Erik Språng | d05edec | 2019-08-14 10:43:47 +0200 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (c) 2019 The WebRTC project authors. All Rights Reserved. |
| 3 | * |
| 4 | * Use of this source code is governed by a BSD-style license |
| 5 | * that can be found in the LICENSE file in the root of the source |
| 6 | * tree. An additional intellectual property rights grant can be found |
| 7 | * in the file PATENTS. All contributing project authors may |
| 8 | * be found in the AUTHORS file in the root of the source tree. |
| 9 | */ |
| 10 | |
| 11 | #include "modules/pacing/pacing_controller.h" |
| 12 | |
| 13 | #include <algorithm> |
| 14 | #include <list> |
| 15 | #include <memory> |
| 16 | #include <string> |
| 17 | #include <utility> |
| 18 | #include <vector> |
| 19 | |
| 20 | #include "absl/memory/memory.h" |
| 21 | #include "api/units/data_rate.h" |
| 22 | #include "modules/pacing/packet_router.h" |
| 23 | #include "system_wrappers/include/clock.h" |
| 24 | #include "test/field_trial.h" |
| 25 | #include "test/gmock.h" |
| 26 | #include "test/gtest.h" |
| 27 | |
| 28 | using ::testing::_; |
| 29 | using ::testing::Field; |
| 30 | using ::testing::Pointee; |
| 31 | using ::testing::Property; |
| 32 | using ::testing::Return; |
| 33 | |
| 34 | namespace webrtc { |
| 35 | namespace test { |
| 36 | namespace { |
| 37 | constexpr DataRate kFirstClusterRate = DataRate::KilobitsPerSec<900>(); |
| 38 | constexpr DataRate kSecondClusterRate = DataRate::KilobitsPerSec<1800>(); |
| 39 | |
| 40 | // The error stems from truncating the time interval of probe packets to integer |
| 41 | // values. This results in probing slightly higher than the target bitrate. |
| 42 | // For 1.8 Mbps, this comes to be about 120 kbps with 1200 probe packets. |
| 43 | constexpr DataRate kProbingErrorMargin = DataRate::KilobitsPerSec<150>(); |
| 44 | |
| 45 | const float kPaceMultiplier = 2.5f; |
| 46 | |
| 47 | constexpr uint32_t kAudioSsrc = 12345; |
| 48 | constexpr uint32_t kVideoSsrc = 234565; |
| 49 | constexpr uint32_t kVideoRtxSsrc = 34567; |
| 50 | constexpr uint32_t kFlexFecSsrc = 45678; |
| 51 | |
| 52 | constexpr DataRate kTargetRate = DataRate::KilobitsPerSec<800>(); |
| 53 | |
| 54 | enum class PacerMode { kReferencePackets, kOwnPackets }; |
| 55 | std::string GetFieldTrialStirng(PacerMode mode) { |
| 56 | std::string field_trial = "WebRTC-Pacer-LegacyPacketReferencing/"; |
| 57 | switch (mode) { |
| 58 | case PacerMode::kOwnPackets: |
| 59 | field_trial += "Disabled"; |
| 60 | break; |
| 61 | case PacerMode::kReferencePackets: |
| 62 | field_trial += "Enabled"; |
| 63 | break; |
| 64 | } |
| 65 | field_trial += "/"; |
| 66 | return field_trial; |
| 67 | } |
| 68 | |
| 69 | // TODO(bugs.webrtc.org/10633): Remove when packets are always owned by pacer. |
| 70 | RtpPacketSender::Priority PacketTypeToPriority(RtpPacketToSend::Type type) { |
| 71 | switch (type) { |
| 72 | case RtpPacketToSend::Type::kAudio: |
| 73 | return RtpPacketSender::Priority::kHighPriority; |
| 74 | case RtpPacketToSend::Type::kVideo: |
| 75 | return RtpPacketSender::Priority::kLowPriority; |
| 76 | case RtpPacketToSend::Type::kRetransmission: |
| 77 | return RtpPacketSender::Priority::kNormalPriority; |
| 78 | case RtpPacketToSend::Type::kForwardErrorCorrection: |
| 79 | return RtpPacketSender::Priority::kLowPriority; |
| 80 | break; |
| 81 | case RtpPacketToSend::Type::kPadding: |
| 82 | RTC_NOTREACHED() << "Unexpected type for legacy path: kPadding"; |
| 83 | break; |
| 84 | } |
| 85 | return RtpPacketSender::Priority::kLowPriority; |
| 86 | } |
| 87 | |
| 88 | std::unique_ptr<RtpPacketToSend> BuildPacket(RtpPacketToSend::Type type, |
| 89 | uint32_t ssrc, |
| 90 | uint16_t sequence_number, |
| 91 | int64_t capture_time_ms, |
| 92 | size_t size) { |
| 93 | auto packet = absl::make_unique<RtpPacketToSend>(nullptr); |
| 94 | packet->set_packet_type(type); |
| 95 | packet->SetSsrc(ssrc); |
| 96 | packet->SetSequenceNumber(sequence_number); |
| 97 | packet->set_capture_time_ms(capture_time_ms); |
| 98 | packet->SetPayloadSize(size); |
| 99 | return packet; |
| 100 | } |
| 101 | } // namespace |
| 102 | |
| 103 | // Mock callback proxy, where both new and old api redirects to common mock |
| 104 | // methods that focus on core aspects. |
| 105 | class MockPacingControllerCallback : public PacingController::PacketSender { |
| 106 | public: |
| 107 | RtpPacketSendResult TimeToSendPacket(uint32_t ssrc, |
| 108 | uint16_t sequence_number, |
| 109 | int64_t capture_timestamp, |
| 110 | bool retransmission, |
| 111 | const PacedPacketInfo& packet_info) { |
| 112 | SendPacket(ssrc, sequence_number, capture_timestamp, retransmission, false); |
| 113 | return RtpPacketSendResult::kSuccess; |
| 114 | } |
| 115 | |
| 116 | void SendRtpPacket(std::unique_ptr<RtpPacketToSend> packet, |
| 117 | const PacedPacketInfo& cluster_info) override { |
| 118 | SendPacket(packet->Ssrc(), packet->SequenceNumber(), |
| 119 | packet->capture_time_ms(), |
| 120 | packet->packet_type() == RtpPacketToSend::Type::kRetransmission, |
| 121 | packet->packet_type() == RtpPacketToSend::Type::kPadding); |
| 122 | } |
| 123 | |
| 124 | DataSize TimeToSendPadding(DataSize size, |
| 125 | const PacedPacketInfo& packet_info) override { |
| 126 | return DataSize::bytes(SendPadding(size.bytes())); |
| 127 | } |
| 128 | |
| 129 | std::vector<std::unique_ptr<RtpPacketToSend>> GeneratePadding( |
| 130 | DataSize target_size) override { |
| 131 | std::vector<std::unique_ptr<RtpPacketToSend>> ret; |
| 132 | size_t padding_size = SendPadding(target_size.bytes()); |
| 133 | if (padding_size > 0) { |
| 134 | auto packet = absl::make_unique<RtpPacketToSend>(nullptr); |
| 135 | packet->SetPayloadSize(padding_size); |
| 136 | packet->set_packet_type(RtpPacketToSend::Type::kPadding); |
| 137 | ret.emplace_back(std::move(packet)); |
| 138 | } |
| 139 | return ret; |
| 140 | } |
| 141 | |
| 142 | MOCK_METHOD5(SendPacket, |
| 143 | void(uint32_t ssrc, |
| 144 | uint16_t sequence_number, |
| 145 | int64_t capture_timestamp, |
| 146 | bool retransmission, |
| 147 | bool padding)); |
| 148 | MOCK_METHOD1(SendPadding, size_t(size_t target_size)); |
| 149 | }; |
| 150 | |
| 151 | // Mock callback implementing the raw api. |
| 152 | class MockPacketSender : public PacingController::PacketSender { |
| 153 | public: |
| 154 | MOCK_METHOD5(TimeToSendPacket, |
| 155 | RtpPacketSendResult(uint32_t ssrc, |
| 156 | uint16_t sequence_number, |
| 157 | int64_t capture_time_ms, |
| 158 | bool retransmission, |
| 159 | const PacedPacketInfo& pacing_info)); |
| 160 | MOCK_METHOD2(TimeToSendPadding, |
| 161 | DataSize(DataSize size, const PacedPacketInfo& pacing_info)); |
| 162 | |
| 163 | MOCK_METHOD2(SendRtpPacket, |
| 164 | void(std::unique_ptr<RtpPacketToSend> packet, |
| 165 | const PacedPacketInfo& cluster_info)); |
| 166 | MOCK_METHOD1( |
| 167 | GeneratePadding, |
| 168 | std::vector<std::unique_ptr<RtpPacketToSend>>(DataSize target_size)); |
| 169 | }; |
| 170 | |
| 171 | class PacingControllerPadding : public PacingController::PacketSender { |
| 172 | public: |
| 173 | static const size_t kPaddingPacketSize = 224; |
| 174 | |
| 175 | PacingControllerPadding() : padding_sent_(0) {} |
| 176 | |
| 177 | RtpPacketSendResult TimeToSendPacket( |
| 178 | uint32_t ssrc, |
| 179 | uint16_t sequence_number, |
| 180 | int64_t capture_time_ms, |
| 181 | bool retransmission, |
| 182 | const PacedPacketInfo& pacing_info) override { |
| 183 | return RtpPacketSendResult::kSuccess; |
| 184 | } |
| 185 | |
| 186 | void SendRtpPacket(std::unique_ptr<RtpPacketToSend> packet, |
| 187 | const PacedPacketInfo& pacing_info) override {} |
| 188 | |
| 189 | DataSize TimeToSendPadding(DataSize size, |
| 190 | const PacedPacketInfo& pacing_info) override { |
| 191 | size_t num_packets = |
| 192 | (size.bytes() + kPaddingPacketSize - 1) / kPaddingPacketSize; |
| 193 | padding_sent_ += kPaddingPacketSize * num_packets; |
| 194 | return DataSize::bytes(kPaddingPacketSize * num_packets); |
| 195 | } |
| 196 | |
| 197 | std::vector<std::unique_ptr<RtpPacketToSend>> GeneratePadding( |
| 198 | DataSize target_size) override { |
| 199 | size_t num_packets = |
| 200 | (target_size.bytes() + kPaddingPacketSize - 1) / kPaddingPacketSize; |
| 201 | std::vector<std::unique_ptr<RtpPacketToSend>> packets; |
| 202 | for (size_t i = 0; i < num_packets; ++i) { |
| 203 | packets.emplace_back(absl::make_unique<RtpPacketToSend>(nullptr)); |
| 204 | packets.back()->SetPadding(kPaddingPacketSize); |
| 205 | packets.back()->set_packet_type(RtpPacketToSend::Type::kPadding); |
| 206 | padding_sent_ += kPaddingPacketSize; |
| 207 | } |
| 208 | return packets; |
| 209 | } |
| 210 | |
| 211 | size_t padding_sent() { return padding_sent_; } |
| 212 | |
| 213 | private: |
| 214 | size_t padding_sent_; |
| 215 | }; |
| 216 | |
| 217 | class PacingControllerProbing : public PacingController::PacketSender { |
| 218 | public: |
| 219 | PacingControllerProbing() : packets_sent_(0), padding_sent_(0) {} |
| 220 | |
| 221 | RtpPacketSendResult TimeToSendPacket( |
| 222 | uint32_t ssrc, |
| 223 | uint16_t sequence_number, |
| 224 | int64_t capture_time_ms, |
| 225 | bool retransmission, |
| 226 | const PacedPacketInfo& pacing_info) override { |
| 227 | ++packets_sent_; |
| 228 | return RtpPacketSendResult::kSuccess; |
| 229 | } |
| 230 | |
| 231 | void SendRtpPacket(std::unique_ptr<RtpPacketToSend> packet, |
| 232 | const PacedPacketInfo& pacing_info) override { |
| 233 | if (packet->packet_type() != RtpPacketToSend::Type::kPadding) { |
| 234 | ++packets_sent_; |
| 235 | } |
| 236 | } |
| 237 | |
| 238 | DataSize TimeToSendPadding(DataSize size, |
| 239 | const PacedPacketInfo& pacing_info) override { |
| 240 | padding_sent_ += size.bytes(); |
| 241 | return DataSize::bytes(padding_sent_); |
| 242 | } |
| 243 | |
| 244 | std::vector<std::unique_ptr<RtpPacketToSend>> GeneratePadding( |
| 245 | DataSize target_size) override { |
| 246 | std::vector<std::unique_ptr<RtpPacketToSend>> packets; |
| 247 | packets.emplace_back(absl::make_unique<RtpPacketToSend>(nullptr)); |
| 248 | packets.back()->SetPadding(target_size.bytes()); |
| 249 | packets.back()->set_packet_type(RtpPacketToSend::Type::kPadding); |
| 250 | padding_sent_ += target_size.bytes(); |
| 251 | return packets; |
| 252 | } |
| 253 | |
| 254 | int packets_sent() const { return packets_sent_; } |
| 255 | |
| 256 | int padding_sent() const { return padding_sent_; } |
| 257 | |
| 258 | private: |
| 259 | int packets_sent_; |
| 260 | int padding_sent_; |
| 261 | }; |
| 262 | |
| 263 | class PacingControllerTest : public ::testing::TestWithParam<PacerMode> { |
| 264 | protected: |
| 265 | PacingControllerTest() |
| 266 | : clock_(123456), field_trial_(GetFieldTrialStirng(GetParam())) { |
| 267 | srand(0); |
| 268 | // Need to initialize PacingController after we initialize clock. |
| 269 | pacer_ = absl::make_unique<PacingController>(&clock_, &callback_, nullptr, |
| 270 | nullptr); |
| 271 | Init(); |
| 272 | } |
| 273 | |
| 274 | void Init() { |
| 275 | pacer_->CreateProbeCluster(kFirstClusterRate, /*cluster_id=*/0); |
| 276 | pacer_->CreateProbeCluster(kSecondClusterRate, /*cluster_id=*/1); |
| 277 | // Default to bitrate probing disabled for testing purposes. Probing tests |
| 278 | // have to enable probing, either by creating a new PacingController |
| 279 | // instance or by calling SetProbingEnabled(true). |
| 280 | pacer_->SetProbingEnabled(false); |
| 281 | pacer_->SetPacingRates(kTargetRate * kPaceMultiplier, DataRate::Zero()); |
| 282 | |
| 283 | clock_.AdvanceTime(TimeUntilNextProcess()); |
| 284 | } |
| 285 | |
| 286 | void Send(RtpPacketToSend::Type type, |
| 287 | uint32_t ssrc, |
| 288 | uint16_t sequence_number, |
| 289 | int64_t capture_time_ms, |
| 290 | size_t size) { |
| 291 | if (GetParam() == PacerMode::kReferencePackets) { |
| 292 | pacer_->InsertPacket(PacketTypeToPriority(type), ssrc, sequence_number, |
| 293 | capture_time_ms, size, |
| 294 | type == RtpPacketToSend::Type::kRetransmission); |
| 295 | } else { |
| 296 | pacer_->EnqueuePacket( |
| 297 | BuildPacket(type, ssrc, sequence_number, capture_time_ms, size)); |
| 298 | } |
| 299 | } |
| 300 | |
| 301 | void SendAndExpectPacket(RtpPacketToSend::Type type, |
| 302 | uint32_t ssrc, |
| 303 | uint16_t sequence_number, |
| 304 | int64_t capture_time_ms, |
| 305 | size_t size) { |
| 306 | Send(type, ssrc, sequence_number, capture_time_ms, size); |
| 307 | EXPECT_CALL( |
| 308 | callback_, |
| 309 | SendPacket(ssrc, sequence_number, capture_time_ms, |
| 310 | type == RtpPacketToSend::Type::kRetransmission, false)) |
| 311 | .Times(1); |
| 312 | } |
| 313 | |
| 314 | void ExpectSendPadding() { |
| 315 | if (GetParam() == PacerMode::kOwnPackets) { |
| 316 | EXPECT_CALL(callback_, SendPacket(_, _, _, _, true)).Times(1); |
| 317 | } |
| 318 | } |
| 319 | |
| 320 | std::unique_ptr<RtpPacketToSend> BuildRtpPacket(RtpPacketToSend::Type type) { |
| 321 | auto packet = absl::make_unique<RtpPacketToSend>(nullptr); |
| 322 | packet->set_packet_type(type); |
| 323 | switch (type) { |
| 324 | case RtpPacketToSend::Type::kAudio: |
| 325 | packet->SetSsrc(kAudioSsrc); |
| 326 | break; |
| 327 | case RtpPacketToSend::Type::kVideo: |
| 328 | packet->SetSsrc(kVideoSsrc); |
| 329 | break; |
| 330 | case RtpPacketToSend::Type::kRetransmission: |
| 331 | case RtpPacketToSend::Type::kPadding: |
| 332 | packet->SetSsrc(kVideoRtxSsrc); |
| 333 | break; |
| 334 | case RtpPacketToSend::Type::kForwardErrorCorrection: |
| 335 | packet->SetSsrc(kFlexFecSsrc); |
| 336 | break; |
| 337 | } |
| 338 | |
| 339 | packet->SetPayloadSize(234); |
| 340 | return packet; |
| 341 | } |
| 342 | |
| 343 | TimeDelta TimeUntilNextProcess() { |
| 344 | // TODO(bugs.webrtc.org/10809): Replace this with TimeUntilAvailableBudget() |
| 345 | // once ported from WIP code. For now, emulate PacedSender method. |
| 346 | |
| 347 | TimeDelta elapsed_time = pacer_->TimeElapsedSinceLastProcess(); |
| 348 | if (pacer_->IsPaused()) { |
| 349 | return std::max(PacingController::kPausedProcessInterval - elapsed_time, |
| 350 | TimeDelta::Zero()); |
| 351 | } |
| 352 | |
| 353 | auto next_probe = pacer_->TimeUntilNextProbe(); |
| 354 | if (next_probe) { |
| 355 | return *next_probe; |
| 356 | } |
| 357 | |
| 358 | const TimeDelta min_packet_limit = TimeDelta::ms(5); |
| 359 | return std::max(min_packet_limit - elapsed_time, TimeDelta::Zero()); |
| 360 | } |
| 361 | |
| 362 | SimulatedClock clock_; |
| 363 | ScopedFieldTrials field_trial_; |
| 364 | MockPacingControllerCallback callback_; |
| 365 | std::unique_ptr<PacingController> pacer_; |
| 366 | }; |
| 367 | |
| 368 | class PacingControllerFieldTrialTest |
| 369 | : public ::testing::TestWithParam<PacerMode> { |
| 370 | protected: |
| 371 | struct MediaStream { |
| 372 | const RtpPacketToSend::Type type; |
| 373 | const uint32_t ssrc; |
| 374 | const size_t packet_size; |
| 375 | uint16_t seq_num; |
| 376 | }; |
| 377 | |
| 378 | const int kProcessIntervalsPerSecond = 1000 / 5; |
| 379 | |
| 380 | PacingControllerFieldTrialTest() : clock_(123456) {} |
| 381 | void InsertPacket(PacingController* pacer, MediaStream* stream) { |
| 382 | if (GetParam() == PacerMode::kReferencePackets) { |
| 383 | pacer->InsertPacket(PacketTypeToPriority(stream->type), stream->ssrc, |
| 384 | stream->seq_num++, clock_.TimeInMilliseconds(), |
| 385 | stream->packet_size, false); |
| 386 | } else { |
| 387 | pacer->EnqueuePacket( |
| 388 | BuildPacket(stream->type, stream->ssrc, stream->seq_num++, |
| 389 | clock_.TimeInMilliseconds(), stream->packet_size)); |
| 390 | } |
| 391 | } |
| 392 | void ProcessNext(PacingController* pacer) { |
| 393 | clock_.AdvanceTimeMilliseconds(5); |
| 394 | pacer->ProcessPackets(); |
| 395 | } |
| 396 | MediaStream audio{/*type*/ RtpPacketToSend::Type::kAudio, |
| 397 | /*ssrc*/ 3333, /*packet_size*/ 100, /*seq_num*/ 1000}; |
| 398 | MediaStream video{/*type*/ RtpPacketToSend::Type::kVideo, |
| 399 | /*ssrc*/ 4444, /*packet_size*/ 1000, /*seq_num*/ 1000}; |
| 400 | SimulatedClock clock_; |
| 401 | MockPacingControllerCallback callback_; |
| 402 | }; |
| 403 | |
| 404 | TEST_P(PacingControllerFieldTrialTest, DefaultNoPaddingInSilence) { |
| 405 | PacingController pacer(&clock_, &callback_, nullptr, nullptr); |
| 406 | pacer.SetPacingRates(kTargetRate, DataRate::Zero()); |
| 407 | // Video packet to reset last send time and provide padding data. |
| 408 | InsertPacket(&pacer, &video); |
| 409 | EXPECT_CALL(callback_, SendPacket).Times(1); |
| 410 | clock_.AdvanceTimeMilliseconds(5); |
| 411 | pacer.ProcessPackets(); |
| 412 | EXPECT_CALL(callback_, SendPadding).Times(0); |
| 413 | // Waiting 500 ms should not trigger sending of padding. |
| 414 | clock_.AdvanceTimeMilliseconds(500); |
| 415 | pacer.ProcessPackets(); |
| 416 | } |
| 417 | |
| 418 | TEST_P(PacingControllerFieldTrialTest, PaddingInSilenceWithTrial) { |
| 419 | ScopedFieldTrials trial(GetFieldTrialStirng(GetParam()) + |
| 420 | "WebRTC-Pacer-PadInSilence/Enabled/"); |
| 421 | PacingController pacer(&clock_, &callback_, nullptr, nullptr); |
| 422 | pacer.SetPacingRates(kTargetRate, DataRate::Zero()); |
| 423 | // Video packet to reset last send time and provide padding data. |
| 424 | InsertPacket(&pacer, &video); |
| 425 | if (GetParam() == PacerMode::kReferencePackets) { |
| 426 | // Only payload, not padding, sent by pacer in legacy mode. |
| 427 | EXPECT_CALL(callback_, SendPacket).Times(1); |
| 428 | } else { |
| 429 | EXPECT_CALL(callback_, SendPacket).Times(2); |
| 430 | } |
| 431 | clock_.AdvanceTimeMilliseconds(5); |
| 432 | pacer.ProcessPackets(); |
| 433 | EXPECT_CALL(callback_, SendPadding).WillOnce(Return(1000)); |
| 434 | // Waiting 500 ms should trigger sending of padding. |
| 435 | clock_.AdvanceTimeMilliseconds(500); |
| 436 | pacer.ProcessPackets(); |
| 437 | } |
| 438 | |
| 439 | TEST_P(PacingControllerFieldTrialTest, DefaultCongestionWindowAffectsAudio) { |
| 440 | EXPECT_CALL(callback_, SendPadding).Times(0); |
| 441 | PacingController pacer(&clock_, &callback_, nullptr, nullptr); |
| 442 | pacer.SetPacingRates(DataRate::bps(10000000), DataRate::Zero()); |
| 443 | pacer.SetCongestionWindow(DataSize::bytes(800)); |
| 444 | pacer.UpdateOutstandingData(DataSize::Zero()); |
| 445 | // Video packet fills congestion window. |
| 446 | InsertPacket(&pacer, &video); |
| 447 | EXPECT_CALL(callback_, SendPacket).Times(1); |
| 448 | ProcessNext(&pacer); |
| 449 | // Audio packet blocked due to congestion. |
| 450 | InsertPacket(&pacer, &audio); |
| 451 | EXPECT_CALL(callback_, SendPacket).Times(0); |
| 452 | ProcessNext(&pacer); |
| 453 | ProcessNext(&pacer); |
| 454 | // Audio packet unblocked when congestion window clear. |
| 455 | ::testing::Mock::VerifyAndClearExpectations(&callback_); |
| 456 | pacer.UpdateOutstandingData(DataSize::Zero()); |
| 457 | EXPECT_CALL(callback_, SendPacket).Times(1); |
| 458 | ProcessNext(&pacer); |
| 459 | } |
| 460 | |
| 461 | TEST_P(PacingControllerFieldTrialTest, |
| 462 | CongestionWindowDoesNotAffectAudioInTrial) { |
| 463 | ScopedFieldTrials trial(GetFieldTrialStirng(GetParam()) + |
| 464 | "WebRTC-Pacer-BlockAudio/Disabled/"); |
| 465 | EXPECT_CALL(callback_, SendPadding).Times(0); |
| 466 | PacingController pacer(&clock_, &callback_, nullptr, nullptr); |
| 467 | pacer.SetPacingRates(DataRate::bps(10000000), DataRate::Zero()); |
| 468 | pacer.SetCongestionWindow(DataSize::bytes(800)); |
| 469 | pacer.UpdateOutstandingData(DataSize::Zero()); |
| 470 | // Video packet fills congestion window. |
| 471 | InsertPacket(&pacer, &video); |
| 472 | EXPECT_CALL(callback_, SendPacket).Times(1); |
| 473 | ProcessNext(&pacer); |
| 474 | // Audio not blocked due to congestion. |
| 475 | InsertPacket(&pacer, &audio); |
| 476 | EXPECT_CALL(callback_, SendPacket).Times(1); |
| 477 | ProcessNext(&pacer); |
| 478 | } |
| 479 | |
| 480 | TEST_P(PacingControllerFieldTrialTest, DefaultBudgetAffectsAudio) { |
| 481 | PacingController pacer(&clock_, &callback_, nullptr, nullptr); |
| 482 | pacer.SetPacingRates( |
| 483 | DataRate::bps(video.packet_size / 3 * 8 * kProcessIntervalsPerSecond), |
| 484 | DataRate::Zero()); |
| 485 | // Video fills budget for following process periods. |
| 486 | InsertPacket(&pacer, &video); |
| 487 | EXPECT_CALL(callback_, SendPacket).Times(1); |
| 488 | ProcessNext(&pacer); |
| 489 | // Audio packet blocked due to budget limit. |
| 490 | EXPECT_CALL(callback_, SendPacket).Times(0); |
| 491 | InsertPacket(&pacer, &audio); |
| 492 | ProcessNext(&pacer); |
| 493 | ProcessNext(&pacer); |
| 494 | ::testing::Mock::VerifyAndClearExpectations(&callback_); |
| 495 | // Audio packet unblocked when the budget has recovered. |
| 496 | EXPECT_CALL(callback_, SendPacket).Times(1); |
| 497 | ProcessNext(&pacer); |
| 498 | ProcessNext(&pacer); |
| 499 | } |
| 500 | |
| 501 | TEST_P(PacingControllerFieldTrialTest, BudgetDoesNotAffectAudioInTrial) { |
| 502 | ScopedFieldTrials trial(GetFieldTrialStirng(GetParam()) + |
| 503 | "WebRTC-Pacer-BlockAudio/Disabled/"); |
| 504 | EXPECT_CALL(callback_, SendPadding).Times(0); |
| 505 | PacingController pacer(&clock_, &callback_, nullptr, nullptr); |
| 506 | pacer.SetPacingRates( |
| 507 | DataRate::bps(video.packet_size / 3 * 8 * kProcessIntervalsPerSecond), |
| 508 | DataRate::Zero()); |
| 509 | // Video fills budget for following process periods. |
| 510 | InsertPacket(&pacer, &video); |
| 511 | EXPECT_CALL(callback_, SendPacket).Times(1); |
| 512 | ProcessNext(&pacer); |
| 513 | // Audio packet not blocked due to budget limit. |
| 514 | EXPECT_CALL(callback_, SendPacket).Times(1); |
| 515 | InsertPacket(&pacer, &audio); |
| 516 | ProcessNext(&pacer); |
| 517 | } |
| 518 | |
| 519 | INSTANTIATE_TEST_SUITE_P(ReferencingAndOwningPackets, |
| 520 | PacingControllerFieldTrialTest, |
| 521 | ::testing::Values(PacerMode::kReferencePackets, |
| 522 | PacerMode::kOwnPackets)); |
| 523 | |
| 524 | TEST_P(PacingControllerTest, FirstSentPacketTimeIsSet) { |
| 525 | uint16_t sequence_number = 1234; |
| 526 | const uint32_t kSsrc = 12345; |
| 527 | const size_t kSizeBytes = 250; |
| 528 | const size_t kPacketToSend = 3; |
| 529 | const Timestamp kStartTime = clock_.CurrentTime(); |
| 530 | |
| 531 | // No packet sent. |
| 532 | EXPECT_FALSE(pacer_->FirstSentPacketTime().has_value()); |
| 533 | |
| 534 | for (size_t i = 0; i < kPacketToSend; ++i) { |
| 535 | SendAndExpectPacket(RtpPacketToSend::Type::kVideo, kSsrc, sequence_number++, |
| 536 | clock_.TimeInMilliseconds(), kSizeBytes); |
| 537 | pacer_->ProcessPackets(); |
| 538 | clock_.AdvanceTime(TimeUntilNextProcess()); |
| 539 | } |
| 540 | EXPECT_EQ(kStartTime, pacer_->FirstSentPacketTime()); |
| 541 | } |
| 542 | |
| 543 | TEST_P(PacingControllerTest, QueuePacket) { |
| 544 | uint32_t ssrc = 12345; |
| 545 | uint16_t sequence_number = 1234; |
| 546 | // Due to the multiplicative factor we can send 5 packets during a send |
| 547 | // interval. (network capacity * multiplier / (8 bits per byte * |
| 548 | // (packet size * #send intervals per second) |
| 549 | const size_t packets_to_send = |
| 550 | kTargetRate.bps() * kPaceMultiplier / (8 * 250 * 200); |
| 551 | for (size_t i = 0; i < packets_to_send; ++i) { |
| 552 | SendAndExpectPacket(RtpPacketToSend::Type::kVideo, ssrc, sequence_number++, |
| 553 | clock_.TimeInMilliseconds(), 250); |
| 554 | } |
| 555 | |
| 556 | int64_t queued_packet_timestamp = clock_.TimeInMilliseconds(); |
| 557 | Send(RtpPacketToSend::Type::kVideo, ssrc, sequence_number, |
| 558 | queued_packet_timestamp, 250); |
| 559 | EXPECT_EQ(packets_to_send + 1, pacer_->QueueSizePackets()); |
| 560 | pacer_->ProcessPackets(); |
| 561 | EXPECT_CALL(callback_, SendPadding).Times(0); |
| 562 | clock_.AdvanceTimeMilliseconds(5); |
| 563 | EXPECT_EQ(1u, pacer_->QueueSizePackets()); |
| 564 | EXPECT_CALL(callback_, SendPacket(ssrc, sequence_number++, |
| 565 | queued_packet_timestamp, false, false)) |
| 566 | .Times(1); |
| 567 | pacer_->ProcessPackets(); |
| 568 | sequence_number++; |
| 569 | EXPECT_EQ(0u, pacer_->QueueSizePackets()); |
| 570 | |
| 571 | // We can send packets_to_send -1 packets of size 250 during the current |
| 572 | // interval since one packet has already been sent. |
| 573 | for (size_t i = 0; i < packets_to_send - 1; ++i) { |
| 574 | SendAndExpectPacket(RtpPacketToSend::Type::kVideo, ssrc, sequence_number++, |
| 575 | clock_.TimeInMilliseconds(), 250); |
| 576 | } |
| 577 | Send(RtpPacketToSend::Type::kVideo, ssrc, sequence_number++, |
| 578 | clock_.TimeInMilliseconds(), 250); |
| 579 | EXPECT_EQ(packets_to_send, pacer_->QueueSizePackets()); |
| 580 | pacer_->ProcessPackets(); |
| 581 | EXPECT_EQ(1u, pacer_->QueueSizePackets()); |
| 582 | } |
| 583 | |
| 584 | TEST_P(PacingControllerTest, PaceQueuedPackets) { |
| 585 | uint32_t ssrc = 12345; |
| 586 | uint16_t sequence_number = 1234; |
| 587 | |
| 588 | // Due to the multiplicative factor we can send 5 packets during a send |
| 589 | // interval. (network capacity * multiplier / (8 bits per byte * |
| 590 | // (packet size * #send intervals per second) |
| 591 | const size_t packets_to_send_per_interval = |
| 592 | kTargetRate.bps() * kPaceMultiplier / (8 * 250 * 200); |
| 593 | for (size_t i = 0; i < packets_to_send_per_interval; ++i) { |
| 594 | SendAndExpectPacket(RtpPacketToSend::Type::kVideo, ssrc, sequence_number++, |
| 595 | clock_.TimeInMilliseconds(), 250); |
| 596 | } |
| 597 | |
| 598 | for (size_t j = 0; j < packets_to_send_per_interval * 10; ++j) { |
| 599 | Send(RtpPacketToSend::Type::kVideo, ssrc, sequence_number++, |
| 600 | clock_.TimeInMilliseconds(), 250); |
| 601 | } |
| 602 | EXPECT_EQ(packets_to_send_per_interval + packets_to_send_per_interval * 10, |
| 603 | pacer_->QueueSizePackets()); |
| 604 | pacer_->ProcessPackets(); |
| 605 | EXPECT_EQ(packets_to_send_per_interval * 10, pacer_->QueueSizePackets()); |
| 606 | EXPECT_CALL(callback_, SendPadding).Times(0); |
| 607 | for (int k = 0; k < 10; ++k) { |
| 608 | clock_.AdvanceTime(TimeUntilNextProcess()); |
| 609 | EXPECT_CALL(callback_, SendPacket(ssrc, _, _, false, false)) |
| 610 | .Times(packets_to_send_per_interval); |
| 611 | pacer_->ProcessPackets(); |
| 612 | } |
| 613 | EXPECT_EQ(0u, pacer_->QueueSizePackets()); |
| 614 | clock_.AdvanceTime(TimeUntilNextProcess()); |
| 615 | EXPECT_EQ(0u, pacer_->QueueSizePackets()); |
| 616 | pacer_->ProcessPackets(); |
| 617 | |
| 618 | for (size_t i = 0; i < packets_to_send_per_interval; ++i) { |
| 619 | SendAndExpectPacket(RtpPacketToSend::Type::kVideo, ssrc, sequence_number++, |
| 620 | clock_.TimeInMilliseconds(), 250); |
| 621 | } |
| 622 | Send(RtpPacketToSend::Type::kVideo, ssrc, sequence_number, |
| 623 | clock_.TimeInMilliseconds(), 250); |
| 624 | pacer_->ProcessPackets(); |
| 625 | EXPECT_EQ(1u, pacer_->QueueSizePackets()); |
| 626 | } |
| 627 | |
| 628 | TEST_P(PacingControllerTest, RepeatedRetransmissionsAllowed) { |
| 629 | // Send one packet, then two retransmissions of that packet. |
| 630 | for (size_t i = 0; i < 3; i++) { |
| 631 | constexpr uint32_t ssrc = 333; |
| 632 | constexpr uint16_t sequence_number = 444; |
| 633 | constexpr size_t bytes = 250; |
| 634 | bool is_retransmission = (i != 0); // Original followed by retransmissions. |
| 635 | SendAndExpectPacket( |
| 636 | is_retransmission ? RtpPacketToSend::Type::kRetransmission |
| 637 | : RtpPacketToSend::Type::kVideo, |
| 638 | ssrc, sequence_number, clock_.TimeInMilliseconds(), bytes); |
| 639 | clock_.AdvanceTimeMilliseconds(5); |
| 640 | } |
| 641 | pacer_->ProcessPackets(); |
| 642 | } |
| 643 | |
| 644 | TEST_P(PacingControllerTest, |
| 645 | CanQueuePacketsWithSameSequenceNumberOnDifferentSsrcs) { |
| 646 | uint32_t ssrc = 12345; |
| 647 | uint16_t sequence_number = 1234; |
| 648 | |
| 649 | SendAndExpectPacket(RtpPacketToSend::Type::kVideo, ssrc, sequence_number, |
| 650 | clock_.TimeInMilliseconds(), 250); |
| 651 | |
| 652 | // Expect packet on second ssrc to be queued and sent as well. |
| 653 | SendAndExpectPacket(RtpPacketToSend::Type::kVideo, ssrc + 1, sequence_number, |
| 654 | clock_.TimeInMilliseconds(), 250); |
| 655 | |
| 656 | clock_.AdvanceTimeMilliseconds(1000); |
| 657 | pacer_->ProcessPackets(); |
| 658 | } |
| 659 | |
| 660 | TEST_P(PacingControllerTest, Padding) { |
| 661 | uint32_t ssrc = 12345; |
| 662 | uint16_t sequence_number = 1234; |
| 663 | |
| 664 | pacer_->SetPacingRates(kTargetRate * kPaceMultiplier, kTargetRate); |
| 665 | |
| 666 | // Due to the multiplicative factor we can send 5 packets during a send |
| 667 | // interval. (network capacity * multiplier / (8 bits per byte * |
| 668 | // (packet size * #send intervals per second) |
| 669 | const size_t packets_to_send_per_interval = |
| 670 | kTargetRate.bps() * kPaceMultiplier / (8 * 250 * 200); |
| 671 | for (size_t i = 0; i < packets_to_send_per_interval; ++i) { |
| 672 | SendAndExpectPacket(RtpPacketToSend::Type::kVideo, ssrc, sequence_number++, |
| 673 | clock_.TimeInMilliseconds(), 250); |
| 674 | } |
| 675 | // No padding is expected since we have sent too much already. |
| 676 | EXPECT_CALL(callback_, SendPadding).Times(0); |
| 677 | pacer_->ProcessPackets(); |
| 678 | EXPECT_EQ(0u, pacer_->QueueSizePackets()); |
| 679 | |
| 680 | // 5 milliseconds later should not send padding since we filled the buffers |
| 681 | // initially. |
| 682 | EXPECT_CALL(callback_, SendPadding(250)).Times(0); |
| 683 | clock_.AdvanceTime(TimeUntilNextProcess()); |
| 684 | pacer_->ProcessPackets(); |
| 685 | |
| 686 | // 5 milliseconds later we have enough budget to send some padding. |
| 687 | EXPECT_CALL(callback_, SendPadding(250)).WillOnce(Return(250)); |
| 688 | ExpectSendPadding(); |
| 689 | clock_.AdvanceTime(TimeUntilNextProcess()); |
| 690 | pacer_->ProcessPackets(); |
| 691 | } |
| 692 | |
| 693 | TEST_P(PacingControllerTest, NoPaddingBeforeNormalPacket) { |
| 694 | pacer_->SetPacingRates(kTargetRate * kPaceMultiplier, kTargetRate); |
| 695 | |
| 696 | EXPECT_CALL(callback_, SendPadding).Times(0); |
| 697 | pacer_->ProcessPackets(); |
| 698 | clock_.AdvanceTime(TimeUntilNextProcess()); |
| 699 | |
| 700 | pacer_->ProcessPackets(); |
| 701 | clock_.AdvanceTime(TimeUntilNextProcess()); |
| 702 | |
| 703 | uint32_t ssrc = 12345; |
| 704 | uint16_t sequence_number = 1234; |
| 705 | int64_t capture_time_ms = 56789; |
| 706 | |
| 707 | SendAndExpectPacket(RtpPacketToSend::Type::kVideo, ssrc, sequence_number++, |
| 708 | capture_time_ms, 250); |
| 709 | EXPECT_CALL(callback_, SendPadding(250)).WillOnce(Return(250)); |
| 710 | ExpectSendPadding(); |
| 711 | pacer_->ProcessPackets(); |
| 712 | } |
| 713 | |
| 714 | TEST_P(PacingControllerTest, VerifyPaddingUpToBitrate) { |
| 715 | uint32_t ssrc = 12345; |
| 716 | uint16_t sequence_number = 1234; |
| 717 | int64_t capture_time_ms = 56789; |
| 718 | const int kTimeStep = 5; |
| 719 | const int64_t kBitrateWindow = 100; |
| 720 | pacer_->SetPacingRates(kTargetRate * kPaceMultiplier, kTargetRate); |
| 721 | |
| 722 | int64_t start_time = clock_.TimeInMilliseconds(); |
| 723 | while (clock_.TimeInMilliseconds() - start_time < kBitrateWindow) { |
| 724 | SendAndExpectPacket(RtpPacketToSend::Type::kVideo, ssrc, sequence_number++, |
| 725 | capture_time_ms, 250); |
| 726 | EXPECT_CALL(callback_, SendPadding(250)).WillOnce(Return(250)); |
| 727 | ExpectSendPadding(); |
| 728 | pacer_->ProcessPackets(); |
| 729 | clock_.AdvanceTimeMilliseconds(kTimeStep); |
| 730 | } |
| 731 | } |
| 732 | |
| 733 | TEST_P(PacingControllerTest, VerifyAverageBitrateVaryingMediaPayload) { |
| 734 | uint32_t ssrc = 12345; |
| 735 | uint16_t sequence_number = 1234; |
| 736 | int64_t capture_time_ms = 56789; |
| 737 | const int kTimeStep = 5; |
| 738 | const int64_t kBitrateWindow = 10000; |
| 739 | PacingControllerPadding callback; |
| 740 | pacer_ = |
| 741 | absl::make_unique<PacingController>(&clock_, &callback, nullptr, nullptr); |
| 742 | pacer_->SetProbingEnabled(false); |
| 743 | pacer_->SetPacingRates(kTargetRate * kPaceMultiplier, kTargetRate); |
| 744 | |
| 745 | int64_t start_time = clock_.TimeInMilliseconds(); |
| 746 | size_t media_bytes = 0; |
| 747 | while (clock_.TimeInMilliseconds() - start_time < kBitrateWindow) { |
| 748 | int rand_value = rand(); // NOLINT (rand_r instead of rand) |
| 749 | size_t media_payload = rand_value % 100 + 200; // [200, 300] bytes. |
| 750 | Send(RtpPacketToSend::Type::kVideo, ssrc, sequence_number++, |
| 751 | capture_time_ms, media_payload); |
| 752 | media_bytes += media_payload; |
| 753 | clock_.AdvanceTimeMilliseconds(kTimeStep); |
| 754 | pacer_->ProcessPackets(); |
| 755 | } |
| 756 | EXPECT_NEAR(kTargetRate.kbps(), |
| 757 | static_cast<int>(8 * (media_bytes + callback.padding_sent()) / |
| 758 | kBitrateWindow), |
| 759 | 1); |
| 760 | } |
| 761 | |
| 762 | TEST_P(PacingControllerTest, Priority) { |
| 763 | uint32_t ssrc_low_priority = 12345; |
| 764 | uint32_t ssrc = 12346; |
| 765 | uint16_t sequence_number = 1234; |
| 766 | int64_t capture_time_ms = 56789; |
| 767 | int64_t capture_time_ms_low_priority = 1234567; |
| 768 | |
| 769 | // Due to the multiplicative factor we can send 5 packets during a send |
| 770 | // interval. (network capacity * multiplier / (8 bits per byte * |
| 771 | // (packet size * #send intervals per second) |
| 772 | const size_t packets_to_send_per_interval = |
| 773 | kTargetRate.bps() * kPaceMultiplier / (8 * 250 * 200); |
| 774 | for (size_t i = 0; i < packets_to_send_per_interval; ++i) { |
| 775 | SendAndExpectPacket(RtpPacketToSend::Type::kRetransmission, ssrc, |
| 776 | sequence_number++, clock_.TimeInMilliseconds(), 250); |
| 777 | } |
| 778 | pacer_->ProcessPackets(); |
| 779 | EXPECT_EQ(0u, pacer_->QueueSizePackets()); |
| 780 | |
| 781 | // Expect normal and low priority to be queued and high to pass through. |
| 782 | Send(RtpPacketToSend::Type::kVideo, ssrc_low_priority, sequence_number++, |
| 783 | capture_time_ms_low_priority, 250); |
| 784 | |
| 785 | for (size_t i = 0; i < packets_to_send_per_interval; ++i) { |
| 786 | Send(RtpPacketToSend::Type::kRetransmission, ssrc, sequence_number++, |
| 787 | capture_time_ms, 250); |
| 788 | } |
| 789 | Send(RtpPacketToSend::Type::kAudio, ssrc, sequence_number++, capture_time_ms, |
| 790 | 250); |
| 791 | |
| 792 | // Expect all high and normal priority to be sent out first. |
| 793 | EXPECT_CALL(callback_, SendPadding).Times(0); |
| 794 | EXPECT_CALL(callback_, SendPacket(ssrc, _, capture_time_ms, _, _)) |
| 795 | .Times(packets_to_send_per_interval + 1); |
| 796 | |
| 797 | clock_.AdvanceTime(TimeUntilNextProcess()); |
| 798 | pacer_->ProcessPackets(); |
| 799 | EXPECT_EQ(1u, pacer_->QueueSizePackets()); |
| 800 | |
| 801 | EXPECT_CALL(callback_, SendPacket(ssrc_low_priority, _, |
| 802 | capture_time_ms_low_priority, _, _)) |
| 803 | .Times(1); |
| 804 | |
| 805 | clock_.AdvanceTime(TimeUntilNextProcess()); |
| 806 | pacer_->ProcessPackets(); |
| 807 | } |
| 808 | |
| 809 | TEST_P(PacingControllerTest, RetransmissionPriority) { |
| 810 | uint32_t ssrc = 12345; |
| 811 | uint16_t sequence_number = 1234; |
| 812 | int64_t capture_time_ms = 45678; |
| 813 | int64_t capture_time_ms_retransmission = 56789; |
| 814 | |
| 815 | // Due to the multiplicative factor we can send 5 packets during a send |
| 816 | // interval. (network capacity * multiplier / (8 bits per byte * |
| 817 | // (packet size * #send intervals per second) |
| 818 | const size_t packets_to_send_per_interval = |
| 819 | kTargetRate.bps() * kPaceMultiplier / (8 * 250 * 200); |
| 820 | pacer_->ProcessPackets(); |
| 821 | EXPECT_EQ(0u, pacer_->QueueSizePackets()); |
| 822 | |
| 823 | // Alternate retransmissions and normal packets. |
| 824 | for (size_t i = 0; i < packets_to_send_per_interval; ++i) { |
| 825 | Send(RtpPacketToSend::Type::kVideo, ssrc, sequence_number++, |
| 826 | capture_time_ms, 250); |
| 827 | Send(RtpPacketToSend::Type::kRetransmission, ssrc, sequence_number++, |
| 828 | capture_time_ms_retransmission, 250); |
| 829 | } |
| 830 | EXPECT_EQ(2 * packets_to_send_per_interval, pacer_->QueueSizePackets()); |
| 831 | |
| 832 | // Expect all retransmissions to be sent out first despite having a later |
| 833 | // capture time. |
| 834 | EXPECT_CALL(callback_, SendPadding).Times(0); |
| 835 | EXPECT_CALL(callback_, SendPacket(_, _, _, false, _)).Times(0); |
| 836 | EXPECT_CALL(callback_, |
| 837 | SendPacket(ssrc, _, capture_time_ms_retransmission, true, _)) |
| 838 | .Times(packets_to_send_per_interval); |
| 839 | |
| 840 | clock_.AdvanceTime(TimeUntilNextProcess()); |
| 841 | pacer_->ProcessPackets(); |
| 842 | EXPECT_EQ(packets_to_send_per_interval, pacer_->QueueSizePackets()); |
| 843 | |
| 844 | // Expect the remaining (non-retransmission) packets to be sent. |
| 845 | EXPECT_CALL(callback_, SendPadding).Times(0); |
| 846 | EXPECT_CALL(callback_, SendPacket(_, _, _, true, _)).Times(0); |
| 847 | EXPECT_CALL(callback_, SendPacket(ssrc, _, capture_time_ms, false, _)) |
| 848 | .Times(packets_to_send_per_interval); |
| 849 | |
| 850 | clock_.AdvanceTime(TimeUntilNextProcess()); |
| 851 | pacer_->ProcessPackets(); |
| 852 | |
| 853 | EXPECT_EQ(0u, pacer_->QueueSizePackets()); |
| 854 | } |
| 855 | |
| 856 | TEST_P(PacingControllerTest, HighPrioDoesntAffectBudget) { |
| 857 | uint32_t ssrc = 12346; |
| 858 | uint16_t sequence_number = 1234; |
| 859 | int64_t capture_time_ms = 56789; |
| 860 | |
| 861 | // As high prio packets doesn't affect the budget, we should be able to send |
| 862 | // a high number of them at once. |
| 863 | for (int i = 0; i < 25; ++i) { |
| 864 | SendAndExpectPacket(RtpPacketToSend::Type::kAudio, ssrc, sequence_number++, |
| 865 | capture_time_ms, 250); |
| 866 | } |
| 867 | pacer_->ProcessPackets(); |
| 868 | // Low prio packets does affect the budget. |
| 869 | // Due to the multiplicative factor we can send 5 packets during a send |
| 870 | // interval. (network capacity * multiplier / (8 bits per byte * |
| 871 | // (packet size * #send intervals per second) |
| 872 | const size_t packets_to_send_per_interval = |
| 873 | kTargetRate.bps() * kPaceMultiplier / (8 * 250 * 200); |
| 874 | for (size_t i = 0; i < packets_to_send_per_interval; ++i) { |
| 875 | SendAndExpectPacket(RtpPacketToSend::Type::kVideo, ssrc, sequence_number++, |
| 876 | clock_.TimeInMilliseconds(), 250); |
| 877 | } |
| 878 | Send(RtpPacketToSend::Type::kVideo, ssrc, sequence_number, capture_time_ms, |
| 879 | 250); |
| 880 | clock_.AdvanceTime(TimeUntilNextProcess()); |
| 881 | pacer_->ProcessPackets(); |
| 882 | EXPECT_EQ(1u, pacer_->QueueSizePackets()); |
| 883 | EXPECT_CALL(callback_, |
| 884 | SendPacket(ssrc, sequence_number++, capture_time_ms, false, _)) |
| 885 | .Times(1); |
| 886 | clock_.AdvanceTime(TimeUntilNextProcess()); |
| 887 | pacer_->ProcessPackets(); |
| 888 | EXPECT_EQ(0u, pacer_->QueueSizePackets()); |
| 889 | } |
| 890 | |
| 891 | TEST_P(PacingControllerTest, SendsOnlyPaddingWhenCongested) { |
| 892 | uint32_t ssrc = 202020; |
| 893 | uint16_t sequence_number = 1000; |
| 894 | int kPacketSize = 250; |
| 895 | int kCongestionWindow = kPacketSize * 10; |
| 896 | |
| 897 | pacer_->UpdateOutstandingData(DataSize::Zero()); |
| 898 | pacer_->SetCongestionWindow(DataSize::bytes(kCongestionWindow)); |
| 899 | int sent_data = 0; |
| 900 | while (sent_data < kCongestionWindow) { |
| 901 | sent_data += kPacketSize; |
| 902 | SendAndExpectPacket(RtpPacketToSend::Type::kVideo, ssrc, sequence_number++, |
| 903 | clock_.TimeInMilliseconds(), kPacketSize); |
| 904 | clock_.AdvanceTimeMilliseconds(5); |
| 905 | pacer_->ProcessPackets(); |
| 906 | } |
| 907 | ::testing::Mock::VerifyAndClearExpectations(&callback_); |
| 908 | EXPECT_CALL(callback_, SendPacket).Times(0); |
| 909 | EXPECT_CALL(callback_, SendPadding).Times(0); |
| 910 | |
| 911 | size_t blocked_packets = 0; |
| 912 | int64_t expected_time_until_padding = 500; |
| 913 | while (expected_time_until_padding > 5) { |
| 914 | Send(RtpPacketToSend::Type::kVideo, ssrc, sequence_number++, |
| 915 | clock_.TimeInMilliseconds(), kPacketSize); |
| 916 | blocked_packets++; |
| 917 | clock_.AdvanceTimeMilliseconds(5); |
| 918 | pacer_->ProcessPackets(); |
| 919 | expected_time_until_padding -= 5; |
| 920 | } |
| 921 | ::testing::Mock::VerifyAndClearExpectations(&callback_); |
| 922 | EXPECT_CALL(callback_, SendPadding(1)).WillOnce(Return(1)); |
| 923 | ExpectSendPadding(); |
| 924 | clock_.AdvanceTimeMilliseconds(5); |
| 925 | pacer_->ProcessPackets(); |
| 926 | EXPECT_EQ(blocked_packets, pacer_->QueueSizePackets()); |
| 927 | } |
| 928 | |
| 929 | TEST_P(PacingControllerTest, DoesNotAllowOveruseAfterCongestion) { |
| 930 | uint32_t ssrc = 202020; |
| 931 | uint16_t seq_num = 1000; |
| 932 | int size = 1000; |
| 933 | auto now_ms = [this] { return clock_.TimeInMilliseconds(); }; |
| 934 | EXPECT_CALL(callback_, SendPadding).Times(0); |
| 935 | // The pacing rate is low enough that the budget should not allow two packets |
| 936 | // to be sent in a row. |
| 937 | pacer_->SetPacingRates(DataRate::bps(400 * 8 * 1000 / 5), DataRate::Zero()); |
| 938 | // The congestion window is small enough to only let one packet through. |
| 939 | pacer_->SetCongestionWindow(DataSize::bytes(800)); |
| 940 | pacer_->UpdateOutstandingData(DataSize::Zero()); |
| 941 | // Not yet budget limited or congested, packet is sent. |
| 942 | Send(RtpPacketToSend::Type::kVideo, ssrc, seq_num++, now_ms(), size); |
| 943 | EXPECT_CALL(callback_, SendPacket).Times(1); |
| 944 | clock_.AdvanceTimeMilliseconds(5); |
| 945 | pacer_->ProcessPackets(); |
| 946 | // Packet blocked due to congestion. |
| 947 | Send(RtpPacketToSend::Type::kVideo, ssrc, seq_num++, now_ms(), size); |
| 948 | EXPECT_CALL(callback_, SendPacket).Times(0); |
| 949 | clock_.AdvanceTimeMilliseconds(5); |
| 950 | pacer_->ProcessPackets(); |
| 951 | // Packet blocked due to congestion. |
| 952 | Send(RtpPacketToSend::Type::kVideo, ssrc, seq_num++, now_ms(), size); |
| 953 | EXPECT_CALL(callback_, SendPacket).Times(0); |
| 954 | clock_.AdvanceTimeMilliseconds(5); |
| 955 | pacer_->ProcessPackets(); |
| 956 | pacer_->UpdateOutstandingData(DataSize::Zero()); |
| 957 | // Congestion removed and budget has recovered, packet is sent. |
| 958 | Send(RtpPacketToSend::Type::kVideo, ssrc, seq_num++, now_ms(), size); |
| 959 | EXPECT_CALL(callback_, SendPacket).Times(1); |
| 960 | clock_.AdvanceTimeMilliseconds(5); |
| 961 | pacer_->ProcessPackets(); |
| 962 | pacer_->UpdateOutstandingData(DataSize::Zero()); |
| 963 | // Should be blocked due to budget limitation as congestion has be removed. |
| 964 | Send(RtpPacketToSend::Type::kVideo, ssrc, seq_num++, now_ms(), size); |
| 965 | EXPECT_CALL(callback_, SendPacket).Times(0); |
| 966 | clock_.AdvanceTimeMilliseconds(5); |
| 967 | pacer_->ProcessPackets(); |
| 968 | } |
| 969 | |
| 970 | TEST_P(PacingControllerTest, ResumesSendingWhenCongestionEnds) { |
| 971 | uint32_t ssrc = 202020; |
| 972 | uint16_t sequence_number = 1000; |
| 973 | int64_t kPacketSize = 250; |
| 974 | int64_t kCongestionCount = 10; |
| 975 | int64_t kCongestionWindow = kPacketSize * kCongestionCount; |
| 976 | int64_t kCongestionTimeMs = 1000; |
| 977 | |
| 978 | pacer_->UpdateOutstandingData(DataSize::Zero()); |
| 979 | pacer_->SetCongestionWindow(DataSize::bytes(kCongestionWindow)); |
| 980 | int sent_data = 0; |
| 981 | while (sent_data < kCongestionWindow) { |
| 982 | sent_data += kPacketSize; |
| 983 | SendAndExpectPacket(RtpPacketToSend::Type::kVideo, ssrc, sequence_number++, |
| 984 | clock_.TimeInMilliseconds(), kPacketSize); |
| 985 | clock_.AdvanceTimeMilliseconds(5); |
| 986 | pacer_->ProcessPackets(); |
| 987 | } |
| 988 | ::testing::Mock::VerifyAndClearExpectations(&callback_); |
| 989 | EXPECT_CALL(callback_, SendPacket).Times(0); |
| 990 | int unacked_packets = 0; |
| 991 | for (int duration = 0; duration < kCongestionTimeMs; duration += 5) { |
| 992 | Send(RtpPacketToSend::Type::kVideo, ssrc, sequence_number++, |
| 993 | clock_.TimeInMilliseconds(), kPacketSize); |
| 994 | unacked_packets++; |
| 995 | clock_.AdvanceTimeMilliseconds(5); |
| 996 | pacer_->ProcessPackets(); |
| 997 | } |
| 998 | ::testing::Mock::VerifyAndClearExpectations(&callback_); |
| 999 | |
| 1000 | // First mark half of the congested packets as cleared and make sure that just |
| 1001 | // as many are sent |
| 1002 | int ack_count = kCongestionCount / 2; |
| 1003 | EXPECT_CALL(callback_, SendPacket(ssrc, _, _, false, _)).Times(ack_count); |
| 1004 | pacer_->UpdateOutstandingData( |
| 1005 | DataSize::bytes(kCongestionWindow - kPacketSize * ack_count)); |
| 1006 | |
| 1007 | for (int duration = 0; duration < kCongestionTimeMs; duration += 5) { |
| 1008 | clock_.AdvanceTimeMilliseconds(5); |
| 1009 | pacer_->ProcessPackets(); |
| 1010 | } |
| 1011 | unacked_packets -= ack_count; |
| 1012 | ::testing::Mock::VerifyAndClearExpectations(&callback_); |
| 1013 | |
| 1014 | // Second make sure all packets are sent if sent packets are continuously |
| 1015 | // marked as acked. |
| 1016 | EXPECT_CALL(callback_, SendPacket(ssrc, _, _, false, _)) |
| 1017 | .Times(unacked_packets); |
| 1018 | for (int duration = 0; duration < kCongestionTimeMs; duration += 5) { |
| 1019 | pacer_->UpdateOutstandingData(DataSize::Zero()); |
| 1020 | clock_.AdvanceTimeMilliseconds(5); |
| 1021 | pacer_->ProcessPackets(); |
| 1022 | } |
| 1023 | } |
| 1024 | |
| 1025 | TEST_P(PacingControllerTest, Pause) { |
| 1026 | uint32_t ssrc_low_priority = 12345; |
| 1027 | uint32_t ssrc = 12346; |
| 1028 | uint32_t ssrc_high_priority = 12347; |
| 1029 | uint16_t sequence_number = 1234; |
| 1030 | int64_t capture_time_ms = clock_.TimeInMilliseconds(); |
| 1031 | |
| 1032 | EXPECT_EQ(TimeDelta::Zero(), pacer_->OldestPacketWaitTime()); |
| 1033 | |
| 1034 | // Due to the multiplicative factor we can send 5 packets during a send |
| 1035 | // interval. (network capacity * multiplier / (8 bits per byte * |
| 1036 | // (packet size * #send intervals per second) |
| 1037 | const size_t packets_to_send_per_interval = |
| 1038 | kTargetRate.bps() * kPaceMultiplier / (8 * 250 * 200); |
| 1039 | for (size_t i = 0; i < packets_to_send_per_interval; ++i) { |
| 1040 | SendAndExpectPacket(RtpPacketToSend::Type::kVideo, ssrc, sequence_number++, |
| 1041 | clock_.TimeInMilliseconds(), 250); |
| 1042 | } |
| 1043 | |
| 1044 | pacer_->ProcessPackets(); |
| 1045 | |
| 1046 | pacer_->Pause(); |
| 1047 | |
| 1048 | for (size_t i = 0; i < packets_to_send_per_interval; ++i) { |
| 1049 | Send(RtpPacketToSend::Type::kVideo, ssrc_low_priority, sequence_number++, |
| 1050 | capture_time_ms, 250); |
| 1051 | Send(RtpPacketToSend::Type::kRetransmission, ssrc, sequence_number++, |
| 1052 | capture_time_ms, 250); |
| 1053 | Send(RtpPacketToSend::Type::kAudio, ssrc_high_priority, sequence_number++, |
| 1054 | capture_time_ms, 250); |
| 1055 | } |
| 1056 | clock_.AdvanceTimeMilliseconds(10000); |
| 1057 | int64_t second_capture_time_ms = clock_.TimeInMilliseconds(); |
| 1058 | for (size_t i = 0; i < packets_to_send_per_interval; ++i) { |
| 1059 | Send(RtpPacketToSend::Type::kVideo, ssrc_low_priority, sequence_number++, |
| 1060 | second_capture_time_ms, 250); |
| 1061 | Send(RtpPacketToSend::Type::kRetransmission, ssrc, sequence_number++, |
| 1062 | second_capture_time_ms, 250); |
| 1063 | Send(RtpPacketToSend::Type::kAudio, ssrc_high_priority, sequence_number++, |
| 1064 | second_capture_time_ms, 250); |
| 1065 | } |
| 1066 | |
| 1067 | // Expect everything to be queued. |
| 1068 | EXPECT_EQ(TimeDelta::ms(second_capture_time_ms - capture_time_ms), |
| 1069 | pacer_->OldestPacketWaitTime()); |
| 1070 | |
| 1071 | EXPECT_CALL(callback_, SendPadding(1)).WillOnce(Return(1)); |
| 1072 | ExpectSendPadding(); |
| 1073 | pacer_->ProcessPackets(); |
| 1074 | |
| 1075 | int64_t expected_time_until_send = 500; |
| 1076 | EXPECT_CALL(callback_, SendPadding).Times(0); |
| 1077 | while (expected_time_until_send >= 5) { |
| 1078 | pacer_->ProcessPackets(); |
| 1079 | clock_.AdvanceTimeMilliseconds(5); |
| 1080 | expected_time_until_send -= 5; |
| 1081 | } |
| 1082 | |
| 1083 | ::testing::Mock::VerifyAndClearExpectations(&callback_); |
| 1084 | EXPECT_CALL(callback_, SendPadding(1)).WillOnce(Return(1)); |
| 1085 | ExpectSendPadding(); |
| 1086 | clock_.AdvanceTimeMilliseconds(5); |
| 1087 | pacer_->ProcessPackets(); |
| 1088 | ::testing::Mock::VerifyAndClearExpectations(&callback_); |
| 1089 | |
| 1090 | // Expect high prio packets to come out first followed by normal |
| 1091 | // prio packets and low prio packets (all in capture order). |
| 1092 | { |
| 1093 | ::testing::InSequence sequence; |
| 1094 | EXPECT_CALL(callback_, |
| 1095 | SendPacket(ssrc_high_priority, _, capture_time_ms, _, _)) |
| 1096 | .Times(packets_to_send_per_interval); |
| 1097 | EXPECT_CALL(callback_, |
| 1098 | SendPacket(ssrc_high_priority, _, second_capture_time_ms, _, _)) |
| 1099 | .Times(packets_to_send_per_interval); |
| 1100 | |
| 1101 | for (size_t i = 0; i < packets_to_send_per_interval; ++i) { |
| 1102 | EXPECT_CALL(callback_, SendPacket(ssrc, _, capture_time_ms, _, _)) |
| 1103 | .Times(1); |
| 1104 | } |
| 1105 | for (size_t i = 0; i < packets_to_send_per_interval; ++i) { |
| 1106 | EXPECT_CALL(callback_, SendPacket(ssrc, _, second_capture_time_ms, _, _)) |
| 1107 | .Times(1); |
| 1108 | } |
| 1109 | for (size_t i = 0; i < packets_to_send_per_interval; ++i) { |
| 1110 | EXPECT_CALL(callback_, |
| 1111 | SendPacket(ssrc_low_priority, _, capture_time_ms, _, _)) |
| 1112 | .Times(1); |
| 1113 | } |
| 1114 | for (size_t i = 0; i < packets_to_send_per_interval; ++i) { |
| 1115 | EXPECT_CALL(callback_, SendPacket(ssrc_low_priority, _, |
| 1116 | second_capture_time_ms, _, _)) |
| 1117 | .Times(1); |
| 1118 | } |
| 1119 | } |
| 1120 | pacer_->Resume(); |
| 1121 | |
| 1122 | // The pacer was resumed directly after the previous process call finished. It |
| 1123 | // will therefore wait 5 ms until next process. |
| 1124 | clock_.AdvanceTime(TimeUntilNextProcess()); |
| 1125 | |
| 1126 | for (size_t i = 0; i < 4; i++) { |
| 1127 | pacer_->ProcessPackets(); |
| 1128 | clock_.AdvanceTime(TimeUntilNextProcess()); |
| 1129 | } |
| 1130 | |
| 1131 | EXPECT_EQ(TimeDelta::Zero(), pacer_->OldestPacketWaitTime()); |
| 1132 | } |
| 1133 | |
| 1134 | TEST_P(PacingControllerTest, ResendPacket) { |
| 1135 | if (GetParam() == PacerMode::kOwnPackets) { |
| 1136 | // This test only makes sense when re-sending is supported. |
| 1137 | return; |
| 1138 | } |
| 1139 | |
| 1140 | MockPacketSender callback; |
| 1141 | |
| 1142 | // Need to initialize PacedSender after we initialize clock. |
| 1143 | pacer_ = |
| 1144 | absl::make_unique<PacingController>(&clock_, &callback, nullptr, nullptr); |
| 1145 | Init(); |
| 1146 | |
| 1147 | uint32_t ssrc = 12346; |
| 1148 | uint16_t sequence_number = 1234; |
| 1149 | int64_t capture_time_ms = clock_.TimeInMilliseconds(); |
| 1150 | EXPECT_EQ(TimeDelta::Zero(), pacer_->OldestPacketWaitTime()); |
| 1151 | |
| 1152 | pacer_->InsertPacket(RtpPacketSender::kNormalPriority, ssrc, sequence_number, |
| 1153 | capture_time_ms, 250, false); |
| 1154 | clock_.AdvanceTimeMilliseconds(1); |
| 1155 | pacer_->InsertPacket(RtpPacketSender::kNormalPriority, ssrc, |
| 1156 | sequence_number + 1, capture_time_ms + 1, 250, false); |
| 1157 | clock_.AdvanceTimeMilliseconds(9999); |
| 1158 | EXPECT_EQ(TimeDelta::ms(clock_.TimeInMilliseconds() - capture_time_ms), |
| 1159 | pacer_->OldestPacketWaitTime()); |
| 1160 | // Fails to send first packet so only one call. |
| 1161 | EXPECT_CALL(callback, TimeToSendPacket(ssrc, sequence_number, capture_time_ms, |
| 1162 | false, _)) |
| 1163 | .Times(1) |
| 1164 | .WillOnce(Return(RtpPacketSendResult::kTransportUnavailable)); |
| 1165 | clock_.AdvanceTimeMilliseconds(10000); |
| 1166 | pacer_->ProcessPackets(); |
| 1167 | |
| 1168 | // Queue remains unchanged. |
| 1169 | EXPECT_EQ(TimeDelta::ms(clock_.TimeInMilliseconds() - capture_time_ms), |
| 1170 | pacer_->OldestPacketWaitTime()); |
| 1171 | |
| 1172 | // Fails to send second packet. |
| 1173 | EXPECT_CALL(callback, TimeToSendPacket(ssrc, sequence_number, capture_time_ms, |
| 1174 | false, _)) |
| 1175 | .WillOnce(Return(RtpPacketSendResult::kSuccess)); |
| 1176 | EXPECT_CALL(callback, TimeToSendPacket(ssrc, sequence_number + 1, |
| 1177 | capture_time_ms + 1, false, _)) |
| 1178 | .WillOnce(Return(RtpPacketSendResult::kTransportUnavailable)); |
| 1179 | clock_.AdvanceTimeMilliseconds(10000); |
| 1180 | pacer_->ProcessPackets(); |
| 1181 | |
| 1182 | // Queue is reduced by 1 packet. |
| 1183 | EXPECT_EQ(TimeDelta::ms(clock_.TimeInMilliseconds() - capture_time_ms - 1), |
| 1184 | pacer_->OldestPacketWaitTime()); |
| 1185 | |
| 1186 | // Send second packet and queue becomes empty. |
| 1187 | EXPECT_CALL(callback, TimeToSendPacket(ssrc, sequence_number + 1, |
| 1188 | capture_time_ms + 1, false, _)) |
| 1189 | .WillOnce(Return(RtpPacketSendResult::kSuccess)); |
| 1190 | clock_.AdvanceTimeMilliseconds(10000); |
| 1191 | pacer_->ProcessPackets(); |
| 1192 | EXPECT_EQ(TimeDelta::Zero(), pacer_->OldestPacketWaitTime()); |
| 1193 | } |
| 1194 | |
| 1195 | TEST_P(PacingControllerTest, ExpectedQueueTimeMs) { |
| 1196 | uint32_t ssrc = 12346; |
| 1197 | uint16_t sequence_number = 1234; |
| 1198 | const size_t kNumPackets = 60; |
| 1199 | const size_t kPacketSize = 1200; |
| 1200 | const int32_t kMaxBitrate = kPaceMultiplier * 30000; |
| 1201 | EXPECT_EQ(TimeDelta::Zero(), pacer_->OldestPacketWaitTime()); |
| 1202 | |
| 1203 | pacer_->SetPacingRates(DataRate::bps(30000 * kPaceMultiplier), |
| 1204 | DataRate::Zero()); |
| 1205 | for (size_t i = 0; i < kNumPackets; ++i) { |
| 1206 | SendAndExpectPacket(RtpPacketToSend::Type::kVideo, ssrc, sequence_number++, |
| 1207 | clock_.TimeInMilliseconds(), kPacketSize); |
| 1208 | } |
| 1209 | |
| 1210 | // Queue in ms = 1000 * (bytes in queue) *8 / (bits per second) |
| 1211 | TimeDelta queue_time = |
| 1212 | TimeDelta::ms(1000 * kNumPackets * kPacketSize * 8 / kMaxBitrate); |
| 1213 | EXPECT_EQ(queue_time, pacer_->ExpectedQueueTime()); |
| 1214 | |
| 1215 | const Timestamp time_start = clock_.CurrentTime(); |
| 1216 | while (pacer_->QueueSizePackets() > 0) { |
| 1217 | clock_.AdvanceTime(TimeUntilNextProcess()); |
| 1218 | pacer_->ProcessPackets(); |
| 1219 | } |
| 1220 | TimeDelta duration = clock_.CurrentTime() - time_start; |
| 1221 | |
| 1222 | EXPECT_EQ(TimeDelta::Zero(), pacer_->ExpectedQueueTime()); |
| 1223 | |
| 1224 | // Allow for aliasing, duration should be within one pack of max time limit. |
| 1225 | const TimeDelta deviation = |
| 1226 | duration - PacingController::kMaxExpectedQueueLength; |
| 1227 | EXPECT_LT(deviation.Abs(), |
| 1228 | TimeDelta::ms(1000 * kPacketSize * 8 / kMaxBitrate)); |
| 1229 | } |
| 1230 | |
| 1231 | TEST_P(PacingControllerTest, QueueTimeGrowsOverTime) { |
| 1232 | uint32_t ssrc = 12346; |
| 1233 | uint16_t sequence_number = 1234; |
| 1234 | EXPECT_EQ(TimeDelta::Zero(), pacer_->OldestPacketWaitTime()); |
| 1235 | |
| 1236 | pacer_->SetPacingRates(DataRate::bps(30000 * kPaceMultiplier), |
| 1237 | DataRate::Zero()); |
| 1238 | SendAndExpectPacket(RtpPacketToSend::Type::kVideo, ssrc, sequence_number, |
| 1239 | clock_.TimeInMilliseconds(), 1200); |
| 1240 | |
| 1241 | clock_.AdvanceTimeMilliseconds(500); |
| 1242 | EXPECT_EQ(TimeDelta::ms(500), pacer_->OldestPacketWaitTime()); |
| 1243 | pacer_->ProcessPackets(); |
| 1244 | EXPECT_EQ(TimeDelta::Zero(), pacer_->OldestPacketWaitTime()); |
| 1245 | } |
| 1246 | |
| 1247 | TEST_P(PacingControllerTest, ProbingWithInsertedPackets) { |
| 1248 | const size_t kPacketSize = 1200; |
| 1249 | const int kInitialBitrateBps = 300000; |
| 1250 | uint32_t ssrc = 12346; |
| 1251 | uint16_t sequence_number = 1234; |
| 1252 | |
| 1253 | PacingControllerProbing packet_sender; |
| 1254 | pacer_ = absl::make_unique<PacingController>(&clock_, &packet_sender, nullptr, |
| 1255 | nullptr); |
| 1256 | pacer_->CreateProbeCluster(kFirstClusterRate, |
| 1257 | /*cluster_id=*/0); |
| 1258 | pacer_->CreateProbeCluster(kSecondClusterRate, |
| 1259 | /*cluster_id=*/1); |
| 1260 | pacer_->SetPacingRates(DataRate::bps(kInitialBitrateBps * kPaceMultiplier), |
| 1261 | DataRate::Zero()); |
| 1262 | |
| 1263 | for (int i = 0; i < 10; ++i) { |
| 1264 | Send(RtpPacketToSend::Type::kVideo, ssrc, sequence_number++, |
| 1265 | clock_.TimeInMilliseconds(), kPacketSize); |
| 1266 | } |
| 1267 | |
| 1268 | int64_t start = clock_.TimeInMilliseconds(); |
| 1269 | while (packet_sender.packets_sent() < 5) { |
| 1270 | clock_.AdvanceTime(TimeUntilNextProcess()); |
| 1271 | pacer_->ProcessPackets(); |
| 1272 | } |
| 1273 | int packets_sent = packet_sender.packets_sent(); |
| 1274 | // Validate first cluster bitrate. Note that we have to account for number |
| 1275 | // of intervals and hence (packets_sent - 1) on the first cluster. |
| 1276 | EXPECT_NEAR((packets_sent - 1) * kPacketSize * 8000 / |
| 1277 | (clock_.TimeInMilliseconds() - start), |
| 1278 | kFirstClusterRate.bps(), kProbingErrorMargin.bps()); |
| 1279 | EXPECT_EQ(0, packet_sender.padding_sent()); |
| 1280 | |
| 1281 | clock_.AdvanceTime(TimeUntilNextProcess()); |
| 1282 | start = clock_.TimeInMilliseconds(); |
| 1283 | while (packet_sender.packets_sent() < 10) { |
| 1284 | clock_.AdvanceTime(TimeUntilNextProcess()); |
| 1285 | pacer_->ProcessPackets(); |
| 1286 | } |
| 1287 | packets_sent = packet_sender.packets_sent() - packets_sent; |
| 1288 | // Validate second cluster bitrate. |
| 1289 | EXPECT_NEAR((packets_sent - 1) * kPacketSize * 8000 / |
| 1290 | (clock_.TimeInMilliseconds() - start), |
| 1291 | kSecondClusterRate.bps(), kProbingErrorMargin.bps()); |
| 1292 | } |
| 1293 | |
| 1294 | TEST_P(PacingControllerTest, ProbingWithPaddingSupport) { |
| 1295 | const size_t kPacketSize = 1200; |
| 1296 | const int kInitialBitrateBps = 300000; |
| 1297 | uint32_t ssrc = 12346; |
| 1298 | uint16_t sequence_number = 1234; |
| 1299 | |
| 1300 | PacingControllerProbing packet_sender; |
| 1301 | pacer_ = absl::make_unique<PacingController>(&clock_, &packet_sender, nullptr, |
| 1302 | nullptr); |
| 1303 | pacer_->CreateProbeCluster(kFirstClusterRate, |
| 1304 | /*cluster_id=*/0); |
| 1305 | pacer_->SetPacingRates(DataRate::bps(kInitialBitrateBps * kPaceMultiplier), |
| 1306 | DataRate::Zero()); |
| 1307 | |
| 1308 | for (int i = 0; i < 3; ++i) { |
| 1309 | Send(RtpPacketToSend::Type::kVideo, ssrc, sequence_number++, |
| 1310 | clock_.TimeInMilliseconds(), kPacketSize); |
| 1311 | } |
| 1312 | |
| 1313 | int64_t start = clock_.TimeInMilliseconds(); |
| 1314 | int process_count = 0; |
| 1315 | while (process_count < 5) { |
| 1316 | clock_.AdvanceTime(TimeUntilNextProcess()); |
| 1317 | pacer_->ProcessPackets(); |
| 1318 | ++process_count; |
| 1319 | } |
| 1320 | int packets_sent = packet_sender.packets_sent(); |
| 1321 | int padding_sent = packet_sender.padding_sent(); |
| 1322 | EXPECT_GT(packets_sent, 0); |
| 1323 | EXPECT_GT(padding_sent, 0); |
| 1324 | // Note that the number of intervals here for kPacketSize is |
| 1325 | // packets_sent due to padding in the same cluster. |
| 1326 | EXPECT_NEAR((packets_sent * kPacketSize * 8000 + padding_sent) / |
| 1327 | (clock_.TimeInMilliseconds() - start), |
| 1328 | kFirstClusterRate.bps(), kProbingErrorMargin.bps()); |
| 1329 | } |
| 1330 | |
| 1331 | TEST_P(PacingControllerTest, PaddingOveruse) { |
| 1332 | uint32_t ssrc = 12346; |
| 1333 | uint16_t sequence_number = 1234; |
| 1334 | const size_t kPacketSize = 1200; |
| 1335 | |
| 1336 | pacer_->ProcessPackets(); |
| 1337 | pacer_->SetPacingRates(DataRate::bps(60000 * kPaceMultiplier), |
| 1338 | DataRate::Zero()); |
| 1339 | |
| 1340 | SendAndExpectPacket(RtpPacketToSend::Type::kVideo, ssrc, sequence_number++, |
| 1341 | clock_.TimeInMilliseconds(), kPacketSize); |
| 1342 | pacer_->ProcessPackets(); |
| 1343 | |
| 1344 | // Add 30kbit padding. When increasing budget, media budget will increase from |
| 1345 | // negative (overuse) while padding budget will increase from 0. |
| 1346 | clock_.AdvanceTimeMilliseconds(5); |
| 1347 | pacer_->SetPacingRates(DataRate::bps(60000 * kPaceMultiplier), |
| 1348 | DataRate::bps(30000)); |
| 1349 | |
| 1350 | SendAndExpectPacket(RtpPacketToSend::Type::kVideo, ssrc, sequence_number++, |
| 1351 | clock_.TimeInMilliseconds(), kPacketSize); |
| 1352 | EXPECT_LT(TimeDelta::ms(5), pacer_->ExpectedQueueTime()); |
| 1353 | // Don't send padding if queue is non-empty, even if padding budget > 0. |
| 1354 | EXPECT_CALL(callback_, SendPadding).Times(0); |
| 1355 | pacer_->ProcessPackets(); |
| 1356 | } |
| 1357 | |
| 1358 | TEST_P(PacingControllerTest, ProbeClusterId) { |
| 1359 | MockPacketSender callback; |
| 1360 | |
| 1361 | pacer_ = |
| 1362 | absl::make_unique<PacingController>(&clock_, &callback, nullptr, nullptr); |
| 1363 | Init(); |
| 1364 | |
| 1365 | uint32_t ssrc = 12346; |
| 1366 | uint16_t sequence_number = 1234; |
| 1367 | const size_t kPacketSize = 1200; |
| 1368 | |
| 1369 | pacer_->SetPacingRates(kTargetRate * kPaceMultiplier, kTargetRate); |
| 1370 | pacer_->SetProbingEnabled(true); |
| 1371 | for (int i = 0; i < 10; ++i) { |
| 1372 | Send(RtpPacketToSend::Type::kVideo, ssrc, sequence_number++, |
| 1373 | clock_.TimeInMilliseconds(), kPacketSize); |
| 1374 | } |
| 1375 | |
| 1376 | // First probing cluster. |
| 1377 | if (GetParam() == PacerMode::kReferencePackets) { |
| 1378 | EXPECT_CALL(callback, |
| 1379 | TimeToSendPacket(_, _, _, _, |
| 1380 | Field(&PacedPacketInfo::probe_cluster_id, 0))) |
| 1381 | .Times(5) |
| 1382 | .WillRepeatedly(Return(RtpPacketSendResult::kSuccess)); |
| 1383 | } else { |
| 1384 | EXPECT_CALL(callback, |
| 1385 | SendRtpPacket(_, Field(&PacedPacketInfo::probe_cluster_id, 0))) |
| 1386 | .Times(5); |
| 1387 | } |
| 1388 | |
| 1389 | for (int i = 0; i < 5; ++i) { |
| 1390 | clock_.AdvanceTimeMilliseconds(20); |
| 1391 | pacer_->ProcessPackets(); |
| 1392 | } |
| 1393 | |
| 1394 | // Second probing cluster. |
| 1395 | if (GetParam() == PacerMode::kReferencePackets) { |
| 1396 | EXPECT_CALL(callback, |
| 1397 | TimeToSendPacket(_, _, _, _, |
| 1398 | Field(&PacedPacketInfo::probe_cluster_id, 1))) |
| 1399 | .Times(5) |
| 1400 | .WillRepeatedly(Return(RtpPacketSendResult::kSuccess)); |
| 1401 | EXPECT_CALL(callback, TimeToSendPadding).WillOnce(Return(DataSize::Zero())); |
| 1402 | } else { |
| 1403 | EXPECT_CALL(callback, |
| 1404 | SendRtpPacket(_, Field(&PacedPacketInfo::probe_cluster_id, 1))) |
| 1405 | .Times(5); |
| 1406 | } |
| 1407 | |
| 1408 | for (int i = 0; i < 5; ++i) { |
| 1409 | clock_.AdvanceTimeMilliseconds(20); |
| 1410 | pacer_->ProcessPackets(); |
| 1411 | } |
| 1412 | |
| 1413 | // Needed for the Field comparer below. |
| 1414 | const int kNotAProbe = PacedPacketInfo::kNotAProbe; |
| 1415 | // No more probing packets. |
| 1416 | if (GetParam() == PacerMode::kReferencePackets) { |
| 1417 | EXPECT_CALL(callback, |
| 1418 | TimeToSendPadding( |
| 1419 | _, Field(&PacedPacketInfo::probe_cluster_id, kNotAProbe))) |
| 1420 | .WillOnce(Return(DataSize::bytes(500))); |
| 1421 | } else { |
| 1422 | EXPECT_CALL(callback, GeneratePadding).WillOnce([&](DataSize padding_size) { |
| 1423 | std::vector<std::unique_ptr<RtpPacketToSend>> padding_packets; |
| 1424 | padding_packets.emplace_back( |
| 1425 | BuildPacket(RtpPacketToSend::Type::kPadding, ssrc, sequence_number++, |
| 1426 | clock_.TimeInMilliseconds(), padding_size.bytes())); |
| 1427 | return padding_packets; |
| 1428 | }); |
| 1429 | EXPECT_CALL( |
| 1430 | callback, |
| 1431 | SendRtpPacket(_, Field(&PacedPacketInfo::probe_cluster_id, kNotAProbe))) |
| 1432 | .Times(1); |
| 1433 | } |
| 1434 | pacer_->ProcessPackets(); |
| 1435 | } |
| 1436 | |
| 1437 | TEST_P(PacingControllerTest, OwnedPacketPrioritizedOnType) { |
| 1438 | if (GetParam() != PacerMode::kOwnPackets) { |
| 1439 | // This test only makes sense when using the new code path. |
| 1440 | return; |
| 1441 | } |
| 1442 | |
| 1443 | MockPacketSender callback; |
| 1444 | pacer_ = |
| 1445 | absl::make_unique<PacingController>(&clock_, &callback, nullptr, nullptr); |
| 1446 | Init(); |
| 1447 | |
| 1448 | // Insert a packet of each type, from low to high priority. Since priority |
| 1449 | // is weighted higher than insert order, these should come out of the pacer |
| 1450 | // in backwards order with the exception of FEC and Video. |
| 1451 | for (RtpPacketToSend::Type type : |
| 1452 | {RtpPacketToSend::Type::kPadding, |
| 1453 | RtpPacketToSend::Type::kForwardErrorCorrection, |
| 1454 | RtpPacketToSend::Type::kVideo, RtpPacketToSend::Type::kRetransmission, |
| 1455 | RtpPacketToSend::Type::kAudio}) { |
| 1456 | pacer_->EnqueuePacket(BuildRtpPacket(type)); |
| 1457 | } |
| 1458 | |
| 1459 | ::testing::InSequence seq; |
| 1460 | EXPECT_CALL( |
| 1461 | callback, |
| 1462 | SendRtpPacket(Pointee(Property(&RtpPacketToSend::Ssrc, kAudioSsrc)), _)); |
| 1463 | EXPECT_CALL(callback, |
| 1464 | SendRtpPacket( |
| 1465 | Pointee(Property(&RtpPacketToSend::Ssrc, kVideoRtxSsrc)), _)); |
| 1466 | |
| 1467 | // FEC and video actually have the same priority, so will come out in |
| 1468 | // insertion order. |
| 1469 | EXPECT_CALL(callback, |
| 1470 | SendRtpPacket( |
| 1471 | Pointee(Property(&RtpPacketToSend::Ssrc, kFlexFecSsrc)), _)); |
| 1472 | EXPECT_CALL( |
| 1473 | callback, |
| 1474 | SendRtpPacket(Pointee(Property(&RtpPacketToSend::Ssrc, kVideoSsrc)), _)); |
| 1475 | |
| 1476 | EXPECT_CALL(callback, |
| 1477 | SendRtpPacket( |
| 1478 | Pointee(Property(&RtpPacketToSend::Ssrc, kVideoRtxSsrc)), _)); |
| 1479 | |
| 1480 | clock_.AdvanceTimeMilliseconds(200); |
| 1481 | pacer_->ProcessPackets(); |
| 1482 | } |
| 1483 | |
| 1484 | INSTANTIATE_TEST_SUITE_P(ReferencingAndOwningPackets, |
| 1485 | PacingControllerTest, |
| 1486 | ::testing::Values(PacerMode::kReferencePackets, |
| 1487 | PacerMode::kOwnPackets)); |
| 1488 | |
| 1489 | } // namespace test |
| 1490 | } // namespace webrtc |