return UnicodeString(); |
| 1511 | #endif |
| 1512 | } |
| 1513 | |
| 1514 | |
| 1515 | // static private String radToHms(double angle) { |
| 1516 | // int hrs = (int) (angle*RAD_HOUR); |
| 1517 | // int min = (int)((angle*RAD_HOUR - hrs) * 60); |
| 1518 | // int sec = (int)((angle*RAD_HOUR - hrs - min/60.0) * 3600); |
| 1519 | |
| 1520 | // return Integer.toString(hrs) + "h" + min + "m" + sec + "s"; |
| 1521 | // } |
| 1522 | |
| 1523 | // static private String radToDms(double angle) { |
| 1524 | // int deg = (int) (angle*RAD_DEG); |
| 1525 | // int min = (int)((angle*RAD_DEG - deg) * 60); |
| 1526 | // int sec = (int)((angle*RAD_DEG - deg - min/60.0) * 3600); |
| 1527 | |
| 1528 | // return Integer.toString(deg) + "\u00b0" + min + "'" + sec + "\""; |
| 1529 | // } |
| 1530 | |
| 1531 | // =============== Calendar Cache ================ |
| 1532 | |
| 1533 | void CalendarCache::createCache(CalendarCache** cache, UErrorCode& status) { |
| 1534 | ucln_i18n_registerCleanup(UCLN_I18N_ASTRO_CALENDAR, calendar_astro_cleanup); |
| 1535 | if(cache == NULL) { |
| 1536 | status = U_MEMORY_ALLOCATION_ERROR; |
| 1537 | } else { |
| 1538 | *cache = new CalendarCache(32, status); |
| 1539 | if(U_FAILURE(status)) { |
| 1540 | delete *cache; |
| 1541 | *cache = NULL; |
| 1542 | } |
| 1543 | } |
| 1544 | } |
| 1545 | |
| 1546 | int32_t CalendarCache::get(CalendarCache** cache, int32_t key, UErrorCode &status) { |
| 1547 | int32_t res; |
| 1548 | |
| 1549 | if(U_FAILURE(status)) { |
| 1550 | return 0; |
| 1551 | } |
Frank Tang | b869661 | 2019-10-25 14:58:21 -0700 | [diff] [blame] | 1552 | umtx_lock(&ccLock); |
jshin@chromium.org | 6f31ac3 | 2014-03-26 22:15:14 +0000 | [diff] [blame] | 1553 | |
| 1554 | if(*cache == NULL) { |
| 1555 | createCache(cache, status); |
| 1556 | if(U_FAILURE(status)) { |
Frank Tang | b869661 | 2019-10-25 14:58:21 -0700 | [diff] [blame] | 1557 | umtx_unlock(&ccLock); |
jshin@chromium.org | 6f31ac3 | 2014-03-26 22:15:14 +0000 | [diff] [blame] | 1558 | return 0; |
| 1559 | } |
| 1560 | } |
| 1561 | |
| 1562 | res = uhash_igeti((*cache)->fTable, key); |
| 1563 | U_DEBUG_ASTRO_MSG(("%p: GET: [%d] == %d\n", (*cache)->fTable, key, res)); |
| 1564 | |
Frank Tang | b869661 | 2019-10-25 14:58:21 -0700 | [diff] [blame] | 1565 | umtx_unlock(&ccLock); |
jshin@chromium.org | 6f31ac3 | 2014-03-26 22:15:14 +0000 | [diff] [blame] | 1566 | return res; |
| 1567 | } |
| 1568 | |
| 1569 | void CalendarCache::put(CalendarCache** cache, int32_t key, int32_t value, UErrorCode &status) { |
| 1570 | if(U_FAILURE(status)) { |
| 1571 | return; |
| 1572 | } |
Frank Tang | b869661 | 2019-10-25 14:58:21 -0700 | [diff] [blame] | 1573 | umtx_lock(&ccLock); |
jshin@chromium.org | 6f31ac3 | 2014-03-26 22:15:14 +0000 | [diff] [blame] | 1574 | |
| 1575 | if(*cache == NULL) { |
| 1576 | createCache(cache, status); |
| 1577 | if(U_FAILURE(status)) { |
Frank Tang | b869661 | 2019-10-25 14:58:21 -0700 | [diff] [blame] | 1578 | umtx_unlock(&ccLock); |
jshin@chromium.org | 6f31ac3 | 2014-03-26 22:15:14 +0000 | [diff] [blame] | 1579 | return; |
| 1580 | } |
| 1581 | } |
| 1582 | |
| 1583 | uhash_iputi((*cache)->fTable, key, value, &status); |
| 1584 | U_DEBUG_ASTRO_MSG(("%p: PUT: [%d] := %d\n", (*cache)->fTable, key, value)); |
| 1585 | |
Frank Tang | b869661 | 2019-10-25 14:58:21 -0700 | [diff] [blame] | 1586 | umtx_unlock(&ccLock); |
jshin@chromium.org | 6f31ac3 | 2014-03-26 22:15:14 +0000 | [diff] [blame] | 1587 | } |
| 1588 | |
| 1589 | CalendarCache::CalendarCache(int32_t size, UErrorCode &status) { |
| 1590 | fTable = uhash_openSize(uhash_hashLong, uhash_compareLong, NULL, size, &status); |
| 1591 | U_DEBUG_ASTRO_MSG(("%p: Opening.\n", fTable)); |
| 1592 | } |
| 1593 | |
| 1594 | CalendarCache::~CalendarCache() { |
| 1595 | if(fTable != NULL) { |
| 1596 | U_DEBUG_ASTRO_MSG(("%p: Closing.\n", fTable)); |
| 1597 | uhash_close(fTable); |
| 1598 | } |
| 1599 | } |
| 1600 | |
| 1601 | U_NAMESPACE_END |
| 1602 | |
| 1603 | #endif // !UCONFIG_NO_FORMATTING |