terelius | afaef8b | 2016-11-17 03:48:18 -0800 | [diff] [blame^] | 1 | /* |
| 2 | * Copyright (c) 2016 The WebRTC project authors. All Rights Reserved. |
| 3 | * |
| 4 | * Use of this source code is governed by a BSD-style license |
| 5 | * that can be found in the LICENSE file in the root of the source |
| 6 | * tree. An additional intellectual property rights grant can be found |
| 7 | * in the file PATENTS. All contributing project authors may |
| 8 | * be found in the AUTHORS file in the root of the source tree. |
| 9 | */ |
| 10 | |
| 11 | #include "webrtc/modules/congestion_controller/trendline_estimator.h" |
| 12 | |
| 13 | #include <algorithm> |
| 14 | |
| 15 | #include "webrtc/base/checks.h" |
| 16 | #include "webrtc/modules/remote_bitrate_estimator/test/bwe_test_logging.h" |
| 17 | |
| 18 | namespace webrtc { |
| 19 | |
| 20 | namespace { |
| 21 | double LinearFitSlope(const std::list<std::pair<double, double>> points) { |
| 22 | RTC_DCHECK(points.size() >= 2); |
| 23 | // Compute the "center of mass". |
| 24 | double sum_x = 0; |
| 25 | double sum_y = 0; |
| 26 | for (const auto& point : points) { |
| 27 | sum_x += point.first; |
| 28 | sum_y += point.second; |
| 29 | } |
| 30 | double x_avg = sum_x / points.size(); |
| 31 | double y_avg = sum_y / points.size(); |
| 32 | // Compute the slope k = \sum (x_i-x_avg)(y_i-y_avg) / \sum (x_i-x_avg)^2 |
| 33 | double numerator = 0; |
| 34 | double denominator = 0; |
| 35 | for (const auto& point : points) { |
| 36 | numerator += (point.first - x_avg) * (point.second - y_avg); |
| 37 | denominator += (point.first - x_avg) * (point.first - x_avg); |
| 38 | } |
| 39 | return numerator / denominator; |
| 40 | } |
| 41 | } // namespace |
| 42 | |
| 43 | enum { kDeltaCounterMax = 1000 }; |
| 44 | |
| 45 | TrendlineEstimator::TrendlineEstimator(size_t window_size, |
| 46 | double smoothing_coef, |
| 47 | double threshold_gain) |
| 48 | : window_size_(window_size), |
| 49 | smoothing_coef_(smoothing_coef), |
| 50 | threshold_gain_(threshold_gain), |
| 51 | num_of_deltas_(0), |
| 52 | accumulated_delay_(0), |
| 53 | smoothed_delay_(0), |
| 54 | delay_hist_(), |
| 55 | trendline_(0) {} |
| 56 | |
| 57 | TrendlineEstimator::~TrendlineEstimator() {} |
| 58 | |
| 59 | void TrendlineEstimator::Update(double recv_delta_ms, |
| 60 | double send_delta_ms, |
| 61 | double now_ms) { |
| 62 | const double delta_ms = recv_delta_ms - send_delta_ms; |
| 63 | ++num_of_deltas_; |
| 64 | if (num_of_deltas_ > kDeltaCounterMax) { |
| 65 | num_of_deltas_ = kDeltaCounterMax; |
| 66 | } |
| 67 | |
| 68 | // Exponential backoff filter. |
| 69 | accumulated_delay_ += delta_ms; |
| 70 | BWE_TEST_LOGGING_PLOT(1, "accumulated_delay_ms", now_ms, accumulated_delay_); |
| 71 | smoothed_delay_ = smoothing_coef_ * smoothed_delay_ + |
| 72 | (1 - smoothing_coef_) * accumulated_delay_; |
| 73 | BWE_TEST_LOGGING_PLOT(1, "smoothed_delay_ms", now_ms, smoothed_delay_); |
| 74 | |
| 75 | // Simple linear regression. |
| 76 | delay_hist_.push_back(std::make_pair(now_ms, smoothed_delay_)); |
| 77 | if (delay_hist_.size() > window_size_) { |
| 78 | delay_hist_.pop_front(); |
| 79 | } |
| 80 | if (delay_hist_.size() == window_size_) { |
| 81 | trendline_ = LinearFitSlope(delay_hist_); |
| 82 | } |
| 83 | |
| 84 | BWE_TEST_LOGGING_PLOT(1, "trendline_slope", now_ms, trendline_); |
| 85 | } |
| 86 | |
| 87 | } // namespace webrtc |