blob: 891330a54d1efd8dd336790cd1fb4d3f2eaad702 [file] [log] [blame]
henrike@webrtc.org28e20752013-07-10 00:45:36 +00001/*
2 * libjingle
3 * Copyright 2004--2005, Google Inc.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are met:
7 *
8 * 1. Redistributions of source code must retain the above copyright notice,
9 * this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright notice,
11 * this list of conditions and the following disclaimer in the documentation
12 * and/or other materials provided with the distribution.
13 * 3. The name of the author may not be used to endorse or promote products
14 * derived from this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
17 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
18 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
19 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
20 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
21 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
22 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
23 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
24 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
25 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 */
27
28#if defined(_MSC_VER) && _MSC_VER < 1300
29#pragma warning(disable:4786)
30#endif
31
32#include <cassert>
33
34#ifdef POSIX
35#include <string.h>
36#include <errno.h>
37#include <fcntl.h>
38#include <sys/time.h>
39#include <unistd.h>
40#include <signal.h>
41#endif
42
43#ifdef WIN32
44#define WIN32_LEAN_AND_MEAN
45#include <windows.h>
46#include <winsock2.h>
47#include <ws2tcpip.h>
48#undef SetPort
49#endif
50
51#include <algorithm>
52#include <map>
53
54#include "talk/base/basictypes.h"
55#include "talk/base/byteorder.h"
56#include "talk/base/common.h"
57#include "talk/base/logging.h"
58#include "talk/base/nethelpers.h"
59#include "talk/base/physicalsocketserver.h"
60#include "talk/base/timeutils.h"
61#include "talk/base/winping.h"
62#include "talk/base/win32socketinit.h"
63
64// stm: this will tell us if we are on OSX
65#ifdef HAVE_CONFIG_H
66#include "config.h"
67#endif
68
69#ifdef POSIX
70#include <netinet/tcp.h> // for TCP_NODELAY
71#define IP_MTU 14 // Until this is integrated from linux/in.h to netinet/in.h
72typedef void* SockOptArg;
73#endif // POSIX
74
75#ifdef WIN32
76typedef char* SockOptArg;
77#endif
78
79namespace talk_base {
80
81// Standard MTUs, from RFC 1191
82const uint16 PACKET_MAXIMUMS[] = {
83 65535, // Theoretical maximum, Hyperchannel
84 32000, // Nothing
85 17914, // 16Mb IBM Token Ring
86 8166, // IEEE 802.4
87 //4464, // IEEE 802.5 (4Mb max)
88 4352, // FDDI
89 //2048, // Wideband Network
90 2002, // IEEE 802.5 (4Mb recommended)
91 //1536, // Expermental Ethernet Networks
92 //1500, // Ethernet, Point-to-Point (default)
93 1492, // IEEE 802.3
94 1006, // SLIP, ARPANET
95 //576, // X.25 Networks
96 //544, // DEC IP Portal
97 //512, // NETBIOS
98 508, // IEEE 802/Source-Rt Bridge, ARCNET
99 296, // Point-to-Point (low delay)
100 68, // Official minimum
101 0, // End of list marker
102};
103
104static const int IP_HEADER_SIZE = 20u;
105static const int IPV6_HEADER_SIZE = 40u;
106static const int ICMP_HEADER_SIZE = 8u;
107static const int ICMP_PING_TIMEOUT_MILLIS = 10000u;
108
109class PhysicalSocket : public AsyncSocket, public sigslot::has_slots<> {
110 public:
111 PhysicalSocket(PhysicalSocketServer* ss, SOCKET s = INVALID_SOCKET)
112 : ss_(ss), s_(s), enabled_events_(0), error_(0),
113 state_((s == INVALID_SOCKET) ? CS_CLOSED : CS_CONNECTED),
114 resolver_(NULL) {
115#ifdef WIN32
116 // EnsureWinsockInit() ensures that winsock is initialized. The default
117 // version of this function doesn't do anything because winsock is
118 // initialized by constructor of a static object. If neccessary libjingle
119 // users can link it with a different version of this function by replacing
120 // win32socketinit.cc. See win32socketinit.cc for more details.
121 EnsureWinsockInit();
122#endif
123 if (s_ != INVALID_SOCKET) {
124 enabled_events_ = DE_READ | DE_WRITE;
125
126 int type = SOCK_STREAM;
127 socklen_t len = sizeof(type);
128 VERIFY(0 == getsockopt(s_, SOL_SOCKET, SO_TYPE, (SockOptArg)&type, &len));
129 udp_ = (SOCK_DGRAM == type);
130 }
131 }
132
133 virtual ~PhysicalSocket() {
134 Close();
135 }
136
137 // Creates the underlying OS socket (same as the "socket" function).
138 virtual bool Create(int family, int type) {
139 Close();
140 s_ = ::socket(family, type, 0);
141 udp_ = (SOCK_DGRAM == type);
142 UpdateLastError();
143 if (udp_)
144 enabled_events_ = DE_READ | DE_WRITE;
145 return s_ != INVALID_SOCKET;
146 }
147
148 SocketAddress GetLocalAddress() const {
149 sockaddr_storage addr_storage = {0};
150 socklen_t addrlen = sizeof(addr_storage);
151 sockaddr* addr = reinterpret_cast<sockaddr*>(&addr_storage);
152 int result = ::getsockname(s_, addr, &addrlen);
153 SocketAddress address;
154 if (result >= 0) {
155 SocketAddressFromSockAddrStorage(addr_storage, &address);
156 } else {
157 LOG(LS_WARNING) << "GetLocalAddress: unable to get local addr, socket="
158 << s_;
159 }
160 return address;
161 }
162
163 SocketAddress GetRemoteAddress() const {
164 sockaddr_storage addr_storage = {0};
165 socklen_t addrlen = sizeof(addr_storage);
166 sockaddr* addr = reinterpret_cast<sockaddr*>(&addr_storage);
167 int result = ::getpeername(s_, addr, &addrlen);
168 SocketAddress address;
169 if (result >= 0) {
170 SocketAddressFromSockAddrStorage(addr_storage, &address);
171 } else {
172 LOG(LS_WARNING) << "GetRemoteAddress: unable to get remote addr, socket="
173 << s_;
174 }
175 return address;
176 }
177
178 int Bind(const SocketAddress& bind_addr) {
179 sockaddr_storage addr_storage;
180 size_t len = bind_addr.ToSockAddrStorage(&addr_storage);
181 sockaddr* addr = reinterpret_cast<sockaddr*>(&addr_storage);
182 int err = ::bind(s_, addr, static_cast<int>(len));
183 UpdateLastError();
184#ifdef _DEBUG
185 if (0 == err) {
186 dbg_addr_ = "Bound @ ";
187 dbg_addr_.append(GetLocalAddress().ToString());
188 }
189#endif // _DEBUG
190 return err;
191 }
192
193 int Connect(const SocketAddress& addr) {
194 // TODO: Implicit creation is required to reconnect...
195 // ...but should we make it more explicit?
196 if (state_ != CS_CLOSED) {
197 SetError(EALREADY);
198 return SOCKET_ERROR;
199 }
200 if (addr.IsUnresolved()) {
201 LOG(LS_VERBOSE) << "Resolving addr in PhysicalSocket::Connect";
202 resolver_ = new AsyncResolver();
203 resolver_->set_address(addr);
204 resolver_->SignalWorkDone.connect(this, &PhysicalSocket::OnResolveResult);
205 resolver_->Start();
206 state_ = CS_CONNECTING;
207 return 0;
208 }
209
210 return DoConnect(addr);
211 }
212
213 int DoConnect(const SocketAddress& connect_addr) {
214 if ((s_ == INVALID_SOCKET) &&
215 !Create(connect_addr.family(), SOCK_STREAM)) {
216 return SOCKET_ERROR;
217 }
218 sockaddr_storage addr_storage;
219 size_t len = connect_addr.ToSockAddrStorage(&addr_storage);
220 sockaddr* addr = reinterpret_cast<sockaddr*>(&addr_storage);
221 int err = ::connect(s_, addr, static_cast<int>(len));
222 UpdateLastError();
223 if (err == 0) {
224 state_ = CS_CONNECTED;
wu@webrtc.orgd371a292013-10-23 23:56:09 +0000225 } else if (IsBlockingError(GetError())) {
henrike@webrtc.org28e20752013-07-10 00:45:36 +0000226 state_ = CS_CONNECTING;
227 enabled_events_ |= DE_CONNECT;
228 } else {
229 return SOCKET_ERROR;
230 }
231
232 enabled_events_ |= DE_READ | DE_WRITE;
233 return 0;
234 }
235
236 int GetError() const {
wu@webrtc.orgd371a292013-10-23 23:56:09 +0000237 CritScope cs(&crit_);
henrike@webrtc.org28e20752013-07-10 00:45:36 +0000238 return error_;
239 }
240
241 void SetError(int error) {
wu@webrtc.orgd371a292013-10-23 23:56:09 +0000242 CritScope cs(&crit_);
henrike@webrtc.org28e20752013-07-10 00:45:36 +0000243 error_ = error;
244 }
245
246 ConnState GetState() const {
247 return state_;
248 }
249
250 int GetOption(Option opt, int* value) {
251 int slevel;
252 int sopt;
253 if (TranslateOption(opt, &slevel, &sopt) == -1)
254 return -1;
255 socklen_t optlen = sizeof(*value);
256 int ret = ::getsockopt(s_, slevel, sopt, (SockOptArg)value, &optlen);
257 if (ret != -1 && opt == OPT_DONTFRAGMENT) {
258#ifdef LINUX
259 *value = (*value != IP_PMTUDISC_DONT) ? 1 : 0;
260#endif
261 }
262 return ret;
263 }
264
265 int SetOption(Option opt, int value) {
266 int slevel;
267 int sopt;
268 if (TranslateOption(opt, &slevel, &sopt) == -1)
269 return -1;
270 if (opt == OPT_DONTFRAGMENT) {
271#ifdef LINUX
272 value = (value) ? IP_PMTUDISC_DO : IP_PMTUDISC_DONT;
273#endif
274 }
275 return ::setsockopt(s_, slevel, sopt, (SockOptArg)&value, sizeof(value));
276 }
277
278 int Send(const void *pv, size_t cb) {
279 int sent = ::send(s_, reinterpret_cast<const char *>(pv), (int)cb,
280#ifdef LINUX
281 // Suppress SIGPIPE. Without this, attempting to send on a socket whose
282 // other end is closed will result in a SIGPIPE signal being raised to
283 // our process, which by default will terminate the process, which we
284 // don't want. By specifying this flag, we'll just get the error EPIPE
285 // instead and can handle the error gracefully.
286 MSG_NOSIGNAL
287#else
288 0
289#endif
290 );
291 UpdateLastError();
292 MaybeRemapSendError();
293 // We have seen minidumps where this may be false.
294 ASSERT(sent <= static_cast<int>(cb));
wu@webrtc.orgd371a292013-10-23 23:56:09 +0000295 if ((sent < 0) && IsBlockingError(GetError())) {
henrike@webrtc.org28e20752013-07-10 00:45:36 +0000296 enabled_events_ |= DE_WRITE;
297 }
298 return sent;
299 }
300
301 int SendTo(const void* buffer, size_t length, const SocketAddress& addr) {
302 sockaddr_storage saddr;
303 size_t len = addr.ToSockAddrStorage(&saddr);
304 int sent = ::sendto(
305 s_, static_cast<const char *>(buffer), static_cast<int>(length),
306#ifdef LINUX
307 // Suppress SIGPIPE. See above for explanation.
308 MSG_NOSIGNAL,
309#else
310 0,
311#endif
312 reinterpret_cast<sockaddr*>(&saddr), static_cast<int>(len));
313 UpdateLastError();
314 MaybeRemapSendError();
315 // We have seen minidumps where this may be false.
316 ASSERT(sent <= static_cast<int>(length));
wu@webrtc.orgd371a292013-10-23 23:56:09 +0000317 if ((sent < 0) && IsBlockingError(GetError())) {
henrike@webrtc.org28e20752013-07-10 00:45:36 +0000318 enabled_events_ |= DE_WRITE;
319 }
320 return sent;
321 }
322
323 int Recv(void* buffer, size_t length) {
324 int received = ::recv(s_, static_cast<char*>(buffer),
325 static_cast<int>(length), 0);
326 if ((received == 0) && (length != 0)) {
327 // Note: on graceful shutdown, recv can return 0. In this case, we
328 // pretend it is blocking, and then signal close, so that simplifying
329 // assumptions can be made about Recv.
330 LOG(LS_WARNING) << "EOF from socket; deferring close event";
331 // Must turn this back on so that the select() loop will notice the close
332 // event.
333 enabled_events_ |= DE_READ;
wu@webrtc.orgd371a292013-10-23 23:56:09 +0000334 SetError(EWOULDBLOCK);
henrike@webrtc.org28e20752013-07-10 00:45:36 +0000335 return SOCKET_ERROR;
336 }
337 UpdateLastError();
wu@webrtc.orgd371a292013-10-23 23:56:09 +0000338 int error = GetError();
339 bool success = (received >= 0) || IsBlockingError(error);
henrike@webrtc.org28e20752013-07-10 00:45:36 +0000340 if (udp_ || success) {
341 enabled_events_ |= DE_READ;
342 }
343 if (!success) {
wu@webrtc.orgd371a292013-10-23 23:56:09 +0000344 LOG_F(LS_VERBOSE) << "Error = " << error;
henrike@webrtc.org28e20752013-07-10 00:45:36 +0000345 }
346 return received;
347 }
348
349 int RecvFrom(void* buffer, size_t length, SocketAddress *out_addr) {
350 sockaddr_storage addr_storage;
351 socklen_t addr_len = sizeof(addr_storage);
352 sockaddr* addr = reinterpret_cast<sockaddr*>(&addr_storage);
353 int received = ::recvfrom(s_, static_cast<char*>(buffer),
354 static_cast<int>(length), 0, addr, &addr_len);
355 UpdateLastError();
356 if ((received >= 0) && (out_addr != NULL))
357 SocketAddressFromSockAddrStorage(addr_storage, out_addr);
wu@webrtc.orgd371a292013-10-23 23:56:09 +0000358 int error = GetError();
359 bool success = (received >= 0) || IsBlockingError(error);
henrike@webrtc.org28e20752013-07-10 00:45:36 +0000360 if (udp_ || success) {
361 enabled_events_ |= DE_READ;
362 }
363 if (!success) {
wu@webrtc.orgd371a292013-10-23 23:56:09 +0000364 LOG_F(LS_VERBOSE) << "Error = " << error;
henrike@webrtc.org28e20752013-07-10 00:45:36 +0000365 }
366 return received;
367 }
368
369 int Listen(int backlog) {
370 int err = ::listen(s_, backlog);
371 UpdateLastError();
372 if (err == 0) {
373 state_ = CS_CONNECTING;
374 enabled_events_ |= DE_ACCEPT;
375#ifdef _DEBUG
376 dbg_addr_ = "Listening @ ";
377 dbg_addr_.append(GetLocalAddress().ToString());
378#endif // _DEBUG
379 }
380 return err;
381 }
382
383 AsyncSocket* Accept(SocketAddress *out_addr) {
384 sockaddr_storage addr_storage;
385 socklen_t addr_len = sizeof(addr_storage);
386 sockaddr* addr = reinterpret_cast<sockaddr*>(&addr_storage);
387 SOCKET s = ::accept(s_, addr, &addr_len);
388 UpdateLastError();
389 if (s == INVALID_SOCKET)
390 return NULL;
391 enabled_events_ |= DE_ACCEPT;
392 if (out_addr != NULL)
393 SocketAddressFromSockAddrStorage(addr_storage, out_addr);
394 return ss_->WrapSocket(s);
395 }
396
397 int Close() {
398 if (s_ == INVALID_SOCKET)
399 return 0;
400 int err = ::closesocket(s_);
401 UpdateLastError();
402 s_ = INVALID_SOCKET;
403 state_ = CS_CLOSED;
404 enabled_events_ = 0;
405 if (resolver_) {
406 resolver_->Destroy(false);
407 resolver_ = NULL;
408 }
409 return err;
410 }
411
412 int EstimateMTU(uint16* mtu) {
413 SocketAddress addr = GetRemoteAddress();
414 if (addr.IsAny()) {
wu@webrtc.orgd371a292013-10-23 23:56:09 +0000415 SetError(ENOTCONN);
henrike@webrtc.org28e20752013-07-10 00:45:36 +0000416 return -1;
417 }
418
419#if defined(WIN32)
420 // Gets the interface MTU (TTL=1) for the interface used to reach |addr|.
421 WinPing ping;
422 if (!ping.IsValid()) {
wu@webrtc.orgd371a292013-10-23 23:56:09 +0000423 SetError(EINVAL); // can't think of a better error ID
henrike@webrtc.org28e20752013-07-10 00:45:36 +0000424 return -1;
425 }
426 int header_size = ICMP_HEADER_SIZE;
427 if (addr.family() == AF_INET6) {
428 header_size += IPV6_HEADER_SIZE;
429 } else if (addr.family() == AF_INET) {
430 header_size += IP_HEADER_SIZE;
431 }
432
433 for (int level = 0; PACKET_MAXIMUMS[level + 1] > 0; ++level) {
434 int32 size = PACKET_MAXIMUMS[level] - header_size;
435 WinPing::PingResult result = ping.Ping(addr.ipaddr(), size,
436 ICMP_PING_TIMEOUT_MILLIS,
437 1, false);
438 if (result == WinPing::PING_FAIL) {
wu@webrtc.orgd371a292013-10-23 23:56:09 +0000439 SetError(EINVAL); // can't think of a better error ID
henrike@webrtc.org28e20752013-07-10 00:45:36 +0000440 return -1;
441 } else if (result != WinPing::PING_TOO_LARGE) {
442 *mtu = PACKET_MAXIMUMS[level];
443 return 0;
444 }
445 }
446
447 ASSERT(false);
448 return -1;
449#elif defined(IOS) || defined(OSX)
450 // No simple way to do this on Mac OS X.
451 // SIOCGIFMTU would work if we knew which interface would be used, but
452 // figuring that out is pretty complicated. For now we'll return an error
453 // and let the caller pick a default MTU.
wu@webrtc.orgd371a292013-10-23 23:56:09 +0000454 SetError(EINVAL);
henrike@webrtc.org28e20752013-07-10 00:45:36 +0000455 return -1;
456#elif defined(LINUX) || defined(ANDROID)
457 // Gets the path MTU.
458 int value;
459 socklen_t vlen = sizeof(value);
460 int err = getsockopt(s_, IPPROTO_IP, IP_MTU, &value, &vlen);
461 if (err < 0) {
462 UpdateLastError();
463 return err;
464 }
465
466 ASSERT((0 <= value) && (value <= 65536));
467 *mtu = value;
468 return 0;
469#endif
470 }
471
472 SocketServer* socketserver() { return ss_; }
473
474 protected:
475 void OnResolveResult(SignalThread* thread) {
476 if (thread != resolver_) {
477 return;
478 }
479
480 int error = resolver_->error();
481 if (error == 0) {
482 error = DoConnect(resolver_->address());
483 } else {
484 Close();
485 }
486
487 if (error) {
wu@webrtc.orgd371a292013-10-23 23:56:09 +0000488 SetError(error);
489 SignalCloseEvent(this, error);
henrike@webrtc.org28e20752013-07-10 00:45:36 +0000490 }
491 }
492
493 void UpdateLastError() {
wu@webrtc.orgd371a292013-10-23 23:56:09 +0000494 SetError(LAST_SYSTEM_ERROR);
henrike@webrtc.org28e20752013-07-10 00:45:36 +0000495 }
496
497 void MaybeRemapSendError() {
498#if defined(OSX)
499 // https://developer.apple.com/library/mac/documentation/Darwin/
500 // Reference/ManPages/man2/sendto.2.html
501 // ENOBUFS - The output queue for a network interface is full.
502 // This generally indicates that the interface has stopped sending,
503 // but may be caused by transient congestion.
wu@webrtc.orgd371a292013-10-23 23:56:09 +0000504 if (GetError() == ENOBUFS) {
505 SetError(EWOULDBLOCK);
henrike@webrtc.org28e20752013-07-10 00:45:36 +0000506 }
507#endif
508 }
509
510 static int TranslateOption(Option opt, int* slevel, int* sopt) {
511 switch (opt) {
512 case OPT_DONTFRAGMENT:
513#ifdef WIN32
514 *slevel = IPPROTO_IP;
515 *sopt = IP_DONTFRAGMENT;
516 break;
517#elif defined(IOS) || defined(OSX) || defined(BSD)
518 LOG(LS_WARNING) << "Socket::OPT_DONTFRAGMENT not supported.";
519 return -1;
520#elif defined(POSIX)
521 *slevel = IPPROTO_IP;
522 *sopt = IP_MTU_DISCOVER;
523 break;
524#endif
525 case OPT_RCVBUF:
526 *slevel = SOL_SOCKET;
527 *sopt = SO_RCVBUF;
528 break;
529 case OPT_SNDBUF:
530 *slevel = SOL_SOCKET;
531 *sopt = SO_SNDBUF;
532 break;
533 case OPT_NODELAY:
534 *slevel = IPPROTO_TCP;
535 *sopt = TCP_NODELAY;
536 break;
wu@webrtc.org97077a32013-10-25 21:18:33 +0000537 case OPT_DSCP:
538 LOG(LS_WARNING) << "Socket::OPT_DSCP not supported.";
539 return -1;
henrike@webrtc.org28e20752013-07-10 00:45:36 +0000540 default:
541 ASSERT(false);
542 return -1;
543 }
544 return 0;
545 }
546
547 PhysicalSocketServer* ss_;
548 SOCKET s_;
549 uint8 enabled_events_;
550 bool udp_;
551 int error_;
wu@webrtc.orgd371a292013-10-23 23:56:09 +0000552 // Protects |error_| that is accessed from different threads.
553 mutable CriticalSection crit_;
henrike@webrtc.org28e20752013-07-10 00:45:36 +0000554 ConnState state_;
555 AsyncResolver* resolver_;
556
557#ifdef _DEBUG
558 std::string dbg_addr_;
559#endif // _DEBUG;
560};
561
562#ifdef POSIX
563class EventDispatcher : public Dispatcher {
564 public:
565 EventDispatcher(PhysicalSocketServer* ss) : ss_(ss), fSignaled_(false) {
566 if (pipe(afd_) < 0)
567 LOG(LERROR) << "pipe failed";
568 ss_->Add(this);
569 }
570
571 virtual ~EventDispatcher() {
572 ss_->Remove(this);
573 close(afd_[0]);
574 close(afd_[1]);
575 }
576
577 virtual void Signal() {
578 CritScope cs(&crit_);
579 if (!fSignaled_) {
580 const uint8 b[1] = { 0 };
581 if (VERIFY(1 == write(afd_[1], b, sizeof(b)))) {
582 fSignaled_ = true;
583 }
584 }
585 }
586
587 virtual uint32 GetRequestedEvents() {
588 return DE_READ;
589 }
590
591 virtual void OnPreEvent(uint32 ff) {
592 // It is not possible to perfectly emulate an auto-resetting event with
593 // pipes. This simulates it by resetting before the event is handled.
594
595 CritScope cs(&crit_);
596 if (fSignaled_) {
597 uint8 b[4]; // Allow for reading more than 1 byte, but expect 1.
598 VERIFY(1 == read(afd_[0], b, sizeof(b)));
599 fSignaled_ = false;
600 }
601 }
602
603 virtual void OnEvent(uint32 ff, int err) {
604 ASSERT(false);
605 }
606
607 virtual int GetDescriptor() {
608 return afd_[0];
609 }
610
611 virtual bool IsDescriptorClosed() {
612 return false;
613 }
614
615 private:
616 PhysicalSocketServer *ss_;
617 int afd_[2];
618 bool fSignaled_;
619 CriticalSection crit_;
620};
621
622// These two classes use the self-pipe trick to deliver POSIX signals to our
623// select loop. This is the only safe, reliable, cross-platform way to do
624// non-trivial things with a POSIX signal in an event-driven program (until
625// proper pselect() implementations become ubiquitous).
626
627class PosixSignalHandler {
628 public:
629 // POSIX only specifies 32 signals, but in principle the system might have
630 // more and the programmer might choose to use them, so we size our array
631 // for 128.
632 static const int kNumPosixSignals = 128;
633
634 // There is just a single global instance. (Signal handlers do not get any
635 // sort of user-defined void * parameter, so they can't access anything that
636 // isn't global.)
637 static PosixSignalHandler* Instance() {
638 LIBJINGLE_DEFINE_STATIC_LOCAL(PosixSignalHandler, instance, ());
639 return &instance;
640 }
641
642 // Returns true if the given signal number is set.
643 bool IsSignalSet(int signum) const {
644 ASSERT(signum < ARRAY_SIZE(received_signal_));
645 if (signum < ARRAY_SIZE(received_signal_)) {
646 return received_signal_[signum];
647 } else {
648 return false;
649 }
650 }
651
652 // Clears the given signal number.
653 void ClearSignal(int signum) {
654 ASSERT(signum < ARRAY_SIZE(received_signal_));
655 if (signum < ARRAY_SIZE(received_signal_)) {
656 received_signal_[signum] = false;
657 }
658 }
659
660 // Returns the file descriptor to monitor for signal events.
661 int GetDescriptor() const {
662 return afd_[0];
663 }
664
665 // This is called directly from our real signal handler, so it must be
666 // signal-handler-safe. That means it cannot assume anything about the
667 // user-level state of the process, since the handler could be executed at any
668 // time on any thread.
669 void OnPosixSignalReceived(int signum) {
670 if (signum >= ARRAY_SIZE(received_signal_)) {
671 // We don't have space in our array for this.
672 return;
673 }
674 // Set a flag saying we've seen this signal.
675 received_signal_[signum] = true;
676 // Notify application code that we got a signal.
677 const uint8 b[1] = { 0 };
678 if (-1 == write(afd_[1], b, sizeof(b))) {
679 // Nothing we can do here. If there's an error somehow then there's
680 // nothing we can safely do from a signal handler.
681 // No, we can't even safely log it.
682 // But, we still have to check the return value here. Otherwise,
683 // GCC 4.4.1 complains ignoring return value. Even (void) doesn't help.
684 return;
685 }
686 }
687
688 private:
689 PosixSignalHandler() {
690 if (pipe(afd_) < 0) {
691 LOG_ERR(LS_ERROR) << "pipe failed";
692 return;
693 }
694 if (fcntl(afd_[0], F_SETFL, O_NONBLOCK) < 0) {
695 LOG_ERR(LS_WARNING) << "fcntl #1 failed";
696 }
697 if (fcntl(afd_[1], F_SETFL, O_NONBLOCK) < 0) {
698 LOG_ERR(LS_WARNING) << "fcntl #2 failed";
699 }
700 memset(const_cast<void *>(static_cast<volatile void *>(received_signal_)),
701 0,
702 sizeof(received_signal_));
703 }
704
705 ~PosixSignalHandler() {
706 int fd1 = afd_[0];
707 int fd2 = afd_[1];
708 // We clobber the stored file descriptor numbers here or else in principle
709 // a signal that happens to be delivered during application termination
710 // could erroneously write a zero byte to an unrelated file handle in
711 // OnPosixSignalReceived() if some other file happens to be opened later
712 // during shutdown and happens to be given the same file descriptor number
713 // as our pipe had. Unfortunately even with this precaution there is still a
714 // race where that could occur if said signal happens to be handled
715 // concurrently with this code and happens to have already read the value of
716 // afd_[1] from memory before we clobber it, but that's unlikely.
717 afd_[0] = -1;
718 afd_[1] = -1;
719 close(fd1);
720 close(fd2);
721 }
722
723 int afd_[2];
724 // These are boolean flags that will be set in our signal handler and read
725 // and cleared from Wait(). There is a race involved in this, but it is
726 // benign. The signal handler sets the flag before signaling the pipe, so
727 // we'll never end up blocking in select() while a flag is still true.
728 // However, if two of the same signal arrive close to each other then it's
729 // possible that the second time the handler may set the flag while it's still
730 // true, meaning that signal will be missed. But the first occurrence of it
731 // will still be handled, so this isn't a problem.
732 // Volatile is not necessary here for correctness, but this data _is_ volatile
733 // so I've marked it as such.
734 volatile uint8 received_signal_[kNumPosixSignals];
735};
736
737class PosixSignalDispatcher : public Dispatcher {
738 public:
739 PosixSignalDispatcher(PhysicalSocketServer *owner) : owner_(owner) {
740 owner_->Add(this);
741 }
742
743 virtual ~PosixSignalDispatcher() {
744 owner_->Remove(this);
745 }
746
747 virtual uint32 GetRequestedEvents() {
748 return DE_READ;
749 }
750
751 virtual void OnPreEvent(uint32 ff) {
752 // Events might get grouped if signals come very fast, so we read out up to
753 // 16 bytes to make sure we keep the pipe empty.
754 uint8 b[16];
755 ssize_t ret = read(GetDescriptor(), b, sizeof(b));
756 if (ret < 0) {
757 LOG_ERR(LS_WARNING) << "Error in read()";
758 } else if (ret == 0) {
759 LOG(LS_WARNING) << "Should have read at least one byte";
760 }
761 }
762
763 virtual void OnEvent(uint32 ff, int err) {
764 for (int signum = 0; signum < PosixSignalHandler::kNumPosixSignals;
765 ++signum) {
766 if (PosixSignalHandler::Instance()->IsSignalSet(signum)) {
767 PosixSignalHandler::Instance()->ClearSignal(signum);
768 HandlerMap::iterator i = handlers_.find(signum);
769 if (i == handlers_.end()) {
770 // This can happen if a signal is delivered to our process at around
771 // the same time as we unset our handler for it. It is not an error
772 // condition, but it's unusual enough to be worth logging.
773 LOG(LS_INFO) << "Received signal with no handler: " << signum;
774 } else {
775 // Otherwise, execute our handler.
776 (*i->second)(signum);
777 }
778 }
779 }
780 }
781
782 virtual int GetDescriptor() {
783 return PosixSignalHandler::Instance()->GetDescriptor();
784 }
785
786 virtual bool IsDescriptorClosed() {
787 return false;
788 }
789
790 void SetHandler(int signum, void (*handler)(int)) {
791 handlers_[signum] = handler;
792 }
793
794 void ClearHandler(int signum) {
795 handlers_.erase(signum);
796 }
797
798 bool HasHandlers() {
799 return !handlers_.empty();
800 }
801
802 private:
803 typedef std::map<int, void (*)(int)> HandlerMap;
804
805 HandlerMap handlers_;
806 // Our owner.
807 PhysicalSocketServer *owner_;
808};
809
810class SocketDispatcher : public Dispatcher, public PhysicalSocket {
811 public:
812 explicit SocketDispatcher(PhysicalSocketServer *ss) : PhysicalSocket(ss) {
813 }
814 SocketDispatcher(SOCKET s, PhysicalSocketServer *ss) : PhysicalSocket(ss, s) {
815 }
816
817 virtual ~SocketDispatcher() {
818 Close();
819 }
820
821 bool Initialize() {
822 ss_->Add(this);
823 fcntl(s_, F_SETFL, fcntl(s_, F_GETFL, 0) | O_NONBLOCK);
824 return true;
825 }
826
827 virtual bool Create(int type) {
828 return Create(AF_INET, type);
829 }
830
831 virtual bool Create(int family, int type) {
832 // Change the socket to be non-blocking.
833 if (!PhysicalSocket::Create(family, type))
834 return false;
835
836 return Initialize();
837 }
838
839 virtual int GetDescriptor() {
840 return s_;
841 }
842
843 virtual bool IsDescriptorClosed() {
844 // We don't have a reliable way of distinguishing end-of-stream
845 // from readability. So test on each readable call. Is this
846 // inefficient? Probably.
847 char ch;
848 ssize_t res = ::recv(s_, &ch, 1, MSG_PEEK);
849 if (res > 0) {
850 // Data available, so not closed.
851 return false;
852 } else if (res == 0) {
853 // EOF, so closed.
854 return true;
855 } else { // error
856 switch (errno) {
857 // Returned if we've already closed s_.
858 case EBADF:
859 // Returned during ungraceful peer shutdown.
860 case ECONNRESET:
861 return true;
862 default:
863 // Assume that all other errors are just blocking errors, meaning the
864 // connection is still good but we just can't read from it right now.
865 // This should only happen when connecting (and at most once), because
866 // in all other cases this function is only called if the file
867 // descriptor is already known to be in the readable state. However,
868 // it's not necessary a problem if we spuriously interpret a
869 // "connection lost"-type error as a blocking error, because typically
870 // the next recv() will get EOF, so we'll still eventually notice that
871 // the socket is closed.
872 LOG_ERR(LS_WARNING) << "Assuming benign blocking error";
873 return false;
874 }
875 }
876 }
877
878 virtual uint32 GetRequestedEvents() {
879 return enabled_events_;
880 }
881
882 virtual void OnPreEvent(uint32 ff) {
883 if ((ff & DE_CONNECT) != 0)
884 state_ = CS_CONNECTED;
885 if ((ff & DE_CLOSE) != 0)
886 state_ = CS_CLOSED;
887 }
888
889 virtual void OnEvent(uint32 ff, int err) {
890 // Make sure we deliver connect/accept first. Otherwise, consumers may see
891 // something like a READ followed by a CONNECT, which would be odd.
892 if ((ff & DE_CONNECT) != 0) {
893 enabled_events_ &= ~DE_CONNECT;
894 SignalConnectEvent(this);
895 }
896 if ((ff & DE_ACCEPT) != 0) {
897 enabled_events_ &= ~DE_ACCEPT;
898 SignalReadEvent(this);
899 }
900 if ((ff & DE_READ) != 0) {
901 enabled_events_ &= ~DE_READ;
902 SignalReadEvent(this);
903 }
904 if ((ff & DE_WRITE) != 0) {
905 enabled_events_ &= ~DE_WRITE;
906 SignalWriteEvent(this);
907 }
908 if ((ff & DE_CLOSE) != 0) {
909 // The socket is now dead to us, so stop checking it.
910 enabled_events_ = 0;
911 SignalCloseEvent(this, err);
912 }
913 }
914
915 virtual int Close() {
916 if (s_ == INVALID_SOCKET)
917 return 0;
918
919 ss_->Remove(this);
920 return PhysicalSocket::Close();
921 }
922};
923
924class FileDispatcher: public Dispatcher, public AsyncFile {
925 public:
926 FileDispatcher(int fd, PhysicalSocketServer *ss) : ss_(ss), fd_(fd) {
927 set_readable(true);
928
929 ss_->Add(this);
930
931 fcntl(fd_, F_SETFL, fcntl(fd_, F_GETFL, 0) | O_NONBLOCK);
932 }
933
934 virtual ~FileDispatcher() {
935 ss_->Remove(this);
936 }
937
938 SocketServer* socketserver() { return ss_; }
939
940 virtual int GetDescriptor() {
941 return fd_;
942 }
943
944 virtual bool IsDescriptorClosed() {
945 return false;
946 }
947
948 virtual uint32 GetRequestedEvents() {
949 return flags_;
950 }
951
952 virtual void OnPreEvent(uint32 ff) {
953 }
954
955 virtual void OnEvent(uint32 ff, int err) {
956 if ((ff & DE_READ) != 0)
957 SignalReadEvent(this);
958 if ((ff & DE_WRITE) != 0)
959 SignalWriteEvent(this);
960 if ((ff & DE_CLOSE) != 0)
961 SignalCloseEvent(this, err);
962 }
963
964 virtual bool readable() {
965 return (flags_ & DE_READ) != 0;
966 }
967
968 virtual void set_readable(bool value) {
969 flags_ = value ? (flags_ | DE_READ) : (flags_ & ~DE_READ);
970 }
971
972 virtual bool writable() {
973 return (flags_ & DE_WRITE) != 0;
974 }
975
976 virtual void set_writable(bool value) {
977 flags_ = value ? (flags_ | DE_WRITE) : (flags_ & ~DE_WRITE);
978 }
979
980 private:
981 PhysicalSocketServer* ss_;
982 int fd_;
983 int flags_;
984};
985
986AsyncFile* PhysicalSocketServer::CreateFile(int fd) {
987 return new FileDispatcher(fd, this);
988}
989
990#endif // POSIX
991
992#ifdef WIN32
993static uint32 FlagsToEvents(uint32 events) {
994 uint32 ffFD = FD_CLOSE;
995 if (events & DE_READ)
996 ffFD |= FD_READ;
997 if (events & DE_WRITE)
998 ffFD |= FD_WRITE;
999 if (events & DE_CONNECT)
1000 ffFD |= FD_CONNECT;
1001 if (events & DE_ACCEPT)
1002 ffFD |= FD_ACCEPT;
1003 return ffFD;
1004}
1005
1006class EventDispatcher : public Dispatcher {
1007 public:
1008 EventDispatcher(PhysicalSocketServer *ss) : ss_(ss) {
1009 hev_ = WSACreateEvent();
1010 if (hev_) {
1011 ss_->Add(this);
1012 }
1013 }
1014
1015 ~EventDispatcher() {
1016 if (hev_ != NULL) {
1017 ss_->Remove(this);
1018 WSACloseEvent(hev_);
1019 hev_ = NULL;
1020 }
1021 }
1022
1023 virtual void Signal() {
1024 if (hev_ != NULL)
1025 WSASetEvent(hev_);
1026 }
1027
1028 virtual uint32 GetRequestedEvents() {
1029 return 0;
1030 }
1031
1032 virtual void OnPreEvent(uint32 ff) {
1033 WSAResetEvent(hev_);
1034 }
1035
1036 virtual void OnEvent(uint32 ff, int err) {
1037 }
1038
1039 virtual WSAEVENT GetWSAEvent() {
1040 return hev_;
1041 }
1042
1043 virtual SOCKET GetSocket() {
1044 return INVALID_SOCKET;
1045 }
1046
1047 virtual bool CheckSignalClose() { return false; }
1048
1049private:
1050 PhysicalSocketServer* ss_;
1051 WSAEVENT hev_;
1052};
1053
1054class SocketDispatcher : public Dispatcher, public PhysicalSocket {
1055 public:
1056 static int next_id_;
1057 int id_;
1058 bool signal_close_;
1059 int signal_err_;
1060
1061 SocketDispatcher(PhysicalSocketServer* ss)
1062 : PhysicalSocket(ss),
1063 id_(0),
1064 signal_close_(false) {
1065 }
1066
1067 SocketDispatcher(SOCKET s, PhysicalSocketServer* ss)
1068 : PhysicalSocket(ss, s),
1069 id_(0),
1070 signal_close_(false) {
1071 }
1072
1073 virtual ~SocketDispatcher() {
1074 Close();
1075 }
1076
1077 bool Initialize() {
1078 ASSERT(s_ != INVALID_SOCKET);
1079 // Must be a non-blocking
1080 u_long argp = 1;
1081 ioctlsocket(s_, FIONBIO, &argp);
1082 ss_->Add(this);
1083 return true;
1084 }
1085
1086 virtual bool Create(int type) {
1087 return Create(AF_INET, type);
1088 }
1089
1090 virtual bool Create(int family, int type) {
1091 // Create socket
1092 if (!PhysicalSocket::Create(family, type))
1093 return false;
1094
1095 if (!Initialize())
1096 return false;
1097
1098 do { id_ = ++next_id_; } while (id_ == 0);
1099 return true;
1100 }
1101
1102 virtual int Close() {
1103 if (s_ == INVALID_SOCKET)
1104 return 0;
1105
1106 id_ = 0;
1107 signal_close_ = false;
1108 ss_->Remove(this);
1109 return PhysicalSocket::Close();
1110 }
1111
1112 virtual uint32 GetRequestedEvents() {
1113 return enabled_events_;
1114 }
1115
1116 virtual void OnPreEvent(uint32 ff) {
1117 if ((ff & DE_CONNECT) != 0)
1118 state_ = CS_CONNECTED;
1119 // We set CS_CLOSED from CheckSignalClose.
1120 }
1121
1122 virtual void OnEvent(uint32 ff, int err) {
1123 int cache_id = id_;
1124 // Make sure we deliver connect/accept first. Otherwise, consumers may see
1125 // something like a READ followed by a CONNECT, which would be odd.
1126 if (((ff & DE_CONNECT) != 0) && (id_ == cache_id)) {
1127 if (ff != DE_CONNECT)
1128 LOG(LS_VERBOSE) << "Signalled with DE_CONNECT: " << ff;
1129 enabled_events_ &= ~DE_CONNECT;
1130#ifdef _DEBUG
1131 dbg_addr_ = "Connected @ ";
1132 dbg_addr_.append(GetRemoteAddress().ToString());
1133#endif // _DEBUG
1134 SignalConnectEvent(this);
1135 }
1136 if (((ff & DE_ACCEPT) != 0) && (id_ == cache_id)) {
1137 enabled_events_ &= ~DE_ACCEPT;
1138 SignalReadEvent(this);
1139 }
1140 if ((ff & DE_READ) != 0) {
1141 enabled_events_ &= ~DE_READ;
1142 SignalReadEvent(this);
1143 }
1144 if (((ff & DE_WRITE) != 0) && (id_ == cache_id)) {
1145 enabled_events_ &= ~DE_WRITE;
1146 SignalWriteEvent(this);
1147 }
1148 if (((ff & DE_CLOSE) != 0) && (id_ == cache_id)) {
1149 signal_close_ = true;
1150 signal_err_ = err;
1151 }
1152 }
1153
1154 virtual WSAEVENT GetWSAEvent() {
1155 return WSA_INVALID_EVENT;
1156 }
1157
1158 virtual SOCKET GetSocket() {
1159 return s_;
1160 }
1161
1162 virtual bool CheckSignalClose() {
1163 if (!signal_close_)
1164 return false;
1165
1166 char ch;
1167 if (recv(s_, &ch, 1, MSG_PEEK) > 0)
1168 return false;
1169
1170 state_ = CS_CLOSED;
1171 signal_close_ = false;
1172 SignalCloseEvent(this, signal_err_);
1173 return true;
1174 }
1175};
1176
1177int SocketDispatcher::next_id_ = 0;
1178
1179#endif // WIN32
1180
1181// Sets the value of a boolean value to false when signaled.
1182class Signaler : public EventDispatcher {
1183 public:
1184 Signaler(PhysicalSocketServer* ss, bool* pf)
1185 : EventDispatcher(ss), pf_(pf) {
1186 }
1187 virtual ~Signaler() { }
1188
1189 void OnEvent(uint32 ff, int err) {
1190 if (pf_)
1191 *pf_ = false;
1192 }
1193
1194 private:
1195 bool *pf_;
1196};
1197
1198PhysicalSocketServer::PhysicalSocketServer()
1199 : fWait_(false),
1200 last_tick_tracked_(0),
1201 last_tick_dispatch_count_(0) {
1202 signal_wakeup_ = new Signaler(this, &fWait_);
1203#ifdef WIN32
1204 socket_ev_ = WSACreateEvent();
1205#endif
1206}
1207
1208PhysicalSocketServer::~PhysicalSocketServer() {
1209#ifdef WIN32
1210 WSACloseEvent(socket_ev_);
1211#endif
1212#ifdef POSIX
1213 signal_dispatcher_.reset();
1214#endif
1215 delete signal_wakeup_;
1216 ASSERT(dispatchers_.empty());
1217}
1218
1219void PhysicalSocketServer::WakeUp() {
1220 signal_wakeup_->Signal();
1221}
1222
1223Socket* PhysicalSocketServer::CreateSocket(int type) {
1224 return CreateSocket(AF_INET, type);
1225}
1226
1227Socket* PhysicalSocketServer::CreateSocket(int family, int type) {
1228 PhysicalSocket* socket = new PhysicalSocket(this);
1229 if (socket->Create(family, type)) {
1230 return socket;
1231 } else {
1232 delete socket;
1233 return 0;
1234 }
1235}
1236
1237AsyncSocket* PhysicalSocketServer::CreateAsyncSocket(int type) {
1238 return CreateAsyncSocket(AF_INET, type);
1239}
1240
1241AsyncSocket* PhysicalSocketServer::CreateAsyncSocket(int family, int type) {
1242 SocketDispatcher* dispatcher = new SocketDispatcher(this);
1243 if (dispatcher->Create(family, type)) {
1244 return dispatcher;
1245 } else {
1246 delete dispatcher;
1247 return 0;
1248 }
1249}
1250
1251AsyncSocket* PhysicalSocketServer::WrapSocket(SOCKET s) {
1252 SocketDispatcher* dispatcher = new SocketDispatcher(s, this);
1253 if (dispatcher->Initialize()) {
1254 return dispatcher;
1255 } else {
1256 delete dispatcher;
1257 return 0;
1258 }
1259}
1260
1261void PhysicalSocketServer::Add(Dispatcher *pdispatcher) {
1262 CritScope cs(&crit_);
1263 // Prevent duplicates. This can cause dead dispatchers to stick around.
1264 DispatcherList::iterator pos = std::find(dispatchers_.begin(),
1265 dispatchers_.end(),
1266 pdispatcher);
1267 if (pos != dispatchers_.end())
1268 return;
1269 dispatchers_.push_back(pdispatcher);
1270}
1271
1272void PhysicalSocketServer::Remove(Dispatcher *pdispatcher) {
1273 CritScope cs(&crit_);
1274 DispatcherList::iterator pos = std::find(dispatchers_.begin(),
1275 dispatchers_.end(),
1276 pdispatcher);
wu@webrtc.org967bfff2013-09-19 05:49:50 +00001277 // We silently ignore duplicate calls to Add, so we should silently ignore
1278 // the (expected) symmetric calls to Remove. Note that this may still hide
1279 // a real issue, so we at least log a warning about it.
1280 if (pos == dispatchers_.end()) {
1281 LOG(LS_WARNING) << "PhysicalSocketServer asked to remove a unknown "
1282 << "dispatcher, potentially from a duplicate call to Add.";
1283 return;
1284 }
henrike@webrtc.org28e20752013-07-10 00:45:36 +00001285 size_t index = pos - dispatchers_.begin();
1286 dispatchers_.erase(pos);
1287 for (IteratorList::iterator it = iterators_.begin(); it != iterators_.end();
1288 ++it) {
1289 if (index < **it) {
1290 --**it;
1291 }
1292 }
1293}
1294
1295#ifdef POSIX
1296bool PhysicalSocketServer::Wait(int cmsWait, bool process_io) {
1297 // Calculate timing information
1298
1299 struct timeval *ptvWait = NULL;
1300 struct timeval tvWait;
1301 struct timeval tvStop;
1302 if (cmsWait != kForever) {
1303 // Calculate wait timeval
1304 tvWait.tv_sec = cmsWait / 1000;
1305 tvWait.tv_usec = (cmsWait % 1000) * 1000;
1306 ptvWait = &tvWait;
1307
1308 // Calculate when to return in a timeval
1309 gettimeofday(&tvStop, NULL);
1310 tvStop.tv_sec += tvWait.tv_sec;
1311 tvStop.tv_usec += tvWait.tv_usec;
1312 if (tvStop.tv_usec >= 1000000) {
1313 tvStop.tv_usec -= 1000000;
1314 tvStop.tv_sec += 1;
1315 }
1316 }
1317
1318 // Zero all fd_sets. Don't need to do this inside the loop since
1319 // select() zeros the descriptors not signaled
1320
1321 fd_set fdsRead;
1322 FD_ZERO(&fdsRead);
1323 fd_set fdsWrite;
1324 FD_ZERO(&fdsWrite);
1325
1326 fWait_ = true;
1327
1328 while (fWait_) {
1329 int fdmax = -1;
1330 {
1331 CritScope cr(&crit_);
1332 for (size_t i = 0; i < dispatchers_.size(); ++i) {
1333 // Query dispatchers for read and write wait state
1334 Dispatcher *pdispatcher = dispatchers_[i];
1335 ASSERT(pdispatcher);
1336 if (!process_io && (pdispatcher != signal_wakeup_))
1337 continue;
1338 int fd = pdispatcher->GetDescriptor();
1339 if (fd > fdmax)
1340 fdmax = fd;
1341
1342 uint32 ff = pdispatcher->GetRequestedEvents();
1343 if (ff & (DE_READ | DE_ACCEPT))
1344 FD_SET(fd, &fdsRead);
1345 if (ff & (DE_WRITE | DE_CONNECT))
1346 FD_SET(fd, &fdsWrite);
1347 }
1348 }
1349
1350 // Wait then call handlers as appropriate
1351 // < 0 means error
1352 // 0 means timeout
1353 // > 0 means count of descriptors ready
1354 int n = select(fdmax + 1, &fdsRead, &fdsWrite, NULL, ptvWait);
1355
1356 // If error, return error.
1357 if (n < 0) {
1358 if (errno != EINTR) {
1359 LOG_E(LS_ERROR, EN, errno) << "select";
1360 return false;
1361 }
1362 // Else ignore the error and keep going. If this EINTR was for one of the
1363 // signals managed by this PhysicalSocketServer, the
1364 // PosixSignalDeliveryDispatcher will be in the signaled state in the next
1365 // iteration.
1366 } else if (n == 0) {
1367 // If timeout, return success
1368 return true;
1369 } else {
1370 // We have signaled descriptors
1371 CritScope cr(&crit_);
1372 for (size_t i = 0; i < dispatchers_.size(); ++i) {
1373 Dispatcher *pdispatcher = dispatchers_[i];
1374 int fd = pdispatcher->GetDescriptor();
1375 uint32 ff = 0;
1376 int errcode = 0;
1377
1378 // Reap any error code, which can be signaled through reads or writes.
1379 // TODO: Should we set errcode if getsockopt fails?
1380 if (FD_ISSET(fd, &fdsRead) || FD_ISSET(fd, &fdsWrite)) {
1381 socklen_t len = sizeof(errcode);
1382 ::getsockopt(fd, SOL_SOCKET, SO_ERROR, &errcode, &len);
1383 }
1384
1385 // Check readable descriptors. If we're waiting on an accept, signal
1386 // that. Otherwise we're waiting for data, check to see if we're
1387 // readable or really closed.
1388 // TODO: Only peek at TCP descriptors.
1389 if (FD_ISSET(fd, &fdsRead)) {
1390 FD_CLR(fd, &fdsRead);
1391 if (pdispatcher->GetRequestedEvents() & DE_ACCEPT) {
1392 ff |= DE_ACCEPT;
1393 } else if (errcode || pdispatcher->IsDescriptorClosed()) {
1394 ff |= DE_CLOSE;
1395 } else {
1396 ff |= DE_READ;
1397 }
1398 }
1399
1400 // Check writable descriptors. If we're waiting on a connect, detect
1401 // success versus failure by the reaped error code.
1402 if (FD_ISSET(fd, &fdsWrite)) {
1403 FD_CLR(fd, &fdsWrite);
1404 if (pdispatcher->GetRequestedEvents() & DE_CONNECT) {
1405 if (!errcode) {
1406 ff |= DE_CONNECT;
1407 } else {
1408 ff |= DE_CLOSE;
1409 }
1410 } else {
1411 ff |= DE_WRITE;
1412 }
1413 }
1414
1415 // Tell the descriptor about the event.
1416 if (ff != 0) {
1417 pdispatcher->OnPreEvent(ff);
1418 pdispatcher->OnEvent(ff, errcode);
1419 }
1420 }
1421 }
1422
1423 // Recalc the time remaining to wait. Doing it here means it doesn't get
1424 // calced twice the first time through the loop
1425 if (ptvWait) {
1426 ptvWait->tv_sec = 0;
1427 ptvWait->tv_usec = 0;
1428 struct timeval tvT;
1429 gettimeofday(&tvT, NULL);
1430 if ((tvStop.tv_sec > tvT.tv_sec)
1431 || ((tvStop.tv_sec == tvT.tv_sec)
1432 && (tvStop.tv_usec > tvT.tv_usec))) {
1433 ptvWait->tv_sec = tvStop.tv_sec - tvT.tv_sec;
1434 ptvWait->tv_usec = tvStop.tv_usec - tvT.tv_usec;
1435 if (ptvWait->tv_usec < 0) {
1436 ASSERT(ptvWait->tv_sec > 0);
1437 ptvWait->tv_usec += 1000000;
1438 ptvWait->tv_sec -= 1;
1439 }
1440 }
1441 }
1442 }
1443
1444 return true;
1445}
1446
1447static void GlobalSignalHandler(int signum) {
1448 PosixSignalHandler::Instance()->OnPosixSignalReceived(signum);
1449}
1450
1451bool PhysicalSocketServer::SetPosixSignalHandler(int signum,
1452 void (*handler)(int)) {
1453 // If handler is SIG_IGN or SIG_DFL then clear our user-level handler,
1454 // otherwise set one.
1455 if (handler == SIG_IGN || handler == SIG_DFL) {
1456 if (!InstallSignal(signum, handler)) {
1457 return false;
1458 }
1459 if (signal_dispatcher_) {
1460 signal_dispatcher_->ClearHandler(signum);
1461 if (!signal_dispatcher_->HasHandlers()) {
1462 signal_dispatcher_.reset();
1463 }
1464 }
1465 } else {
1466 if (!signal_dispatcher_) {
1467 signal_dispatcher_.reset(new PosixSignalDispatcher(this));
1468 }
1469 signal_dispatcher_->SetHandler(signum, handler);
1470 if (!InstallSignal(signum, &GlobalSignalHandler)) {
1471 return false;
1472 }
1473 }
1474 return true;
1475}
1476
1477Dispatcher* PhysicalSocketServer::signal_dispatcher() {
1478 return signal_dispatcher_.get();
1479}
1480
1481bool PhysicalSocketServer::InstallSignal(int signum, void (*handler)(int)) {
1482 struct sigaction act;
1483 // It doesn't really matter what we set this mask to.
1484 if (sigemptyset(&act.sa_mask) != 0) {
1485 LOG_ERR(LS_ERROR) << "Couldn't set mask";
1486 return false;
1487 }
1488 act.sa_handler = handler;
1489 // Use SA_RESTART so that our syscalls don't get EINTR, since we don't need it
1490 // and it's a nuisance. Though some syscalls still return EINTR and there's no
1491 // real standard for which ones. :(
1492 act.sa_flags = SA_RESTART;
1493 if (sigaction(signum, &act, NULL) != 0) {
1494 LOG_ERR(LS_ERROR) << "Couldn't set sigaction";
1495 return false;
1496 }
1497 return true;
1498}
1499#endif // POSIX
1500
1501#ifdef WIN32
1502bool PhysicalSocketServer::Wait(int cmsWait, bool process_io) {
1503 int cmsTotal = cmsWait;
1504 int cmsElapsed = 0;
1505 uint32 msStart = Time();
1506
1507#if LOGGING
1508 if (last_tick_dispatch_count_ == 0) {
1509 last_tick_tracked_ = msStart;
1510 }
1511#endif
1512
1513 fWait_ = true;
1514 while (fWait_) {
1515 std::vector<WSAEVENT> events;
1516 std::vector<Dispatcher *> event_owners;
1517
1518 events.push_back(socket_ev_);
1519
1520 {
1521 CritScope cr(&crit_);
1522 size_t i = 0;
1523 iterators_.push_back(&i);
1524 // Don't track dispatchers_.size(), because we want to pick up any new
1525 // dispatchers that were added while processing the loop.
1526 while (i < dispatchers_.size()) {
1527 Dispatcher* disp = dispatchers_[i++];
1528 if (!process_io && (disp != signal_wakeup_))
1529 continue;
1530 SOCKET s = disp->GetSocket();
1531 if (disp->CheckSignalClose()) {
1532 // We just signalled close, don't poll this socket
1533 } else if (s != INVALID_SOCKET) {
1534 WSAEventSelect(s,
1535 events[0],
1536 FlagsToEvents(disp->GetRequestedEvents()));
1537 } else {
1538 events.push_back(disp->GetWSAEvent());
1539 event_owners.push_back(disp);
1540 }
1541 }
1542 ASSERT(iterators_.back() == &i);
1543 iterators_.pop_back();
1544 }
1545
1546 // Which is shorter, the delay wait or the asked wait?
1547
1548 int cmsNext;
1549 if (cmsWait == kForever) {
1550 cmsNext = cmsWait;
1551 } else {
1552 cmsNext = _max(0, cmsTotal - cmsElapsed);
1553 }
1554
1555 // Wait for one of the events to signal
1556 DWORD dw = WSAWaitForMultipleEvents(static_cast<DWORD>(events.size()),
1557 &events[0],
1558 false,
1559 cmsNext,
1560 false);
1561
1562#if 0 // LOGGING
1563 // we track this information purely for logging purposes.
1564 last_tick_dispatch_count_++;
1565 if (last_tick_dispatch_count_ >= 1000) {
1566 int32 elapsed = TimeSince(last_tick_tracked_);
1567 LOG(INFO) << "PhysicalSocketServer took " << elapsed
1568 << "ms for 1000 events";
1569
1570 // If we get more than 1000 events in a second, we are spinning badly
1571 // (normally it should take about 8-20 seconds).
1572 ASSERT(elapsed > 1000);
1573
1574 last_tick_tracked_ = Time();
1575 last_tick_dispatch_count_ = 0;
1576 }
1577#endif
1578
1579 if (dw == WSA_WAIT_FAILED) {
1580 // Failed?
1581 // TODO: need a better strategy than this!
1582 int error = WSAGetLastError();
1583 ASSERT(false);
1584 return false;
1585 } else if (dw == WSA_WAIT_TIMEOUT) {
1586 // Timeout?
1587 return true;
1588 } else {
1589 // Figure out which one it is and call it
1590 CritScope cr(&crit_);
1591 int index = dw - WSA_WAIT_EVENT_0;
1592 if (index > 0) {
1593 --index; // The first event is the socket event
1594 event_owners[index]->OnPreEvent(0);
1595 event_owners[index]->OnEvent(0, 0);
1596 } else if (process_io) {
1597 size_t i = 0, end = dispatchers_.size();
1598 iterators_.push_back(&i);
1599 iterators_.push_back(&end); // Don't iterate over new dispatchers.
1600 while (i < end) {
1601 Dispatcher* disp = dispatchers_[i++];
1602 SOCKET s = disp->GetSocket();
1603 if (s == INVALID_SOCKET)
1604 continue;
1605
1606 WSANETWORKEVENTS wsaEvents;
1607 int err = WSAEnumNetworkEvents(s, events[0], &wsaEvents);
1608 if (err == 0) {
1609
1610#if LOGGING
1611 {
1612 if ((wsaEvents.lNetworkEvents & FD_READ) &&
1613 wsaEvents.iErrorCode[FD_READ_BIT] != 0) {
1614 LOG(WARNING) << "PhysicalSocketServer got FD_READ_BIT error "
1615 << wsaEvents.iErrorCode[FD_READ_BIT];
1616 }
1617 if ((wsaEvents.lNetworkEvents & FD_WRITE) &&
1618 wsaEvents.iErrorCode[FD_WRITE_BIT] != 0) {
1619 LOG(WARNING) << "PhysicalSocketServer got FD_WRITE_BIT error "
1620 << wsaEvents.iErrorCode[FD_WRITE_BIT];
1621 }
1622 if ((wsaEvents.lNetworkEvents & FD_CONNECT) &&
1623 wsaEvents.iErrorCode[FD_CONNECT_BIT] != 0) {
1624 LOG(WARNING) << "PhysicalSocketServer got FD_CONNECT_BIT error "
1625 << wsaEvents.iErrorCode[FD_CONNECT_BIT];
1626 }
1627 if ((wsaEvents.lNetworkEvents & FD_ACCEPT) &&
1628 wsaEvents.iErrorCode[FD_ACCEPT_BIT] != 0) {
1629 LOG(WARNING) << "PhysicalSocketServer got FD_ACCEPT_BIT error "
1630 << wsaEvents.iErrorCode[FD_ACCEPT_BIT];
1631 }
1632 if ((wsaEvents.lNetworkEvents & FD_CLOSE) &&
1633 wsaEvents.iErrorCode[FD_CLOSE_BIT] != 0) {
1634 LOG(WARNING) << "PhysicalSocketServer got FD_CLOSE_BIT error "
1635 << wsaEvents.iErrorCode[FD_CLOSE_BIT];
1636 }
1637 }
1638#endif
1639 uint32 ff = 0;
1640 int errcode = 0;
1641 if (wsaEvents.lNetworkEvents & FD_READ)
1642 ff |= DE_READ;
1643 if (wsaEvents.lNetworkEvents & FD_WRITE)
1644 ff |= DE_WRITE;
1645 if (wsaEvents.lNetworkEvents & FD_CONNECT) {
1646 if (wsaEvents.iErrorCode[FD_CONNECT_BIT] == 0) {
1647 ff |= DE_CONNECT;
1648 } else {
1649 ff |= DE_CLOSE;
1650 errcode = wsaEvents.iErrorCode[FD_CONNECT_BIT];
1651 }
1652 }
1653 if (wsaEvents.lNetworkEvents & FD_ACCEPT)
1654 ff |= DE_ACCEPT;
1655 if (wsaEvents.lNetworkEvents & FD_CLOSE) {
1656 ff |= DE_CLOSE;
1657 errcode = wsaEvents.iErrorCode[FD_CLOSE_BIT];
1658 }
1659 if (ff != 0) {
1660 disp->OnPreEvent(ff);
1661 disp->OnEvent(ff, errcode);
1662 }
1663 }
1664 }
1665 ASSERT(iterators_.back() == &end);
1666 iterators_.pop_back();
1667 ASSERT(iterators_.back() == &i);
1668 iterators_.pop_back();
1669 }
1670
1671 // Reset the network event until new activity occurs
1672 WSAResetEvent(socket_ev_);
1673 }
1674
1675 // Break?
1676 if (!fWait_)
1677 break;
1678 cmsElapsed = TimeSince(msStart);
1679 if ((cmsWait != kForever) && (cmsElapsed >= cmsWait)) {
1680 break;
1681 }
1682 }
1683
1684 // Done
1685 return true;
1686}
1687#endif // WIN32
1688
1689} // namespace talk_base