nisse | 191b359 | 2016-06-22 08:36:53 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Copyright 2016 The WebRTC Project Authors. All rights reserved. |
| 3 | * |
| 4 | * Use of this source code is governed by a BSD-style license |
| 5 | * that can be found in the LICENSE file in the root of the source |
| 6 | * tree. An additional intellectual property rights grant can be found |
| 7 | * in the file PATENTS. All contributing project authors may |
| 8 | * be found in the AUTHORS file in the root of the source tree. |
| 9 | */ |
| 10 | |
| 11 | #include <math.h> |
| 12 | |
| 13 | #include <algorithm> |
| 14 | |
| 15 | #include "webrtc/base/gunit.h" |
| 16 | #include "webrtc/base/random.h" |
| 17 | #include "webrtc/base/timestampaligner.h" |
| 18 | |
| 19 | namespace rtc { |
| 20 | |
| 21 | namespace { |
| 22 | // Computes the difference x_k - mean(x), when x_k is the linear sequence x_k = |
| 23 | // k, and the "mean" is plain mean for the first |window_size| samples, followed |
| 24 | // by exponential averaging with weight 1 / |window_size| for each new sample. |
| 25 | // This is needed to predict the effect of camera clock drift on the timestamp |
| 26 | // translation. See the comment on TimestampAligner::UpdateOffset for more |
| 27 | // context. |
| 28 | double MeanTimeDifference(int nsamples, int window_size) { |
| 29 | if (nsamples <= window_size) { |
| 30 | // Plain averaging. |
| 31 | return nsamples / 2.0; |
| 32 | } else { |
| 33 | // Exponential convergence towards |
| 34 | // interval_error * (window_size - 1) |
| 35 | double alpha = 1.0 - 1.0 / window_size; |
| 36 | |
| 37 | return ((window_size - 1) - |
| 38 | (window_size / 2.0 - 1) * pow(alpha, nsamples - window_size)); |
| 39 | } |
| 40 | } |
| 41 | |
| 42 | } // Anonymous namespace |
| 43 | |
| 44 | class TimestampAlignerTest : public testing::Test { |
| 45 | protected: |
| 46 | void TestTimestampFilter(double rel_freq_error) { |
| 47 | const int64_t kEpoch = 10000; |
| 48 | const int64_t kJitterUs = 5000; |
| 49 | const int64_t kIntervalUs = 33333; // 30 FPS |
| 50 | const int kWindowSize = 100; |
| 51 | const int kNumFrames = 3 * kWindowSize; |
| 52 | |
| 53 | int64_t interval_error_us = kIntervalUs * rel_freq_error; |
| 54 | int64_t system_start_us = rtc::TimeMicros(); |
| 55 | webrtc::Random random(17); |
| 56 | |
| 57 | int64_t prev_translated_time_us = system_start_us; |
| 58 | |
| 59 | for (int i = 0; i < kNumFrames; i++) { |
| 60 | // Camera time subject to drift. |
| 61 | int64_t camera_time_us = kEpoch + i * (kIntervalUs + interval_error_us); |
| 62 | int64_t system_time_us = system_start_us + i * kIntervalUs; |
| 63 | // And system time readings are subject to jitter. |
| 64 | int64_t system_measured_us = system_time_us + random.Rand(kJitterUs); |
| 65 | |
| 66 | int64_t offset_us = |
| 67 | timestamp_aligner_.UpdateOffset(camera_time_us, system_measured_us); |
| 68 | |
| 69 | int64_t filtered_time_us = camera_time_us + offset_us; |
| 70 | int64_t translated_time_us = timestamp_aligner_.ClipTimestamp( |
| 71 | filtered_time_us, system_measured_us); |
| 72 | |
| 73 | EXPECT_LE(translated_time_us, system_measured_us); |
| 74 | EXPECT_GE(translated_time_us, prev_translated_time_us); |
| 75 | |
| 76 | // The relative frequency error contributes to the expected error |
| 77 | // by a factor which is the difference between the current time |
| 78 | // and the average of earlier sample times. |
| 79 | int64_t expected_error_us = |
| 80 | kJitterUs / 2 + |
| 81 | rel_freq_error * kIntervalUs * MeanTimeDifference(i, kWindowSize); |
| 82 | |
| 83 | int64_t bias_us = filtered_time_us - translated_time_us; |
| 84 | EXPECT_GE(bias_us, 0); |
| 85 | |
| 86 | if (i == 0) { |
| 87 | EXPECT_EQ(translated_time_us, system_measured_us); |
| 88 | } else { |
| 89 | EXPECT_NEAR(filtered_time_us, system_time_us + expected_error_us, |
| 90 | 2.0 * kJitterUs / sqrt(std::max(i, kWindowSize))); |
| 91 | } |
| 92 | // If the camera clock runs too fast (rel_freq_error > 0.0), The |
| 93 | // bias is expected to roughly cancel the expected error from the |
| 94 | // clock drift, as this grows. Otherwise, it reflects the |
| 95 | // measurement noise. The tolerances here were selected after some |
| 96 | // trial and error. |
| 97 | if (i < 10 || rel_freq_error <= 0.0) { |
| 98 | EXPECT_LE(bias_us, 3000); |
| 99 | } else { |
| 100 | EXPECT_NEAR(bias_us, expected_error_us, 1500); |
| 101 | } |
| 102 | prev_translated_time_us = translated_time_us; |
| 103 | } |
| 104 | } |
| 105 | |
| 106 | private: |
| 107 | TimestampAligner timestamp_aligner_; |
| 108 | }; |
| 109 | |
| 110 | TEST_F(TimestampAlignerTest, AttenuateTimestampJitterNoDrift) { |
| 111 | TestTimestampFilter(0.0); |
| 112 | } |
| 113 | |
| 114 | // 100 ppm is a worst case for a reasonable crystal. |
| 115 | TEST_F(TimestampAlignerTest, AttenuateTimestampJitterSmallPosDrift) { |
| 116 | TestTimestampFilter(0.0001); |
| 117 | } |
| 118 | |
| 119 | TEST_F(TimestampAlignerTest, AttenuateTimestampJitterSmallNegDrift) { |
| 120 | TestTimestampFilter(-0.0001); |
| 121 | } |
| 122 | |
| 123 | // 3000 ppm, 3 ms / s, is the worst observed drift, see |
| 124 | // https://bugs.chromium.org/p/webrtc/issues/detail?id=5456 |
| 125 | TEST_F(TimestampAlignerTest, AttenuateTimestampJitterLargePosDrift) { |
| 126 | TestTimestampFilter(0.003); |
| 127 | } |
| 128 | |
| 129 | TEST_F(TimestampAlignerTest, AttenuateTimestampJitterLargeNegDrift) { |
| 130 | TestTimestampFilter(-0.003); |
| 131 | } |
| 132 | |
| 133 | } // namespace rtc |