jshin@chromium.org | 6f31ac3 | 2014-03-26 22:15:14 +0000 | [diff] [blame] | 1 | |
| 2 | // |
| 3 | // file: rbbiscan.cpp |
| 4 | // |
Jungshik Shin (jungshik at google) | 0f8746a | 2015-01-08 15:46:45 -0800 | [diff] [blame^] | 5 | // Copyright (C) 2002-2014, International Business Machines Corporation and others. |
jshin@chromium.org | 6f31ac3 | 2014-03-26 22:15:14 +0000 | [diff] [blame] | 6 | // All Rights Reserved. |
| 7 | // |
| 8 | // This file contains the Rule Based Break Iterator Rule Builder functions for |
| 9 | // scanning the rules and assembling a parse tree. This is the first phase |
| 10 | // of compiling the rules. |
| 11 | // |
| 12 | // The overall of the rules is managed by class RBBIRuleBuilder, which will |
| 13 | // create and use an instance of this class as part of the process. |
| 14 | // |
| 15 | |
| 16 | #include "unicode/utypes.h" |
| 17 | |
| 18 | #if !UCONFIG_NO_BREAK_ITERATION |
| 19 | |
| 20 | #include "unicode/unistr.h" |
| 21 | #include "unicode/uniset.h" |
| 22 | #include "unicode/uchar.h" |
| 23 | #include "unicode/uchriter.h" |
| 24 | #include "unicode/parsepos.h" |
| 25 | #include "unicode/parseerr.h" |
| 26 | #include "cmemory.h" |
| 27 | #include "cstring.h" |
| 28 | |
| 29 | #include "rbbirpt.h" // Contains state table for the rbbi rules parser. |
| 30 | // generated by a Perl script. |
| 31 | #include "rbbirb.h" |
| 32 | #include "rbbinode.h" |
| 33 | #include "rbbiscan.h" |
| 34 | #include "rbbitblb.h" |
| 35 | |
| 36 | #include "uassert.h" |
| 37 | |
jshin@chromium.org | 6f31ac3 | 2014-03-26 22:15:14 +0000 | [diff] [blame] | 38 | //------------------------------------------------------------------------------ |
| 39 | // |
| 40 | // Unicode Set init strings for each of the character classes needed for parsing a rule file. |
| 41 | // (Initialized with hex values for portability to EBCDIC based machines. |
| 42 | // Really ugly, but there's no good way to avoid it.) |
| 43 | // |
| 44 | // The sets are referred to by name in the rbbirpt.txt, which is the |
| 45 | // source form of the state transition table for the RBBI rule parser. |
| 46 | // |
| 47 | //------------------------------------------------------------------------------ |
| 48 | static const UChar gRuleSet_rule_char_pattern[] = { |
| 49 | // [ ^ [ \ p { Z } \ u 0 0 2 0 |
| 50 | 0x5b, 0x5e, 0x5b, 0x5c, 0x70, 0x7b, 0x5a, 0x7d, 0x5c, 0x75, 0x30, 0x30, 0x32, 0x30, |
| 51 | // - \ u 0 0 7 f ] - [ \ p |
| 52 | 0x2d, 0x5c, 0x75, 0x30, 0x30, 0x37, 0x66, 0x5d, 0x2d, 0x5b, 0x5c, 0x70, |
| 53 | // { L } ] - [ \ p { N } ] ] |
| 54 | 0x7b, 0x4c, 0x7d, 0x5d, 0x2d, 0x5b, 0x5c, 0x70, 0x7b, 0x4e, 0x7d, 0x5d, 0x5d, 0}; |
| 55 | |
| 56 | static const UChar gRuleSet_name_char_pattern[] = { |
| 57 | // [ _ \ p { L } \ p { N } ] |
| 58 | 0x5b, 0x5f, 0x5c, 0x70, 0x7b, 0x4c, 0x7d, 0x5c, 0x70, 0x7b, 0x4e, 0x7d, 0x5d, 0}; |
| 59 | |
| 60 | static const UChar gRuleSet_digit_char_pattern[] = { |
| 61 | // [ 0 - 9 ] |
| 62 | 0x5b, 0x30, 0x2d, 0x39, 0x5d, 0}; |
| 63 | |
| 64 | static const UChar gRuleSet_name_start_char_pattern[] = { |
| 65 | // [ _ \ p { L } ] |
| 66 | 0x5b, 0x5f, 0x5c, 0x70, 0x7b, 0x4c, 0x7d, 0x5d, 0 }; |
| 67 | |
| 68 | static const UChar kAny[] = {0x61, 0x6e, 0x79, 0x00}; // "any" |
| 69 | |
| 70 | |
| 71 | U_CDECL_BEGIN |
| 72 | static void U_CALLCONV RBBISetTable_deleter(void *p) { |
| 73 | icu::RBBISetTableEl *px = (icu::RBBISetTableEl *)p; |
| 74 | delete px->key; |
| 75 | // Note: px->val is owned by the linked list "fSetsListHead" in scanner. |
| 76 | // Don't delete the value nodes here. |
| 77 | uprv_free(px); |
| 78 | } |
| 79 | U_CDECL_END |
| 80 | |
| 81 | U_NAMESPACE_BEGIN |
| 82 | |
| 83 | //------------------------------------------------------------------------------ |
| 84 | // |
| 85 | // Constructor. |
| 86 | // |
| 87 | //------------------------------------------------------------------------------ |
| 88 | RBBIRuleScanner::RBBIRuleScanner(RBBIRuleBuilder *rb) |
| 89 | { |
| 90 | fRB = rb; |
| 91 | fStackPtr = 0; |
| 92 | fStack[fStackPtr] = 0; |
| 93 | fNodeStackPtr = 0; |
| 94 | fRuleNum = 0; |
| 95 | fNodeStack[0] = NULL; |
| 96 | |
| 97 | fSymbolTable = NULL; |
| 98 | fSetTable = NULL; |
| 99 | |
| 100 | fScanIndex = 0; |
| 101 | fNextIndex = 0; |
| 102 | |
| 103 | fReverseRule = FALSE; |
| 104 | fLookAheadRule = FALSE; |
| 105 | |
| 106 | fLineNum = 1; |
| 107 | fCharNum = 0; |
| 108 | fQuoteMode = FALSE; |
| 109 | |
| 110 | // Do not check status until after all critical fields are sufficiently initialized |
| 111 | // that the destructor can run cleanly. |
| 112 | if (U_FAILURE(*rb->fStatus)) { |
| 113 | return; |
| 114 | } |
| 115 | |
| 116 | // |
| 117 | // Set up the constant Unicode Sets. |
| 118 | // Note: These could be made static, lazily initialized, and shared among |
| 119 | // all instances of RBBIRuleScanners. BUT this is quite a bit simpler, |
| 120 | // and the time to build these few sets should be small compared to a |
| 121 | // full break iterator build. |
| 122 | fRuleSets[kRuleSet_rule_char-128] |
| 123 | = UnicodeSet(UnicodeString(gRuleSet_rule_char_pattern), *rb->fStatus); |
| 124 | // fRuleSets[kRuleSet_white_space-128] = [:Pattern_White_Space:] |
| 125 | fRuleSets[kRuleSet_white_space-128]. |
| 126 | add(9, 0xd).add(0x20).add(0x85).add(0x200e, 0x200f).add(0x2028, 0x2029); |
| 127 | fRuleSets[kRuleSet_name_char-128] |
| 128 | = UnicodeSet(UnicodeString(gRuleSet_name_char_pattern), *rb->fStatus); |
| 129 | fRuleSets[kRuleSet_name_start_char-128] |
| 130 | = UnicodeSet(UnicodeString(gRuleSet_name_start_char_pattern), *rb->fStatus); |
| 131 | fRuleSets[kRuleSet_digit_char-128] |
| 132 | = UnicodeSet(UnicodeString(gRuleSet_digit_char_pattern), *rb->fStatus); |
| 133 | if (*rb->fStatus == U_ILLEGAL_ARGUMENT_ERROR) { |
| 134 | // This case happens if ICU's data is missing. UnicodeSet tries to look up property |
| 135 | // names from the init string, can't find them, and claims an illegal argument. |
| 136 | // Change the error so that the actual problem will be clearer to users. |
| 137 | *rb->fStatus = U_BRK_INIT_ERROR; |
| 138 | } |
| 139 | if (U_FAILURE(*rb->fStatus)) { |
| 140 | return; |
| 141 | } |
| 142 | |
| 143 | fSymbolTable = new RBBISymbolTable(this, rb->fRules, *rb->fStatus); |
| 144 | if (fSymbolTable == NULL) { |
| 145 | *rb->fStatus = U_MEMORY_ALLOCATION_ERROR; |
| 146 | return; |
| 147 | } |
| 148 | fSetTable = uhash_open(uhash_hashUnicodeString, uhash_compareUnicodeString, NULL, rb->fStatus); |
| 149 | if (U_FAILURE(*rb->fStatus)) { |
| 150 | return; |
| 151 | } |
| 152 | uhash_setValueDeleter(fSetTable, RBBISetTable_deleter); |
| 153 | } |
| 154 | |
| 155 | |
| 156 | |
| 157 | //------------------------------------------------------------------------------ |
| 158 | // |
| 159 | // Destructor |
| 160 | // |
| 161 | //------------------------------------------------------------------------------ |
| 162 | RBBIRuleScanner::~RBBIRuleScanner() { |
| 163 | delete fSymbolTable; |
| 164 | if (fSetTable != NULL) { |
| 165 | uhash_close(fSetTable); |
| 166 | fSetTable = NULL; |
| 167 | |
| 168 | } |
| 169 | |
| 170 | |
| 171 | // Node Stack. |
| 172 | // Normally has one entry, which is the entire parse tree for the rules. |
| 173 | // If errors occured, there may be additional subtrees left on the stack. |
| 174 | while (fNodeStackPtr > 0) { |
| 175 | delete fNodeStack[fNodeStackPtr]; |
| 176 | fNodeStackPtr--; |
| 177 | } |
| 178 | |
| 179 | } |
| 180 | |
| 181 | //------------------------------------------------------------------------------ |
| 182 | // |
| 183 | // doParseAction Do some action during rule parsing. |
| 184 | // Called by the parse state machine. |
| 185 | // Actions build the parse tree and Unicode Sets, |
| 186 | // and maintain the parse stack for nested expressions. |
| 187 | // |
| 188 | // TODO: unify EParseAction and RBBI_RuleParseAction enum types. |
| 189 | // They represent exactly the same thing. They're separate |
| 190 | // only to work around enum forward declaration restrictions |
| 191 | // in some compilers, while at the same time avoiding multiple |
| 192 | // definitions problems. I'm sure that there's a better way. |
| 193 | // |
| 194 | //------------------------------------------------------------------------------ |
| 195 | UBool RBBIRuleScanner::doParseActions(int32_t action) |
| 196 | { |
| 197 | RBBINode *n = NULL; |
| 198 | |
| 199 | UBool returnVal = TRUE; |
| 200 | |
| 201 | switch (action) { |
| 202 | |
| 203 | case doExprStart: |
| 204 | pushNewNode(RBBINode::opStart); |
| 205 | fRuleNum++; |
| 206 | break; |
| 207 | |
| 208 | |
| 209 | case doExprOrOperator: |
| 210 | { |
| 211 | fixOpStack(RBBINode::precOpCat); |
| 212 | RBBINode *operandNode = fNodeStack[fNodeStackPtr--]; |
| 213 | RBBINode *orNode = pushNewNode(RBBINode::opOr); |
| 214 | orNode->fLeftChild = operandNode; |
| 215 | operandNode->fParent = orNode; |
| 216 | } |
| 217 | break; |
| 218 | |
| 219 | case doExprCatOperator: |
| 220 | // concatenation operator. |
| 221 | // For the implicit concatenation of adjacent terms in an expression that are |
| 222 | // not separated by any other operator. Action is invoked between the |
| 223 | // actions for the two terms. |
| 224 | { |
| 225 | fixOpStack(RBBINode::precOpCat); |
| 226 | RBBINode *operandNode = fNodeStack[fNodeStackPtr--]; |
| 227 | RBBINode *catNode = pushNewNode(RBBINode::opCat); |
| 228 | catNode->fLeftChild = operandNode; |
| 229 | operandNode->fParent = catNode; |
| 230 | } |
| 231 | break; |
| 232 | |
| 233 | case doLParen: |
| 234 | // Open Paren. |
| 235 | // The openParen node is a dummy operation type with a low precedence, |
| 236 | // which has the affect of ensuring that any real binary op that |
| 237 | // follows within the parens binds more tightly to the operands than |
| 238 | // stuff outside of the parens. |
| 239 | pushNewNode(RBBINode::opLParen); |
| 240 | break; |
| 241 | |
| 242 | case doExprRParen: |
| 243 | fixOpStack(RBBINode::precLParen); |
| 244 | break; |
| 245 | |
| 246 | case doNOP: |
| 247 | break; |
| 248 | |
| 249 | case doStartAssign: |
| 250 | // We've just scanned "$variable = " |
| 251 | // The top of the node stack has the $variable ref node. |
| 252 | |
| 253 | // Save the start position of the RHS text in the StartExpression node |
| 254 | // that precedes the $variableReference node on the stack. |
| 255 | // This will eventually be used when saving the full $variable replacement |
| 256 | // text as a string. |
| 257 | n = fNodeStack[fNodeStackPtr-1]; |
| 258 | n->fFirstPos = fNextIndex; // move past the '=' |
| 259 | |
| 260 | // Push a new start-of-expression node; needed to keep parse of the |
| 261 | // RHS expression happy. |
| 262 | pushNewNode(RBBINode::opStart); |
| 263 | break; |
| 264 | |
| 265 | |
| 266 | |
| 267 | |
| 268 | case doEndAssign: |
| 269 | { |
| 270 | // We have reached the end of an assignement statement. |
| 271 | // Current scan char is the ';' that terminates the assignment. |
| 272 | |
| 273 | // Terminate expression, leaves expression parse tree rooted in TOS node. |
| 274 | fixOpStack(RBBINode::precStart); |
| 275 | |
| 276 | RBBINode *startExprNode = fNodeStack[fNodeStackPtr-2]; |
| 277 | RBBINode *varRefNode = fNodeStack[fNodeStackPtr-1]; |
| 278 | RBBINode *RHSExprNode = fNodeStack[fNodeStackPtr]; |
| 279 | |
| 280 | // Save original text of right side of assignment, excluding the terminating ';' |
| 281 | // in the root of the node for the right-hand-side expression. |
| 282 | RHSExprNode->fFirstPos = startExprNode->fFirstPos; |
| 283 | RHSExprNode->fLastPos = fScanIndex; |
| 284 | fRB->fRules.extractBetween(RHSExprNode->fFirstPos, RHSExprNode->fLastPos, RHSExprNode->fText); |
| 285 | |
| 286 | // Expression parse tree becomes l. child of the $variable reference node. |
| 287 | varRefNode->fLeftChild = RHSExprNode; |
| 288 | RHSExprNode->fParent = varRefNode; |
| 289 | |
| 290 | // Make a symbol table entry for the $variableRef node. |
| 291 | fSymbolTable->addEntry(varRefNode->fText, varRefNode, *fRB->fStatus); |
| 292 | if (U_FAILURE(*fRB->fStatus)) { |
| 293 | // This is a round-about way to get the parse position set |
| 294 | // so that duplicate symbols error messages include a line number. |
| 295 | UErrorCode t = *fRB->fStatus; |
| 296 | *fRB->fStatus = U_ZERO_ERROR; |
| 297 | error(t); |
| 298 | } |
| 299 | |
| 300 | // Clean up the stack. |
| 301 | delete startExprNode; |
| 302 | fNodeStackPtr-=3; |
| 303 | break; |
| 304 | } |
| 305 | |
| 306 | case doEndOfRule: |
| 307 | { |
| 308 | fixOpStack(RBBINode::precStart); // Terminate expression, leaves expression |
| 309 | if (U_FAILURE(*fRB->fStatus)) { // parse tree rooted in TOS node. |
| 310 | break; |
| 311 | } |
| 312 | #ifdef RBBI_DEBUG |
| 313 | if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "rtree")) {printNodeStack("end of rule");} |
| 314 | #endif |
| 315 | U_ASSERT(fNodeStackPtr == 1); |
| 316 | |
| 317 | // If this rule includes a look-ahead '/', add a endMark node to the |
| 318 | // expression tree. |
| 319 | if (fLookAheadRule) { |
| 320 | RBBINode *thisRule = fNodeStack[fNodeStackPtr]; |
| 321 | RBBINode *endNode = pushNewNode(RBBINode::endMark); |
| 322 | RBBINode *catNode = pushNewNode(RBBINode::opCat); |
| 323 | fNodeStackPtr -= 2; |
| 324 | catNode->fLeftChild = thisRule; |
| 325 | catNode->fRightChild = endNode; |
| 326 | fNodeStack[fNodeStackPtr] = catNode; |
| 327 | endNode->fVal = fRuleNum; |
| 328 | endNode->fLookAheadEnd = TRUE; |
| 329 | } |
| 330 | |
| 331 | // All rule expressions are ORed together. |
| 332 | // The ';' that terminates an expression really just functions as a '|' with |
| 333 | // a low operator prededence. |
| 334 | // |
| 335 | // Each of the four sets of rules are collected separately. |
| 336 | // (forward, reverse, safe_forward, safe_reverse) |
| 337 | // OR this rule into the appropriate group of them. |
| 338 | // |
| 339 | RBBINode **destRules = (fReverseRule? &fRB->fReverseTree : fRB->fDefaultTree); |
| 340 | |
| 341 | if (*destRules != NULL) { |
| 342 | // This is not the first rule encounted. |
| 343 | // OR previous stuff (from *destRules) |
| 344 | // with the current rule expression (on the Node Stack) |
| 345 | // with the resulting OR expression going to *destRules |
| 346 | // |
| 347 | RBBINode *thisRule = fNodeStack[fNodeStackPtr]; |
| 348 | RBBINode *prevRules = *destRules; |
| 349 | RBBINode *orNode = pushNewNode(RBBINode::opOr); |
| 350 | orNode->fLeftChild = prevRules; |
| 351 | prevRules->fParent = orNode; |
| 352 | orNode->fRightChild = thisRule; |
| 353 | thisRule->fParent = orNode; |
| 354 | *destRules = orNode; |
| 355 | } |
| 356 | else |
| 357 | { |
| 358 | // This is the first rule encountered (for this direction). |
| 359 | // Just move its parse tree from the stack to *destRules. |
| 360 | *destRules = fNodeStack[fNodeStackPtr]; |
| 361 | } |
| 362 | fReverseRule = FALSE; // in preparation for the next rule. |
| 363 | fLookAheadRule = FALSE; |
| 364 | fNodeStackPtr = 0; |
| 365 | } |
| 366 | break; |
| 367 | |
| 368 | |
| 369 | case doRuleError: |
| 370 | error(U_BRK_RULE_SYNTAX); |
| 371 | returnVal = FALSE; |
| 372 | break; |
| 373 | |
| 374 | |
| 375 | case doVariableNameExpectedErr: |
| 376 | error(U_BRK_RULE_SYNTAX); |
| 377 | break; |
| 378 | |
| 379 | |
| 380 | // |
| 381 | // Unary operands + ? * |
| 382 | // These all appear after the operand to which they apply. |
| 383 | // When we hit one, the operand (may be a whole sub expression) |
| 384 | // will be on the top of the stack. |
| 385 | // Unary Operator becomes TOS, with the old TOS as its one child. |
| 386 | case doUnaryOpPlus: |
| 387 | { |
| 388 | RBBINode *operandNode = fNodeStack[fNodeStackPtr--]; |
| 389 | RBBINode *plusNode = pushNewNode(RBBINode::opPlus); |
| 390 | plusNode->fLeftChild = operandNode; |
| 391 | operandNode->fParent = plusNode; |
| 392 | } |
| 393 | break; |
| 394 | |
| 395 | case doUnaryOpQuestion: |
| 396 | { |
| 397 | RBBINode *operandNode = fNodeStack[fNodeStackPtr--]; |
| 398 | RBBINode *qNode = pushNewNode(RBBINode::opQuestion); |
| 399 | qNode->fLeftChild = operandNode; |
| 400 | operandNode->fParent = qNode; |
| 401 | } |
| 402 | break; |
| 403 | |
| 404 | case doUnaryOpStar: |
| 405 | { |
| 406 | RBBINode *operandNode = fNodeStack[fNodeStackPtr--]; |
| 407 | RBBINode *starNode = pushNewNode(RBBINode::opStar); |
| 408 | starNode->fLeftChild = operandNode; |
| 409 | operandNode->fParent = starNode; |
| 410 | } |
| 411 | break; |
| 412 | |
| 413 | case doRuleChar: |
| 414 | // A "Rule Character" is any single character that is a literal part |
| 415 | // of the regular expression. Like a, b and c in the expression "(abc*) | [:L:]" |
| 416 | // These are pretty uncommon in break rules; the terms are more commonly |
| 417 | // sets. To keep things uniform, treat these characters like as |
| 418 | // sets that just happen to contain only one character. |
| 419 | { |
| 420 | n = pushNewNode(RBBINode::setRef); |
| 421 | findSetFor(UnicodeString(fC.fChar), n); |
| 422 | n->fFirstPos = fScanIndex; |
| 423 | n->fLastPos = fNextIndex; |
| 424 | fRB->fRules.extractBetween(n->fFirstPos, n->fLastPos, n->fText); |
| 425 | break; |
| 426 | } |
| 427 | |
| 428 | case doDotAny: |
| 429 | // scanned a ".", meaning match any single character. |
| 430 | { |
| 431 | n = pushNewNode(RBBINode::setRef); |
| 432 | findSetFor(UnicodeString(TRUE, kAny, 3), n); |
| 433 | n->fFirstPos = fScanIndex; |
| 434 | n->fLastPos = fNextIndex; |
| 435 | fRB->fRules.extractBetween(n->fFirstPos, n->fLastPos, n->fText); |
| 436 | break; |
| 437 | } |
| 438 | |
| 439 | case doSlash: |
| 440 | // Scanned a '/', which identifies a look-ahead break position in a rule. |
| 441 | n = pushNewNode(RBBINode::lookAhead); |
| 442 | n->fVal = fRuleNum; |
| 443 | n->fFirstPos = fScanIndex; |
| 444 | n->fLastPos = fNextIndex; |
| 445 | fRB->fRules.extractBetween(n->fFirstPos, n->fLastPos, n->fText); |
| 446 | fLookAheadRule = TRUE; |
| 447 | break; |
| 448 | |
| 449 | |
| 450 | case doStartTagValue: |
| 451 | // Scanned a '{', the opening delimiter for a tag value within a rule. |
| 452 | n = pushNewNode(RBBINode::tag); |
| 453 | n->fVal = 0; |
| 454 | n->fFirstPos = fScanIndex; |
| 455 | n->fLastPos = fNextIndex; |
| 456 | break; |
| 457 | |
| 458 | case doTagDigit: |
| 459 | // Just scanned a decimal digit that's part of a tag value |
| 460 | { |
| 461 | n = fNodeStack[fNodeStackPtr]; |
| 462 | uint32_t v = u_charDigitValue(fC.fChar); |
| 463 | U_ASSERT(v < 10); |
| 464 | n->fVal = n->fVal*10 + v; |
| 465 | break; |
| 466 | } |
| 467 | |
| 468 | case doTagValue: |
| 469 | n = fNodeStack[fNodeStackPtr]; |
| 470 | n->fLastPos = fNextIndex; |
| 471 | fRB->fRules.extractBetween(n->fFirstPos, n->fLastPos, n->fText); |
| 472 | break; |
| 473 | |
| 474 | case doTagExpectedError: |
| 475 | error(U_BRK_MALFORMED_RULE_TAG); |
| 476 | returnVal = FALSE; |
| 477 | break; |
| 478 | |
| 479 | case doOptionStart: |
| 480 | // Scanning a !!option. At the start of string. |
| 481 | fOptionStart = fScanIndex; |
| 482 | break; |
| 483 | |
| 484 | case doOptionEnd: |
| 485 | { |
| 486 | UnicodeString opt(fRB->fRules, fOptionStart, fScanIndex-fOptionStart); |
| 487 | if (opt == UNICODE_STRING("chain", 5)) { |
| 488 | fRB->fChainRules = TRUE; |
| 489 | } else if (opt == UNICODE_STRING("LBCMNoChain", 11)) { |
| 490 | fRB->fLBCMNoChain = TRUE; |
| 491 | } else if (opt == UNICODE_STRING("forward", 7)) { |
| 492 | fRB->fDefaultTree = &fRB->fForwardTree; |
| 493 | } else if (opt == UNICODE_STRING("reverse", 7)) { |
| 494 | fRB->fDefaultTree = &fRB->fReverseTree; |
| 495 | } else if (opt == UNICODE_STRING("safe_forward", 12)) { |
| 496 | fRB->fDefaultTree = &fRB->fSafeFwdTree; |
| 497 | } else if (opt == UNICODE_STRING("safe_reverse", 12)) { |
| 498 | fRB->fDefaultTree = &fRB->fSafeRevTree; |
| 499 | } else if (opt == UNICODE_STRING("lookAheadHardBreak", 18)) { |
| 500 | fRB->fLookAheadHardBreak = TRUE; |
| 501 | } else { |
| 502 | error(U_BRK_UNRECOGNIZED_OPTION); |
| 503 | } |
| 504 | } |
| 505 | break; |
| 506 | |
| 507 | case doReverseDir: |
| 508 | fReverseRule = TRUE; |
| 509 | break; |
| 510 | |
| 511 | case doStartVariableName: |
| 512 | n = pushNewNode(RBBINode::varRef); |
| 513 | if (U_FAILURE(*fRB->fStatus)) { |
| 514 | break; |
| 515 | } |
| 516 | n->fFirstPos = fScanIndex; |
| 517 | break; |
| 518 | |
| 519 | case doEndVariableName: |
| 520 | n = fNodeStack[fNodeStackPtr]; |
| 521 | if (n==NULL || n->fType != RBBINode::varRef) { |
| 522 | error(U_BRK_INTERNAL_ERROR); |
| 523 | break; |
| 524 | } |
| 525 | n->fLastPos = fScanIndex; |
| 526 | fRB->fRules.extractBetween(n->fFirstPos+1, n->fLastPos, n->fText); |
| 527 | // Look the newly scanned name up in the symbol table |
| 528 | // If there's an entry, set the l. child of the var ref to the replacement expression. |
| 529 | // (We also pass through here when scanning assignments, but no harm is done, other |
| 530 | // than a slight wasted effort that seems hard to avoid. Lookup will be null) |
| 531 | n->fLeftChild = fSymbolTable->lookupNode(n->fText); |
| 532 | break; |
| 533 | |
| 534 | case doCheckVarDef: |
| 535 | n = fNodeStack[fNodeStackPtr]; |
| 536 | if (n->fLeftChild == NULL) { |
| 537 | error(U_BRK_UNDEFINED_VARIABLE); |
| 538 | returnVal = FALSE; |
| 539 | } |
| 540 | break; |
| 541 | |
| 542 | case doExprFinished: |
| 543 | break; |
| 544 | |
| 545 | case doRuleErrorAssignExpr: |
| 546 | error(U_BRK_ASSIGN_ERROR); |
| 547 | returnVal = FALSE; |
| 548 | break; |
| 549 | |
| 550 | case doExit: |
| 551 | returnVal = FALSE; |
| 552 | break; |
| 553 | |
| 554 | case doScanUnicodeSet: |
| 555 | scanSet(); |
| 556 | break; |
| 557 | |
| 558 | default: |
| 559 | error(U_BRK_INTERNAL_ERROR); |
| 560 | returnVal = FALSE; |
| 561 | break; |
| 562 | } |
| 563 | return returnVal; |
| 564 | } |
| 565 | |
| 566 | |
| 567 | |
| 568 | |
| 569 | //------------------------------------------------------------------------------ |
| 570 | // |
| 571 | // Error Report a rule parse error. |
| 572 | // Only report it if no previous error has been recorded. |
| 573 | // |
| 574 | //------------------------------------------------------------------------------ |
| 575 | void RBBIRuleScanner::error(UErrorCode e) { |
| 576 | if (U_SUCCESS(*fRB->fStatus)) { |
| 577 | *fRB->fStatus = e; |
| 578 | if (fRB->fParseError) { |
| 579 | fRB->fParseError->line = fLineNum; |
| 580 | fRB->fParseError->offset = fCharNum; |
| 581 | fRB->fParseError->preContext[0] = 0; |
Jungshik Shin (jungshik at google) | 0f8746a | 2015-01-08 15:46:45 -0800 | [diff] [blame^] | 582 | fRB->fParseError->postContext[0] = 0; |
jshin@chromium.org | 6f31ac3 | 2014-03-26 22:15:14 +0000 | [diff] [blame] | 583 | } |
| 584 | } |
| 585 | } |
| 586 | |
| 587 | |
| 588 | |
| 589 | |
| 590 | //------------------------------------------------------------------------------ |
| 591 | // |
| 592 | // fixOpStack The parse stack holds partially assembled chunks of the parse tree. |
| 593 | // An entry on the stack may be as small as a single setRef node, |
| 594 | // or as large as the parse tree |
| 595 | // for an entire expression (this will be the one item left on the stack |
| 596 | // when the parsing of an RBBI rule completes. |
| 597 | // |
| 598 | // This function is called when a binary operator is encountered. |
| 599 | // It looks back up the stack for operators that are not yet associated |
| 600 | // with a right operand, and if the precedence of the stacked operator >= |
| 601 | // the precedence of the current operator, binds the operand left, |
| 602 | // to the previously encountered operator. |
| 603 | // |
| 604 | //------------------------------------------------------------------------------ |
| 605 | void RBBIRuleScanner::fixOpStack(RBBINode::OpPrecedence p) { |
| 606 | RBBINode *n; |
| 607 | // printNodeStack("entering fixOpStack()"); |
| 608 | for (;;) { |
| 609 | n = fNodeStack[fNodeStackPtr-1]; // an operator node |
| 610 | if (n->fPrecedence == 0) { |
| 611 | RBBIDebugPuts("RBBIRuleScanner::fixOpStack, bad operator node"); |
| 612 | error(U_BRK_INTERNAL_ERROR); |
| 613 | return; |
| 614 | } |
| 615 | |
| 616 | if (n->fPrecedence < p || n->fPrecedence <= RBBINode::precLParen) { |
| 617 | // The most recent operand goes with the current operator, |
| 618 | // not with the previously stacked one. |
| 619 | break; |
| 620 | } |
| 621 | // Stack operator is a binary op ( '|' or concatenation) |
| 622 | // TOS operand becomes right child of this operator. |
| 623 | // Resulting subexpression becomes the TOS operand. |
| 624 | n->fRightChild = fNodeStack[fNodeStackPtr]; |
| 625 | fNodeStack[fNodeStackPtr]->fParent = n; |
| 626 | fNodeStackPtr--; |
| 627 | // printNodeStack("looping in fixOpStack() "); |
| 628 | } |
| 629 | |
| 630 | if (p <= RBBINode::precLParen) { |
| 631 | // Scan is at a right paren or end of expression. |
| 632 | // The scanned item must match the stack, or else there was an error. |
| 633 | // Discard the left paren (or start expr) node from the stack, |
| 634 | // leaving the completed (sub)expression as TOS. |
| 635 | if (n->fPrecedence != p) { |
| 636 | // Right paren encountered matched start of expression node, or |
| 637 | // end of expression matched with a left paren node. |
| 638 | error(U_BRK_MISMATCHED_PAREN); |
| 639 | } |
| 640 | fNodeStack[fNodeStackPtr-1] = fNodeStack[fNodeStackPtr]; |
| 641 | fNodeStackPtr--; |
| 642 | // Delete the now-discarded LParen or Start node. |
| 643 | delete n; |
| 644 | } |
| 645 | // printNodeStack("leaving fixOpStack()"); |
| 646 | } |
| 647 | |
| 648 | |
| 649 | |
| 650 | |
| 651 | //------------------------------------------------------------------------------ |
| 652 | // |
| 653 | // findSetFor given a UnicodeString, |
| 654 | // - find the corresponding Unicode Set (uset node) |
| 655 | // (create one if necessary) |
| 656 | // - Set fLeftChild of the caller's node (should be a setRef node) |
| 657 | // to the uset node |
| 658 | // Maintain a hash table of uset nodes, so the same one is always used |
| 659 | // for the same string. |
| 660 | // If a "to adopt" set is provided and we haven't seen this key before, |
| 661 | // add the provided set to the hash table. |
| 662 | // If the string is one (32 bit) char in length, the set contains |
| 663 | // just one element which is the char in question. |
| 664 | // If the string is "any", return a set containing all chars. |
| 665 | // |
| 666 | //------------------------------------------------------------------------------ |
| 667 | void RBBIRuleScanner::findSetFor(const UnicodeString &s, RBBINode *node, UnicodeSet *setToAdopt) { |
| 668 | |
| 669 | RBBISetTableEl *el; |
| 670 | |
| 671 | // First check whether we've already cached a set for this string. |
| 672 | // If so, just use the cached set in the new node. |
| 673 | // delete any set provided by the caller, since we own it. |
| 674 | el = (RBBISetTableEl *)uhash_get(fSetTable, &s); |
| 675 | if (el != NULL) { |
| 676 | delete setToAdopt; |
| 677 | node->fLeftChild = el->val; |
| 678 | U_ASSERT(node->fLeftChild->fType == RBBINode::uset); |
| 679 | return; |
| 680 | } |
| 681 | |
| 682 | // Haven't seen this set before. |
| 683 | // If the caller didn't provide us with a prebuilt set, |
| 684 | // create a new UnicodeSet now. |
| 685 | if (setToAdopt == NULL) { |
| 686 | if (s.compare(kAny, -1) == 0) { |
| 687 | setToAdopt = new UnicodeSet(0x000000, 0x10ffff); |
| 688 | } else { |
| 689 | UChar32 c; |
| 690 | c = s.char32At(0); |
| 691 | setToAdopt = new UnicodeSet(c, c); |
| 692 | } |
| 693 | } |
| 694 | |
| 695 | // |
| 696 | // Make a new uset node to refer to this UnicodeSet |
| 697 | // This new uset node becomes the child of the caller's setReference node. |
| 698 | // |
| 699 | RBBINode *usetNode = new RBBINode(RBBINode::uset); |
| 700 | if (usetNode == NULL) { |
| 701 | error(U_MEMORY_ALLOCATION_ERROR); |
| 702 | return; |
| 703 | } |
| 704 | usetNode->fInputSet = setToAdopt; |
| 705 | usetNode->fParent = node; |
| 706 | node->fLeftChild = usetNode; |
| 707 | usetNode->fText = s; |
| 708 | |
| 709 | |
| 710 | // |
| 711 | // Add the new uset node to the list of all uset nodes. |
| 712 | // |
| 713 | fRB->fUSetNodes->addElement(usetNode, *fRB->fStatus); |
| 714 | |
| 715 | |
| 716 | // |
| 717 | // Add the new set to the set hash table. |
| 718 | // |
| 719 | el = (RBBISetTableEl *)uprv_malloc(sizeof(RBBISetTableEl)); |
| 720 | UnicodeString *tkey = new UnicodeString(s); |
| 721 | if (tkey == NULL || el == NULL || setToAdopt == NULL) { |
| 722 | // Delete to avoid memory leak |
| 723 | delete tkey; |
| 724 | tkey = NULL; |
| 725 | uprv_free(el); |
| 726 | el = NULL; |
| 727 | delete setToAdopt; |
| 728 | setToAdopt = NULL; |
| 729 | |
| 730 | error(U_MEMORY_ALLOCATION_ERROR); |
| 731 | return; |
| 732 | } |
| 733 | el->key = tkey; |
| 734 | el->val = usetNode; |
| 735 | uhash_put(fSetTable, el->key, el, fRB->fStatus); |
| 736 | |
| 737 | return; |
| 738 | } |
| 739 | |
| 740 | |
| 741 | |
| 742 | // |
| 743 | // Assorted Unicode character constants. |
| 744 | // Numeric because there is no portable way to enter them as literals. |
| 745 | // (Think EBCDIC). |
| 746 | // |
| 747 | static const UChar chCR = 0x0d; // New lines, for terminating comments. |
| 748 | static const UChar chLF = 0x0a; |
| 749 | static const UChar chNEL = 0x85; // NEL newline variant |
| 750 | static const UChar chLS = 0x2028; // Unicode Line Separator |
| 751 | static const UChar chApos = 0x27; // single quote, for quoted chars. |
| 752 | static const UChar chPound = 0x23; // '#', introduces a comment. |
| 753 | static const UChar chBackSlash = 0x5c; // '\' introduces a char escape |
| 754 | static const UChar chLParen = 0x28; |
| 755 | static const UChar chRParen = 0x29; |
| 756 | |
| 757 | |
| 758 | //------------------------------------------------------------------------------ |
| 759 | // |
| 760 | // stripRules Return a rules string without unnecessary |
| 761 | // characters. |
| 762 | // |
| 763 | //------------------------------------------------------------------------------ |
| 764 | UnicodeString RBBIRuleScanner::stripRules(const UnicodeString &rules) { |
| 765 | UnicodeString strippedRules; |
| 766 | int rulesLength = rules.length(); |
| 767 | for (int idx = 0; idx < rulesLength; ) { |
| 768 | UChar ch = rules[idx++]; |
| 769 | if (ch == chPound) { |
| 770 | while (idx < rulesLength |
| 771 | && ch != chCR && ch != chLF && ch != chNEL) |
| 772 | { |
| 773 | ch = rules[idx++]; |
| 774 | } |
| 775 | } |
| 776 | if (!u_isISOControl(ch)) { |
| 777 | strippedRules.append(ch); |
| 778 | } |
| 779 | } |
| 780 | // strippedRules = strippedRules.unescape(); |
| 781 | return strippedRules; |
| 782 | } |
| 783 | |
| 784 | |
| 785 | //------------------------------------------------------------------------------ |
| 786 | // |
| 787 | // nextCharLL Low Level Next Char from rule input source. |
| 788 | // Get a char from the input character iterator, |
| 789 | // keep track of input position for error reporting. |
| 790 | // |
| 791 | //------------------------------------------------------------------------------ |
| 792 | UChar32 RBBIRuleScanner::nextCharLL() { |
| 793 | UChar32 ch; |
| 794 | |
| 795 | if (fNextIndex >= fRB->fRules.length()) { |
| 796 | return (UChar32)-1; |
| 797 | } |
| 798 | ch = fRB->fRules.char32At(fNextIndex); |
| 799 | fNextIndex = fRB->fRules.moveIndex32(fNextIndex, 1); |
| 800 | |
| 801 | if (ch == chCR || |
| 802 | ch == chNEL || |
| 803 | ch == chLS || |
| 804 | (ch == chLF && fLastChar != chCR)) { |
| 805 | // Character is starting a new line. Bump up the line number, and |
| 806 | // reset the column to 0. |
| 807 | fLineNum++; |
| 808 | fCharNum=0; |
| 809 | if (fQuoteMode) { |
| 810 | error(U_BRK_NEW_LINE_IN_QUOTED_STRING); |
| 811 | fQuoteMode = FALSE; |
| 812 | } |
| 813 | } |
| 814 | else { |
| 815 | // Character is not starting a new line. Except in the case of a |
| 816 | // LF following a CR, increment the column position. |
| 817 | if (ch != chLF) { |
| 818 | fCharNum++; |
| 819 | } |
| 820 | } |
| 821 | fLastChar = ch; |
| 822 | return ch; |
| 823 | } |
| 824 | |
| 825 | |
| 826 | //------------------------------------------------------------------------------ |
| 827 | // |
| 828 | // nextChar for rules scanning. At this level, we handle stripping |
| 829 | // out comments and processing backslash character escapes. |
| 830 | // The rest of the rules grammar is handled at the next level up. |
| 831 | // |
| 832 | //------------------------------------------------------------------------------ |
| 833 | void RBBIRuleScanner::nextChar(RBBIRuleChar &c) { |
| 834 | |
| 835 | // Unicode Character constants needed for the processing done by nextChar(), |
| 836 | // in hex because literals wont work on EBCDIC machines. |
| 837 | |
| 838 | fScanIndex = fNextIndex; |
| 839 | c.fChar = nextCharLL(); |
| 840 | c.fEscaped = FALSE; |
| 841 | |
| 842 | // |
| 843 | // check for '' sequence. |
| 844 | // These are recognized in all contexts, whether in quoted text or not. |
| 845 | // |
| 846 | if (c.fChar == chApos) { |
| 847 | if (fRB->fRules.char32At(fNextIndex) == chApos) { |
| 848 | c.fChar = nextCharLL(); // get nextChar officially so character counts |
| 849 | c.fEscaped = TRUE; // stay correct. |
| 850 | } |
| 851 | else |
| 852 | { |
| 853 | // Single quote, by itself. |
| 854 | // Toggle quoting mode. |
| 855 | // Return either '(' or ')', because quotes cause a grouping of the quoted text. |
| 856 | fQuoteMode = !fQuoteMode; |
| 857 | if (fQuoteMode == TRUE) { |
| 858 | c.fChar = chLParen; |
| 859 | } else { |
| 860 | c.fChar = chRParen; |
| 861 | } |
| 862 | c.fEscaped = FALSE; // The paren that we return is not escaped. |
| 863 | return; |
| 864 | } |
| 865 | } |
| 866 | |
| 867 | if (fQuoteMode) { |
| 868 | c.fEscaped = TRUE; |
| 869 | } |
| 870 | else |
| 871 | { |
| 872 | // We are not in a 'quoted region' of the source. |
| 873 | // |
| 874 | if (c.fChar == chPound) { |
| 875 | // Start of a comment. Consume the rest of it. |
| 876 | // The new-line char that terminates the comment is always returned. |
| 877 | // It will be treated as white-space, and serves to break up anything |
| 878 | // that might otherwise incorrectly clump together with a comment in |
| 879 | // the middle (a variable name, for example.) |
| 880 | for (;;) { |
| 881 | c.fChar = nextCharLL(); |
| 882 | if (c.fChar == (UChar32)-1 || // EOF |
| 883 | c.fChar == chCR || |
| 884 | c.fChar == chLF || |
| 885 | c.fChar == chNEL || |
| 886 | c.fChar == chLS) {break;} |
| 887 | } |
| 888 | } |
| 889 | if (c.fChar == (UChar32)-1) { |
| 890 | return; |
| 891 | } |
| 892 | |
| 893 | // |
| 894 | // check for backslash escaped characters. |
| 895 | // Use UnicodeString::unescapeAt() to handle them. |
| 896 | // |
| 897 | if (c.fChar == chBackSlash) { |
| 898 | c.fEscaped = TRUE; |
| 899 | int32_t startX = fNextIndex; |
| 900 | c.fChar = fRB->fRules.unescapeAt(fNextIndex); |
| 901 | if (fNextIndex == startX) { |
| 902 | error(U_BRK_HEX_DIGITS_EXPECTED); |
| 903 | } |
| 904 | fCharNum += fNextIndex-startX; |
| 905 | } |
| 906 | } |
| 907 | // putc(c.fChar, stdout); |
| 908 | } |
| 909 | |
| 910 | //------------------------------------------------------------------------------ |
| 911 | // |
| 912 | // Parse RBBI rules. The state machine for rules parsing is here. |
| 913 | // The state tables are hand-written in the file rbbirpt.txt, |
| 914 | // and converted to the form used here by a perl |
| 915 | // script rbbicst.pl |
| 916 | // |
| 917 | //------------------------------------------------------------------------------ |
| 918 | void RBBIRuleScanner::parse() { |
| 919 | uint16_t state; |
| 920 | const RBBIRuleTableEl *tableEl; |
| 921 | |
| 922 | if (U_FAILURE(*fRB->fStatus)) { |
| 923 | return; |
| 924 | } |
| 925 | |
| 926 | state = 1; |
| 927 | nextChar(fC); |
| 928 | // |
| 929 | // Main loop for the rule parsing state machine. |
| 930 | // Runs once per state transition. |
| 931 | // Each time through optionally performs, depending on the state table, |
| 932 | // - an advance to the the next input char |
| 933 | // - an action to be performed. |
| 934 | // - pushing or popping a state to/from the local state return stack. |
| 935 | // |
| 936 | for (;;) { |
| 937 | // Bail out if anything has gone wrong. |
| 938 | // RBBI rule file parsing stops on the first error encountered. |
| 939 | if (U_FAILURE(*fRB->fStatus)) { |
| 940 | break; |
| 941 | } |
| 942 | |
| 943 | // Quit if state == 0. This is the normal way to exit the state machine. |
| 944 | // |
| 945 | if (state == 0) { |
| 946 | break; |
| 947 | } |
| 948 | |
| 949 | // Find the state table element that matches the input char from the rule, or the |
| 950 | // class of the input character. Start with the first table row for this |
| 951 | // state, then linearly scan forward until we find a row that matches the |
| 952 | // character. The last row for each state always matches all characters, so |
| 953 | // the search will stop there, if not before. |
| 954 | // |
| 955 | tableEl = &gRuleParseStateTable[state]; |
| 956 | #ifdef RBBI_DEBUG |
| 957 | if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "scan")) { |
| 958 | RBBIDebugPrintf("char, line, col = (\'%c\', %d, %d) state=%s ", |
| 959 | fC.fChar, fLineNum, fCharNum, RBBIRuleStateNames[state]); |
| 960 | } |
| 961 | #endif |
| 962 | |
| 963 | for (;;) { |
| 964 | #ifdef RBBI_DEBUG |
| 965 | if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "scan")) { RBBIDebugPrintf(".");} |
| 966 | #endif |
| 967 | if (tableEl->fCharClass < 127 && fC.fEscaped == FALSE && tableEl->fCharClass == fC.fChar) { |
| 968 | // Table row specified an individual character, not a set, and |
| 969 | // the input character is not escaped, and |
| 970 | // the input character matched it. |
| 971 | break; |
| 972 | } |
| 973 | if (tableEl->fCharClass == 255) { |
| 974 | // Table row specified default, match anything character class. |
| 975 | break; |
| 976 | } |
| 977 | if (tableEl->fCharClass == 254 && fC.fEscaped) { |
| 978 | // Table row specified "escaped" and the char was escaped. |
| 979 | break; |
| 980 | } |
| 981 | if (tableEl->fCharClass == 253 && fC.fEscaped && |
| 982 | (fC.fChar == 0x50 || fC.fChar == 0x70 )) { |
| 983 | // Table row specified "escaped P" and the char is either 'p' or 'P'. |
| 984 | break; |
| 985 | } |
| 986 | if (tableEl->fCharClass == 252 && fC.fChar == (UChar32)-1) { |
| 987 | // Table row specified eof and we hit eof on the input. |
| 988 | break; |
| 989 | } |
| 990 | |
| 991 | if (tableEl->fCharClass >= 128 && tableEl->fCharClass < 240 && // Table specs a char class && |
| 992 | fC.fEscaped == FALSE && // char is not escaped && |
| 993 | fC.fChar != (UChar32)-1) { // char is not EOF |
Jungshik Shin (jungshik at google) | 0f8746a | 2015-01-08 15:46:45 -0800 | [diff] [blame^] | 994 | U_ASSERT((tableEl->fCharClass-128) < UPRV_LENGTHOF(fRuleSets)); |
jshin@chromium.org | 6f31ac3 | 2014-03-26 22:15:14 +0000 | [diff] [blame] | 995 | if (fRuleSets[tableEl->fCharClass-128].contains(fC.fChar)) { |
| 996 | // Table row specified a character class, or set of characters, |
| 997 | // and the current char matches it. |
| 998 | break; |
| 999 | } |
| 1000 | } |
| 1001 | |
| 1002 | // No match on this row, advance to the next row for this state, |
| 1003 | tableEl++; |
| 1004 | } |
| 1005 | if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "scan")) { RBBIDebugPuts("");} |
| 1006 | |
| 1007 | // |
| 1008 | // We've found the row of the state table that matches the current input |
| 1009 | // character from the rules string. |
| 1010 | // Perform any action specified by this row in the state table. |
| 1011 | if (doParseActions((int32_t)tableEl->fAction) == FALSE) { |
| 1012 | // Break out of the state machine loop if the |
| 1013 | // the action signalled some kind of error, or |
| 1014 | // the action was to exit, occurs on normal end-of-rules-input. |
| 1015 | break; |
| 1016 | } |
| 1017 | |
| 1018 | if (tableEl->fPushState != 0) { |
| 1019 | fStackPtr++; |
| 1020 | if (fStackPtr >= kStackSize) { |
| 1021 | error(U_BRK_INTERNAL_ERROR); |
| 1022 | RBBIDebugPuts("RBBIRuleScanner::parse() - state stack overflow."); |
| 1023 | fStackPtr--; |
| 1024 | } |
| 1025 | fStack[fStackPtr] = tableEl->fPushState; |
| 1026 | } |
| 1027 | |
| 1028 | if (tableEl->fNextChar) { |
| 1029 | nextChar(fC); |
| 1030 | } |
| 1031 | |
| 1032 | // Get the next state from the table entry, or from the |
| 1033 | // state stack if the next state was specified as "pop". |
| 1034 | if (tableEl->fNextState != 255) { |
| 1035 | state = tableEl->fNextState; |
| 1036 | } else { |
| 1037 | state = fStack[fStackPtr]; |
| 1038 | fStackPtr--; |
| 1039 | if (fStackPtr < 0) { |
| 1040 | error(U_BRK_INTERNAL_ERROR); |
| 1041 | RBBIDebugPuts("RBBIRuleScanner::parse() - state stack underflow."); |
| 1042 | fStackPtr++; |
| 1043 | } |
| 1044 | } |
| 1045 | |
| 1046 | } |
| 1047 | |
| 1048 | // |
| 1049 | // If there were NO user specified reverse rules, set up the equivalent of ".*;" |
| 1050 | // |
| 1051 | if (fRB->fReverseTree == NULL) { |
| 1052 | fRB->fReverseTree = pushNewNode(RBBINode::opStar); |
| 1053 | RBBINode *operand = pushNewNode(RBBINode::setRef); |
| 1054 | findSetFor(UnicodeString(TRUE, kAny, 3), operand); |
| 1055 | fRB->fReverseTree->fLeftChild = operand; |
| 1056 | operand->fParent = fRB->fReverseTree; |
| 1057 | fNodeStackPtr -= 2; |
| 1058 | } |
| 1059 | |
| 1060 | |
| 1061 | // |
| 1062 | // Parsing of the input RBBI rules is complete. |
| 1063 | // We now have a parse tree for the rule expressions |
| 1064 | // and a list of all UnicodeSets that are referenced. |
| 1065 | // |
| 1066 | #ifdef RBBI_DEBUG |
| 1067 | if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "symbols")) {fSymbolTable->rbbiSymtablePrint();} |
| 1068 | if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "ptree")) |
| 1069 | { |
| 1070 | RBBIDebugPrintf("Completed Forward Rules Parse Tree...\n"); |
| 1071 | fRB->fForwardTree->printTree(TRUE); |
| 1072 | RBBIDebugPrintf("\nCompleted Reverse Rules Parse Tree...\n"); |
| 1073 | fRB->fReverseTree->printTree(TRUE); |
| 1074 | RBBIDebugPrintf("\nCompleted Safe Point Forward Rules Parse Tree...\n"); |
| 1075 | fRB->fSafeFwdTree->printTree(TRUE); |
| 1076 | RBBIDebugPrintf("\nCompleted Safe Point Reverse Rules Parse Tree...\n"); |
| 1077 | fRB->fSafeRevTree->printTree(TRUE); |
| 1078 | } |
| 1079 | #endif |
| 1080 | } |
| 1081 | |
| 1082 | |
| 1083 | //------------------------------------------------------------------------------ |
| 1084 | // |
| 1085 | // printNodeStack for debugging... |
| 1086 | // |
| 1087 | //------------------------------------------------------------------------------ |
| 1088 | #ifdef RBBI_DEBUG |
| 1089 | void RBBIRuleScanner::printNodeStack(const char *title) { |
| 1090 | int i; |
| 1091 | RBBIDebugPrintf("%s. Dumping node stack...\n", title); |
| 1092 | for (i=fNodeStackPtr; i>0; i--) {fNodeStack[i]->printTree(TRUE);} |
| 1093 | } |
| 1094 | #endif |
| 1095 | |
| 1096 | |
| 1097 | |
| 1098 | |
| 1099 | //------------------------------------------------------------------------------ |
| 1100 | // |
| 1101 | // pushNewNode create a new RBBINode of the specified type and push it |
| 1102 | // onto the stack of nodes. |
| 1103 | // |
| 1104 | //------------------------------------------------------------------------------ |
| 1105 | RBBINode *RBBIRuleScanner::pushNewNode(RBBINode::NodeType t) { |
| 1106 | fNodeStackPtr++; |
| 1107 | if (fNodeStackPtr >= kStackSize) { |
| 1108 | error(U_BRK_INTERNAL_ERROR); |
| 1109 | RBBIDebugPuts("RBBIRuleScanner::pushNewNode - stack overflow."); |
| 1110 | *fRB->fStatus = U_BRK_INTERNAL_ERROR; |
| 1111 | return NULL; |
| 1112 | } |
| 1113 | fNodeStack[fNodeStackPtr] = new RBBINode(t); |
| 1114 | if (fNodeStack[fNodeStackPtr] == NULL) { |
| 1115 | *fRB->fStatus = U_MEMORY_ALLOCATION_ERROR; |
| 1116 | } |
| 1117 | return fNodeStack[fNodeStackPtr]; |
| 1118 | } |
| 1119 | |
| 1120 | |
| 1121 | |
| 1122 | //------------------------------------------------------------------------------ |
| 1123 | // |
| 1124 | // scanSet Construct a UnicodeSet from the text at the current scan |
| 1125 | // position. Advance the scan position to the first character |
| 1126 | // after the set. |
| 1127 | // |
| 1128 | // A new RBBI setref node referring to the set is pushed onto the node |
| 1129 | // stack. |
| 1130 | // |
| 1131 | // The scan position is normally under the control of the state machine |
| 1132 | // that controls rule parsing. UnicodeSets, however, are parsed by |
| 1133 | // the UnicodeSet constructor, not by the RBBI rule parser. |
| 1134 | // |
| 1135 | //------------------------------------------------------------------------------ |
| 1136 | void RBBIRuleScanner::scanSet() { |
| 1137 | UnicodeSet *uset; |
| 1138 | ParsePosition pos; |
| 1139 | int startPos; |
| 1140 | int i; |
| 1141 | |
| 1142 | if (U_FAILURE(*fRB->fStatus)) { |
| 1143 | return; |
| 1144 | } |
| 1145 | |
| 1146 | pos.setIndex(fScanIndex); |
| 1147 | startPos = fScanIndex; |
| 1148 | UErrorCode localStatus = U_ZERO_ERROR; |
| 1149 | uset = new UnicodeSet(); |
| 1150 | if (uset == NULL) { |
| 1151 | localStatus = U_MEMORY_ALLOCATION_ERROR; |
| 1152 | } else { |
| 1153 | uset->applyPatternIgnoreSpace(fRB->fRules, pos, fSymbolTable, localStatus); |
| 1154 | } |
| 1155 | if (U_FAILURE(localStatus)) { |
| 1156 | // TODO: Get more accurate position of the error from UnicodeSet's return info. |
| 1157 | // UnicodeSet appears to not be reporting correctly at this time. |
| 1158 | #ifdef RBBI_DEBUG |
| 1159 | RBBIDebugPrintf("UnicodeSet parse postion.ErrorIndex = %d\n", pos.getIndex()); |
| 1160 | #endif |
| 1161 | error(localStatus); |
| 1162 | delete uset; |
| 1163 | return; |
| 1164 | } |
| 1165 | |
| 1166 | // Verify that the set contains at least one code point. |
| 1167 | // |
| 1168 | U_ASSERT(uset!=NULL); |
| 1169 | if (uset->isEmpty()) { |
| 1170 | // This set is empty. |
| 1171 | // Make it an error, because it almost certainly is not what the user wanted. |
| 1172 | // Also, avoids having to think about corner cases in the tree manipulation code |
| 1173 | // that occurs later on. |
| 1174 | error(U_BRK_RULE_EMPTY_SET); |
| 1175 | delete uset; |
| 1176 | return; |
| 1177 | } |
| 1178 | |
| 1179 | |
| 1180 | // Advance the RBBI parse postion over the UnicodeSet pattern. |
| 1181 | // Don't just set fScanIndex because the line/char positions maintained |
| 1182 | // for error reporting would be thrown off. |
| 1183 | i = pos.getIndex(); |
| 1184 | for (;;) { |
| 1185 | if (fNextIndex >= i) { |
| 1186 | break; |
| 1187 | } |
| 1188 | nextCharLL(); |
| 1189 | } |
| 1190 | |
| 1191 | if (U_SUCCESS(*fRB->fStatus)) { |
| 1192 | RBBINode *n; |
| 1193 | |
| 1194 | n = pushNewNode(RBBINode::setRef); |
| 1195 | n->fFirstPos = startPos; |
| 1196 | n->fLastPos = fNextIndex; |
| 1197 | fRB->fRules.extractBetween(n->fFirstPos, n->fLastPos, n->fText); |
| 1198 | // findSetFor() serves several purposes here: |
| 1199 | // - Adopts storage for the UnicodeSet, will be responsible for deleting. |
| 1200 | // - Mantains collection of all sets in use, needed later for establishing |
| 1201 | // character categories for run time engine. |
| 1202 | // - Eliminates mulitiple instances of the same set. |
| 1203 | // - Creates a new uset node if necessary (if this isn't a duplicate.) |
| 1204 | findSetFor(n->fText, n, uset); |
| 1205 | } |
| 1206 | |
| 1207 | } |
| 1208 | |
| 1209 | U_NAMESPACE_END |
| 1210 | |
| 1211 | #endif /* #if !UCONFIG_NO_BREAK_ITERATION */ |