blob: 40ae790c17c13fe4a4f364b6fd17834bedefa271 [file] [log] [blame]
Adam Langley95c29f32014-06-20 12:00:00 -07001/* Copyright (C) 1995-1997 Eric Young (eay@cryptsoft.com)
2 * All rights reserved.
3 *
4 * This package is an SSL implementation written
5 * by Eric Young (eay@cryptsoft.com).
6 * The implementation was written so as to conform with Netscapes SSL.
7 *
8 * This library is free for commercial and non-commercial use as long as
9 * the following conditions are aheared to. The following conditions
10 * apply to all code found in this distribution, be it the RC4, RSA,
11 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
12 * included with this distribution is covered by the same copyright terms
13 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
14 *
15 * Copyright remains Eric Young's, and as such any Copyright notices in
16 * the code are not to be removed.
17 * If this package is used in a product, Eric Young should be given attribution
18 * as the author of the parts of the library used.
19 * This can be in the form of a textual message at program startup or
20 * in documentation (online or textual) provided with the package.
21 *
22 * Redistribution and use in source and binary forms, with or without
23 * modification, are permitted provided that the following conditions
24 * are met:
25 * 1. Redistributions of source code must retain the copyright
26 * notice, this list of conditions and the following disclaimer.
27 * 2. Redistributions in binary form must reproduce the above copyright
28 * notice, this list of conditions and the following disclaimer in the
29 * documentation and/or other materials provided with the distribution.
30 * 3. All advertising materials mentioning features or use of this software
31 * must display the following acknowledgement:
32 * "This product includes cryptographic software written by
33 * Eric Young (eay@cryptsoft.com)"
34 * The word 'cryptographic' can be left out if the rouines from the library
35 * being used are not cryptographic related :-).
36 * 4. If you include any Windows specific code (or a derivative thereof) from
37 * the apps directory (application code) you must include an acknowledgement:
38 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
39 *
40 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50 * SUCH DAMAGE.
51 *
52 * The licence and distribution terms for any publically available version or
53 * derivative of this code cannot be changed. i.e. this code cannot simply be
54 * copied and put under another distribution licence
55 * [including the GNU Public Licence.]
56 */
57/* ====================================================================
58 * Copyright (c) 1998-2006 The OpenSSL Project. All rights reserved.
59 *
60 * Redistribution and use in source and binary forms, with or without
61 * modification, are permitted provided that the following conditions
62 * are met:
63 *
64 * 1. Redistributions of source code must retain the above copyright
65 * notice, this list of conditions and the following disclaimer.
66 *
67 * 2. Redistributions in binary form must reproduce the above copyright
68 * notice, this list of conditions and the following disclaimer in
69 * the documentation and/or other materials provided with the
70 * distribution.
71 *
72 * 3. All advertising materials mentioning features or use of this
73 * software must display the following acknowledgment:
74 * "This product includes software developed by the OpenSSL Project
75 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
76 *
77 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
78 * endorse or promote products derived from this software without
79 * prior written permission. For written permission, please contact
80 * openssl-core@openssl.org.
81 *
82 * 5. Products derived from this software may not be called "OpenSSL"
83 * nor may "OpenSSL" appear in their names without prior written
84 * permission of the OpenSSL Project.
85 *
86 * 6. Redistributions of any form whatsoever must retain the following
87 * acknowledgment:
88 * "This product includes software developed by the OpenSSL Project
89 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
90 *
91 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
92 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
93 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
94 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
95 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
96 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
97 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
98 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
99 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
100 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
101 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
102 * OF THE POSSIBILITY OF SUCH DAMAGE.
103 * ====================================================================
104 *
105 * This product includes cryptographic software written by Eric Young
106 * (eay@cryptsoft.com). This product includes software written by Tim
107 * Hudson (tjh@cryptsoft.com).
108 *
109 */
110/* ====================================================================
111 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
112 *
113 * Portions of the attached software ("Contribution") are developed by
114 * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project.
115 *
116 * The Contribution is licensed pursuant to the Eric Young open source
117 * license provided above.
118 *
119 * The binary polynomial arithmetic software is originally written by
120 * Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems
121 * Laboratories. */
122
123#ifndef OPENSSL_HEADER_BN_H
124#define OPENSSL_HEADER_BN_H
125
126#include <openssl/base.h>
127
128#include <stdio.h> /* for FILE* */
129
130#if defined(__cplusplus)
131extern "C" {
132#endif
133
134
135/* BN provides support for working with arbitary sized integers. For example,
136 * although the largest integer supported by the compiler might be 64 bits, BN
137 * will allow you to work with numbers until you run out of memory. */
138
139
140/* BN_ULONG is the native word size when working with big integers. */
141#if defined(OPENSSL_64_BIT)
142#define BN_ULONG uint64_t
143#define BN_BITS2 64
144#elif defined(OPENSSL_32_BIT)
145#define BN_ULONG uint32_t
146#define BN_BITS2 32
147#else
148#error "Must define either OPENSSL_32_BIT or OPENSSL_64_BIT"
149#endif
150
151
152/* Allocation and freeing. */
153
154/* BN_new creates a new, allocated BIGNUM and initialises it. */
155BIGNUM *BN_new(void);
156
157/* BN_init initialises a stack allocated |BIGNUM|. */
158void BN_init(BIGNUM *bn);
159
160/* BN_free frees the data referenced by |bn| and, if |bn| was originally
161 * allocated on the heap, frees |bn| also. */
162void BN_free(BIGNUM *bn);
163
164/* BN_clear_free erases and frees the data referenced by |bn| and, if |bn| was
165 * originally allocated on the heap, frees |bn| also. */
166void BN_clear_free(BIGNUM *bn);
167
168/* BN_dup allocates a new BIGNUM and sets it equal to |src|. It returns the
169 * allocated BIGNUM on success or NULL otherwise. */
170BIGNUM *BN_dup(const BIGNUM *src);
171
172/* BN_copy sets |dest| equal to |src| and returns |dest|. */
173BIGNUM *BN_copy(BIGNUM *dest, const BIGNUM *src);
174
175/* BN_clear sets |bn| to zero and erases the old data. */
176void BN_clear(BIGNUM *bn);
177
178/* BN_value_one returns a static BIGNUM with value 1. */
179const BIGNUM *BN_value_one(void);
180
181/* BN_with_flags initialises a stack allocated |BIGNUM| with pointers to the
182 * contents of |in| but with |flags| ORed into the flags field.
183 *
184 * Note: the two BIGNUMs share state and so |out| should /not/ be passed to
185 * |BN_free|. */
186void BN_with_flags(BIGNUM *out, const BIGNUM *in, int flags);
187
188
189/* Basic functions. */
190
191/* BN_num_bits returns the minimum number of bits needed to represent the
192 * absolute value of |bn|. */
193unsigned BN_num_bits(const BIGNUM *bn);
194
195/* BN_num_bytes returns the minimum number of bytes needed to represent the
196 * absolute value of |bn|. */
197unsigned BN_num_bytes(const BIGNUM *bn);
198
199/* BN_zero sets |bn| to zero. */
200void BN_zero(BIGNUM *bn);
201
202/* BN_one sets |bn| to one. It returns one on success or zero on allocation
203 * failure. */
204int BN_one(BIGNUM *bn);
205
206/* BN_set_word sets |bn| to |value|. It returns one on success or zero on
207 * allocation failure. */
208int BN_set_word(BIGNUM *bn, BN_ULONG value);
209
210/* BN_set_negative sets the sign of |bn|. */
211void BN_set_negative(BIGNUM *bn, int sign);
212
213/* BN_is_negative returns one if |bn| is negative and zero otherwise. */
214int BN_is_negative(const BIGNUM *bn);
215
216/* BN_get_flags returns |bn->flags| & |flags|. */
217int BN_get_flags(const BIGNUM *bn, int flags);
218
219/* BN_set_flags sets |flags| on |bn|. */
220void BN_set_flags(BIGNUM *bn, int flags);
221
222
223/* Conversion functions. */
224
225/* BN_bin2bn sets |*ret| to the value of |len| bytes from |in|, interpreted as
226 * a big-endian number, and returns |ret|. If |ret| is NULL then a fresh
227 * |BIGNUM| is allocated and returned. It returns NULL on allocation
228 * failure. */
229BIGNUM *BN_bin2bn(const uint8_t *in, size_t len, BIGNUM *ret);
230
231/* BN_bn2bin serialises the absolute value of |in| to |out| as a big-endian
232 * integer, which must have |BN_num_bytes| of space available. It returns the
233 * number of bytes written. */
234size_t BN_bn2bin(const BIGNUM *in, uint8_t *out);
235
236/* BN_bn2hex returns an allocated string that contains a NUL-terminated, hex
237 * representation of |bn|. If |bn| is negative, the first char in the resulting
238 * string will be '-'. Returns NULL on allocation failure. */
239char *BN_bn2hex(const BIGNUM *bn);
240
241/* BN_hex2bn parses the leading hex number from |in|, which may be proceeded by
242 * a '-' to indicate a negative number and may contain trailing, non-hex data.
243 * If |outp| is not NULL, it constructs a BIGNUM equal to the hex number and
244 * stores it in |*outp|. If |*outp| is NULL then it allocates a new BIGNUM and
245 * updates |*outp|. It returns the number of bytes of |in| processed or zero on
246 * error. */
247int BN_hex2bn(BIGNUM **outp, const char *in);
248
249/* BN_bn2dec returns an allocated string that contains a NUL-terminated,
250 * decimal representation of |bn|. If |bn| is negative, the first char in the
251 * resulting string will be '-'. Returns NULL on allocation failure. */
252char *BN_bn2dec(const BIGNUM *a);
253
254/* BN_dec2bn parses the leading decimal number from |in|, which may be
255 * proceeded by a '-' to indicate a negative number and may contain trailing,
256 * non-decimal data. If |outp| is not NULL, it constructs a BIGNUM equal to the
257 * decimal number and stores it in |*outp|. If |*outp| is NULL then it
258 * allocates a new BIGNUM and updates |*outp|. It returns the number of bytes
259 * of |in| processed or zero on error. */
260int BN_dec2bn(BIGNUM **outp, const char *in);
261
262/* BN_asc2bn acts like |BN_dec2bn| or |BN_hex2bn| depending on whether |in|
263 * begins with "0X" or "0x" (indicating hex) or not (indicating decimal). A
264 * leading '-' is still permitted and comes before the optional 0X/0x. It
265 * returns one on success or zero on error. */
266int BN_asc2bn(BIGNUM **outp, const char *in);
267
268/* BN_print writes a hex encoding of |a| to |bio|. It returns one on success
269 * and zero on error. */
270int BN_print(BIO *bio, const BIGNUM *a);
271
272/* BN_print_fp acts like |BIO_print|, but wraps |fp| in a |BIO| first. */
273int BN_print_fp(FILE *fp, const BIGNUM *a);
274
275/* BN_get_word returns the absolute value of |bn| as a single word. If |bn| is
276 * too large to be represented as a single word, the maximum possible value
277 * will be returned. */
278BN_ULONG BN_get_word(const BIGNUM *bn);
279
280
281/* BIGNUM pools.
282 *
283 * Certain BIGNUM operations need to use many temporary variables and
284 * allocating and freeing them can be quite slow. Thus such opertions typically
285 * take a |BN_CTX| parameter, which contains a pool of |BIGNUMs|. The |ctx|
286 * argument to a public function may be NULL, in which case a local |BN_CTX|
287 * will be created just for the lifetime of that call.
288 *
289 * A function must call |BN_CTX_start| first. Then, |BN_CTX_get| may be called
290 * repeatedly to obtain temporary |BIGNUM|s. All |BN_CTX_get| calls must be made
291 * before calling any other functions that use the |ctx| as an argument.
292 *
293 * Finally, |BN_CTX_end| must be called before returning from the function.
294 * When |BN_CTX_end| is called, the |BIGNUM| pointers obtained from
295 * |BN_CTX_get| become invalid. */
296
297/* BN_CTX_new returns a new, empty BN_CTX or NULL on allocation failure. */
298BN_CTX *BN_CTX_new(void);
299
300/* BN_CTX_free frees all BIGNUMs contained in |ctx| and then frees |ctx|
301 * itself. */
302void BN_CTX_free(BN_CTX *ctx);
303
304/* BN_CTX_start "pushes" a new entry onto the |ctx| stack and allows future
305 * calls to |BN_CTX_get|. */
306void BN_CTX_start(BN_CTX *ctx);
307
308/* BN_CTX_get returns a new |BIGNUM|, or NULL on allocation failure. Once
309 * |BN_CTX_get| has returned NULL, all future calls will also return NULL until
310 * |BN_CTX_end| is called. */
311BIGNUM *BN_CTX_get(BN_CTX *ctx);
312
313/* BN_CTX_end invalidates all |BIGNUM|s returned from |BN_CTX_get| since the
314 * matching |BN_CTX_start| call. */
315void BN_CTX_end(BN_CTX *ctx);
316
317
318/* Simple arithmetic */
319
320/* BN_add sets |r| = |a| + |b|, where |r| may be the same pointer as either |a|
321 * or |b|. It returns one on success and zero on allocation failure. */
322int BN_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
323
324/* BN_uadd sets |r| = |a| + |b|, where |a| and |b| are non-negative and |r| may
325 * be the same pointer as either |a| or |b|. It returns one on success and zero
326 * on allocation failure. */
327int BN_uadd(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
328
329/* BN_add_word adds |w| to |a|. It returns one on success and zero otherwise. */
330int BN_add_word(BIGNUM *a, BN_ULONG w);
331
332/* BN_sub sets |r| = |a| + |b|, where |r| must be a distinct pointer from |a|
333 * and |b|. It returns one on success and zero on allocation failure. */
334int BN_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
335
336/* BN_usub sets |r| = |a| + |b|, where |a| and |b| are non-negative integers,
337 * |b| < |a| and |r| must be a distinct pointer from |a| and |b|. It returns
338 * one on success and zero on allocation failure. */
339int BN_usub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
340
341/* BN_sub_word subtracts |w| from |a|. It returns one on success and zero on
342 * allocation failure. */
343int BN_sub_word(BIGNUM *a, BN_ULONG w);
344
345/* BN_mul sets |r| = |a| * |b|, where |r| may be the same pointer as |a| or
346 * |b|. Returns one on success and zero otherwise. */
347int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx);
348
349/* BN_mul_word sets |bn| = |bn| * |w|. It returns one on success or zero on
350 * allocation failure. */
351int BN_mul_word(BIGNUM *bn, BN_ULONG w);
352
353/* BN_sqr sets |r| = |a|^2 (i.e. squares), where |r| may be the same pointer as
354 * |a|. Returns one on success and zero otherwise. This is more efficient than
355 * BN_mul(r, a, a, ctx). */
356int BN_sqr(BIGNUM *r, const BIGNUM *a, BN_CTX *ctx);
357
358/* BN_div divides |numerator| by |divisor| and places the result in |quotient|
359 * and the remainder in |rem|. Either of |quotient| or |rem| may be NULL, in
360 * which case the respective value is not returned. The result is rounded
361 * towards zero; thus if |numerator| is negative, the remainder will be zero or
362 * negative. It returns one on success or zero on error. */
363int BN_div(BIGNUM *quotient, BIGNUM *rem, const BIGNUM *numerator,
364 const BIGNUM *divisor, BN_CTX *ctx);
365
366/* BN_div_word sets |numerator| = |numerator|/|divisor| and returns the
367 * remainder or (BN_ULONG)-1 on error. */
368BN_ULONG BN_div_word(BIGNUM *numerator, BN_ULONG divisor);
369
Adam Langley409766d2014-06-20 12:00:00 -0700370/* BN_sqrt sets |*out_sqrt| (which may be the same |BIGNUM| as |in|) to the
371 * square root of |in|, using |ctx|. It returns one on success or zero on
372 * error. Negative numbers and non-square numbers will result in an error with
373 * appropriate errors on the error queue. */
374int BN_sqrt(BIGNUM *out_sqrt, const BIGNUM *in, BN_CTX *ctx);
375
Adam Langley95c29f32014-06-20 12:00:00 -0700376
377/* Comparison functions */
378
379/* BN_cmp returns a value less than, equal to or greater than zero if |a| is
380 * less than, equal to or greater than |b|, respectively. */
381int BN_cmp(const BIGNUM *a, const BIGNUM *b);
382
383/* BN_ucmp returns a value less than, equal to or greater than zero if the
384 * absolute value of |a| is less than, equal to or greater than the absolute
385 * value of |b|, respectively. */
386int BN_ucmp(const BIGNUM *a, const BIGNUM *b);
387
388/* BN_abs_is_word returns one if the absolute value of |bn| equals |w| and zero
389 * otherwise. */
390int BN_abs_is_word(const BIGNUM *bn, BN_ULONG w);
391
392/* BN_is_zero returns one if |bn| is zero and zero otherwise. */
393int BN_is_zero(const BIGNUM *bn);
394
395/* BN_is_one returns one if |bn| equals one and zero otherwise. */
396int BN_is_one(const BIGNUM *bn);
397
398/* BN_is_word returns one if |bn| is exactly |w| and zero otherwise. */
399int BN_is_word(const BIGNUM *bn, BN_ULONG w);
400
401/* BN_is_odd returns one if |bn| is odd and zero otherwise. */
402int BN_is_odd(const BIGNUM *bn);
403
404
405/* Bitwise operations. */
406
407/* BN_lshift sets |r| equal to |a| << n. The |a| and |r| arguments may be the
408 * same |BIGNUM|. It returns one on success and zero on allocation failure. */
409int BN_lshift(BIGNUM *r, const BIGNUM *a, int n);
410
411/* BN_lshift1 sets |r| equal to |a| << 1, where |r| and |a| may be the same
412 * pointer. It returns one on success and zero on allocation failure. */
413int BN_lshift1(BIGNUM *r, const BIGNUM *a);
414
415/* BN_rshift sets |r| equal to |a| >> n, where |r| and |a| may be the same
416 * pointer. It returns one on success and zero on allocation failure. */
417int BN_rshift(BIGNUM *r, const BIGNUM *a, int n);
418
419/* BN_rshift1 sets |r| equal to |a| >> 1, where |r| and |a| may be the same
420 * pointer. It returns one on success and zero on allocation failure. */
421int BN_rshift1(BIGNUM *r, const BIGNUM *a);
422
423/* BN_set_bit sets the |n|th, least-significant bit in |a|. For example, if |a|
424 * is 2 then setting bit zero will make it 3. It returns one on success or zero
425 * on allocation failure. */
426int BN_set_bit(BIGNUM *a, int n);
427
428/* BN_clear_bit clears the |n|th, least-significant bit in |a|. For example, if
429 * |a| is 3, clearing bit zero will make it two. It returns one on success or
430 * zero on allocation failure. */
431int BN_clear_bit(BIGNUM *a, int n);
432
433/* BN_is_bit_set returns the value of the |n|th, least-significant bit in |a|,
434 * or zero if the bit doesn't exist. */
435int BN_is_bit_set(const BIGNUM *a, int n);
436
437/* BN_mask_bits truncates |a| so that it is only |n| bits long. It returns one
438 * on success or zero if |n| is greater than the length of |a| already. */
439int BN_mask_bits(BIGNUM *a, int n);
440
441
442/* Modulo arithmetic. */
443
444/* BN_mod_word returns |a| mod |w|. */
445BN_ULONG BN_mod_word(const BIGNUM *a, BN_ULONG w);
446
447/* BN_mod is a helper macro that calls |BN_div| and discards the quotient. */
448#define BN_mod(rem, numerator, divisor, ctx) \
449 BN_div(NULL, (rem), (numerator), (divisor), (ctx))
450
451/* BN_nnmod is a non-negative modulo function. It acts like |BN_mod|, but 0 <=
452 * |rem| < |divisor| is always true. */
453int BN_nnmod(BIGNUM *rem, const BIGNUM *numerator, const BIGNUM *divisor,
454 BN_CTX *ctx);
455
456/* BN_mod_add sets |r| = |a| + |b| mod |m|. It returns one on success and zero
457 * on error. */
458int BN_mod_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m,
459 BN_CTX *ctx);
460
461/* BN_mod_add_quick acts like |BN_mod_add| but requires that |a| and |b| be
462 * non-negative and less than |m|. */
463int BN_mod_add_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
464 const BIGNUM *m);
465
466/* BN_mod_sub sets |r| = |a| - |b| mod |m|. It returns one on success and zero
467 * on error. */
468int BN_mod_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m,
469 BN_CTX *ctx);
470
471/* BN_mod_sub_quick acts like |BN_mod_sub| but requires that |a| and |b| be
472 * non-negative and less than |m|. */
473int BN_mod_sub_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
474 const BIGNUM *m);
475
476/* BN_mod_mul sets |r| = |a|*|b| mod |m|. It returns one on success and zero
477 * on error. */
478int BN_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m,
479 BN_CTX *ctx);
480
481/* BN_mod_mul sets |r| = |a|^2 mod |m|. It returns one on success and zero
482 * on error. */
483int BN_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx);
484
485/* BN_mod_lshift sets |r| = (|a| << n) mod |m|, where |r| and |a| may be the
486 * same pointer. It returns one on success and zero on error. */
487int BN_mod_lshift(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m,
488 BN_CTX *ctx);
489
490/* BN_mod_lshift_quick acts like |BN_mod_lshift| but requires that |a| be
491 * non-negative and less than |m|. */
492int BN_mod_lshift_quick(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m);
493
494/* BN_mod_lshift1 sets |r| = (|a| << 1) mod |m|, where |r| and |a| may be the
495 * same pointer. It returns one on success and zero on error. */
496int BN_mod_lshift1(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx);
497
498/* BN_mod_lshift1_quick acts like |BN_mod_lshift1| but requires that |a| be
499 * non-negative and less than |m|. */
500int BN_mod_lshift1_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *m);
501
502/* BN_mod_sqrt returns a |BIGNUM|, r, such that r^2 == a (mod p). */
503BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx);
504
505
506/* Random and prime number generation. */
507
508/* BN_rand sets |rnd| to a random number of length |bits|. If |top| is zero,
509 * the most-significant bit will be set. If |top| is one, the two most
510 * significant bits will be set.
511 *
512 * If |top| is -1 then no extra action will be taken and |BN_num_bits(rnd)| may
513 * not equal |bits| if the most significant bits randomly ended up as zeros.
514 *
515 * If |bottom| is non-zero, the least-significant bit will be set. The function
516 * returns one on success or zero otherwise. */
517int BN_rand(BIGNUM *rnd, int bits, int top, int bottom);
518
519/* BN_pseudo_rand is an alias for |BN_rand|. */
520int BN_pseudo_rand(BIGNUM *rnd, int bits, int top, int bottom);
521
522/* BN_rand_range sets |rnd| to a random value [0..range). It returns one on
523 * success and zero otherwise. */
524int BN_rand_range(BIGNUM *rnd, const BIGNUM *range);
525
526/* BN_pseudo_rand_range is an alias for BN_rand_range. */
527int BN_pseudo_rand_range(BIGNUM *rnd, const BIGNUM *range);
528
Adam Langleyd4b4f082014-06-20 12:00:00 -0700529/* BN_generate_dsa_nonce generates a random number 0 <= out < range. Unlike
530 * BN_rand_range, it also includes the contents of |priv| and |message| in the
531 * generation so that an RNG failure isn't fatal as long as |priv| remains
532 * secret. This is intended for use in DSA and ECDSA where an RNG weakness
533 * leads directly to private key exposure unless this function is used.
534 * It returns one on success and zero on error. */
535int BN_generate_dsa_nonce(BIGNUM *out, const BIGNUM *range, const BIGNUM *priv,
536 const uint8_t *message, size_t message_len,
537 BN_CTX *ctx);
538
Adam Langley95c29f32014-06-20 12:00:00 -0700539/* BN_GENCB holds a callback function that is used by generation functions that
540 * can take a very long time to complete. Use |BN_GENCB_set| to initialise a
541 * |BN_GENCB| structure.
542 *
543 * The callback receives the address of that |BN_GENCB| structure as its last
544 * argument and the user is free to put an arbitary pointer in |arg|. The other
545 * arguments are set as follows:
546 * event=BN_GENCB_GENERATED, n=i: after generating the i'th possible prime
547 * number.
548 * event=BN_GENCB_PRIME_TEST, n=-1: when finished trial division primality
549 * checks.
550 * event=BN_GENCB_PRIME_TEST, n=i: when the i'th primality test has finished.
551 *
552 * The callback can return zero to abort the generation progress or one to
553 * allow it to continue.
554 *
555 * When other code needs to call a BN generation function it will often take a
556 * BN_GENCB argument and may call the function with other argument values. */
557#define BN_GENCB_GENERATED 0
558#define BN_GENCB_PRIME_TEST 1
559
560struct bn_gencb_st {
561 void *arg; /* callback-specific data */
562 int (*callback)(int event, int n, struct bn_gencb_st *);
563};
564
565/* BN_GENCB_set configures |callback| to call |f| and sets |callout->arg| to
566 * |arg|. */
567void BN_GENCB_set(BN_GENCB *callback,
568 int (*f)(int event, int n, struct bn_gencb_st *),
569 void *arg);
570
571/* BN_GENCB_call calls |callback|, if not NULL, and returns the return value of
572 * the callback, or 1 if |callback| is NULL. */
573int BN_GENCB_call(BN_GENCB *callback, int event, int n);
574
575/* BN_generate_prime_ex sets |ret| to a prime number of |bits| length. If safe
576 * is non-zero then the prime will be such that (ret-1)/2 is also a prime.
577 * (This is needed for Diffie-Hellman groups to ensure that the only subgroups
578 * are of size 2 and (p-1)/2.).
579 *
580 * If |add| is not NULL, the prime will fulfill the condition |ret| % |add| ==
581 * |rem| in order to suit a given generator. (If |rem| is NULL then |ret| %
582 * |add| == 1.)
583 *
584 * If |cb| is not NULL, it will be called during processing to give an
585 * indication of progress. See the comments for |BN_GENCB|. It returns one on
586 * success and zero otherwise. */
587int BN_generate_prime_ex(BIGNUM *ret, int bits, int safe, const BIGNUM *add,
588 const BIGNUM *rem, BN_GENCB *cb);
589
590/* BN_prime_checks is magic value that can be used as the |checks| argument to
591 * the primality testing functions in order to automatically select a number of
592 * Miller-Rabin checks that gives a false positive rate of ~2^{-80}. */
593#define BN_prime_checks 0
594
595/* BN_primality_test sets |*is_probably_prime| to one if |candidate| is
596 * probably a prime number by the Miller-Rabin test or zero if it's certainly
597 * not.
598 *
599 * If |do_trial_division| is non-zero then |candidate| will be tested against a
600 * list of small primes before Miller-Rabin tests. The probability of this
601 * function returning a false positive is 2^{2*checks}. If |checks| is
602 * |BN_prime_checks| then a value that results in approximately 2^{-80} false
603 * positive probability is used. If |cb| is not NULL then it is called during
604 * the checking process. See the comment above |BN_GENCB|.
605 *
606 * The function returns one on success and zero on error.
607 *
608 * (If you are unsure whether you want |do_trial_division|, don't set it.) */
609int BN_primality_test(int *is_probably_prime, const BIGNUM *candidate,
610 int checks, BN_CTX *ctx, int do_trial_division,
611 BN_GENCB *cb);
612
613/* BN_is_prime_fasttest_ex returns one if |candidate| is probably a prime
614 * number by the Miller-Rabin test, zero if it's certainly not and -1 on error.
615 *
616 * If |do_trial_division| is non-zero then |candidate| will be tested against a
617 * list of small primes before Miller-Rabin tests. The probability of this
618 * function returning one when |candidate| is composite is 2^{2*checks}. If
619 * |checks| is |BN_prime_checks| then a value that results in approximately
620 * 2^{-80} false positive probability is used. If |cb| is not NULL then it is
621 * called during the checking process. See the comment above |BN_GENCB|.
622 *
623 * WARNING: deprecated. Use |BN_primality_test|. */
624int BN_is_prime_fasttest_ex(const BIGNUM *candidate, int checks, BN_CTX *ctx,
625 int do_trial_division, BN_GENCB *cb);
626
627/* BN_is_prime_ex acts the same as |BN_is_prime_fasttest_ex| with
628 * |do_trial_division| set to zero.
629 *
630 * WARNING: deprecated: Use |BN_primality_test|. */
631int BN_is_prime_ex(const BIGNUM *candidate, int checks, BN_CTX *ctx,
632 BN_GENCB *cb);
633
634
635/* Number theory functions */
636
637/* BN_gcd sets |r| = gcd(|a|, |b|). It returns one on success and zero
638 * otherwise. */
639int BN_gcd(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx);
640
641/* BN_mod_inverse sets |out| equal to |a|^-1, mod |n|. If either of |a| or |n|
642 * have |BN_FLG_CONSTTIME| set then the operation is performed in constant
643 * time. If |out| is NULL, a fresh BIGNUM is allocated. It returns the result
644 * or NULL on error. */
645BIGNUM *BN_mod_inverse(BIGNUM *out, const BIGNUM *a, const BIGNUM *n,
646 BN_CTX *ctx);
647
648/* BN_kronecker returns the Kronecker symbol of |a| and |b| (which is -1, 0 or
649 * 1), or -2 on error. */
650int BN_kronecker(const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx);
651
652
653/* Montgomery arithmetic. */
654
655/* BN_MONT_CTX contains the precomputed values needed to work in a specific
656 * Montgomery domain. */
657
658/* BN_MONT_CTX_new returns a fresh BN_MONT_CTX or NULL on allocation failure. */
659BN_MONT_CTX *BN_MONT_CTX_new(void);
660
661/* BN_MONT_CTX_init initialises a stack allocated |BN_MONT_CTX|. */
662void BN_MONT_CTX_init(BN_MONT_CTX *mont);
663
664/* BN_MONT_CTX_free frees the contexts of |mont| and, if it was originally
665 * allocated with |BN_MONT_CTX_new|, |mont| itself. */
666void BN_MONT_CTX_free(BN_MONT_CTX *mont);
667
668/* BN_MONT_CTX_copy sets |to| equal to |from|. It returns |to| on success or
669 * NULL on error. */
670BN_MONT_CTX *BN_MONT_CTX_copy(BN_MONT_CTX *to, BN_MONT_CTX *from);
671
672/* BN_MONT_CTX_set sets up a Montgomery context given the modulus, |mod|. It
673 * returns one on success and zero on error. */
674int BN_MONT_CTX_set(BN_MONT_CTX *mont, const BIGNUM *mod, BN_CTX *ctx);
675
676/* BN_MONT_CTX_set_locked takes the lock indicated by |lock| and checks whether
677 * |*pmont| is NULL. If so, it creates a new |BN_MONT_CTX| and sets the modulus
678 * for it to |mod|. It then stores it as |*pmont| and returns it, or NULL on
679 * error.
680 *
681 * If |*pmont| is already non-NULL then the existing value is returned. */
682BN_MONT_CTX *BN_MONT_CTX_set_locked(BN_MONT_CTX **pmont, int lock,
683 const BIGNUM *mod, BN_CTX *ctx);
684
685/* BN_to_montgomery sets |ret| equal to |a| in the Montgomery domain. It
686 * returns one on success and zero on error. */
687int BN_to_montgomery(BIGNUM *ret, const BIGNUM *a, const BN_MONT_CTX *mont,
688 BN_CTX *ctx);
689
690/* BN_from_montgomery sets |ret| equal to |a| * R^-1, i.e. translates values
691 * out of the Montgomery domain. It returns one on success or zero on error. */
692int BN_from_montgomery(BIGNUM *ret, const BIGNUM *a, const BN_MONT_CTX *mont,
693 BN_CTX *ctx);
694
695/* BN_mod_mul_montgomery set |r| equal to |a| * |b|, in the Montgomery domain.
696 * Both |a| and |b| must already be in the Montgomery domain (by
697 * |BN_to_montgomery|). It returns one on success or zero on error. */
698int BN_mod_mul_montgomery(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
699 const BN_MONT_CTX *mont, BN_CTX *ctx);
700
701
702/* Exponentiation. */
703
704/* BN_exp sets |r| equal to |a|^{|p|}. It does so with a square-and-multiply
705 * algorithm that leaks side-channel information. It returns one on success or
706 * zero otherwise. */
707int BN_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx);
708
709/* BN_exp sets |r| equal to |a|^{|p|} mod |m|. It does so with the best
710 * algorithm for the values provided and can run in constant time if
711 * |BN_FLG_CONSTTIME| is set for |p|. It returns one on success or zero
712 * otherwise. */
713int BN_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m,
714 BN_CTX *ctx);
715
716int BN_mod_exp_mont(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
717 const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx);
718
719int BN_mod_exp_mont_consttime(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p,
720 const BIGNUM *m, BN_CTX *ctx,
721 BN_MONT_CTX *in_mont);
722
723int BN_mod_exp_mont_word(BIGNUM *r, BN_ULONG a, const BIGNUM *p,
724 const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx);
725int BN_mod_exp2_mont(BIGNUM *r, const BIGNUM *a1, const BIGNUM *p1,
726 const BIGNUM *a2, const BIGNUM *p2, const BIGNUM *m,
727 BN_CTX *ctx, BN_MONT_CTX *m_ctx);
Adam Langley95c29f32014-06-20 12:00:00 -0700728
729
730/* Private functions */
731
732struct bignum_st {
733 BN_ULONG *d; /* Pointer to an array of 'BN_BITS2' bit chunks in little-endian
734 order. */
735 int top; /* Index of last used element in |d|, plus one. */
736 int dmax; /* Size of |d|, in words. */
737 int neg; /* one if the number is negative */
738 int flags; /* bitmask of BN_FLG_* values */
739};
740
741struct bn_mont_ctx_st {
742 BIGNUM RR; /* used to convert to montgomery form */
743 BIGNUM N; /* The modulus */
744 BIGNUM Ni; /* R*(1/R mod N) - N*Ni = 1
745 * (Ni is only stored for bignum algorithm) */
746 BN_ULONG n0[2]; /* least significant word(s) of Ni;
747 (type changed with 0.9.9, was "BN_ULONG n0;" before) */
748 int flags;
749 int ri; /* number of bits in R */
750};
751
752unsigned BN_num_bits_word(BN_ULONG l);
753
754#define BN_FLG_MALLOCED 0x01
755#define BN_FLG_STATIC_DATA 0x02
756/* avoid leaking exponent information through timing, BN_mod_exp_mont() will
757 * call BN_mod_exp_mont_consttime, BN_div() will call BN_div_no_branch,
758 * BN_mod_inverse() will call BN_mod_inverse_no_branch. */
759#define BN_FLG_CONSTTIME 0x04
760
761
762#if defined(__cplusplus)
763} /* extern C */
764#endif
765
766#define BN_F_BN_bn2hex 100
767#define BN_F_BN_new 101
768#define BN_F_BN_exp 102
769#define BN_F_mod_exp_recp 103
770#define BN_F_BN_mod_sqrt 104
771#define BN_F_BN_rand 105
772#define BN_F_BN_rand_range 106
773#define BN_F_bn_wexpand 107
774#define BN_F_BN_mod_exp_mont 108
775#define BN_F_BN_mod_exp2_mont 109
776#define BN_F_BN_CTX_get 110
777#define BN_F_BN_mod_inverse 111
778#define BN_F_BN_bn2dec 112
779#define BN_F_BN_div 113
780#define BN_F_BN_div_recp 114
781#define BN_F_BN_mod_exp_mont_consttime 115
782#define BN_F_BN_mod_exp_mont_word 116
783#define BN_F_BN_CTX_start 117
784#define BN_F_BN_usub 118
785#define BN_F_BN_mod_lshift_quick 119
786#define BN_F_BN_CTX_new 120
787#define BN_F_BN_mod_inverse_no_branch 121
Adam Langleyd4b4f082014-06-20 12:00:00 -0700788#define BN_F_BN_generate_dsa_nonce 122
Adam Langley27ae9ed2014-06-20 12:00:00 -0700789#define BN_F_BN_generate_prime_ex 123
Adam Langley409766d2014-06-20 12:00:00 -0700790#define BN_F_BN_sqrt 124
Adam Langley95c29f32014-06-20 12:00:00 -0700791#define BN_R_NOT_A_SQUARE 100
792#define BN_R_TOO_MANY_ITERATIONS 101
793#define BN_R_INPUT_NOT_REDUCED 102
794#define BN_R_TOO_MANY_TEMPORARY_VARIABLES 103
795#define BN_R_NO_INVERSE 104
796#define BN_R_NOT_INITIALIZED 105
797#define BN_R_DIV_BY_ZERO 106
798#define BN_R_CALLED_WITH_EVEN_MODULUS 107
799#define BN_R_EXPAND_ON_STATIC_BIGNUM_DATA 108
800#define BN_R_BAD_RECIPROCAL 109
801#define BN_R_P_IS_NOT_PRIME 110
802#define BN_R_INVALID_RANGE 111
803#define BN_R_ARG2_LT_ARG3 112
804#define BN_R_BIGNUM_TOO_LONG 113
Adam Langleyd4b4f082014-06-20 12:00:00 -0700805#define BN_R_PRIVATE_KEY_TOO_LARGE 114
Adam Langley27ae9ed2014-06-20 12:00:00 -0700806#define BN_R_BITS_TOO_SMALL 115
Adam Langley409766d2014-06-20 12:00:00 -0700807#define BN_R_NEGATIVE_NUMBER 116
Adam Langley95c29f32014-06-20 12:00:00 -0700808
809#endif /* OPENSSL_HEADER_BN_H */