henrike@webrtc.org | 704bf9e | 2014-02-27 17:52:04 +0000 | [diff] [blame] | 1 | // libjingle |
| 2 | // Copyright 2014 Google Inc. |
| 3 | // |
| 4 | // Redistribution and use in source and binary forms, with or without |
| 5 | // modification, are permitted provided that the following conditions are met: |
| 6 | // |
| 7 | // 1. Redistributions of source code must retain the above copyright notice, |
| 8 | // this list of conditions and the following disclaimer. |
| 9 | // 2. Redistributions in binary form must reproduce the above copyright notice, |
| 10 | // this list of conditions and the following disclaimer in the documentation |
| 11 | // and/or other materials provided with the distribution. |
| 12 | // 3. The name of the author may not be used to endorse or promote products |
| 13 | // derived from this software without specific prior written permission. |
| 14 | // |
| 15 | // THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED |
| 16 | // WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF |
| 17 | // MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO |
| 18 | // EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| 19 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| 20 | // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; |
| 21 | // OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, |
| 22 | // WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR |
| 23 | // OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF |
| 24 | // ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 25 | |
| 26 | #include <string> |
| 27 | |
| 28 | #include "libyuv/convert.h" |
| 29 | #include "libyuv/convert_from.h" |
| 30 | #include "libyuv/convert_from_argb.h" |
| 31 | #include "libyuv/format_conversion.h" |
| 32 | #include "libyuv/mjpeg_decoder.h" |
| 33 | #include "libyuv/planar_functions.h" |
buildbot@webrtc.org | a09a999 | 2014-08-13 17:26:08 +0000 | [diff] [blame^] | 34 | #include "talk/media/base/testutils.h" |
| 35 | #include "talk/media/base/videocommon.h" |
buildbot@webrtc.org | d4e598d | 2014-07-29 17:36:52 +0000 | [diff] [blame] | 36 | #include "webrtc/base/flags.h" |
| 37 | #include "webrtc/base/gunit.h" |
| 38 | #include "webrtc/base/scoped_ptr.h" |
henrike@webrtc.org | 704bf9e | 2014-02-27 17:52:04 +0000 | [diff] [blame] | 39 | |
| 40 | // Undefine macros for the windows build. |
| 41 | #undef max |
| 42 | #undef min |
| 43 | |
| 44 | using cricket::DumpPlanarYuvTestImage; |
| 45 | |
| 46 | DEFINE_bool(planarfunctions_dump, false, |
| 47 | "whether to write out scaled images for inspection"); |
| 48 | DEFINE_int(planarfunctions_repeat, 1, |
| 49 | "how many times to perform each scaling operation (for perf testing)"); |
| 50 | |
| 51 | namespace cricket { |
| 52 | |
| 53 | // Number of testing colors in each color channel. |
| 54 | static const int kTestingColorChannelResolution = 6; |
| 55 | |
| 56 | // The total number of testing colors |
| 57 | // kTestingColorNum = kTestingColorChannelResolution^3; |
| 58 | static const int kTestingColorNum = kTestingColorChannelResolution * |
| 59 | kTestingColorChannelResolution * kTestingColorChannelResolution; |
| 60 | |
| 61 | static const int kWidth = 1280; |
| 62 | static const int kHeight = 720; |
| 63 | static const int kAlignment = 16; |
| 64 | |
| 65 | class PlanarFunctionsTest : public testing::TestWithParam<int> { |
| 66 | protected: |
| 67 | PlanarFunctionsTest() : dump_(false), repeat_(1) { |
| 68 | InitializeColorBand(); |
| 69 | } |
| 70 | |
| 71 | virtual void SetUp() { |
| 72 | dump_ = FLAG_planarfunctions_dump; |
| 73 | repeat_ = FLAG_planarfunctions_repeat; |
| 74 | } |
| 75 | |
| 76 | // Initialize the color band for testing. |
| 77 | void InitializeColorBand() { |
| 78 | testing_color_y_.reset(new uint8[kTestingColorNum]); |
| 79 | testing_color_u_.reset(new uint8[kTestingColorNum]); |
| 80 | testing_color_v_.reset(new uint8[kTestingColorNum]); |
| 81 | testing_color_r_.reset(new uint8[kTestingColorNum]); |
| 82 | testing_color_g_.reset(new uint8[kTestingColorNum]); |
| 83 | testing_color_b_.reset(new uint8[kTestingColorNum]); |
| 84 | int color_counter = 0; |
| 85 | for (int i = 0; i < kTestingColorChannelResolution; ++i) { |
| 86 | uint8 color_r = static_cast<uint8>( |
| 87 | i * 255 / (kTestingColorChannelResolution - 1)); |
| 88 | for (int j = 0; j < kTestingColorChannelResolution; ++j) { |
| 89 | uint8 color_g = static_cast<uint8>( |
| 90 | j * 255 / (kTestingColorChannelResolution - 1)); |
| 91 | for (int k = 0; k < kTestingColorChannelResolution; ++k) { |
| 92 | uint8 color_b = static_cast<uint8>( |
| 93 | k * 255 / (kTestingColorChannelResolution - 1)); |
| 94 | testing_color_r_[color_counter] = color_r; |
| 95 | testing_color_g_[color_counter] = color_g; |
| 96 | testing_color_b_[color_counter] = color_b; |
| 97 | // Converting the testing RGB colors to YUV colors. |
| 98 | ConvertRgbPixel(color_r, color_g, color_b, |
| 99 | &(testing_color_y_[color_counter]), |
| 100 | &(testing_color_u_[color_counter]), |
| 101 | &(testing_color_v_[color_counter])); |
| 102 | ++color_counter; |
| 103 | } |
| 104 | } |
| 105 | } |
| 106 | } |
| 107 | // Simple and slow RGB->YUV conversion. From NTSC standard, c/o Wikipedia. |
| 108 | // (from lmivideoframe_unittest.cc) |
| 109 | void ConvertRgbPixel(uint8 r, uint8 g, uint8 b, |
| 110 | uint8* y, uint8* u, uint8* v) { |
| 111 | *y = ClampUint8(.257 * r + .504 * g + .098 * b + 16); |
| 112 | *u = ClampUint8(-.148 * r - .291 * g + .439 * b + 128); |
| 113 | *v = ClampUint8(.439 * r - .368 * g - .071 * b + 128); |
| 114 | } |
| 115 | |
| 116 | uint8 ClampUint8(double value) { |
| 117 | value = std::max(0., std::min(255., value)); |
| 118 | uint8 uint8_value = static_cast<uint8>(value); |
| 119 | return uint8_value; |
| 120 | } |
| 121 | |
| 122 | // Generate a Red-Green-Blue inter-weaving chessboard-like |
| 123 | // YUV testing image (I420/I422/I444). |
| 124 | // The pattern looks like c0 c1 c2 c3 ... |
| 125 | // c1 c2 c3 c4 ... |
| 126 | // c2 c3 c4 c5 ... |
| 127 | // ............... |
| 128 | // The size of each chrome block is (block_size) x (block_size). |
| 129 | uint8* CreateFakeYuvTestingImage(int height, int width, int block_size, |
| 130 | libyuv::JpegSubsamplingType subsample_type, |
| 131 | uint8* &y_pointer, |
| 132 | uint8* &u_pointer, |
| 133 | uint8* &v_pointer) { |
| 134 | if (height <= 0 || width <= 0 || block_size <= 0) { return NULL; } |
| 135 | int y_size = height * width; |
| 136 | int u_size, v_size; |
| 137 | int vertical_sample_ratio = 1, horizontal_sample_ratio = 1; |
| 138 | switch (subsample_type) { |
| 139 | case libyuv::kJpegYuv420: |
| 140 | u_size = ((height + 1) >> 1) * ((width + 1) >> 1); |
| 141 | v_size = u_size; |
| 142 | vertical_sample_ratio = 2, horizontal_sample_ratio = 2; |
| 143 | break; |
| 144 | case libyuv::kJpegYuv422: |
| 145 | u_size = height * ((width + 1) >> 1); |
| 146 | v_size = u_size; |
| 147 | vertical_sample_ratio = 1, horizontal_sample_ratio = 2; |
| 148 | break; |
| 149 | case libyuv::kJpegYuv444: |
| 150 | v_size = u_size = y_size; |
| 151 | vertical_sample_ratio = 1, horizontal_sample_ratio = 1; |
| 152 | break; |
| 153 | case libyuv::kJpegUnknown: |
| 154 | default: |
| 155 | return NULL; |
| 156 | break; |
| 157 | } |
| 158 | uint8* image_pointer = new uint8[y_size + u_size + v_size + kAlignment]; |
| 159 | y_pointer = ALIGNP(image_pointer, kAlignment); |
| 160 | u_pointer = ALIGNP(&image_pointer[y_size], kAlignment); |
| 161 | v_pointer = ALIGNP(&image_pointer[y_size + u_size], kAlignment); |
| 162 | uint8* current_y_pointer = y_pointer; |
| 163 | uint8* current_u_pointer = u_pointer; |
| 164 | uint8* current_v_pointer = v_pointer; |
| 165 | for (int j = 0; j < height; ++j) { |
| 166 | for (int i = 0; i < width; ++i) { |
| 167 | int color = ((i / block_size) + (j / block_size)) % kTestingColorNum; |
| 168 | *(current_y_pointer++) = testing_color_y_[color]; |
| 169 | if (i % horizontal_sample_ratio == 0 && |
| 170 | j % vertical_sample_ratio == 0) { |
| 171 | *(current_u_pointer++) = testing_color_u_[color]; |
| 172 | *(current_v_pointer++) = testing_color_v_[color]; |
| 173 | } |
| 174 | } |
| 175 | } |
| 176 | return image_pointer; |
| 177 | } |
| 178 | |
| 179 | // Generate a Red-Green-Blue inter-weaving chessboard-like |
| 180 | // YUY2/UYVY testing image. |
| 181 | // The pattern looks like c0 c1 c2 c3 ... |
| 182 | // c1 c2 c3 c4 ... |
| 183 | // c2 c3 c4 c5 ... |
| 184 | // ............... |
| 185 | // The size of each chrome block is (block_size) x (block_size). |
| 186 | uint8* CreateFakeInterleaveYuvTestingImage( |
| 187 | int height, int width, int block_size, |
| 188 | uint8* &yuv_pointer, FourCC fourcc_type) { |
| 189 | if (height <= 0 || width <= 0 || block_size <= 0) { return NULL; } |
| 190 | if (fourcc_type != FOURCC_YUY2 && fourcc_type != FOURCC_UYVY) { |
| 191 | LOG(LS_ERROR) << "Format " << static_cast<int>(fourcc_type) |
| 192 | << " is not supported."; |
| 193 | return NULL; |
| 194 | } |
| 195 | // Regularize the width of the output to be even. |
| 196 | int awidth = (width + 1) & ~1; |
| 197 | |
| 198 | uint8* image_pointer = new uint8[2 * height * awidth + kAlignment]; |
| 199 | yuv_pointer = ALIGNP(image_pointer, kAlignment); |
| 200 | uint8* current_yuv_pointer = yuv_pointer; |
| 201 | switch (fourcc_type) { |
| 202 | case FOURCC_YUY2: { |
| 203 | for (int j = 0; j < height; ++j) { |
| 204 | for (int i = 0; i < awidth; i += 2, current_yuv_pointer += 4) { |
| 205 | int color1 = ((i / block_size) + (j / block_size)) % |
| 206 | kTestingColorNum; |
| 207 | int color2 = (((i + 1) / block_size) + (j / block_size)) % |
| 208 | kTestingColorNum; |
| 209 | current_yuv_pointer[0] = testing_color_y_[color1]; |
| 210 | if (i < width) { |
| 211 | current_yuv_pointer[1] = static_cast<uint8>( |
| 212 | (static_cast<uint32>(testing_color_u_[color1]) + |
| 213 | static_cast<uint32>(testing_color_u_[color2])) / 2); |
| 214 | current_yuv_pointer[2] = testing_color_y_[color2]; |
| 215 | current_yuv_pointer[3] = static_cast<uint8>( |
| 216 | (static_cast<uint32>(testing_color_v_[color1]) + |
| 217 | static_cast<uint32>(testing_color_v_[color2])) / 2); |
| 218 | } else { |
| 219 | current_yuv_pointer[1] = testing_color_u_[color1]; |
| 220 | current_yuv_pointer[2] = 0; |
| 221 | current_yuv_pointer[3] = testing_color_v_[color1]; |
| 222 | } |
| 223 | } |
| 224 | } |
| 225 | break; |
| 226 | } |
| 227 | case FOURCC_UYVY: { |
| 228 | for (int j = 0; j < height; ++j) { |
| 229 | for (int i = 0; i < awidth; i += 2, current_yuv_pointer += 4) { |
| 230 | int color1 = ((i / block_size) + (j / block_size)) % |
| 231 | kTestingColorNum; |
| 232 | int color2 = (((i + 1) / block_size) + (j / block_size)) % |
| 233 | kTestingColorNum; |
| 234 | if (i < width) { |
| 235 | current_yuv_pointer[0] = static_cast<uint8>( |
| 236 | (static_cast<uint32>(testing_color_u_[color1]) + |
| 237 | static_cast<uint32>(testing_color_u_[color2])) / 2); |
| 238 | current_yuv_pointer[1] = testing_color_y_[color1]; |
| 239 | current_yuv_pointer[2] = static_cast<uint8>( |
| 240 | (static_cast<uint32>(testing_color_v_[color1]) + |
| 241 | static_cast<uint32>(testing_color_v_[color2])) / 2); |
| 242 | current_yuv_pointer[3] = testing_color_y_[color2]; |
| 243 | } else { |
| 244 | current_yuv_pointer[0] = testing_color_u_[color1]; |
| 245 | current_yuv_pointer[1] = testing_color_y_[color1]; |
| 246 | current_yuv_pointer[2] = testing_color_v_[color1]; |
| 247 | current_yuv_pointer[3] = 0; |
| 248 | } |
| 249 | } |
| 250 | } |
| 251 | break; |
| 252 | } |
| 253 | } |
| 254 | return image_pointer; |
| 255 | } |
| 256 | // Generate a Red-Green-Blue inter-weaving chessboard-like |
| 257 | // Q420 testing image. |
| 258 | // The pattern looks like c0 c1 c2 c3 ... |
| 259 | // c1 c2 c3 c4 ... |
| 260 | // c2 c3 c4 c5 ... |
| 261 | // ............... |
| 262 | // The size of each chrome block is (block_size) x (block_size). |
| 263 | uint8* CreateFakeQ420TestingImage(int height, int width, int block_size, |
| 264 | uint8* &y_pointer, uint8* &yuy2_pointer) { |
| 265 | if (height <= 0 || width <= 0 || block_size <= 0) { return NULL; } |
| 266 | // Regularize the width of the output to be even. |
| 267 | int awidth = (width + 1) & ~1; |
| 268 | |
| 269 | uint8* image_pointer = new uint8[(height / 2) * awidth * 2 + |
| 270 | ((height + 1) / 2) * width + kAlignment]; |
| 271 | y_pointer = ALIGNP(image_pointer, kAlignment); |
| 272 | yuy2_pointer = y_pointer + ((height + 1) / 2) * width; |
| 273 | uint8* current_yuy2_pointer = yuy2_pointer; |
| 274 | uint8* current_y_pointer = y_pointer; |
| 275 | for (int j = 0; j < height; ++j) { |
| 276 | if (j % 2 == 0) { |
| 277 | for (int i = 0; i < width; ++i) { |
| 278 | int color = ((i / block_size) + (j / block_size)) % |
| 279 | kTestingColorNum; |
| 280 | *(current_y_pointer++) = testing_color_y_[color]; |
| 281 | } |
| 282 | } else { |
| 283 | for (int i = 0; i < awidth; i += 2, current_yuy2_pointer += 4) { |
| 284 | int color1 = ((i / block_size) + (j / block_size)) % |
| 285 | kTestingColorNum; |
| 286 | int color2 = (((i + 1) / block_size) + (j / block_size)) % |
| 287 | kTestingColorNum; |
| 288 | current_yuy2_pointer[0] = testing_color_y_[color1]; |
| 289 | if (i < width) { |
| 290 | current_yuy2_pointer[1] = static_cast<uint8>( |
| 291 | (static_cast<uint32>(testing_color_u_[color1]) + |
| 292 | static_cast<uint32>(testing_color_u_[color2])) / 2); |
| 293 | current_yuy2_pointer[2] = testing_color_y_[color2]; |
| 294 | current_yuy2_pointer[3] = static_cast<uint8>( |
| 295 | (static_cast<uint32>(testing_color_v_[color1]) + |
| 296 | static_cast<uint32>(testing_color_v_[color2])) / 2); |
| 297 | } else { |
| 298 | current_yuy2_pointer[1] = testing_color_u_[color1]; |
| 299 | current_yuy2_pointer[2] = 0; |
| 300 | current_yuy2_pointer[3] = testing_color_v_[color1]; |
| 301 | } |
| 302 | } |
| 303 | } |
| 304 | } |
| 305 | return image_pointer; |
| 306 | } |
| 307 | |
| 308 | // Generate a Red-Green-Blue inter-weaving chessboard-like |
| 309 | // NV12 testing image. |
| 310 | // (Note: No interpolation is used.) |
| 311 | // The pattern looks like c0 c1 c2 c3 ... |
| 312 | // c1 c2 c3 c4 ... |
| 313 | // c2 c3 c4 c5 ... |
| 314 | // ............... |
| 315 | // The size of each chrome block is (block_size) x (block_size). |
| 316 | uint8* CreateFakeNV12TestingImage(int height, int width, int block_size, |
| 317 | uint8* &y_pointer, uint8* &uv_pointer) { |
| 318 | if (height <= 0 || width <= 0 || block_size <= 0) { return NULL; } |
| 319 | |
| 320 | uint8* image_pointer = new uint8[height * width + |
| 321 | ((height + 1) / 2) * ((width + 1) / 2) * 2 + kAlignment]; |
| 322 | y_pointer = ALIGNP(image_pointer, kAlignment); |
| 323 | uv_pointer = y_pointer + height * width; |
| 324 | uint8* current_uv_pointer = uv_pointer; |
| 325 | uint8* current_y_pointer = y_pointer; |
| 326 | for (int j = 0; j < height; ++j) { |
| 327 | for (int i = 0; i < width; ++i) { |
| 328 | int color = ((i / block_size) + (j / block_size)) % |
| 329 | kTestingColorNum; |
| 330 | *(current_y_pointer++) = testing_color_y_[color]; |
| 331 | } |
| 332 | if (j % 2 == 0) { |
| 333 | for (int i = 0; i < width; i += 2, current_uv_pointer += 2) { |
| 334 | int color = ((i / block_size) + (j / block_size)) % |
| 335 | kTestingColorNum; |
| 336 | current_uv_pointer[0] = testing_color_u_[color]; |
| 337 | current_uv_pointer[1] = testing_color_v_[color]; |
| 338 | } |
| 339 | } |
| 340 | } |
| 341 | return image_pointer; |
| 342 | } |
| 343 | |
| 344 | // Generate a Red-Green-Blue inter-weaving chessboard-like |
| 345 | // M420 testing image. |
| 346 | // (Note: No interpolation is used.) |
| 347 | // The pattern looks like c0 c1 c2 c3 ... |
| 348 | // c1 c2 c3 c4 ... |
| 349 | // c2 c3 c4 c5 ... |
| 350 | // ............... |
| 351 | // The size of each chrome block is (block_size) x (block_size). |
| 352 | uint8* CreateFakeM420TestingImage( |
| 353 | int height, int width, int block_size, uint8* &m420_pointer) { |
| 354 | if (height <= 0 || width <= 0 || block_size <= 0) { return NULL; } |
| 355 | |
| 356 | uint8* image_pointer = new uint8[height * width + |
| 357 | ((height + 1) / 2) * ((width + 1) / 2) * 2 + kAlignment]; |
| 358 | m420_pointer = ALIGNP(image_pointer, kAlignment); |
| 359 | uint8* current_m420_pointer = m420_pointer; |
| 360 | for (int j = 0; j < height; ++j) { |
| 361 | for (int i = 0; i < width; ++i) { |
| 362 | int color = ((i / block_size) + (j / block_size)) % |
| 363 | kTestingColorNum; |
| 364 | *(current_m420_pointer++) = testing_color_y_[color]; |
| 365 | } |
| 366 | if (j % 2 == 1) { |
| 367 | for (int i = 0; i < width; i += 2, current_m420_pointer += 2) { |
| 368 | int color = ((i / block_size) + ((j - 1) / block_size)) % |
| 369 | kTestingColorNum; |
| 370 | current_m420_pointer[0] = testing_color_u_[color]; |
| 371 | current_m420_pointer[1] = testing_color_v_[color]; |
| 372 | } |
| 373 | } |
| 374 | } |
| 375 | return image_pointer; |
| 376 | } |
| 377 | |
| 378 | // Generate a Red-Green-Blue inter-weaving chessboard-like |
| 379 | // ARGB/ABGR/RAW/BG24 testing image. |
| 380 | // The pattern looks like c0 c1 c2 c3 ... |
| 381 | // c1 c2 c3 c4 ... |
| 382 | // c2 c3 c4 c5 ... |
| 383 | // ............... |
| 384 | // The size of each chrome block is (block_size) x (block_size). |
| 385 | uint8* CreateFakeArgbTestingImage(int height, int width, int block_size, |
| 386 | uint8* &argb_pointer, FourCC fourcc_type) { |
| 387 | if (height <= 0 || width <= 0 || block_size <= 0) { return NULL; } |
| 388 | uint8* image_pointer = NULL; |
| 389 | if (fourcc_type == FOURCC_ABGR || fourcc_type == FOURCC_BGRA || |
| 390 | fourcc_type == FOURCC_ARGB) { |
| 391 | image_pointer = new uint8[height * width * 4 + kAlignment]; |
| 392 | } else if (fourcc_type == FOURCC_RAW || fourcc_type == FOURCC_24BG) { |
| 393 | image_pointer = new uint8[height * width * 3 + kAlignment]; |
| 394 | } else { |
| 395 | LOG(LS_ERROR) << "Format " << static_cast<int>(fourcc_type) |
| 396 | << " is not supported."; |
| 397 | return NULL; |
| 398 | } |
| 399 | argb_pointer = ALIGNP(image_pointer, kAlignment); |
| 400 | uint8* current_pointer = argb_pointer; |
| 401 | switch (fourcc_type) { |
| 402 | case FOURCC_ARGB: { |
| 403 | for (int j = 0; j < height; ++j) { |
| 404 | for (int i = 0; i < width; ++i) { |
| 405 | int color = ((i / block_size) + (j / block_size)) % |
| 406 | kTestingColorNum; |
| 407 | *(current_pointer++) = testing_color_b_[color]; |
| 408 | *(current_pointer++) = testing_color_g_[color]; |
| 409 | *(current_pointer++) = testing_color_r_[color]; |
| 410 | *(current_pointer++) = 255; |
| 411 | } |
| 412 | } |
| 413 | break; |
| 414 | } |
| 415 | case FOURCC_ABGR: { |
| 416 | for (int j = 0; j < height; ++j) { |
| 417 | for (int i = 0; i < width; ++i) { |
| 418 | int color = ((i / block_size) + (j / block_size)) % |
| 419 | kTestingColorNum; |
| 420 | *(current_pointer++) = testing_color_r_[color]; |
| 421 | *(current_pointer++) = testing_color_g_[color]; |
| 422 | *(current_pointer++) = testing_color_b_[color]; |
| 423 | *(current_pointer++) = 255; |
| 424 | } |
| 425 | } |
| 426 | break; |
| 427 | } |
| 428 | case FOURCC_BGRA: { |
| 429 | for (int j = 0; j < height; ++j) { |
| 430 | for (int i = 0; i < width; ++i) { |
| 431 | int color = ((i / block_size) + (j / block_size)) % |
| 432 | kTestingColorNum; |
| 433 | *(current_pointer++) = 255; |
| 434 | *(current_pointer++) = testing_color_r_[color]; |
| 435 | *(current_pointer++) = testing_color_g_[color]; |
| 436 | *(current_pointer++) = testing_color_b_[color]; |
| 437 | } |
| 438 | } |
| 439 | break; |
| 440 | } |
| 441 | case FOURCC_24BG: { |
| 442 | for (int j = 0; j < height; ++j) { |
| 443 | for (int i = 0; i < width; ++i) { |
| 444 | int color = ((i / block_size) + (j / block_size)) % |
| 445 | kTestingColorNum; |
| 446 | *(current_pointer++) = testing_color_b_[color]; |
| 447 | *(current_pointer++) = testing_color_g_[color]; |
| 448 | *(current_pointer++) = testing_color_r_[color]; |
| 449 | } |
| 450 | } |
| 451 | break; |
| 452 | } |
| 453 | case FOURCC_RAW: { |
| 454 | for (int j = 0; j < height; ++j) { |
| 455 | for (int i = 0; i < width; ++i) { |
| 456 | int color = ((i / block_size) + (j / block_size)) % |
| 457 | kTestingColorNum; |
| 458 | *(current_pointer++) = testing_color_r_[color]; |
| 459 | *(current_pointer++) = testing_color_g_[color]; |
| 460 | *(current_pointer++) = testing_color_b_[color]; |
| 461 | } |
| 462 | } |
| 463 | break; |
| 464 | } |
| 465 | default: { |
| 466 | LOG(LS_ERROR) << "Format " << static_cast<int>(fourcc_type) |
| 467 | << " is not supported."; |
| 468 | } |
| 469 | } |
| 470 | return image_pointer; |
| 471 | } |
| 472 | |
| 473 | // Check if two memory chunks are equal. |
| 474 | // (tolerate MSE errors within a threshold). |
| 475 | static bool IsMemoryEqual(const uint8* ibuf, const uint8* obuf, |
| 476 | int osize, double average_error) { |
| 477 | double sse = cricket::ComputeSumSquareError(ibuf, obuf, osize); |
| 478 | double error = sse / osize; // Mean Squared Error. |
| 479 | double PSNR = cricket::ComputePSNR(sse, osize); |
| 480 | LOG(LS_INFO) << "Image MSE: " << error << " Image PSNR: " << PSNR |
| 481 | << " First Diff Byte: " << FindDiff(ibuf, obuf, osize); |
| 482 | return (error < average_error); |
| 483 | } |
| 484 | |
| 485 | // Returns the index of the first differing byte. Easier to debug than memcmp. |
| 486 | static int FindDiff(const uint8* buf1, const uint8* buf2, int len) { |
| 487 | int i = 0; |
| 488 | while (i < len && buf1[i] == buf2[i]) { |
| 489 | i++; |
| 490 | } |
| 491 | return (i < len) ? i : -1; |
| 492 | } |
| 493 | |
| 494 | // Dump the result image (ARGB format). |
| 495 | void DumpArgbImage(const uint8* obuf, int width, int height) { |
| 496 | DumpPlanarArgbTestImage(GetTestName(), obuf, width, height); |
| 497 | } |
| 498 | |
| 499 | // Dump the result image (YUV420 format). |
| 500 | void DumpYuvImage(const uint8* obuf, int width, int height) { |
| 501 | DumpPlanarYuvTestImage(GetTestName(), obuf, width, height); |
| 502 | } |
| 503 | |
| 504 | std::string GetTestName() { |
| 505 | const testing::TestInfo* const test_info = |
| 506 | testing::UnitTest::GetInstance()->current_test_info(); |
| 507 | std::string test_name(test_info->name()); |
| 508 | return test_name; |
| 509 | } |
| 510 | |
| 511 | bool dump_; |
| 512 | int repeat_; |
| 513 | |
| 514 | // Y, U, V and R, G, B channels of testing colors. |
buildbot@webrtc.org | d4e598d | 2014-07-29 17:36:52 +0000 | [diff] [blame] | 515 | rtc::scoped_ptr<uint8[]> testing_color_y_; |
| 516 | rtc::scoped_ptr<uint8[]> testing_color_u_; |
| 517 | rtc::scoped_ptr<uint8[]> testing_color_v_; |
| 518 | rtc::scoped_ptr<uint8[]> testing_color_r_; |
| 519 | rtc::scoped_ptr<uint8[]> testing_color_g_; |
| 520 | rtc::scoped_ptr<uint8[]> testing_color_b_; |
henrike@webrtc.org | 704bf9e | 2014-02-27 17:52:04 +0000 | [diff] [blame] | 521 | }; |
| 522 | |
| 523 | TEST_F(PlanarFunctionsTest, I420Copy) { |
| 524 | uint8 *y_pointer = NULL, *u_pointer = NULL, *v_pointer = NULL; |
| 525 | int y_pitch = kWidth; |
| 526 | int u_pitch = (kWidth + 1) >> 1; |
| 527 | int v_pitch = (kWidth + 1) >> 1; |
| 528 | int y_size = kHeight * kWidth; |
| 529 | int uv_size = ((kHeight + 1) >> 1) * ((kWidth + 1) >> 1); |
| 530 | int block_size = 3; |
| 531 | // Generate a fake input image. |
buildbot@webrtc.org | d4e598d | 2014-07-29 17:36:52 +0000 | [diff] [blame] | 532 | rtc::scoped_ptr<uint8[]> yuv_input( |
henrike@webrtc.org | 704bf9e | 2014-02-27 17:52:04 +0000 | [diff] [blame] | 533 | CreateFakeYuvTestingImage(kHeight, kWidth, block_size, |
| 534 | libyuv::kJpegYuv420, |
| 535 | y_pointer, u_pointer, v_pointer)); |
| 536 | // Allocate space for the output image. |
buildbot@webrtc.org | d4e598d | 2014-07-29 17:36:52 +0000 | [diff] [blame] | 537 | rtc::scoped_ptr<uint8[]> yuv_output( |
henrike@webrtc.org | 704bf9e | 2014-02-27 17:52:04 +0000 | [diff] [blame] | 538 | new uint8[I420_SIZE(kHeight, kWidth) + kAlignment]); |
| 539 | uint8 *y_output_pointer = ALIGNP(yuv_output.get(), kAlignment); |
| 540 | uint8 *u_output_pointer = y_output_pointer + y_size; |
| 541 | uint8 *v_output_pointer = u_output_pointer + uv_size; |
| 542 | |
| 543 | for (int i = 0; i < repeat_; ++i) { |
| 544 | libyuv::I420Copy(y_pointer, y_pitch, |
| 545 | u_pointer, u_pitch, |
| 546 | v_pointer, v_pitch, |
| 547 | y_output_pointer, y_pitch, |
| 548 | u_output_pointer, u_pitch, |
| 549 | v_output_pointer, v_pitch, |
| 550 | kWidth, kHeight); |
| 551 | } |
| 552 | |
| 553 | // Expect the copied frame to be exactly the same. |
| 554 | EXPECT_TRUE(IsMemoryEqual(y_output_pointer, y_pointer, |
| 555 | I420_SIZE(kHeight, kWidth), 1.e-6)); |
| 556 | |
| 557 | if (dump_) { DumpYuvImage(y_output_pointer, kWidth, kHeight); } |
| 558 | } |
| 559 | |
| 560 | TEST_F(PlanarFunctionsTest, I422ToI420) { |
| 561 | uint8 *y_pointer = NULL, *u_pointer = NULL, *v_pointer = NULL; |
| 562 | int y_pitch = kWidth; |
| 563 | int u_pitch = (kWidth + 1) >> 1; |
| 564 | int v_pitch = (kWidth + 1) >> 1; |
| 565 | int y_size = kHeight * kWidth; |
| 566 | int uv_size = ((kHeight + 1) >> 1) * ((kWidth + 1) >> 1); |
| 567 | int block_size = 2; |
| 568 | // Generate a fake input image. |
buildbot@webrtc.org | d4e598d | 2014-07-29 17:36:52 +0000 | [diff] [blame] | 569 | rtc::scoped_ptr<uint8[]> yuv_input( |
henrike@webrtc.org | 704bf9e | 2014-02-27 17:52:04 +0000 | [diff] [blame] | 570 | CreateFakeYuvTestingImage(kHeight, kWidth, block_size, |
| 571 | libyuv::kJpegYuv422, |
| 572 | y_pointer, u_pointer, v_pointer)); |
| 573 | // Allocate space for the output image. |
buildbot@webrtc.org | d4e598d | 2014-07-29 17:36:52 +0000 | [diff] [blame] | 574 | rtc::scoped_ptr<uint8[]> yuv_output( |
henrike@webrtc.org | 704bf9e | 2014-02-27 17:52:04 +0000 | [diff] [blame] | 575 | new uint8[I420_SIZE(kHeight, kWidth) + kAlignment]); |
| 576 | uint8 *y_output_pointer = ALIGNP(yuv_output.get(), kAlignment); |
| 577 | uint8 *u_output_pointer = y_output_pointer + y_size; |
| 578 | uint8 *v_output_pointer = u_output_pointer + uv_size; |
| 579 | // Generate the expected output. |
| 580 | uint8 *y_expected_pointer = NULL, *u_expected_pointer = NULL, |
| 581 | *v_expected_pointer = NULL; |
buildbot@webrtc.org | d4e598d | 2014-07-29 17:36:52 +0000 | [diff] [blame] | 582 | rtc::scoped_ptr<uint8[]> yuv_output_expected( |
henrike@webrtc.org | 704bf9e | 2014-02-27 17:52:04 +0000 | [diff] [blame] | 583 | CreateFakeYuvTestingImage(kHeight, kWidth, block_size, |
| 584 | libyuv::kJpegYuv420, |
| 585 | y_expected_pointer, u_expected_pointer, v_expected_pointer)); |
| 586 | |
| 587 | for (int i = 0; i < repeat_; ++i) { |
| 588 | libyuv::I422ToI420(y_pointer, y_pitch, |
| 589 | u_pointer, u_pitch, |
| 590 | v_pointer, v_pitch, |
| 591 | y_output_pointer, y_pitch, |
| 592 | u_output_pointer, u_pitch, |
| 593 | v_output_pointer, v_pitch, |
| 594 | kWidth, kHeight); |
| 595 | } |
| 596 | |
| 597 | // Compare the output frame with what is expected; expect exactly the same. |
| 598 | // Note: MSE should be set to a larger threshold if an odd block width |
| 599 | // is used, since the conversion will be lossy. |
| 600 | EXPECT_TRUE(IsMemoryEqual(y_output_pointer, y_expected_pointer, |
| 601 | I420_SIZE(kHeight, kWidth), 1.e-6)); |
| 602 | |
| 603 | if (dump_) { DumpYuvImage(y_output_pointer, kWidth, kHeight); } |
| 604 | } |
| 605 | |
| 606 | TEST_P(PlanarFunctionsTest, Q420ToI420) { |
| 607 | // Get the unalignment offset |
| 608 | int unalignment = GetParam(); |
| 609 | uint8 *y_pointer = NULL, *yuy2_pointer = NULL; |
| 610 | int y_pitch = kWidth; |
| 611 | int yuy2_pitch = 2 * ((kWidth + 1) & ~1); |
| 612 | int u_pitch = (kWidth + 1) >> 1; |
| 613 | int v_pitch = (kWidth + 1) >> 1; |
| 614 | int y_size = kHeight * kWidth; |
| 615 | int uv_size = ((kHeight + 1) >> 1) * ((kWidth + 1) >> 1); |
| 616 | int block_size = 2; |
| 617 | // Generate a fake input image. |
buildbot@webrtc.org | d4e598d | 2014-07-29 17:36:52 +0000 | [diff] [blame] | 618 | rtc::scoped_ptr<uint8[]> yuv_input( |
henrike@webrtc.org | 704bf9e | 2014-02-27 17:52:04 +0000 | [diff] [blame] | 619 | CreateFakeQ420TestingImage(kHeight, kWidth, block_size, |
| 620 | y_pointer, yuy2_pointer)); |
| 621 | // Allocate space for the output image. |
buildbot@webrtc.org | d4e598d | 2014-07-29 17:36:52 +0000 | [diff] [blame] | 622 | rtc::scoped_ptr<uint8[]> yuv_output( |
henrike@webrtc.org | 704bf9e | 2014-02-27 17:52:04 +0000 | [diff] [blame] | 623 | new uint8[I420_SIZE(kHeight, kWidth) + kAlignment + unalignment]); |
| 624 | uint8 *y_output_pointer = ALIGNP(yuv_output.get(), kAlignment) + |
| 625 | unalignment; |
| 626 | uint8 *u_output_pointer = y_output_pointer + y_size; |
| 627 | uint8 *v_output_pointer = u_output_pointer + uv_size; |
| 628 | // Generate the expected output. |
| 629 | uint8 *y_expected_pointer = NULL, *u_expected_pointer = NULL, |
| 630 | *v_expected_pointer = NULL; |
buildbot@webrtc.org | d4e598d | 2014-07-29 17:36:52 +0000 | [diff] [blame] | 631 | rtc::scoped_ptr<uint8[]> yuv_output_expected( |
henrike@webrtc.org | 704bf9e | 2014-02-27 17:52:04 +0000 | [diff] [blame] | 632 | CreateFakeYuvTestingImage(kHeight, kWidth, block_size, |
| 633 | libyuv::kJpegYuv420, |
| 634 | y_expected_pointer, u_expected_pointer, v_expected_pointer)); |
| 635 | |
| 636 | for (int i = 0; i < repeat_; ++i) { |
| 637 | libyuv::Q420ToI420(y_pointer, y_pitch, |
| 638 | yuy2_pointer, yuy2_pitch, |
| 639 | y_output_pointer, y_pitch, |
| 640 | u_output_pointer, u_pitch, |
| 641 | v_output_pointer, v_pitch, |
| 642 | kWidth, kHeight); |
| 643 | } |
| 644 | // Compare the output frame with what is expected; expect exactly the same. |
| 645 | // Note: MSE should be set to a larger threshold if an odd block width |
| 646 | // is used, since the conversion will be lossy. |
| 647 | EXPECT_TRUE(IsMemoryEqual(y_output_pointer, y_expected_pointer, |
| 648 | I420_SIZE(kHeight, kWidth), 1.e-6)); |
| 649 | |
| 650 | if (dump_) { DumpYuvImage(y_output_pointer, kWidth, kHeight); } |
| 651 | } |
| 652 | |
| 653 | TEST_P(PlanarFunctionsTest, M420ToI420) { |
| 654 | // Get the unalignment offset |
| 655 | int unalignment = GetParam(); |
| 656 | uint8 *m420_pointer = NULL; |
| 657 | int y_pitch = kWidth; |
| 658 | int m420_pitch = kWidth; |
| 659 | int u_pitch = (kWidth + 1) >> 1; |
| 660 | int v_pitch = (kWidth + 1) >> 1; |
| 661 | int y_size = kHeight * kWidth; |
| 662 | int uv_size = ((kHeight + 1) >> 1) * ((kWidth + 1) >> 1); |
| 663 | int block_size = 2; |
| 664 | // Generate a fake input image. |
buildbot@webrtc.org | d4e598d | 2014-07-29 17:36:52 +0000 | [diff] [blame] | 665 | rtc::scoped_ptr<uint8[]> yuv_input( |
henrike@webrtc.org | 704bf9e | 2014-02-27 17:52:04 +0000 | [diff] [blame] | 666 | CreateFakeM420TestingImage(kHeight, kWidth, block_size, m420_pointer)); |
| 667 | // Allocate space for the output image. |
buildbot@webrtc.org | d4e598d | 2014-07-29 17:36:52 +0000 | [diff] [blame] | 668 | rtc::scoped_ptr<uint8[]> yuv_output( |
henrike@webrtc.org | 704bf9e | 2014-02-27 17:52:04 +0000 | [diff] [blame] | 669 | new uint8[I420_SIZE(kHeight, kWidth) + kAlignment + unalignment]); |
| 670 | uint8 *y_output_pointer = ALIGNP(yuv_output.get(), kAlignment) + unalignment; |
| 671 | uint8 *u_output_pointer = y_output_pointer + y_size; |
| 672 | uint8 *v_output_pointer = u_output_pointer + uv_size; |
| 673 | // Generate the expected output. |
| 674 | uint8 *y_expected_pointer = NULL, *u_expected_pointer = NULL, |
| 675 | *v_expected_pointer = NULL; |
buildbot@webrtc.org | d4e598d | 2014-07-29 17:36:52 +0000 | [diff] [blame] | 676 | rtc::scoped_ptr<uint8[]> yuv_output_expected( |
henrike@webrtc.org | 704bf9e | 2014-02-27 17:52:04 +0000 | [diff] [blame] | 677 | CreateFakeYuvTestingImage(kHeight, kWidth, block_size, |
| 678 | libyuv::kJpegYuv420, |
| 679 | y_expected_pointer, u_expected_pointer, v_expected_pointer)); |
| 680 | |
| 681 | for (int i = 0; i < repeat_; ++i) { |
| 682 | libyuv::M420ToI420(m420_pointer, m420_pitch, |
| 683 | y_output_pointer, y_pitch, |
| 684 | u_output_pointer, u_pitch, |
| 685 | v_output_pointer, v_pitch, |
| 686 | kWidth, kHeight); |
| 687 | } |
| 688 | // Compare the output frame with what is expected; expect exactly the same. |
| 689 | // Note: MSE should be set to a larger threshold if an odd block width |
| 690 | // is used, since the conversion will be lossy. |
| 691 | EXPECT_TRUE(IsMemoryEqual(y_output_pointer, y_expected_pointer, |
| 692 | I420_SIZE(kHeight, kWidth), 1.e-6)); |
| 693 | |
| 694 | if (dump_) { DumpYuvImage(y_output_pointer, kWidth, kHeight); } |
| 695 | } |
| 696 | |
| 697 | TEST_P(PlanarFunctionsTest, NV12ToI420) { |
| 698 | // Get the unalignment offset |
| 699 | int unalignment = GetParam(); |
| 700 | uint8 *y_pointer = NULL, *uv_pointer = NULL; |
| 701 | int y_pitch = kWidth; |
| 702 | int uv_pitch = 2 * ((kWidth + 1) >> 1); |
| 703 | int u_pitch = (kWidth + 1) >> 1; |
| 704 | int v_pitch = (kWidth + 1) >> 1; |
| 705 | int y_size = kHeight * kWidth; |
| 706 | int uv_size = ((kHeight + 1) >> 1) * ((kWidth + 1) >> 1); |
| 707 | int block_size = 2; |
| 708 | // Generate a fake input image. |
buildbot@webrtc.org | d4e598d | 2014-07-29 17:36:52 +0000 | [diff] [blame] | 709 | rtc::scoped_ptr<uint8[]> yuv_input( |
henrike@webrtc.org | 704bf9e | 2014-02-27 17:52:04 +0000 | [diff] [blame] | 710 | CreateFakeNV12TestingImage(kHeight, kWidth, block_size, |
| 711 | y_pointer, uv_pointer)); |
| 712 | // Allocate space for the output image. |
buildbot@webrtc.org | d4e598d | 2014-07-29 17:36:52 +0000 | [diff] [blame] | 713 | rtc::scoped_ptr<uint8[]> yuv_output( |
henrike@webrtc.org | 704bf9e | 2014-02-27 17:52:04 +0000 | [diff] [blame] | 714 | new uint8[I420_SIZE(kHeight, kWidth) + kAlignment + unalignment]); |
| 715 | uint8 *y_output_pointer = ALIGNP(yuv_output.get(), kAlignment) + unalignment; |
| 716 | uint8 *u_output_pointer = y_output_pointer + y_size; |
| 717 | uint8 *v_output_pointer = u_output_pointer + uv_size; |
| 718 | // Generate the expected output. |
| 719 | uint8 *y_expected_pointer = NULL, *u_expected_pointer = NULL, |
| 720 | *v_expected_pointer = NULL; |
buildbot@webrtc.org | d4e598d | 2014-07-29 17:36:52 +0000 | [diff] [blame] | 721 | rtc::scoped_ptr<uint8[]> yuv_output_expected( |
henrike@webrtc.org | 704bf9e | 2014-02-27 17:52:04 +0000 | [diff] [blame] | 722 | CreateFakeYuvTestingImage(kHeight, kWidth, block_size, |
| 723 | libyuv::kJpegYuv420, |
| 724 | y_expected_pointer, u_expected_pointer, v_expected_pointer)); |
| 725 | |
| 726 | for (int i = 0; i < repeat_; ++i) { |
| 727 | libyuv::NV12ToI420(y_pointer, y_pitch, |
| 728 | uv_pointer, uv_pitch, |
| 729 | y_output_pointer, y_pitch, |
| 730 | u_output_pointer, u_pitch, |
| 731 | v_output_pointer, v_pitch, |
| 732 | kWidth, kHeight); |
| 733 | } |
| 734 | // Compare the output frame with what is expected; expect exactly the same. |
| 735 | // Note: MSE should be set to a larger threshold if an odd block width |
| 736 | // is used, since the conversion will be lossy. |
| 737 | EXPECT_TRUE(IsMemoryEqual(y_output_pointer, y_expected_pointer, |
| 738 | I420_SIZE(kHeight, kWidth), 1.e-6)); |
| 739 | |
| 740 | if (dump_) { DumpYuvImage(y_output_pointer, kWidth, kHeight); } |
| 741 | } |
| 742 | |
| 743 | // A common macro for testing converting YUY2/UYVY to I420. |
| 744 | #define TEST_YUVTOI420(SRC_NAME, MSE, BLOCK_SIZE) \ |
| 745 | TEST_P(PlanarFunctionsTest, SRC_NAME##ToI420) { \ |
| 746 | /* Get the unalignment offset.*/ \ |
| 747 | int unalignment = GetParam(); \ |
| 748 | uint8 *yuv_pointer = NULL; \ |
| 749 | int yuv_pitch = 2 * ((kWidth + 1) & ~1); \ |
| 750 | int y_pitch = kWidth; \ |
| 751 | int u_pitch = (kWidth + 1) >> 1; \ |
| 752 | int v_pitch = (kWidth + 1) >> 1; \ |
| 753 | int y_size = kHeight * kWidth; \ |
| 754 | int uv_size = ((kHeight + 1) >> 1) * ((kWidth + 1) >> 1); \ |
| 755 | int block_size = 2; \ |
| 756 | /* Generate a fake input image.*/ \ |
buildbot@webrtc.org | d4e598d | 2014-07-29 17:36:52 +0000 | [diff] [blame] | 757 | rtc::scoped_ptr<uint8[]> yuv_input( \ |
henrike@webrtc.org | 704bf9e | 2014-02-27 17:52:04 +0000 | [diff] [blame] | 758 | CreateFakeInterleaveYuvTestingImage(kHeight, kWidth, BLOCK_SIZE, \ |
| 759 | yuv_pointer, FOURCC_##SRC_NAME)); \ |
| 760 | /* Allocate space for the output image.*/ \ |
buildbot@webrtc.org | d4e598d | 2014-07-29 17:36:52 +0000 | [diff] [blame] | 761 | rtc::scoped_ptr<uint8[]> yuv_output( \ |
henrike@webrtc.org | 704bf9e | 2014-02-27 17:52:04 +0000 | [diff] [blame] | 762 | new uint8[I420_SIZE(kHeight, kWidth) + kAlignment + unalignment]); \ |
| 763 | uint8 *y_output_pointer = ALIGNP(yuv_output.get(), kAlignment) + \ |
| 764 | unalignment; \ |
| 765 | uint8 *u_output_pointer = y_output_pointer + y_size; \ |
| 766 | uint8 *v_output_pointer = u_output_pointer + uv_size; \ |
| 767 | /* Generate the expected output.*/ \ |
| 768 | uint8 *y_expected_pointer = NULL, *u_expected_pointer = NULL, \ |
| 769 | *v_expected_pointer = NULL; \ |
buildbot@webrtc.org | d4e598d | 2014-07-29 17:36:52 +0000 | [diff] [blame] | 770 | rtc::scoped_ptr<uint8[]> yuv_output_expected( \ |
henrike@webrtc.org | 704bf9e | 2014-02-27 17:52:04 +0000 | [diff] [blame] | 771 | CreateFakeYuvTestingImage(kHeight, kWidth, block_size, \ |
| 772 | libyuv::kJpegYuv420, \ |
| 773 | y_expected_pointer, u_expected_pointer, v_expected_pointer)); \ |
| 774 | for (int i = 0; i < repeat_; ++i) { \ |
| 775 | libyuv::SRC_NAME##ToI420(yuv_pointer, yuv_pitch, \ |
| 776 | y_output_pointer, y_pitch, \ |
| 777 | u_output_pointer, u_pitch, \ |
| 778 | v_output_pointer, v_pitch, \ |
| 779 | kWidth, kHeight); \ |
| 780 | } \ |
| 781 | /* Compare the output frame with what is expected.*/ \ |
| 782 | /* Note: MSE should be set to a larger threshold if an odd block width*/ \ |
| 783 | /* is used, since the conversion will be lossy.*/ \ |
| 784 | EXPECT_TRUE(IsMemoryEqual(y_output_pointer, y_expected_pointer, \ |
| 785 | I420_SIZE(kHeight, kWidth), MSE)); \ |
| 786 | if (dump_) { DumpYuvImage(y_output_pointer, kWidth, kHeight); } \ |
| 787 | } \ |
| 788 | |
| 789 | // TEST_P(PlanarFunctionsTest, YUV2ToI420) |
| 790 | TEST_YUVTOI420(YUY2, 1.e-6, 2); |
| 791 | // TEST_P(PlanarFunctionsTest, UYVYToI420) |
| 792 | TEST_YUVTOI420(UYVY, 1.e-6, 2); |
| 793 | |
| 794 | // A common macro for testing converting I420 to ARGB, BGRA and ABGR. |
| 795 | #define TEST_YUVTORGB(SRC_NAME, DST_NAME, JPG_TYPE, MSE, BLOCK_SIZE) \ |
| 796 | TEST_F(PlanarFunctionsTest, SRC_NAME##To##DST_NAME) { \ |
| 797 | uint8 *y_pointer = NULL, *u_pointer = NULL, *v_pointer = NULL; \ |
| 798 | uint8 *argb_expected_pointer = NULL; \ |
| 799 | int y_pitch = kWidth; \ |
| 800 | int u_pitch = (kWidth + 1) >> 1; \ |
| 801 | int v_pitch = (kWidth + 1) >> 1; \ |
| 802 | /* Generate a fake input image.*/ \ |
buildbot@webrtc.org | d4e598d | 2014-07-29 17:36:52 +0000 | [diff] [blame] | 803 | rtc::scoped_ptr<uint8[]> yuv_input( \ |
henrike@webrtc.org | 704bf9e | 2014-02-27 17:52:04 +0000 | [diff] [blame] | 804 | CreateFakeYuvTestingImage(kHeight, kWidth, BLOCK_SIZE, JPG_TYPE, \ |
| 805 | y_pointer, u_pointer, v_pointer)); \ |
| 806 | /* Generate the expected output.*/ \ |
buildbot@webrtc.org | d4e598d | 2014-07-29 17:36:52 +0000 | [diff] [blame] | 807 | rtc::scoped_ptr<uint8[]> argb_expected( \ |
henrike@webrtc.org | 704bf9e | 2014-02-27 17:52:04 +0000 | [diff] [blame] | 808 | CreateFakeArgbTestingImage(kHeight, kWidth, BLOCK_SIZE, \ |
| 809 | argb_expected_pointer, FOURCC_##DST_NAME)); \ |
| 810 | /* Allocate space for the output.*/ \ |
buildbot@webrtc.org | d4e598d | 2014-07-29 17:36:52 +0000 | [diff] [blame] | 811 | rtc::scoped_ptr<uint8[]> argb_output( \ |
henrike@webrtc.org | 704bf9e | 2014-02-27 17:52:04 +0000 | [diff] [blame] | 812 | new uint8[kHeight * kWidth * 4 + kAlignment]); \ |
| 813 | uint8 *argb_pointer = ALIGNP(argb_expected.get(), kAlignment); \ |
| 814 | for (int i = 0; i < repeat_; ++i) { \ |
| 815 | libyuv::SRC_NAME##To##DST_NAME(y_pointer, y_pitch, \ |
| 816 | u_pointer, u_pitch, \ |
| 817 | v_pointer, v_pitch, \ |
| 818 | argb_pointer, \ |
| 819 | kWidth * 4, \ |
| 820 | kWidth, kHeight); \ |
| 821 | } \ |
| 822 | EXPECT_TRUE(IsMemoryEqual(argb_expected_pointer, argb_pointer, \ |
| 823 | kHeight * kWidth * 4, MSE)); \ |
| 824 | if (dump_) { DumpArgbImage(argb_pointer, kWidth, kHeight); } \ |
| 825 | } |
| 826 | |
| 827 | // TEST_F(PlanarFunctionsTest, I420ToARGB) |
| 828 | TEST_YUVTORGB(I420, ARGB, libyuv::kJpegYuv420, 3., 2); |
| 829 | // TEST_F(PlanarFunctionsTest, I420ToABGR) |
| 830 | TEST_YUVTORGB(I420, ABGR, libyuv::kJpegYuv420, 3., 2); |
| 831 | // TEST_F(PlanarFunctionsTest, I420ToBGRA) |
| 832 | TEST_YUVTORGB(I420, BGRA, libyuv::kJpegYuv420, 3., 2); |
| 833 | // TEST_F(PlanarFunctionsTest, I422ToARGB) |
| 834 | TEST_YUVTORGB(I422, ARGB, libyuv::kJpegYuv422, 3., 2); |
| 835 | // TEST_F(PlanarFunctionsTest, I444ToARGB) |
| 836 | TEST_YUVTORGB(I444, ARGB, libyuv::kJpegYuv444, 3., 3); |
| 837 | // Note: an empirical MSE tolerance 3.0 is used here for the probable |
| 838 | // error from float-to-uint8 type conversion. |
| 839 | |
| 840 | TEST_F(PlanarFunctionsTest, I400ToARGB_Reference) { |
| 841 | uint8 *y_pointer = NULL, *u_pointer = NULL, *v_pointer = NULL; |
| 842 | int y_pitch = kWidth; |
| 843 | int u_pitch = (kWidth + 1) >> 1; |
| 844 | int v_pitch = (kWidth + 1) >> 1; |
| 845 | int block_size = 3; |
| 846 | // Generate a fake input image. |
buildbot@webrtc.org | d4e598d | 2014-07-29 17:36:52 +0000 | [diff] [blame] | 847 | rtc::scoped_ptr<uint8[]> yuv_input( |
henrike@webrtc.org | 704bf9e | 2014-02-27 17:52:04 +0000 | [diff] [blame] | 848 | CreateFakeYuvTestingImage(kHeight, kWidth, block_size, |
| 849 | libyuv::kJpegYuv420, |
| 850 | y_pointer, u_pointer, v_pointer)); |
| 851 | // As the comparison standard, we convert a grayscale image (by setting both |
| 852 | // U and V channels to be 128) using an I420 converter. |
| 853 | int uv_size = ((kHeight + 1) >> 1) * ((kWidth + 1) >> 1); |
| 854 | |
buildbot@webrtc.org | d4e598d | 2014-07-29 17:36:52 +0000 | [diff] [blame] | 855 | rtc::scoped_ptr<uint8[]> uv(new uint8[uv_size + kAlignment]); |
henrike@webrtc.org | 704bf9e | 2014-02-27 17:52:04 +0000 | [diff] [blame] | 856 | u_pointer = v_pointer = ALIGNP(uv.get(), kAlignment); |
| 857 | memset(u_pointer, 128, uv_size); |
| 858 | |
| 859 | // Allocate space for the output image and generate the expected output. |
buildbot@webrtc.org | d4e598d | 2014-07-29 17:36:52 +0000 | [diff] [blame] | 860 | rtc::scoped_ptr<uint8[]> argb_expected( |
henrike@webrtc.org | 704bf9e | 2014-02-27 17:52:04 +0000 | [diff] [blame] | 861 | new uint8[kHeight * kWidth * 4 + kAlignment]); |
buildbot@webrtc.org | d4e598d | 2014-07-29 17:36:52 +0000 | [diff] [blame] | 862 | rtc::scoped_ptr<uint8[]> argb_output( |
henrike@webrtc.org | 704bf9e | 2014-02-27 17:52:04 +0000 | [diff] [blame] | 863 | new uint8[kHeight * kWidth * 4 + kAlignment]); |
| 864 | uint8 *argb_expected_pointer = ALIGNP(argb_expected.get(), kAlignment); |
| 865 | uint8 *argb_pointer = ALIGNP(argb_output.get(), kAlignment); |
| 866 | |
| 867 | libyuv::I420ToARGB(y_pointer, y_pitch, |
| 868 | u_pointer, u_pitch, |
| 869 | v_pointer, v_pitch, |
| 870 | argb_expected_pointer, kWidth * 4, |
| 871 | kWidth, kHeight); |
| 872 | for (int i = 0; i < repeat_; ++i) { |
| 873 | libyuv::I400ToARGB_Reference(y_pointer, y_pitch, |
| 874 | argb_pointer, kWidth * 4, |
| 875 | kWidth, kHeight); |
| 876 | } |
| 877 | |
| 878 | // Note: I420ToARGB and I400ToARGB_Reference should produce identical results. |
| 879 | EXPECT_TRUE(IsMemoryEqual(argb_expected_pointer, argb_pointer, |
| 880 | kHeight * kWidth * 4, 2.)); |
| 881 | if (dump_) { DumpArgbImage(argb_pointer, kWidth, kHeight); } |
| 882 | } |
| 883 | |
| 884 | TEST_P(PlanarFunctionsTest, I400ToARGB) { |
| 885 | // Get the unalignment offset |
| 886 | int unalignment = GetParam(); |
| 887 | uint8 *y_pointer = NULL, *u_pointer = NULL, *v_pointer = NULL; |
| 888 | int y_pitch = kWidth; |
| 889 | int u_pitch = (kWidth + 1) >> 1; |
| 890 | int v_pitch = (kWidth + 1) >> 1; |
| 891 | int block_size = 3; |
| 892 | // Generate a fake input image. |
buildbot@webrtc.org | d4e598d | 2014-07-29 17:36:52 +0000 | [diff] [blame] | 893 | rtc::scoped_ptr<uint8[]> yuv_input( |
henrike@webrtc.org | 704bf9e | 2014-02-27 17:52:04 +0000 | [diff] [blame] | 894 | CreateFakeYuvTestingImage(kHeight, kWidth, block_size, |
| 895 | libyuv::kJpegYuv420, |
| 896 | y_pointer, u_pointer, v_pointer)); |
| 897 | // As the comparison standard, we convert a grayscale image (by setting both |
| 898 | // U and V channels to be 128) using an I420 converter. |
| 899 | int uv_size = ((kHeight + 1) >> 1) * ((kWidth + 1) >> 1); |
| 900 | |
| 901 | // 1 byte extra if in the unaligned mode. |
buildbot@webrtc.org | d4e598d | 2014-07-29 17:36:52 +0000 | [diff] [blame] | 902 | rtc::scoped_ptr<uint8[]> uv(new uint8[uv_size * 2 + kAlignment]); |
henrike@webrtc.org | 704bf9e | 2014-02-27 17:52:04 +0000 | [diff] [blame] | 903 | u_pointer = ALIGNP(uv.get(), kAlignment); |
| 904 | v_pointer = u_pointer + uv_size; |
| 905 | memset(u_pointer, 128, uv_size); |
| 906 | memset(v_pointer, 128, uv_size); |
| 907 | |
| 908 | // Allocate space for the output image and generate the expected output. |
buildbot@webrtc.org | d4e598d | 2014-07-29 17:36:52 +0000 | [diff] [blame] | 909 | rtc::scoped_ptr<uint8[]> argb_expected( |
henrike@webrtc.org | 704bf9e | 2014-02-27 17:52:04 +0000 | [diff] [blame] | 910 | new uint8[kHeight * kWidth * 4 + kAlignment]); |
| 911 | // 1 byte extra if in the misalinged mode. |
buildbot@webrtc.org | d4e598d | 2014-07-29 17:36:52 +0000 | [diff] [blame] | 912 | rtc::scoped_ptr<uint8[]> argb_output( |
henrike@webrtc.org | 704bf9e | 2014-02-27 17:52:04 +0000 | [diff] [blame] | 913 | new uint8[kHeight * kWidth * 4 + kAlignment + unalignment]); |
| 914 | uint8 *argb_expected_pointer = ALIGNP(argb_expected.get(), kAlignment); |
| 915 | uint8 *argb_pointer = ALIGNP(argb_output.get(), kAlignment) + unalignment; |
| 916 | |
| 917 | libyuv::I420ToARGB(y_pointer, y_pitch, |
| 918 | u_pointer, u_pitch, |
| 919 | v_pointer, v_pitch, |
| 920 | argb_expected_pointer, kWidth * 4, |
| 921 | kWidth, kHeight); |
| 922 | for (int i = 0; i < repeat_; ++i) { |
| 923 | libyuv::I400ToARGB(y_pointer, y_pitch, |
| 924 | argb_pointer, kWidth * 4, |
| 925 | kWidth, kHeight); |
| 926 | } |
| 927 | |
| 928 | // Note: current I400ToARGB uses an approximate method, |
| 929 | // so the error tolerance is larger here. |
| 930 | EXPECT_TRUE(IsMemoryEqual(argb_expected_pointer, argb_pointer, |
| 931 | kHeight * kWidth * 4, 64.0)); |
| 932 | if (dump_) { DumpArgbImage(argb_pointer, kWidth, kHeight); } |
| 933 | } |
| 934 | |
| 935 | TEST_P(PlanarFunctionsTest, ARGBToI400) { |
| 936 | // Get the unalignment offset |
| 937 | int unalignment = GetParam(); |
| 938 | // Create a fake ARGB input image. |
| 939 | uint8 *y_pointer = NULL, *u_pointer = NULL, *v_pointer = NULL; |
| 940 | uint8 *argb_pointer = NULL; |
| 941 | int block_size = 3; |
| 942 | // Generate a fake input image. |
buildbot@webrtc.org | d4e598d | 2014-07-29 17:36:52 +0000 | [diff] [blame] | 943 | rtc::scoped_ptr<uint8[]> argb_input( |
henrike@webrtc.org | 704bf9e | 2014-02-27 17:52:04 +0000 | [diff] [blame] | 944 | CreateFakeArgbTestingImage(kHeight, kWidth, block_size, |
| 945 | argb_pointer, FOURCC_ARGB)); |
| 946 | // Generate the expected output. Only Y channel is used |
buildbot@webrtc.org | d4e598d | 2014-07-29 17:36:52 +0000 | [diff] [blame] | 947 | rtc::scoped_ptr<uint8[]> yuv_expected( |
henrike@webrtc.org | 704bf9e | 2014-02-27 17:52:04 +0000 | [diff] [blame] | 948 | CreateFakeYuvTestingImage(kHeight, kWidth, block_size, |
| 949 | libyuv::kJpegYuv420, |
| 950 | y_pointer, u_pointer, v_pointer)); |
| 951 | // Allocate space for the Y output. |
buildbot@webrtc.org | d4e598d | 2014-07-29 17:36:52 +0000 | [diff] [blame] | 952 | rtc::scoped_ptr<uint8[]> y_output( |
henrike@webrtc.org | 704bf9e | 2014-02-27 17:52:04 +0000 | [diff] [blame] | 953 | new uint8[kHeight * kWidth + kAlignment + unalignment]); |
| 954 | uint8 *y_output_pointer = ALIGNP(y_output.get(), kAlignment) + unalignment; |
| 955 | |
| 956 | for (int i = 0; i < repeat_; ++i) { |
| 957 | libyuv::ARGBToI400(argb_pointer, kWidth * 4, y_output_pointer, kWidth, |
| 958 | kWidth, kHeight); |
| 959 | } |
| 960 | // Check if the output matches the input Y channel. |
| 961 | // Note: an empirical MSE tolerance 2.0 is used here for the probable |
| 962 | // error from float-to-uint8 type conversion. |
| 963 | EXPECT_TRUE(IsMemoryEqual(y_output_pointer, y_pointer, |
| 964 | kHeight * kWidth, 2.)); |
| 965 | if (dump_) { DumpArgbImage(argb_pointer, kWidth, kHeight); } |
| 966 | } |
| 967 | |
| 968 | // A common macro for testing converting RAW, BG24, BGRA, and ABGR |
| 969 | // to ARGB. |
| 970 | #define TEST_ARGB(SRC_NAME, FC_ID, BPP, BLOCK_SIZE) \ |
| 971 | TEST_P(PlanarFunctionsTest, SRC_NAME##ToARGB) { \ |
| 972 | int unalignment = GetParam(); /* Get the unalignment offset.*/ \ |
| 973 | uint8 *argb_expected_pointer = NULL, *src_pointer = NULL; \ |
| 974 | /* Generate a fake input image.*/ \ |
buildbot@webrtc.org | d4e598d | 2014-07-29 17:36:52 +0000 | [diff] [blame] | 975 | rtc::scoped_ptr<uint8[]> src_input( \ |
henrike@webrtc.org | 704bf9e | 2014-02-27 17:52:04 +0000 | [diff] [blame] | 976 | CreateFakeArgbTestingImage(kHeight, kWidth, BLOCK_SIZE, \ |
| 977 | src_pointer, FOURCC_##FC_ID)); \ |
| 978 | /* Generate the expected output.*/ \ |
buildbot@webrtc.org | d4e598d | 2014-07-29 17:36:52 +0000 | [diff] [blame] | 979 | rtc::scoped_ptr<uint8[]> argb_expected( \ |
henrike@webrtc.org | 704bf9e | 2014-02-27 17:52:04 +0000 | [diff] [blame] | 980 | CreateFakeArgbTestingImage(kHeight, kWidth, BLOCK_SIZE, \ |
| 981 | argb_expected_pointer, FOURCC_ARGB)); \ |
| 982 | /* Allocate space for the output; 1 byte extra if in the unaligned mode.*/ \ |
buildbot@webrtc.org | d4e598d | 2014-07-29 17:36:52 +0000 | [diff] [blame] | 983 | rtc::scoped_ptr<uint8[]> argb_output( \ |
henrike@webrtc.org | 704bf9e | 2014-02-27 17:52:04 +0000 | [diff] [blame] | 984 | new uint8[kHeight * kWidth * 4 + kAlignment + unalignment]); \ |
| 985 | uint8 *argb_pointer = ALIGNP(argb_output.get(), kAlignment) + unalignment; \ |
| 986 | for (int i = 0; i < repeat_; ++i) { \ |
| 987 | libyuv:: SRC_NAME##ToARGB(src_pointer, kWidth * (BPP), argb_pointer, \ |
| 988 | kWidth * 4, kWidth, kHeight); \ |
| 989 | } \ |
| 990 | /* Compare the result; expect identical.*/ \ |
| 991 | EXPECT_TRUE(IsMemoryEqual(argb_expected_pointer, argb_pointer, \ |
| 992 | kHeight * kWidth * 4, 1.e-6)); \ |
| 993 | if (dump_) { DumpArgbImage(argb_pointer, kWidth, kHeight); } \ |
| 994 | } |
| 995 | |
| 996 | TEST_ARGB(RAW, RAW, 3, 3); // TEST_P(PlanarFunctionsTest, RAWToARGB) |
| 997 | TEST_ARGB(BG24, 24BG, 3, 3); // TEST_P(PlanarFunctionsTest, BG24ToARGB) |
| 998 | TEST_ARGB(ABGR, ABGR, 4, 3); // TEST_P(PlanarFunctionsTest, ABGRToARGB) |
| 999 | TEST_ARGB(BGRA, BGRA, 4, 3); // TEST_P(PlanarFunctionsTest, BGRAToARGB) |
| 1000 | |
| 1001 | // Parameter Test: The parameter is the unalignment offset. |
| 1002 | // Aligned data for testing assembly versions. |
| 1003 | INSTANTIATE_TEST_CASE_P(PlanarFunctionsAligned, PlanarFunctionsTest, |
| 1004 | ::testing::Values(0)); |
| 1005 | |
| 1006 | // Purposely unalign the output argb pointer to test slow path (C version). |
| 1007 | INSTANTIATE_TEST_CASE_P(PlanarFunctionsMisaligned, PlanarFunctionsTest, |
| 1008 | ::testing::Values(1)); |
| 1009 | |
| 1010 | } // namespace cricket |