Jungshik Shin (jungshik at google) | 0f8746a | 2015-01-08 15:46:45 -0800 | [diff] [blame^] | 1 | /* |
| 2 | ******************************************************************************* |
| 3 | * Copyright (C) 2013-2014, International Business Machines |
| 4 | * Corporation and others. All Rights Reserved. |
| 5 | ******************************************************************************* |
| 6 | * collationfastlatinbuilder.cpp |
| 7 | * |
| 8 | * created on: 2013aug09 |
| 9 | * created by: Markus W. Scherer |
| 10 | */ |
| 11 | |
| 12 | #define DEBUG_COLLATION_FAST_LATIN_BUILDER 0 // 0 or 1 or 2 |
| 13 | #if DEBUG_COLLATION_FAST_LATIN_BUILDER |
| 14 | #include <stdio.h> |
| 15 | #include <string> |
| 16 | #endif |
| 17 | |
| 18 | #include "unicode/utypes.h" |
| 19 | |
| 20 | #if !UCONFIG_NO_COLLATION |
| 21 | |
| 22 | #include "unicode/ucol.h" |
| 23 | #include "unicode/ucharstrie.h" |
| 24 | #include "unicode/unistr.h" |
| 25 | #include "unicode/uobject.h" |
| 26 | #include "unicode/uscript.h" |
| 27 | #include "cmemory.h" |
| 28 | #include "collation.h" |
| 29 | #include "collationdata.h" |
| 30 | #include "collationfastlatin.h" |
| 31 | #include "collationfastlatinbuilder.h" |
| 32 | #include "uassert.h" |
| 33 | #include "uvectr64.h" |
| 34 | |
| 35 | U_NAMESPACE_BEGIN |
| 36 | |
| 37 | struct CollationData; |
| 38 | |
| 39 | namespace { |
| 40 | |
| 41 | /** |
| 42 | * Compare two signed int64_t values as if they were unsigned. |
| 43 | */ |
| 44 | int32_t |
| 45 | compareInt64AsUnsigned(int64_t a, int64_t b) { |
| 46 | if((uint64_t)a < (uint64_t)b) { |
| 47 | return -1; |
| 48 | } else if((uint64_t)a > (uint64_t)b) { |
| 49 | return 1; |
| 50 | } else { |
| 51 | return 0; |
| 52 | } |
| 53 | } |
| 54 | |
| 55 | // TODO: Merge this with the near-identical version in collationbasedatabuilder.cpp |
| 56 | /** |
| 57 | * Like Java Collections.binarySearch(List, String, Comparator). |
| 58 | * |
| 59 | * @return the index>=0 where the item was found, |
| 60 | * or the index<0 for inserting the string at ~index in sorted order |
| 61 | */ |
| 62 | int32_t |
| 63 | binarySearch(const int64_t list[], int32_t limit, int64_t ce) { |
| 64 | if (limit == 0) { return ~0; } |
| 65 | int32_t start = 0; |
| 66 | for (;;) { |
| 67 | int32_t i = (start + limit) / 2; |
| 68 | int32_t cmp = compareInt64AsUnsigned(ce, list[i]); |
| 69 | if (cmp == 0) { |
| 70 | return i; |
| 71 | } else if (cmp < 0) { |
| 72 | if (i == start) { |
| 73 | return ~start; // insert ce before i |
| 74 | } |
| 75 | limit = i; |
| 76 | } else { |
| 77 | if (i == start) { |
| 78 | return ~(start + 1); // insert ce after i |
| 79 | } |
| 80 | start = i; |
| 81 | } |
| 82 | } |
| 83 | } |
| 84 | |
| 85 | } // namespace |
| 86 | |
| 87 | CollationFastLatinBuilder::CollationFastLatinBuilder(UErrorCode &errorCode) |
| 88 | : ce0(0), ce1(0), |
| 89 | contractionCEs(errorCode), uniqueCEs(errorCode), |
| 90 | miniCEs(NULL), |
| 91 | firstDigitPrimary(0), firstLatinPrimary(0), lastLatinPrimary(0), |
| 92 | firstShortPrimary(0), shortPrimaryOverflow(FALSE), |
| 93 | headerLength(0) { |
| 94 | } |
| 95 | |
| 96 | CollationFastLatinBuilder::~CollationFastLatinBuilder() { |
| 97 | uprv_free(miniCEs); |
| 98 | } |
| 99 | |
| 100 | UBool |
| 101 | CollationFastLatinBuilder::forData(const CollationData &data, UErrorCode &errorCode) { |
| 102 | if(U_FAILURE(errorCode)) { return FALSE; } |
| 103 | if(!result.isEmpty()) { // This builder is not reusable. |
| 104 | errorCode = U_INVALID_STATE_ERROR; |
| 105 | return FALSE; |
| 106 | } |
| 107 | if(!loadGroups(data, errorCode)) { return FALSE; } |
| 108 | |
| 109 | // Fast handling of digits. |
| 110 | firstShortPrimary = firstDigitPrimary; |
| 111 | getCEs(data, errorCode); |
| 112 | if(!encodeUniqueCEs(errorCode)) { return FALSE; } |
| 113 | if(shortPrimaryOverflow) { |
| 114 | // Give digits long mini primaries, |
| 115 | // so that there are more short primaries for letters. |
| 116 | firstShortPrimary = firstLatinPrimary; |
| 117 | resetCEs(); |
| 118 | getCEs(data, errorCode); |
| 119 | if(!encodeUniqueCEs(errorCode)) { return FALSE; } |
| 120 | } |
| 121 | // Note: If we still have a short-primary overflow but not a long-primary overflow, |
| 122 | // then we could calculate how many more long primaries would fit, |
| 123 | // and set the firstShortPrimary to that many after the current firstShortPrimary, |
| 124 | // and try again. |
| 125 | // However, this might only benefit the en_US_POSIX tailoring, |
| 126 | // and it is simpler to suppress building fast Latin data for it in genrb, |
| 127 | // or by returning FALSE here if shortPrimaryOverflow. |
| 128 | |
| 129 | UBool ok = !shortPrimaryOverflow && |
| 130 | encodeCharCEs(errorCode) && encodeContractions(errorCode); |
| 131 | contractionCEs.removeAllElements(); // might reduce heap memory usage |
| 132 | uniqueCEs.removeAllElements(); |
| 133 | return ok; |
| 134 | } |
| 135 | |
| 136 | UBool |
| 137 | CollationFastLatinBuilder::loadGroups(const CollationData &data, UErrorCode &errorCode) { |
| 138 | if(U_FAILURE(errorCode)) { return FALSE; } |
| 139 | result.append(0); // reserved for version & headerLength |
| 140 | // The first few reordering groups should be special groups |
| 141 | // (space, punct, ..., digit) followed by Latn, then Grek and other scripts. |
| 142 | for(int32_t i = 0;;) { |
| 143 | if(i >= data.scriptsLength) { |
| 144 | // no Latn script |
| 145 | errorCode = U_INTERNAL_PROGRAM_ERROR; |
| 146 | return FALSE; |
| 147 | } |
| 148 | uint32_t head = data.scripts[i]; |
| 149 | uint32_t lastByte = head & 0xff; // last primary byte in the group |
| 150 | int32_t group = data.scripts[i + 2]; |
| 151 | if(group == UCOL_REORDER_CODE_DIGIT) { |
| 152 | firstDigitPrimary = (head & 0xff00) << 16; |
| 153 | headerLength = result.length(); |
| 154 | uint32_t r0 = (CollationFastLatin::VERSION << 8) | headerLength; |
| 155 | result.setCharAt(0, (UChar)r0); |
| 156 | } else if(group == USCRIPT_LATIN) { |
| 157 | if(firstDigitPrimary == 0) { |
| 158 | // no digit group |
| 159 | errorCode = U_INTERNAL_PROGRAM_ERROR; |
| 160 | return FALSE; |
| 161 | } |
| 162 | firstLatinPrimary = (head & 0xff00) << 16; |
| 163 | lastLatinPrimary = (lastByte << 24) | 0xffffff; |
| 164 | break; |
| 165 | } else if(firstDigitPrimary == 0) { |
| 166 | // a group below digits |
| 167 | if(lastByte > 0x7f) { |
| 168 | // We only use 7 bits for the last byte of a below-digits group. |
| 169 | // This does not warrant an errorCode, but we do not build a fast Latin table. |
| 170 | return FALSE; |
| 171 | } |
| 172 | result.append((UChar)lastByte); |
| 173 | } |
| 174 | i = i + 2 + data.scripts[i + 1]; |
| 175 | } |
| 176 | return TRUE; |
| 177 | } |
| 178 | |
| 179 | UBool |
| 180 | CollationFastLatinBuilder::inSameGroup(uint32_t p, uint32_t q) const { |
| 181 | // Both or neither need to be encoded as short primaries, |
| 182 | // so that we can test only one and use the same bit mask. |
| 183 | if(p >= firstShortPrimary) { |
| 184 | return q >= firstShortPrimary; |
| 185 | } else if(q >= firstShortPrimary) { |
| 186 | return FALSE; |
| 187 | } |
| 188 | // Both or neither must be potentially-variable, |
| 189 | // so that we can test only one and determine if both are variable. |
| 190 | if(p >= firstDigitPrimary) { |
| 191 | return q >= firstDigitPrimary; |
| 192 | } else if(q >= firstDigitPrimary) { |
| 193 | return FALSE; |
| 194 | } |
| 195 | // Both will be encoded with long mini primaries. |
| 196 | // They must be in the same special reordering group, |
| 197 | // so that we can test only one and determine if both are variable. |
| 198 | p >>= 24; // first primary byte |
| 199 | q >>= 24; |
| 200 | U_ASSERT(p != 0 && q != 0); |
| 201 | U_ASSERT(p <= result[headerLength - 1]); // the loop will terminate |
| 202 | for(int32_t i = 1;; ++i) { |
| 203 | uint32_t lastByte = result[i]; |
| 204 | if(p <= lastByte) { |
| 205 | return q <= lastByte; |
| 206 | } else if(q <= lastByte) { |
| 207 | return FALSE; |
| 208 | } |
| 209 | } |
| 210 | } |
| 211 | |
| 212 | void |
| 213 | CollationFastLatinBuilder::resetCEs() { |
| 214 | contractionCEs.removeAllElements(); |
| 215 | uniqueCEs.removeAllElements(); |
| 216 | shortPrimaryOverflow = FALSE; |
| 217 | result.truncate(headerLength); |
| 218 | } |
| 219 | |
| 220 | void |
| 221 | CollationFastLatinBuilder::getCEs(const CollationData &data, UErrorCode &errorCode) { |
| 222 | if(U_FAILURE(errorCode)) { return; } |
| 223 | int32_t i = 0; |
| 224 | for(UChar c = 0;; ++i, ++c) { |
| 225 | if(c == CollationFastLatin::LATIN_LIMIT) { |
| 226 | c = CollationFastLatin::PUNCT_START; |
| 227 | } else if(c == CollationFastLatin::PUNCT_LIMIT) { |
| 228 | break; |
| 229 | } |
| 230 | const CollationData *d; |
| 231 | uint32_t ce32 = data.getCE32(c); |
| 232 | if(ce32 == Collation::FALLBACK_CE32) { |
| 233 | d = data.base; |
| 234 | ce32 = d->getCE32(c); |
| 235 | } else { |
| 236 | d = &data; |
| 237 | } |
| 238 | if(getCEsFromCE32(*d, c, ce32, errorCode)) { |
| 239 | charCEs[i][0] = ce0; |
| 240 | charCEs[i][1] = ce1; |
| 241 | addUniqueCE(ce0, errorCode); |
| 242 | addUniqueCE(ce1, errorCode); |
| 243 | } else { |
| 244 | // bail out for c |
| 245 | charCEs[i][0] = ce0 = Collation::NO_CE; |
| 246 | charCEs[i][1] = ce1 = 0; |
| 247 | } |
| 248 | if(c == 0 && !isContractionCharCE(ce0)) { |
| 249 | // Always map U+0000 to a contraction. |
| 250 | // Write a contraction list with only a default value if there is no real contraction. |
| 251 | U_ASSERT(contractionCEs.isEmpty()); |
| 252 | addContractionEntry(CollationFastLatin::CONTR_CHAR_MASK, ce0, ce1, errorCode); |
| 253 | charCEs[0][0] = ((int64_t)Collation::NO_CE_PRIMARY << 32) | CONTRACTION_FLAG; |
| 254 | charCEs[0][1] = 0; |
| 255 | } |
| 256 | } |
| 257 | // Terminate the last contraction list. |
| 258 | contractionCEs.addElement(CollationFastLatin::CONTR_CHAR_MASK, errorCode); |
| 259 | } |
| 260 | |
| 261 | UBool |
| 262 | CollationFastLatinBuilder::getCEsFromCE32(const CollationData &data, UChar32 c, uint32_t ce32, |
| 263 | UErrorCode &errorCode) { |
| 264 | if(U_FAILURE(errorCode)) { return FALSE; } |
| 265 | ce32 = data.getFinalCE32(ce32); |
| 266 | ce1 = 0; |
| 267 | if(Collation::isSimpleOrLongCE32(ce32)) { |
| 268 | ce0 = Collation::ceFromCE32(ce32); |
| 269 | } else { |
| 270 | switch(Collation::tagFromCE32(ce32)) { |
| 271 | case Collation::LATIN_EXPANSION_TAG: |
| 272 | ce0 = Collation::latinCE0FromCE32(ce32); |
| 273 | ce1 = Collation::latinCE1FromCE32(ce32); |
| 274 | break; |
| 275 | case Collation::EXPANSION32_TAG: { |
| 276 | const uint32_t *ce32s = data.ce32s + Collation::indexFromCE32(ce32); |
| 277 | int32_t length = Collation::lengthFromCE32(ce32); |
| 278 | if(length <= 2) { |
| 279 | ce0 = Collation::ceFromCE32(ce32s[0]); |
| 280 | if(length == 2) { |
| 281 | ce1 = Collation::ceFromCE32(ce32s[1]); |
| 282 | } |
| 283 | break; |
| 284 | } else { |
| 285 | return FALSE; |
| 286 | } |
| 287 | } |
| 288 | case Collation::EXPANSION_TAG: { |
| 289 | const int64_t *ces = data.ces + Collation::indexFromCE32(ce32); |
| 290 | int32_t length = Collation::lengthFromCE32(ce32); |
| 291 | if(length <= 2) { |
| 292 | ce0 = ces[0]; |
| 293 | if(length == 2) { |
| 294 | ce1 = ces[1]; |
| 295 | } |
| 296 | break; |
| 297 | } else { |
| 298 | return FALSE; |
| 299 | } |
| 300 | } |
| 301 | // Note: We could support PREFIX_TAG (assert c>=0) |
| 302 | // by recursing on its default CE32 and checking that none of the prefixes starts |
| 303 | // with a fast Latin character. |
| 304 | // However, currently (2013) there are only the L-before-middle-dot |
| 305 | // prefix mappings in the Latin range, and those would be rejected anyway. |
| 306 | case Collation::CONTRACTION_TAG: |
| 307 | U_ASSERT(c >= 0); |
| 308 | return getCEsFromContractionCE32(data, ce32, errorCode); |
| 309 | case Collation::OFFSET_TAG: |
| 310 | U_ASSERT(c >= 0); |
| 311 | ce0 = data.getCEFromOffsetCE32(c, ce32); |
| 312 | break; |
| 313 | default: |
| 314 | return FALSE; |
| 315 | } |
| 316 | } |
| 317 | // A mapping can be completely ignorable. |
| 318 | if(ce0 == 0) { return ce1 == 0; } |
| 319 | // We do not support an ignorable ce0 unless it is completely ignorable. |
| 320 | uint32_t p0 = (uint32_t)(ce0 >> 32); |
| 321 | if(p0 == 0) { return FALSE; } |
| 322 | // We only support primaries up to the Latin script. |
| 323 | if(p0 > lastLatinPrimary) { return FALSE; } |
| 324 | // We support non-common secondary and case weights only together with short primaries. |
| 325 | uint32_t lower32_0 = (uint32_t)ce0; |
| 326 | if(p0 < firstShortPrimary) { |
| 327 | uint32_t sc0 = lower32_0 & Collation::SECONDARY_AND_CASE_MASK; |
| 328 | if(sc0 != Collation::COMMON_SECONDARY_CE) { return FALSE; } |
| 329 | } |
| 330 | // No below-common tertiary weights. |
| 331 | if((lower32_0 & Collation::ONLY_TERTIARY_MASK) < Collation::COMMON_WEIGHT16) { return FALSE; } |
| 332 | if(ce1 != 0) { |
| 333 | // Both primaries must be in the same group, |
| 334 | // or both must get short mini primaries, |
| 335 | // or a short-primary CE is followed by a secondary CE. |
| 336 | // This is so that we can test the first primary and use the same mask for both, |
| 337 | // and determine for both whether they are variable. |
| 338 | uint32_t p1 = (uint32_t)(ce1 >> 32); |
| 339 | if(p1 == 0 ? p0 < firstShortPrimary : !inSameGroup(p0, p1)) { return FALSE; } |
| 340 | uint32_t lower32_1 = (uint32_t)ce1; |
| 341 | // No tertiary CEs. |
| 342 | if((lower32_1 >> 16) == 0) { return FALSE; } |
| 343 | // We support non-common secondary and case weights |
| 344 | // only for secondary CEs or together with short primaries. |
| 345 | if(p1 != 0 && p1 < firstShortPrimary) { |
| 346 | uint32_t sc1 = lower32_1 & Collation::SECONDARY_AND_CASE_MASK; |
| 347 | if(sc1 != Collation::COMMON_SECONDARY_CE) { return FALSE; } |
| 348 | } |
| 349 | // No below-common tertiary weights. |
| 350 | if((lower32_1 & Collation::ONLY_TERTIARY_MASK) < Collation::COMMON_WEIGHT16) { return FALSE; } |
| 351 | } |
| 352 | // No quaternary weights. |
| 353 | if(((ce0 | ce1) & Collation::QUATERNARY_MASK) != 0) { return FALSE; } |
| 354 | return TRUE; |
| 355 | } |
| 356 | |
| 357 | UBool |
| 358 | CollationFastLatinBuilder::getCEsFromContractionCE32(const CollationData &data, uint32_t ce32, |
| 359 | UErrorCode &errorCode) { |
| 360 | if(U_FAILURE(errorCode)) { return FALSE; } |
| 361 | const UChar *p = data.contexts + Collation::indexFromCE32(ce32); |
| 362 | ce32 = CollationData::readCE32(p); // Default if no suffix match. |
| 363 | // Since the original ce32 is not a prefix mapping, |
| 364 | // the default ce32 must not be another contraction. |
| 365 | U_ASSERT(!Collation::isContractionCE32(ce32)); |
| 366 | int32_t contractionIndex = contractionCEs.size(); |
| 367 | if(getCEsFromCE32(data, U_SENTINEL, ce32, errorCode)) { |
| 368 | addContractionEntry(CollationFastLatin::CONTR_CHAR_MASK, ce0, ce1, errorCode); |
| 369 | } else { |
| 370 | // Bail out for c-without-contraction. |
| 371 | addContractionEntry(CollationFastLatin::CONTR_CHAR_MASK, Collation::NO_CE, 0, errorCode); |
| 372 | } |
| 373 | // Handle an encodable contraction unless the next contraction is too long |
| 374 | // and starts with the same character. |
| 375 | int32_t prevX = -1; |
| 376 | UBool addContraction = FALSE; |
| 377 | UCharsTrie::Iterator suffixes(p + 2, 0, errorCode); |
| 378 | while(suffixes.next(errorCode)) { |
| 379 | const UnicodeString &suffix = suffixes.getString(); |
| 380 | int32_t x = CollationFastLatin::getCharIndex(suffix.charAt(0)); |
| 381 | if(x < 0) { continue; } // ignore anything but fast Latin text |
| 382 | if(x == prevX) { |
| 383 | if(addContraction) { |
| 384 | // Bail out for all contractions starting with this character. |
| 385 | addContractionEntry(x, Collation::NO_CE, 0, errorCode); |
| 386 | addContraction = FALSE; |
| 387 | } |
| 388 | continue; |
| 389 | } |
| 390 | if(addContraction) { |
| 391 | addContractionEntry(prevX, ce0, ce1, errorCode); |
| 392 | } |
| 393 | ce32 = (uint32_t)suffixes.getValue(); |
| 394 | if(suffix.length() == 1 && getCEsFromCE32(data, U_SENTINEL, ce32, errorCode)) { |
| 395 | addContraction = TRUE; |
| 396 | } else { |
| 397 | addContractionEntry(x, Collation::NO_CE, 0, errorCode); |
| 398 | addContraction = FALSE; |
| 399 | } |
| 400 | prevX = x; |
| 401 | } |
| 402 | if(addContraction) { |
| 403 | addContractionEntry(prevX, ce0, ce1, errorCode); |
| 404 | } |
| 405 | if(U_FAILURE(errorCode)) { return FALSE; } |
| 406 | // Note: There might not be any fast Latin contractions, but |
| 407 | // we need to enter contraction handling anyway so that we can bail out |
| 408 | // when there is a non-fast-Latin character following. |
| 409 | // For example: Danish &Y<<u+umlaut, when we compare Y vs. u\u0308 we need to see the |
| 410 | // following umlaut and bail out, rather than return the difference of Y vs. u. |
| 411 | ce0 = ((int64_t)Collation::NO_CE_PRIMARY << 32) | CONTRACTION_FLAG | contractionIndex; |
| 412 | ce1 = 0; |
| 413 | return TRUE; |
| 414 | } |
| 415 | |
| 416 | void |
| 417 | CollationFastLatinBuilder::addContractionEntry(int32_t x, int64_t cce0, int64_t cce1, |
| 418 | UErrorCode &errorCode) { |
| 419 | contractionCEs.addElement(x, errorCode); |
| 420 | contractionCEs.addElement(cce0, errorCode); |
| 421 | contractionCEs.addElement(cce1, errorCode); |
| 422 | addUniqueCE(cce0, errorCode); |
| 423 | addUniqueCE(cce1, errorCode); |
| 424 | } |
| 425 | |
| 426 | void |
| 427 | CollationFastLatinBuilder::addUniqueCE(int64_t ce, UErrorCode &errorCode) { |
| 428 | if(U_FAILURE(errorCode)) { return; } |
| 429 | if(ce == 0 || (uint32_t)(ce >> 32) == Collation::NO_CE_PRIMARY) { return; } |
| 430 | ce &= ~(int64_t)Collation::CASE_MASK; // blank out case bits |
| 431 | int32_t i = binarySearch(uniqueCEs.getBuffer(), uniqueCEs.size(), ce); |
| 432 | if(i < 0) { |
| 433 | uniqueCEs.insertElementAt(ce, ~i, errorCode); |
| 434 | } |
| 435 | } |
| 436 | |
| 437 | uint32_t |
| 438 | CollationFastLatinBuilder::getMiniCE(int64_t ce) const { |
| 439 | ce &= ~(int64_t)Collation::CASE_MASK; // blank out case bits |
| 440 | int32_t index = binarySearch(uniqueCEs.getBuffer(), uniqueCEs.size(), ce); |
| 441 | U_ASSERT(index >= 0); |
| 442 | return miniCEs[index]; |
| 443 | } |
| 444 | |
| 445 | UBool |
| 446 | CollationFastLatinBuilder::encodeUniqueCEs(UErrorCode &errorCode) { |
| 447 | if(U_FAILURE(errorCode)) { return FALSE; } |
| 448 | uprv_free(miniCEs); |
| 449 | miniCEs = (uint16_t *)uprv_malloc(uniqueCEs.size() * 2); |
| 450 | if(miniCEs == NULL) { |
| 451 | errorCode = U_MEMORY_ALLOCATION_ERROR; |
| 452 | return FALSE; |
| 453 | } |
| 454 | int32_t group = 1; |
| 455 | uint32_t lastGroupByte = result[group]; |
| 456 | // The lowest unique CE must be at least a secondary CE. |
| 457 | U_ASSERT(((uint32_t)uniqueCEs.elementAti(0) >> 16) != 0); |
| 458 | uint32_t prevPrimary = 0; |
| 459 | uint32_t prevSecondary = 0; |
| 460 | uint32_t pri = 0; |
| 461 | uint32_t sec = 0; |
| 462 | uint32_t ter = CollationFastLatin::COMMON_TER; |
| 463 | for(int32_t i = 0; i < uniqueCEs.size(); ++i) { |
| 464 | int64_t ce = uniqueCEs.elementAti(i); |
| 465 | // Note: At least one of the p/s/t weights changes from one unique CE to the next. |
| 466 | // (uniqueCEs does not store case bits.) |
| 467 | uint32_t p = (uint32_t)(ce >> 32); |
| 468 | if(p != prevPrimary) { |
| 469 | uint32_t p1 = p >> 24; |
| 470 | while(p1 > lastGroupByte) { |
| 471 | U_ASSERT(pri <= CollationFastLatin::MAX_LONG); |
| 472 | // Add the last "long primary" in or before the group |
| 473 | // into the upper 9 bits of the group entry. |
| 474 | result.setCharAt(group, (UChar)((pri << 4) | lastGroupByte)); |
| 475 | if(++group < headerLength) { // group is 1-based |
| 476 | lastGroupByte = result[group]; |
| 477 | } else { |
| 478 | lastGroupByte = 0xff; |
| 479 | break; |
| 480 | } |
| 481 | } |
| 482 | if(p < firstShortPrimary) { |
| 483 | if(pri == 0) { |
| 484 | pri = CollationFastLatin::MIN_LONG; |
| 485 | } else if(pri < CollationFastLatin::MAX_LONG) { |
| 486 | pri += CollationFastLatin::LONG_INC; |
| 487 | } else { |
| 488 | #if DEBUG_COLLATION_FAST_LATIN_BUILDER |
| 489 | printf("long-primary overflow for %08x\n", p); |
| 490 | #endif |
| 491 | miniCEs[i] = CollationFastLatin::BAIL_OUT; |
| 492 | continue; |
| 493 | } |
| 494 | } else { |
| 495 | if(pri < CollationFastLatin::MIN_SHORT) { |
| 496 | pri = CollationFastLatin::MIN_SHORT; |
| 497 | } else if(pri < (CollationFastLatin::MAX_SHORT - CollationFastLatin::SHORT_INC)) { |
| 498 | // Reserve the highest primary weight for U+FFFF. |
| 499 | pri += CollationFastLatin::SHORT_INC; |
| 500 | } else { |
| 501 | #if DEBUG_COLLATION_FAST_LATIN_BUILDER |
| 502 | printf("short-primary overflow for %08x\n", p); |
| 503 | #endif |
| 504 | shortPrimaryOverflow = TRUE; |
| 505 | miniCEs[i] = CollationFastLatin::BAIL_OUT; |
| 506 | continue; |
| 507 | } |
| 508 | } |
| 509 | prevPrimary = p; |
| 510 | prevSecondary = Collation::COMMON_WEIGHT16; |
| 511 | sec = CollationFastLatin::COMMON_SEC; |
| 512 | ter = CollationFastLatin::COMMON_TER; |
| 513 | } |
| 514 | uint32_t lower32 = (uint32_t)ce; |
| 515 | uint32_t s = lower32 >> 16; |
| 516 | if(s != prevSecondary) { |
| 517 | if(pri == 0) { |
| 518 | if(sec == 0) { |
| 519 | sec = CollationFastLatin::MIN_SEC_HIGH; |
| 520 | } else if(sec < CollationFastLatin::MAX_SEC_HIGH) { |
| 521 | sec += CollationFastLatin::SEC_INC; |
| 522 | } else { |
| 523 | miniCEs[i] = CollationFastLatin::BAIL_OUT; |
| 524 | continue; |
| 525 | } |
| 526 | prevSecondary = s; |
| 527 | ter = CollationFastLatin::COMMON_TER; |
| 528 | } else if(s < Collation::COMMON_WEIGHT16) { |
| 529 | if(sec == CollationFastLatin::COMMON_SEC) { |
| 530 | sec = CollationFastLatin::MIN_SEC_BEFORE; |
| 531 | } else if(sec < CollationFastLatin::MAX_SEC_BEFORE) { |
| 532 | sec += CollationFastLatin::SEC_INC; |
| 533 | } else { |
| 534 | miniCEs[i] = CollationFastLatin::BAIL_OUT; |
| 535 | continue; |
| 536 | } |
| 537 | } else if(s == Collation::COMMON_WEIGHT16) { |
| 538 | sec = CollationFastLatin::COMMON_SEC; |
| 539 | } else { |
| 540 | if(sec < CollationFastLatin::MIN_SEC_AFTER) { |
| 541 | sec = CollationFastLatin::MIN_SEC_AFTER; |
| 542 | } else if(sec < CollationFastLatin::MAX_SEC_AFTER) { |
| 543 | sec += CollationFastLatin::SEC_INC; |
| 544 | } else { |
| 545 | miniCEs[i] = CollationFastLatin::BAIL_OUT; |
| 546 | continue; |
| 547 | } |
| 548 | } |
| 549 | prevSecondary = s; |
| 550 | ter = CollationFastLatin::COMMON_TER; |
| 551 | } |
| 552 | U_ASSERT((lower32 & Collation::CASE_MASK) == 0); // blanked out in uniqueCEs |
| 553 | uint32_t t = lower32 & Collation::ONLY_TERTIARY_MASK; |
| 554 | if(t > Collation::COMMON_WEIGHT16) { |
| 555 | if(ter < CollationFastLatin::MAX_TER_AFTER) { |
| 556 | ++ter; |
| 557 | } else { |
| 558 | miniCEs[i] = CollationFastLatin::BAIL_OUT; |
| 559 | continue; |
| 560 | } |
| 561 | } |
| 562 | if(CollationFastLatin::MIN_LONG <= pri && pri <= CollationFastLatin::MAX_LONG) { |
| 563 | U_ASSERT(sec == CollationFastLatin::COMMON_SEC); |
| 564 | miniCEs[i] = (uint16_t)(pri | ter); |
| 565 | } else { |
| 566 | miniCEs[i] = (uint16_t)(pri | sec | ter); |
| 567 | } |
| 568 | } |
| 569 | #if DEBUG_COLLATION_FAST_LATIN_BUILDER |
| 570 | printf("last mini primary: %04x\n", pri); |
| 571 | #endif |
| 572 | #if DEBUG_COLLATION_FAST_LATIN_BUILDER >= 2 |
| 573 | for(int32_t i = 0; i < uniqueCEs.size(); ++i) { |
| 574 | int64_t ce = uniqueCEs.elementAti(i); |
| 575 | printf("unique CE 0x%016lx -> 0x%04x\n", ce, miniCEs[i]); |
| 576 | } |
| 577 | #endif |
| 578 | return U_SUCCESS(errorCode); |
| 579 | } |
| 580 | |
| 581 | UBool |
| 582 | CollationFastLatinBuilder::encodeCharCEs(UErrorCode &errorCode) { |
| 583 | if(U_FAILURE(errorCode)) { return FALSE; } |
| 584 | int32_t miniCEsStart = result.length(); |
| 585 | for(int32_t i = 0; i < CollationFastLatin::NUM_FAST_CHARS; ++i) { |
| 586 | result.append(0); // initialize to completely ignorable |
| 587 | } |
| 588 | int32_t indexBase = result.length(); |
| 589 | for(int32_t i = 0; i < CollationFastLatin::NUM_FAST_CHARS; ++i) { |
| 590 | int64_t ce = charCEs[i][0]; |
| 591 | if(isContractionCharCE(ce)) { continue; } // defer contraction |
| 592 | uint32_t miniCE = encodeTwoCEs(ce, charCEs[i][1]); |
| 593 | if(miniCE > 0xffff) { |
| 594 | // Note: There is a chance that this new expansion is the same as a previous one, |
| 595 | // and if so, then we could reuse the other expansion. |
| 596 | // However, that seems unlikely. |
| 597 | int32_t expansionIndex = result.length() - indexBase; |
| 598 | if(expansionIndex > (int32_t)CollationFastLatin::INDEX_MASK) { |
| 599 | miniCE = CollationFastLatin::BAIL_OUT; |
| 600 | } else { |
| 601 | result.append((UChar)(miniCE >> 16)).append((UChar)miniCE); |
| 602 | miniCE = CollationFastLatin::EXPANSION | expansionIndex; |
| 603 | } |
| 604 | } |
| 605 | result.setCharAt(miniCEsStart + i, (UChar)miniCE); |
| 606 | } |
| 607 | return U_SUCCESS(errorCode); |
| 608 | } |
| 609 | |
| 610 | UBool |
| 611 | CollationFastLatinBuilder::encodeContractions(UErrorCode &errorCode) { |
| 612 | // We encode all contraction lists so that the first word of a list |
| 613 | // terminates the previous list, and we only need one additional terminator at the end. |
| 614 | if(U_FAILURE(errorCode)) { return FALSE; } |
| 615 | int32_t indexBase = headerLength + CollationFastLatin::NUM_FAST_CHARS; |
| 616 | int32_t firstContractionIndex = result.length(); |
| 617 | for(int32_t i = 0; i < CollationFastLatin::NUM_FAST_CHARS; ++i) { |
| 618 | int64_t ce = charCEs[i][0]; |
| 619 | if(!isContractionCharCE(ce)) { continue; } |
| 620 | int32_t contractionIndex = result.length() - indexBase; |
| 621 | if(contractionIndex > (int32_t)CollationFastLatin::INDEX_MASK) { |
| 622 | result.setCharAt(headerLength + i, CollationFastLatin::BAIL_OUT); |
| 623 | continue; |
| 624 | } |
| 625 | UBool firstTriple = TRUE; |
| 626 | for(int32_t index = (int32_t)ce & 0x7fffffff;; index += 3) { |
| 627 | int32_t x = contractionCEs.elementAti(index); |
| 628 | if((uint32_t)x == CollationFastLatin::CONTR_CHAR_MASK && !firstTriple) { break; } |
| 629 | int64_t cce0 = contractionCEs.elementAti(index + 1); |
| 630 | int64_t cce1 = contractionCEs.elementAti(index + 2); |
| 631 | uint32_t miniCE = encodeTwoCEs(cce0, cce1); |
| 632 | if(miniCE == CollationFastLatin::BAIL_OUT) { |
| 633 | result.append((UChar)(x | (1 << CollationFastLatin::CONTR_LENGTH_SHIFT))); |
| 634 | } else if(miniCE <= 0xffff) { |
| 635 | result.append((UChar)(x | (2 << CollationFastLatin::CONTR_LENGTH_SHIFT))); |
| 636 | result.append((UChar)miniCE); |
| 637 | } else { |
| 638 | result.append((UChar)(x | (3 << CollationFastLatin::CONTR_LENGTH_SHIFT))); |
| 639 | result.append((UChar)(miniCE >> 16)).append((UChar)miniCE); |
| 640 | } |
| 641 | firstTriple = FALSE; |
| 642 | } |
| 643 | // Note: There is a chance that this new contraction list is the same as a previous one, |
| 644 | // and if so, then we could truncate the result and reuse the other list. |
| 645 | // However, that seems unlikely. |
| 646 | result.setCharAt(headerLength + i, |
| 647 | (UChar)(CollationFastLatin::CONTRACTION | contractionIndex)); |
| 648 | } |
| 649 | if(result.length() > firstContractionIndex) { |
| 650 | // Terminate the last contraction list. |
| 651 | result.append((UChar)CollationFastLatin::CONTR_CHAR_MASK); |
| 652 | } |
| 653 | if(result.isBogus()) { |
| 654 | errorCode = U_MEMORY_ALLOCATION_ERROR; |
| 655 | return FALSE; |
| 656 | } |
| 657 | #if DEBUG_COLLATION_FAST_LATIN_BUILDER |
| 658 | printf("** fast Latin %d * 2 = %d bytes\n", result.length(), result.length() * 2); |
| 659 | puts(" header & below-digit groups map"); |
| 660 | int32_t i = 0; |
| 661 | for(; i < headerLength; ++i) { |
| 662 | printf(" %04x", result[i]); |
| 663 | } |
| 664 | printf("\n char mini CEs"); |
| 665 | U_ASSERT(CollationFastLatin::NUM_FAST_CHARS % 16 == 0); |
| 666 | for(; i < indexBase; i += 16) { |
| 667 | UChar32 c = i - headerLength; |
| 668 | if(c >= CollationFastLatin::LATIN_LIMIT) { |
| 669 | c = CollationFastLatin::PUNCT_START + c - CollationFastLatin::LATIN_LIMIT; |
| 670 | } |
| 671 | printf("\n %04x:", c); |
| 672 | for(int32_t j = 0; j < 16; ++j) { |
| 673 | printf(" %04x", result[i + j]); |
| 674 | } |
| 675 | } |
| 676 | printf("\n expansions & contractions"); |
| 677 | for(; i < result.length(); ++i) { |
| 678 | if((i - indexBase) % 16 == 0) { puts(""); } |
| 679 | printf(" %04x", result[i]); |
| 680 | } |
| 681 | puts(""); |
| 682 | #endif |
| 683 | return TRUE; |
| 684 | } |
| 685 | |
| 686 | uint32_t |
| 687 | CollationFastLatinBuilder::encodeTwoCEs(int64_t first, int64_t second) const { |
| 688 | if(first == 0) { |
| 689 | return 0; // completely ignorable |
| 690 | } |
| 691 | if(first == Collation::NO_CE) { |
| 692 | return CollationFastLatin::BAIL_OUT; |
| 693 | } |
| 694 | U_ASSERT((uint32_t)(first >> 32) != Collation::NO_CE_PRIMARY); |
| 695 | |
| 696 | uint32_t miniCE = getMiniCE(first); |
| 697 | if(miniCE == CollationFastLatin::BAIL_OUT) { return miniCE; } |
| 698 | if(miniCE >= CollationFastLatin::MIN_SHORT) { |
| 699 | // Extract & copy the case bits. |
| 700 | // Shift them from normal CE bits 15..14 to mini CE bits 4..3. |
| 701 | uint32_t c = (((uint32_t)first & Collation::CASE_MASK) >> (14 - 3)); |
| 702 | // Only in mini CEs: Ignorable case bits = 0, lowercase = 1. |
| 703 | c += CollationFastLatin::LOWER_CASE; |
| 704 | miniCE |= c; |
| 705 | } |
| 706 | if(second == 0) { return miniCE; } |
| 707 | |
| 708 | uint32_t miniCE1 = getMiniCE(second); |
| 709 | if(miniCE1 == CollationFastLatin::BAIL_OUT) { return miniCE1; } |
| 710 | |
| 711 | uint32_t case1 = (uint32_t)second & Collation::CASE_MASK; |
| 712 | if(miniCE >= CollationFastLatin::MIN_SHORT && |
| 713 | (miniCE & CollationFastLatin::SECONDARY_MASK) == CollationFastLatin::COMMON_SEC) { |
| 714 | // Try to combine the two mini CEs into one. |
| 715 | uint32_t sec1 = miniCE1 & CollationFastLatin::SECONDARY_MASK; |
| 716 | uint32_t ter1 = miniCE1 & CollationFastLatin::TERTIARY_MASK; |
| 717 | if(sec1 >= CollationFastLatin::MIN_SEC_HIGH && case1 == 0 && |
| 718 | ter1 == CollationFastLatin::COMMON_TER) { |
| 719 | // sec1>=sec_high implies pri1==0. |
| 720 | return (miniCE & ~CollationFastLatin::SECONDARY_MASK) | sec1; |
| 721 | } |
| 722 | } |
| 723 | |
| 724 | if(miniCE1 <= CollationFastLatin::SECONDARY_MASK || CollationFastLatin::MIN_SHORT <= miniCE1) { |
| 725 | // Secondary CE, or a CE with a short primary, copy the case bits. |
| 726 | case1 = (case1 >> (14 - 3)) + CollationFastLatin::LOWER_CASE; |
| 727 | miniCE1 |= case1; |
| 728 | } |
| 729 | return (miniCE << 16) | miniCE1; |
| 730 | } |
| 731 | |
| 732 | U_NAMESPACE_END |
| 733 | |
| 734 | #endif // !UCONFIG_NO_COLLATION |