Yves Gerey | 890f62b | 2019-04-10 17:18:48 +0200 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (c) 2019 The WebRTC project authors. All Rights Reserved. |
| 3 | * |
| 4 | * Use of this source code is governed by a BSD-style license |
| 5 | * that can be found in the LICENSE file in the root of the source |
| 6 | * tree. An additional intellectual property rights grant can be found |
| 7 | * in the file PATENTS. All contributing project authors may |
| 8 | * be found in the AUTHORS file in the root of the source tree. |
| 9 | */ |
| 10 | |
| 11 | #ifndef RTC_BASE_NUMERICS_RUNNING_STATISTICS_H_ |
| 12 | #define RTC_BASE_NUMERICS_RUNNING_STATISTICS_H_ |
| 13 | |
| 14 | #include <algorithm> |
| 15 | #include <cmath> |
| 16 | #include <limits> |
| 17 | |
| 18 | #include "absl/types/optional.h" |
Yves Gerey | 3dfb680 | 2019-05-13 17:01:32 +0200 | [diff] [blame] | 19 | #include "rtc_base/checks.h" |
Yves Gerey | 890f62b | 2019-04-10 17:18:48 +0200 | [diff] [blame] | 20 | #include "rtc_base/numerics/math_utils.h" |
| 21 | |
| 22 | namespace webrtc { |
| 23 | |
| 24 | // tl;dr: Robust and efficient online computation of statistics, |
| 25 | // using Welford's method for variance. [1] |
| 26 | // |
| 27 | // This should be your go-to class if you ever need to compute |
| 28 | // min, max, mean, variance and standard deviation. |
| 29 | // If you need to get percentiles, please use webrtc::SamplesStatsCounter. |
| 30 | // |
Yves Gerey | 3dfb680 | 2019-05-13 17:01:32 +0200 | [diff] [blame] | 31 | // Please note RemoveSample() won't affect min and max. |
| 32 | // If you want a full-fledged moving window over N last samples, |
| 33 | // please use webrtc::RollingAccumulator. |
| 34 | // |
Yves Gerey | 890f62b | 2019-04-10 17:18:48 +0200 | [diff] [blame] | 35 | // The measures return absl::nullopt if no samples were fed (Size() == 0), |
| 36 | // otherwise the returned optional is guaranteed to contain a value. |
| 37 | // |
| 38 | // [1] |
| 39 | // https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Welford's_online_algorithm |
| 40 | |
| 41 | // The type T is a scalar which must be convertible to double. |
| 42 | // Rationale: we often need greater precision for measures |
| 43 | // than for the samples themselves. |
| 44 | template <typename T> |
| 45 | class RunningStatistics { |
| 46 | public: |
| 47 | // Update stats //////////////////////////////////////////// |
| 48 | |
| 49 | // Add a value participating in the statistics in O(1) time. |
| 50 | void AddSample(T sample) { |
| 51 | max_ = std::max(max_, sample); |
| 52 | min_ = std::min(min_, sample); |
| 53 | ++size_; |
| 54 | // Welford's incremental update. |
| 55 | const double delta = sample - mean_; |
| 56 | mean_ += delta / size_; |
| 57 | const double delta2 = sample - mean_; |
| 58 | cumul_ += delta * delta2; |
| 59 | } |
| 60 | |
Yves Gerey | 3dfb680 | 2019-05-13 17:01:32 +0200 | [diff] [blame] | 61 | // Remove a previously added value in O(1) time. |
| 62 | // Nb: This doesn't affect min or max. |
| 63 | // Calling RemoveSample when Size()==0 is incorrect. |
| 64 | void RemoveSample(T sample) { |
| 65 | RTC_DCHECK_GT(Size(), 0); |
| 66 | // In production, just saturate at 0. |
| 67 | if (Size() == 0) { |
| 68 | return; |
| 69 | } |
| 70 | // Since samples order doesn't matter, this is the |
| 71 | // exact reciprocal of Welford's incremental update. |
| 72 | --size_; |
| 73 | const double delta = sample - mean_; |
| 74 | mean_ -= delta / size_; |
| 75 | const double delta2 = sample - mean_; |
| 76 | cumul_ -= delta * delta2; |
| 77 | } |
| 78 | |
Yves Gerey | 890f62b | 2019-04-10 17:18:48 +0200 | [diff] [blame] | 79 | // Merge other stats, as if samples were added one by one, but in O(1). |
| 80 | void MergeStatistics(const RunningStatistics<T>& other) { |
| 81 | if (other.size_ == 0) { |
| 82 | return; |
| 83 | } |
| 84 | max_ = std::max(max_, other.max_); |
| 85 | min_ = std::min(min_, other.min_); |
| 86 | const int64_t new_size = size_ + other.size_; |
| 87 | const double new_mean = |
| 88 | (mean_ * size_ + other.mean_ * other.size_) / new_size; |
| 89 | // Each cumulant must be corrected. |
| 90 | // * from: sum((x_i - mean_)²) |
| 91 | // * to: sum((x_i - new_mean)²) |
| 92 | auto delta = [new_mean](const RunningStatistics<T>& stats) { |
| 93 | return stats.size_ * (new_mean * (new_mean - 2 * stats.mean_) + |
| 94 | stats.mean_ * stats.mean_); |
| 95 | }; |
| 96 | cumul_ = cumul_ + delta(*this) + other.cumul_ + delta(other); |
| 97 | mean_ = new_mean; |
| 98 | size_ = new_size; |
| 99 | } |
| 100 | |
| 101 | // Get Measures //////////////////////////////////////////// |
| 102 | |
Yves Gerey | 3dfb680 | 2019-05-13 17:01:32 +0200 | [diff] [blame] | 103 | // Returns number of samples involved via AddSample() or MergeStatistics(), |
| 104 | // minus number of times RemoveSample() was called. |
Yves Gerey | 890f62b | 2019-04-10 17:18:48 +0200 | [diff] [blame] | 105 | int64_t Size() const { return size_; } |
| 106 | |
Yves Gerey | 3dfb680 | 2019-05-13 17:01:32 +0200 | [diff] [blame] | 107 | // Returns minimum among all seen samples, in O(1) time. |
| 108 | // This isn't affected by RemoveSample(). |
Yves Gerey | 890f62b | 2019-04-10 17:18:48 +0200 | [diff] [blame] | 109 | absl::optional<T> GetMin() const { |
| 110 | if (size_ == 0) { |
| 111 | return absl::nullopt; |
| 112 | } |
| 113 | return min_; |
| 114 | } |
| 115 | |
Yves Gerey | 3dfb680 | 2019-05-13 17:01:32 +0200 | [diff] [blame] | 116 | // Returns maximum among all seen samples, in O(1) time. |
| 117 | // This isn't affected by RemoveSample(). |
Yves Gerey | 890f62b | 2019-04-10 17:18:48 +0200 | [diff] [blame] | 118 | absl::optional<T> GetMax() const { |
| 119 | if (size_ == 0) { |
| 120 | return absl::nullopt; |
| 121 | } |
| 122 | return max_; |
| 123 | } |
| 124 | |
| 125 | // Returns mean in O(1) time. |
| 126 | absl::optional<double> GetMean() const { |
| 127 | if (size_ == 0) { |
| 128 | return absl::nullopt; |
| 129 | } |
| 130 | return mean_; |
| 131 | } |
| 132 | |
| 133 | // Returns unbiased sample variance in O(1) time. |
| 134 | absl::optional<double> GetVariance() const { |
| 135 | if (size_ == 0) { |
| 136 | return absl::nullopt; |
| 137 | } |
| 138 | return cumul_ / size_; |
| 139 | } |
| 140 | |
| 141 | // Returns unbiased standard deviation in O(1) time. |
| 142 | absl::optional<double> GetStandardDeviation() const { |
| 143 | if (size_ == 0) { |
| 144 | return absl::nullopt; |
| 145 | } |
| 146 | return std::sqrt(*GetVariance()); |
| 147 | } |
| 148 | |
| 149 | private: |
| 150 | int64_t size_ = 0; // Samples seen. |
| 151 | T min_ = infinity_or_max<T>(); |
| 152 | T max_ = minus_infinity_or_min<T>(); |
| 153 | double mean_ = 0; |
| 154 | double cumul_ = 0; // Variance * size_, sometimes noted m2. |
| 155 | }; |
| 156 | |
| 157 | } // namespace webrtc |
| 158 | |
| 159 | #endif // RTC_BASE_NUMERICS_RUNNING_STATISTICS_H_ |