blob: d6aa92d66ba4b30cdb514f7beb4678a943451751 [file] [log] [blame]
henrike@webrtc.org28e20752013-07-10 00:45:36 +00001/*
2 * libjingle
3 * Copyright 2004 Google Inc.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are met:
7 *
8 * 1. Redistributions of source code must retain the above copyright notice,
9 * this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright notice,
11 * this list of conditions and the following disclaimer in the documentation
12 * and/or other materials provided with the distribution.
13 * 3. The name of the author may not be used to endorse or promote products
14 * derived from this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
17 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
18 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
19 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
20 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
21 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
22 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
23 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
24 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
25 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 */
27
28#include "talk/base/crc32.h"
29#include "talk/base/gunit.h"
30#include "talk/base/helpers.h"
31#include "talk/base/host.h"
32#include "talk/base/logging.h"
33#include "talk/base/natserver.h"
34#include "talk/base/natsocketfactory.h"
35#include "talk/base/physicalsocketserver.h"
36#include "talk/base/scoped_ptr.h"
37#include "talk/base/socketaddress.h"
38#include "talk/base/stringutils.h"
39#include "talk/base/thread.h"
40#include "talk/base/virtualsocketserver.h"
41#include "talk/p2p/base/basicpacketsocketfactory.h"
42#include "talk/p2p/base/portproxy.h"
43#include "talk/p2p/base/relayport.h"
44#include "talk/p2p/base/stunport.h"
45#include "talk/p2p/base/tcpport.h"
46#include "talk/p2p/base/testrelayserver.h"
47#include "talk/p2p/base/teststunserver.h"
48#include "talk/p2p/base/testturnserver.h"
49#include "talk/p2p/base/transport.h"
50#include "talk/p2p/base/turnport.h"
51
52using talk_base::AsyncPacketSocket;
53using talk_base::ByteBuffer;
54using talk_base::NATType;
55using talk_base::NAT_OPEN_CONE;
56using talk_base::NAT_ADDR_RESTRICTED;
57using talk_base::NAT_PORT_RESTRICTED;
58using talk_base::NAT_SYMMETRIC;
59using talk_base::PacketSocketFactory;
60using talk_base::scoped_ptr;
61using talk_base::Socket;
62using talk_base::SocketAddress;
63using namespace cricket;
64
65static const int kTimeout = 1000;
66static const SocketAddress kLocalAddr1("192.168.1.2", 0);
67static const SocketAddress kLocalAddr2("192.168.1.3", 0);
68static const SocketAddress kNatAddr1("77.77.77.77", talk_base::NAT_SERVER_PORT);
69static const SocketAddress kNatAddr2("88.88.88.88", talk_base::NAT_SERVER_PORT);
70static const SocketAddress kStunAddr("99.99.99.1", STUN_SERVER_PORT);
71static const SocketAddress kRelayUdpIntAddr("99.99.99.2", 5000);
72static const SocketAddress kRelayUdpExtAddr("99.99.99.3", 5001);
73static const SocketAddress kRelayTcpIntAddr("99.99.99.2", 5002);
74static const SocketAddress kRelayTcpExtAddr("99.99.99.3", 5003);
75static const SocketAddress kRelaySslTcpIntAddr("99.99.99.2", 5004);
76static const SocketAddress kRelaySslTcpExtAddr("99.99.99.3", 5005);
77static const SocketAddress kTurnUdpIntAddr("99.99.99.4", STUN_SERVER_PORT);
78static const SocketAddress kTurnUdpExtAddr("99.99.99.5", 0);
79static const RelayCredentials kRelayCredentials("test", "test");
80
81// TODO: Update these when RFC5245 is completely supported.
82// Magic value of 30 is from RFC3484, for IPv4 addresses.
83static const uint32 kDefaultPrflxPriority = ICE_TYPE_PREFERENCE_PRFLX << 24 |
84 30 << 8 | (256 - ICE_CANDIDATE_COMPONENT_DEFAULT);
85static const int STUN_ERROR_BAD_REQUEST_AS_GICE =
86 STUN_ERROR_BAD_REQUEST / 256 * 100 + STUN_ERROR_BAD_REQUEST % 256;
87static const int STUN_ERROR_UNAUTHORIZED_AS_GICE =
88 STUN_ERROR_UNAUTHORIZED / 256 * 100 + STUN_ERROR_UNAUTHORIZED % 256;
89static const int STUN_ERROR_SERVER_ERROR_AS_GICE =
90 STUN_ERROR_SERVER_ERROR / 256 * 100 + STUN_ERROR_SERVER_ERROR % 256;
91
92static const int kTiebreaker1 = 11111;
93static const int kTiebreaker2 = 22222;
94
95static Candidate GetCandidate(Port* port) {
96 assert(port->Candidates().size() == 1);
97 return port->Candidates()[0];
98}
99
100static SocketAddress GetAddress(Port* port) {
101 return GetCandidate(port).address();
102}
103
104static IceMessage* CopyStunMessage(const IceMessage* src) {
105 IceMessage* dst = new IceMessage();
106 ByteBuffer buf;
107 src->Write(&buf);
108 dst->Read(&buf);
109 return dst;
110}
111
112static bool WriteStunMessage(const StunMessage* msg, ByteBuffer* buf) {
113 buf->Resize(0); // clear out any existing buffer contents
114 return msg->Write(buf);
115}
116
117// Stub port class for testing STUN generation and processing.
118class TestPort : public Port {
119 public:
120 TestPort(talk_base::Thread* thread, const std::string& type,
121 talk_base::PacketSocketFactory* factory, talk_base::Network* network,
122 const talk_base::IPAddress& ip, int min_port, int max_port,
123 const std::string& username_fragment, const std::string& password)
124 : Port(thread, type, factory, network, ip,
125 min_port, max_port, username_fragment, password) {
126 }
127 ~TestPort() {}
128
129 // Expose GetStunMessage so that we can test it.
130 using cricket::Port::GetStunMessage;
131
132 // The last StunMessage that was sent on this Port.
133 // TODO: Make these const; requires changes to SendXXXXResponse.
134 ByteBuffer* last_stun_buf() { return last_stun_buf_.get(); }
135 IceMessage* last_stun_msg() { return last_stun_msg_.get(); }
136 int last_stun_error_code() {
137 int code = 0;
138 if (last_stun_msg_) {
139 const StunErrorCodeAttribute* error_attr = last_stun_msg_->GetErrorCode();
140 if (error_attr) {
141 code = error_attr->code();
142 }
143 }
144 return code;
145 }
146
147 virtual void PrepareAddress() {
148 talk_base::SocketAddress addr(ip(), min_port());
149 AddAddress(addr, addr, "udp", Type(), ICE_TYPE_PREFERENCE_HOST, true);
150 }
151
152 // Exposed for testing candidate building.
153 void AddCandidateAddress(const talk_base::SocketAddress& addr) {
154 AddAddress(addr, addr, "udp", Type(), type_preference_, false);
155 }
156 void AddCandidateAddress(const talk_base::SocketAddress& addr,
157 const talk_base::SocketAddress& base_address,
158 const std::string& type,
159 int type_preference,
160 bool final) {
161 AddAddress(addr, base_address, "udp", type,
162 type_preference, final);
163 }
164
165 virtual Connection* CreateConnection(const Candidate& remote_candidate,
166 CandidateOrigin origin) {
167 Connection* conn = new ProxyConnection(this, 0, remote_candidate);
168 AddConnection(conn);
169 // Set use-candidate attribute flag as this will add USE-CANDIDATE attribute
170 // in STUN binding requests.
171 conn->set_use_candidate_attr(true);
172 return conn;
173 }
174 virtual int SendTo(
175 const void* data, size_t size, const talk_base::SocketAddress& addr,
176 bool payload) {
177 if (!payload) {
178 IceMessage* msg = new IceMessage;
179 ByteBuffer* buf = new ByteBuffer(static_cast<const char*>(data), size);
180 ByteBuffer::ReadPosition pos(buf->GetReadPosition());
181 if (!msg->Read(buf)) {
182 delete msg;
183 delete buf;
184 return -1;
185 }
186 buf->SetReadPosition(pos);
187 last_stun_buf_.reset(buf);
188 last_stun_msg_.reset(msg);
189 }
190 return size;
191 }
192 virtual int SetOption(talk_base::Socket::Option opt, int value) {
193 return 0;
194 }
195 virtual int GetOption(talk_base::Socket::Option opt, int* value) {
196 return -1;
197 }
198 virtual int GetError() {
199 return 0;
200 }
201 void Reset() {
202 last_stun_buf_.reset();
203 last_stun_msg_.reset();
204 }
205 void set_type_preference(int type_preference) {
206 type_preference_ = type_preference;
207 }
208
209 private:
210 talk_base::scoped_ptr<ByteBuffer> last_stun_buf_;
211 talk_base::scoped_ptr<IceMessage> last_stun_msg_;
212 int type_preference_;
213};
214
215class TestChannel : public sigslot::has_slots<> {
216 public:
217 TestChannel(Port* p1, Port* p2)
218 : ice_mode_(ICEMODE_FULL), src_(p1), dst_(p2), complete_count_(0),
219 conn_(NULL), remote_request_(NULL), nominated_(false) {
220 src_->SignalPortComplete.connect(
221 this, &TestChannel::OnPortComplete);
222 src_->SignalUnknownAddress.connect(this, &TestChannel::OnUnknownAddress);
223 }
224
225 int complete_count() { return complete_count_; }
226 Connection* conn() { return conn_; }
227 const SocketAddress& remote_address() { return remote_address_; }
228 const std::string remote_fragment() { return remote_frag_; }
229
230 void Start() {
231 src_->PrepareAddress();
232 }
233 void CreateConnection() {
234 conn_ = src_->CreateConnection(GetCandidate(dst_), Port::ORIGIN_MESSAGE);
235 IceMode remote_ice_mode =
236 (ice_mode_ == ICEMODE_FULL) ? ICEMODE_LITE : ICEMODE_FULL;
237 conn_->set_remote_ice_mode(remote_ice_mode);
238 conn_->set_use_candidate_attr(remote_ice_mode == ICEMODE_FULL);
239 conn_->SignalStateChange.connect(
240 this, &TestChannel::OnConnectionStateChange);
241 }
242 void OnConnectionStateChange(Connection* conn) {
243 if (conn->write_state() == Connection::STATE_WRITABLE) {
244 conn->set_use_candidate_attr(true);
245 nominated_ = true;
246 }
247 }
248 void AcceptConnection() {
249 ASSERT_TRUE(remote_request_.get() != NULL);
250 Candidate c = GetCandidate(dst_);
251 c.set_address(remote_address_);
252 conn_ = src_->CreateConnection(c, Port::ORIGIN_MESSAGE);
253 src_->SendBindingResponse(remote_request_.get(), remote_address_);
254 remote_request_.reset();
255 }
256 void Ping() {
257 Ping(0);
258 }
259 void Ping(uint32 now) {
260 conn_->Ping(now);
261 }
262 void Stop() {
263 conn_->SignalDestroyed.connect(this, &TestChannel::OnDestroyed);
264 conn_->Destroy();
265 }
266
267 void OnPortComplete(Port* port) {
268 complete_count_++;
269 }
270 void SetIceMode(IceMode ice_mode) {
271 ice_mode_ = ice_mode;
272 }
273
274 void OnUnknownAddress(PortInterface* port, const SocketAddress& addr,
275 ProtocolType proto,
276 IceMessage* msg, const std::string& rf,
277 bool /*port_muxed*/) {
278 ASSERT_EQ(src_.get(), port);
279 if (!remote_address_.IsNil()) {
280 ASSERT_EQ(remote_address_, addr);
281 }
282 // MI and PRIORITY attribute should be present in ping requests when port
283 // is in ICEPROTO_RFC5245 mode.
284 const cricket::StunUInt32Attribute* priority_attr =
285 msg->GetUInt32(STUN_ATTR_PRIORITY);
286 const cricket::StunByteStringAttribute* mi_attr =
287 msg->GetByteString(STUN_ATTR_MESSAGE_INTEGRITY);
288 const cricket::StunUInt32Attribute* fingerprint_attr =
289 msg->GetUInt32(STUN_ATTR_FINGERPRINT);
290 if (src_->IceProtocol() == cricket::ICEPROTO_RFC5245) {
291 EXPECT_TRUE(priority_attr != NULL);
292 EXPECT_TRUE(mi_attr != NULL);
293 EXPECT_TRUE(fingerprint_attr != NULL);
294 } else {
295 EXPECT_TRUE(priority_attr == NULL);
296 EXPECT_TRUE(mi_attr == NULL);
297 EXPECT_TRUE(fingerprint_attr == NULL);
298 }
299 remote_address_ = addr;
300 remote_request_.reset(CopyStunMessage(msg));
301 remote_frag_ = rf;
302 }
303
304 void OnDestroyed(Connection* conn) {
305 ASSERT_EQ(conn_, conn);
306 conn_ = NULL;
307 }
308
309 bool nominated() const { return nominated_; }
310
311 private:
312 IceMode ice_mode_;
313 talk_base::scoped_ptr<Port> src_;
314 Port* dst_;
315
316 int complete_count_;
317 Connection* conn_;
318 SocketAddress remote_address_;
319 talk_base::scoped_ptr<StunMessage> remote_request_;
320 std::string remote_frag_;
321 bool nominated_;
322};
323
324class PortTest : public testing::Test, public sigslot::has_slots<> {
325 public:
326 PortTest()
327 : main_(talk_base::Thread::Current()),
328 pss_(new talk_base::PhysicalSocketServer),
329 ss_(new talk_base::VirtualSocketServer(pss_.get())),
330 ss_scope_(ss_.get()),
331 network_("unittest", "unittest", talk_base::IPAddress(INADDR_ANY), 32),
332 socket_factory_(talk_base::Thread::Current()),
333 nat_factory1_(ss_.get(), kNatAddr1),
334 nat_factory2_(ss_.get(), kNatAddr2),
335 nat_socket_factory1_(&nat_factory1_),
336 nat_socket_factory2_(&nat_factory2_),
337 stun_server_(main_, kStunAddr),
338 turn_server_(main_, kTurnUdpIntAddr, kTurnUdpExtAddr),
339 relay_server_(main_, kRelayUdpIntAddr, kRelayUdpExtAddr,
340 kRelayTcpIntAddr, kRelayTcpExtAddr,
341 kRelaySslTcpIntAddr, kRelaySslTcpExtAddr),
342 username_(talk_base::CreateRandomString(ICE_UFRAG_LENGTH)),
343 password_(talk_base::CreateRandomString(ICE_PWD_LENGTH)),
344 ice_protocol_(cricket::ICEPROTO_GOOGLE),
345 role_conflict_(false) {
346 network_.AddIP(talk_base::IPAddress(INADDR_ANY));
347 }
348
349 protected:
350 static void SetUpTestCase() {
351 // Ensure the RNG is inited.
352 talk_base::InitRandom(NULL, 0);
353 }
354
355 void TestLocalToLocal() {
356 Port* port1 = CreateUdpPort(kLocalAddr1);
357 Port* port2 = CreateUdpPort(kLocalAddr2);
358 TestConnectivity("udp", port1, "udp", port2, true, true, true, true);
359 }
360 void TestLocalToStun(NATType ntype) {
361 Port* port1 = CreateUdpPort(kLocalAddr1);
362 nat_server2_.reset(CreateNatServer(kNatAddr2, ntype));
363 Port* port2 = CreateStunPort(kLocalAddr2, &nat_socket_factory2_);
364 TestConnectivity("udp", port1, StunName(ntype), port2,
365 ntype == NAT_OPEN_CONE, true,
366 ntype != NAT_SYMMETRIC, true);
367 }
368 void TestLocalToRelay(RelayType rtype, ProtocolType proto) {
369 Port* port1 = CreateUdpPort(kLocalAddr1);
370 Port* port2 = CreateRelayPort(kLocalAddr2, rtype, proto, PROTO_UDP);
371 TestConnectivity("udp", port1, RelayName(rtype, proto), port2,
372 rtype == RELAY_GTURN, true, true, true);
373 }
374 void TestStunToLocal(NATType ntype) {
375 nat_server1_.reset(CreateNatServer(kNatAddr1, ntype));
376 Port* port1 = CreateStunPort(kLocalAddr1, &nat_socket_factory1_);
377 Port* port2 = CreateUdpPort(kLocalAddr2);
378 TestConnectivity(StunName(ntype), port1, "udp", port2,
379 true, ntype != NAT_SYMMETRIC, true, true);
380 }
381 void TestStunToStun(NATType ntype1, NATType ntype2) {
382 nat_server1_.reset(CreateNatServer(kNatAddr1, ntype1));
383 Port* port1 = CreateStunPort(kLocalAddr1, &nat_socket_factory1_);
384 nat_server2_.reset(CreateNatServer(kNatAddr2, ntype2));
385 Port* port2 = CreateStunPort(kLocalAddr2, &nat_socket_factory2_);
386 TestConnectivity(StunName(ntype1), port1, StunName(ntype2), port2,
387 ntype2 == NAT_OPEN_CONE,
388 ntype1 != NAT_SYMMETRIC, ntype2 != NAT_SYMMETRIC,
389 ntype1 + ntype2 < (NAT_PORT_RESTRICTED + NAT_SYMMETRIC));
390 }
391 void TestStunToRelay(NATType ntype, RelayType rtype, ProtocolType proto) {
392 nat_server1_.reset(CreateNatServer(kNatAddr1, ntype));
393 Port* port1 = CreateStunPort(kLocalAddr1, &nat_socket_factory1_);
394 Port* port2 = CreateRelayPort(kLocalAddr2, rtype, proto, PROTO_UDP);
395 TestConnectivity(StunName(ntype), port1, RelayName(rtype, proto), port2,
396 rtype == RELAY_GTURN, ntype != NAT_SYMMETRIC, true, true);
397 }
398 void TestTcpToTcp() {
399 Port* port1 = CreateTcpPort(kLocalAddr1);
400 Port* port2 = CreateTcpPort(kLocalAddr2);
401 TestConnectivity("tcp", port1, "tcp", port2, true, false, true, true);
402 }
403 void TestTcpToRelay(RelayType rtype, ProtocolType proto) {
404 Port* port1 = CreateTcpPort(kLocalAddr1);
405 Port* port2 = CreateRelayPort(kLocalAddr2, rtype, proto, PROTO_TCP);
406 TestConnectivity("tcp", port1, RelayName(rtype, proto), port2,
407 rtype == RELAY_GTURN, false, true, true);
408 }
409 void TestSslTcpToRelay(RelayType rtype, ProtocolType proto) {
410 Port* port1 = CreateTcpPort(kLocalAddr1);
411 Port* port2 = CreateRelayPort(kLocalAddr2, rtype, proto, PROTO_SSLTCP);
412 TestConnectivity("ssltcp", port1, RelayName(rtype, proto), port2,
413 rtype == RELAY_GTURN, false, true, true);
414 }
415
416 // helpers for above functions
417 UDPPort* CreateUdpPort(const SocketAddress& addr) {
418 return CreateUdpPort(addr, &socket_factory_);
419 }
420 UDPPort* CreateUdpPort(const SocketAddress& addr,
421 PacketSocketFactory* socket_factory) {
422 UDPPort* port = UDPPort::Create(main_, socket_factory, &network_,
423 addr.ipaddr(), 0, 0, username_, password_);
424 port->SetIceProtocolType(ice_protocol_);
425 return port;
426 }
427 TCPPort* CreateTcpPort(const SocketAddress& addr) {
428 TCPPort* port = CreateTcpPort(addr, &socket_factory_);
429 port->SetIceProtocolType(ice_protocol_);
430 return port;
431 }
432 TCPPort* CreateTcpPort(const SocketAddress& addr,
433 PacketSocketFactory* socket_factory) {
434 TCPPort* port = TCPPort::Create(main_, socket_factory, &network_,
435 addr.ipaddr(), 0, 0, username_, password_,
436 true);
437 port->SetIceProtocolType(ice_protocol_);
438 return port;
439 }
440 StunPort* CreateStunPort(const SocketAddress& addr,
441 talk_base::PacketSocketFactory* factory) {
442 StunPort* port = StunPort::Create(main_, factory, &network_,
443 addr.ipaddr(), 0, 0,
444 username_, password_, kStunAddr);
445 port->SetIceProtocolType(ice_protocol_);
446 return port;
447 }
448 Port* CreateRelayPort(const SocketAddress& addr, RelayType rtype,
449 ProtocolType int_proto, ProtocolType ext_proto) {
450 if (rtype == RELAY_TURN) {
451 return CreateTurnPort(addr, &socket_factory_, int_proto, ext_proto);
452 } else {
453 return CreateGturnPort(addr, int_proto, ext_proto);
454 }
455 }
456 TurnPort* CreateTurnPort(const SocketAddress& addr,
457 PacketSocketFactory* socket_factory,
458 ProtocolType int_proto, ProtocolType ext_proto) {
459 TurnPort* port = TurnPort::Create(main_, socket_factory, &network_,
460 addr.ipaddr(), 0, 0,
461 username_, password_, ProtocolAddress(
462 kTurnUdpIntAddr, PROTO_UDP),
463 kRelayCredentials);
464 port->SetIceProtocolType(ice_protocol_);
465 return port;
466 }
467 RelayPort* CreateGturnPort(const SocketAddress& addr,
468 ProtocolType int_proto, ProtocolType ext_proto) {
469 RelayPort* port = CreateGturnPort(addr);
470 SocketAddress addrs[] =
471 { kRelayUdpIntAddr, kRelayTcpIntAddr, kRelaySslTcpIntAddr };
472 port->AddServerAddress(ProtocolAddress(addrs[int_proto], int_proto));
473 return port;
474 }
475 RelayPort* CreateGturnPort(const SocketAddress& addr) {
476 RelayPort* port = RelayPort::Create(main_, &socket_factory_, &network_,
477 addr.ipaddr(), 0, 0,
478 username_, password_);
479 // TODO: Add an external address for ext_proto, so that the
480 // other side can connect to this port using a non-UDP protocol.
481 port->SetIceProtocolType(ice_protocol_);
482 return port;
483 }
484 talk_base::NATServer* CreateNatServer(const SocketAddress& addr,
485 talk_base::NATType type) {
486 return new talk_base::NATServer(type, ss_.get(), addr, ss_.get(), addr);
487 }
488 static const char* StunName(NATType type) {
489 switch (type) {
490 case NAT_OPEN_CONE: return "stun(open cone)";
491 case NAT_ADDR_RESTRICTED: return "stun(addr restricted)";
492 case NAT_PORT_RESTRICTED: return "stun(port restricted)";
493 case NAT_SYMMETRIC: return "stun(symmetric)";
494 default: return "stun(?)";
495 }
496 }
497 static const char* RelayName(RelayType type, ProtocolType proto) {
498 if (type == RELAY_TURN) {
499 switch (proto) {
500 case PROTO_UDP: return "turn(udp)";
501 case PROTO_TCP: return "turn(tcp)";
502 case PROTO_SSLTCP: return "turn(ssltcp)";
503 default: return "turn(?)";
504 }
505 } else {
506 switch (proto) {
507 case PROTO_UDP: return "gturn(udp)";
508 case PROTO_TCP: return "gturn(tcp)";
509 case PROTO_SSLTCP: return "gturn(ssltcp)";
510 default: return "gturn(?)";
511 }
512 }
513 }
514
515 void TestCrossFamilyPorts(int type);
516
517 // this does all the work
518 void TestConnectivity(const char* name1, Port* port1,
519 const char* name2, Port* port2,
520 bool accept, bool same_addr1,
521 bool same_addr2, bool possible);
522
523 void SetIceProtocolType(cricket::IceProtocolType protocol) {
524 ice_protocol_ = protocol;
525 }
526
527 IceMessage* CreateStunMessage(int type) {
528 IceMessage* msg = new IceMessage();
529 msg->SetType(type);
530 msg->SetTransactionID("TESTTESTTEST");
531 return msg;
532 }
533 IceMessage* CreateStunMessageWithUsername(int type,
534 const std::string& username) {
535 IceMessage* msg = CreateStunMessage(type);
536 msg->AddAttribute(
537 new StunByteStringAttribute(STUN_ATTR_USERNAME, username));
538 return msg;
539 }
540 TestPort* CreateTestPort(const talk_base::SocketAddress& addr,
541 const std::string& username,
542 const std::string& password) {
543 TestPort* port = new TestPort(main_, "test", &socket_factory_, &network_,
544 addr.ipaddr(), 0, 0, username, password);
545 port->SignalRoleConflict.connect(this, &PortTest::OnRoleConflict);
546 return port;
547 }
548 TestPort* CreateTestPort(const talk_base::SocketAddress& addr,
549 const std::string& username,
550 const std::string& password,
551 cricket::IceProtocolType type,
552 cricket::TransportRole role,
553 int tiebreaker) {
554 TestPort* port = CreateTestPort(addr, username, password);
555 port->SetIceProtocolType(type);
556 port->SetRole(role);
557 port->SetTiebreaker(tiebreaker);
558 return port;
559 }
560
561 void OnRoleConflict(PortInterface* port) {
562 role_conflict_ = true;
563 }
564 bool role_conflict() const { return role_conflict_; }
565
566 talk_base::BasicPacketSocketFactory* nat_socket_factory1() {
567 return &nat_socket_factory1_;
568 }
569
570 private:
571 talk_base::Thread* main_;
572 talk_base::scoped_ptr<talk_base::PhysicalSocketServer> pss_;
573 talk_base::scoped_ptr<talk_base::VirtualSocketServer> ss_;
574 talk_base::SocketServerScope ss_scope_;
575 talk_base::Network network_;
576 talk_base::BasicPacketSocketFactory socket_factory_;
577 talk_base::scoped_ptr<talk_base::NATServer> nat_server1_;
578 talk_base::scoped_ptr<talk_base::NATServer> nat_server2_;
579 talk_base::NATSocketFactory nat_factory1_;
580 talk_base::NATSocketFactory nat_factory2_;
581 talk_base::BasicPacketSocketFactory nat_socket_factory1_;
582 talk_base::BasicPacketSocketFactory nat_socket_factory2_;
583 TestStunServer stun_server_;
584 TestTurnServer turn_server_;
585 TestRelayServer relay_server_;
586 std::string username_;
587 std::string password_;
588 cricket::IceProtocolType ice_protocol_;
589 bool role_conflict_;
590};
591
592void PortTest::TestConnectivity(const char* name1, Port* port1,
593 const char* name2, Port* port2,
594 bool accept, bool same_addr1,
595 bool same_addr2, bool possible) {
596 LOG(LS_INFO) << "Test: " << name1 << " to " << name2 << ": ";
597 port1->set_component(cricket::ICE_CANDIDATE_COMPONENT_DEFAULT);
598 port2->set_component(cricket::ICE_CANDIDATE_COMPONENT_DEFAULT);
599
600 // Set up channels.
601 TestChannel ch1(port1, port2);
602 TestChannel ch2(port2, port1);
603 EXPECT_EQ(0, ch1.complete_count());
604 EXPECT_EQ(0, ch2.complete_count());
605
606 // Acquire addresses.
607 ch1.Start();
608 ch2.Start();
609 ASSERT_EQ_WAIT(1, ch1.complete_count(), kTimeout);
610 ASSERT_EQ_WAIT(1, ch2.complete_count(), kTimeout);
611
612 // Send a ping from src to dst. This may or may not make it.
613 ch1.CreateConnection();
614 ASSERT_TRUE(ch1.conn() != NULL);
615 EXPECT_TRUE_WAIT(ch1.conn()->connected(), kTimeout); // for TCP connect
616 ch1.Ping();
617 WAIT(!ch2.remote_address().IsNil(), kTimeout);
618
619 if (accept) {
620 // We are able to send a ping from src to dst. This is the case when
621 // sending to UDP ports and cone NATs.
622 EXPECT_TRUE(ch1.remote_address().IsNil());
623 EXPECT_EQ(ch2.remote_fragment(), port1->username_fragment());
624
625 // Ensure the ping came from the same address used for src.
626 // This is the case unless the source NAT was symmetric.
627 if (same_addr1) EXPECT_EQ(ch2.remote_address(), GetAddress(port1));
628 EXPECT_TRUE(same_addr2);
629
630 // Send a ping from dst to src.
631 ch2.AcceptConnection();
632 ASSERT_TRUE(ch2.conn() != NULL);
633 ch2.Ping();
634 EXPECT_EQ_WAIT(Connection::STATE_WRITABLE, ch2.conn()->write_state(),
635 kTimeout);
636 } else {
637 // We can't send a ping from src to dst, so flip it around. This will happen
638 // when the destination NAT is addr/port restricted or symmetric.
639 EXPECT_TRUE(ch1.remote_address().IsNil());
640 EXPECT_TRUE(ch2.remote_address().IsNil());
641
642 // Send a ping from dst to src. Again, this may or may not make it.
643 ch2.CreateConnection();
644 ASSERT_TRUE(ch2.conn() != NULL);
645 ch2.Ping();
646 WAIT(ch2.conn()->write_state() == Connection::STATE_WRITABLE, kTimeout);
647
648 if (same_addr1 && same_addr2) {
649 // The new ping got back to the source.
650 EXPECT_EQ(Connection::STATE_READABLE, ch1.conn()->read_state());
651 EXPECT_EQ(Connection::STATE_WRITABLE, ch2.conn()->write_state());
652
653 // First connection may not be writable if the first ping did not get
654 // through. So we will have to do another.
655 if (ch1.conn()->write_state() == Connection::STATE_WRITE_INIT) {
656 ch1.Ping();
657 EXPECT_EQ_WAIT(Connection::STATE_WRITABLE, ch1.conn()->write_state(),
658 kTimeout);
659 }
660 } else if (!same_addr1 && possible) {
661 // The new ping went to the candidate address, but that address was bad.
662 // This will happen when the source NAT is symmetric.
663 EXPECT_TRUE(ch1.remote_address().IsNil());
664 EXPECT_TRUE(ch2.remote_address().IsNil());
665
666 // However, since we have now sent a ping to the source IP, we should be
667 // able to get a ping from it. This gives us the real source address.
668 ch1.Ping();
669 EXPECT_TRUE_WAIT(!ch2.remote_address().IsNil(), kTimeout);
670 EXPECT_EQ(Connection::STATE_READ_INIT, ch2.conn()->read_state());
671 EXPECT_TRUE(ch1.remote_address().IsNil());
672
673 // Pick up the actual address and establish the connection.
674 ch2.AcceptConnection();
675 ASSERT_TRUE(ch2.conn() != NULL);
676 ch2.Ping();
677 EXPECT_EQ_WAIT(Connection::STATE_WRITABLE, ch2.conn()->write_state(),
678 kTimeout);
679 } else if (!same_addr2 && possible) {
680 // The new ping came in, but from an unexpected address. This will happen
681 // when the destination NAT is symmetric.
682 EXPECT_FALSE(ch1.remote_address().IsNil());
683 EXPECT_EQ(Connection::STATE_READ_INIT, ch1.conn()->read_state());
684
685 // Update our address and complete the connection.
686 ch1.AcceptConnection();
687 ch1.Ping();
688 EXPECT_EQ_WAIT(Connection::STATE_WRITABLE, ch1.conn()->write_state(),
689 kTimeout);
690 } else { // (!possible)
691 // There should be s no way for the pings to reach each other. Check it.
692 EXPECT_TRUE(ch1.remote_address().IsNil());
693 EXPECT_TRUE(ch2.remote_address().IsNil());
694 ch1.Ping();
695 WAIT(!ch2.remote_address().IsNil(), kTimeout);
696 EXPECT_TRUE(ch1.remote_address().IsNil());
697 EXPECT_TRUE(ch2.remote_address().IsNil());
698 }
699 }
700
701 // Everything should be good, unless we know the situation is impossible.
702 ASSERT_TRUE(ch1.conn() != NULL);
703 ASSERT_TRUE(ch2.conn() != NULL);
704 if (possible) {
705 EXPECT_EQ(Connection::STATE_READABLE, ch1.conn()->read_state());
706 EXPECT_EQ(Connection::STATE_WRITABLE, ch1.conn()->write_state());
707 EXPECT_EQ(Connection::STATE_READABLE, ch2.conn()->read_state());
708 EXPECT_EQ(Connection::STATE_WRITABLE, ch2.conn()->write_state());
709 } else {
710 EXPECT_NE(Connection::STATE_READABLE, ch1.conn()->read_state());
711 EXPECT_NE(Connection::STATE_WRITABLE, ch1.conn()->write_state());
712 EXPECT_NE(Connection::STATE_READABLE, ch2.conn()->read_state());
713 EXPECT_NE(Connection::STATE_WRITABLE, ch2.conn()->write_state());
714 }
715
716 // Tear down and ensure that goes smoothly.
717 ch1.Stop();
718 ch2.Stop();
719 EXPECT_TRUE_WAIT(ch1.conn() == NULL, kTimeout);
720 EXPECT_TRUE_WAIT(ch2.conn() == NULL, kTimeout);
721}
722
723class FakePacketSocketFactory : public talk_base::PacketSocketFactory {
724 public:
725 FakePacketSocketFactory()
726 : next_udp_socket_(NULL),
727 next_server_tcp_socket_(NULL),
728 next_client_tcp_socket_(NULL) {
729 }
730 virtual ~FakePacketSocketFactory() { }
731
732 virtual AsyncPacketSocket* CreateUdpSocket(
733 const SocketAddress& address, int min_port, int max_port) {
734 EXPECT_TRUE(next_udp_socket_ != NULL);
735 AsyncPacketSocket* result = next_udp_socket_;
736 next_udp_socket_ = NULL;
737 return result;
738 }
739
740 virtual AsyncPacketSocket* CreateServerTcpSocket(
741 const SocketAddress& local_address, int min_port, int max_port,
742 int opts) {
743 EXPECT_TRUE(next_server_tcp_socket_ != NULL);
744 AsyncPacketSocket* result = next_server_tcp_socket_;
745 next_server_tcp_socket_ = NULL;
746 return result;
747 }
748
749 // TODO: |proxy_info| and |user_agent| should be set
750 // per-factory and not when socket is created.
751 virtual AsyncPacketSocket* CreateClientTcpSocket(
752 const SocketAddress& local_address, const SocketAddress& remote_address,
753 const talk_base::ProxyInfo& proxy_info,
754 const std::string& user_agent, int opts) {
755 EXPECT_TRUE(next_client_tcp_socket_ != NULL);
756 AsyncPacketSocket* result = next_client_tcp_socket_;
757 next_client_tcp_socket_ = NULL;
758 return result;
759 }
760
761 void set_next_udp_socket(AsyncPacketSocket* next_udp_socket) {
762 next_udp_socket_ = next_udp_socket;
763 }
764 void set_next_server_tcp_socket(AsyncPacketSocket* next_server_tcp_socket) {
765 next_server_tcp_socket_ = next_server_tcp_socket;
766 }
767 void set_next_client_tcp_socket(AsyncPacketSocket* next_client_tcp_socket) {
768 next_client_tcp_socket_ = next_client_tcp_socket;
769 }
770
771 private:
772 AsyncPacketSocket* next_udp_socket_;
773 AsyncPacketSocket* next_server_tcp_socket_;
774 AsyncPacketSocket* next_client_tcp_socket_;
775};
776
777class FakeAsyncPacketSocket : public AsyncPacketSocket {
778 public:
779 // Returns current local address. Address may be set to NULL if the
780 // socket is not bound yet (GetState() returns STATE_BINDING).
781 virtual SocketAddress GetLocalAddress() const {
782 return SocketAddress();
783 }
784
785 // Returns remote address. Returns zeroes if this is not a client TCP socket.
786 virtual SocketAddress GetRemoteAddress() const {
787 return SocketAddress();
788 }
789
790 // Send a packet.
791 virtual int Send(const void *pv, size_t cb) {
792 return cb;
793 }
794 virtual int SendTo(const void *pv, size_t cb, const SocketAddress& addr) {
795 return cb;
796 }
797 virtual int Close() {
798 return 0;
799 }
800
801 virtual State GetState() const { return state_; }
802 virtual int GetOption(Socket::Option opt, int* value) { return 0; }
803 virtual int SetOption(Socket::Option opt, int value) { return 0; }
804 virtual int GetError() const { return 0; }
805 virtual void SetError(int error) { }
806
807 void set_state(State state) { state_ = state; }
808
809 private:
810 State state_;
811};
812
813// Local -> XXXX
814TEST_F(PortTest, TestLocalToLocal) {
815 TestLocalToLocal();
816}
817
818TEST_F(PortTest, TestLocalToConeNat) {
819 TestLocalToStun(NAT_OPEN_CONE);
820}
821
822TEST_F(PortTest, TestLocalToARNat) {
823 TestLocalToStun(NAT_ADDR_RESTRICTED);
824}
825
826TEST_F(PortTest, TestLocalToPRNat) {
827 TestLocalToStun(NAT_PORT_RESTRICTED);
828}
829
830TEST_F(PortTest, TestLocalToSymNat) {
831 TestLocalToStun(NAT_SYMMETRIC);
832}
833
834TEST_F(PortTest, TestLocalToTurn) {
835 TestLocalToRelay(RELAY_TURN, PROTO_UDP);
836}
837
838TEST_F(PortTest, TestLocalToGturn) {
839 TestLocalToRelay(RELAY_GTURN, PROTO_UDP);
840}
841
842TEST_F(PortTest, TestLocalToTcpGturn) {
843 TestLocalToRelay(RELAY_GTURN, PROTO_TCP);
844}
845
846TEST_F(PortTest, TestLocalToSslTcpGturn) {
847 TestLocalToRelay(RELAY_GTURN, PROTO_SSLTCP);
848}
849
850// Cone NAT -> XXXX
851TEST_F(PortTest, TestConeNatToLocal) {
852 TestStunToLocal(NAT_OPEN_CONE);
853}
854
855TEST_F(PortTest, TestConeNatToConeNat) {
856 TestStunToStun(NAT_OPEN_CONE, NAT_OPEN_CONE);
857}
858
859TEST_F(PortTest, TestConeNatToARNat) {
860 TestStunToStun(NAT_OPEN_CONE, NAT_ADDR_RESTRICTED);
861}
862
863TEST_F(PortTest, TestConeNatToPRNat) {
864 TestStunToStun(NAT_OPEN_CONE, NAT_PORT_RESTRICTED);
865}
866
867TEST_F(PortTest, TestConeNatToSymNat) {
868 TestStunToStun(NAT_OPEN_CONE, NAT_SYMMETRIC);
869}
870
871TEST_F(PortTest, TestConeNatToTurn) {
872 TestStunToRelay(NAT_OPEN_CONE, RELAY_TURN, PROTO_UDP);
873}
874
875TEST_F(PortTest, TestConeNatToGturn) {
876 TestStunToRelay(NAT_OPEN_CONE, RELAY_GTURN, PROTO_UDP);
877}
878
879TEST_F(PortTest, TestConeNatToTcpGturn) {
880 TestStunToRelay(NAT_OPEN_CONE, RELAY_GTURN, PROTO_TCP);
881}
882
883// Address-restricted NAT -> XXXX
884TEST_F(PortTest, TestARNatToLocal) {
885 TestStunToLocal(NAT_ADDR_RESTRICTED);
886}
887
888TEST_F(PortTest, TestARNatToConeNat) {
889 TestStunToStun(NAT_ADDR_RESTRICTED, NAT_OPEN_CONE);
890}
891
892TEST_F(PortTest, TestARNatToARNat) {
893 TestStunToStun(NAT_ADDR_RESTRICTED, NAT_ADDR_RESTRICTED);
894}
895
896TEST_F(PortTest, TestARNatToPRNat) {
897 TestStunToStun(NAT_ADDR_RESTRICTED, NAT_PORT_RESTRICTED);
898}
899
900TEST_F(PortTest, TestARNatToSymNat) {
901 TestStunToStun(NAT_ADDR_RESTRICTED, NAT_SYMMETRIC);
902}
903
904TEST_F(PortTest, TestARNatToTurn) {
905 TestStunToRelay(NAT_ADDR_RESTRICTED, RELAY_TURN, PROTO_UDP);
906}
907
908TEST_F(PortTest, TestARNatToGturn) {
909 TestStunToRelay(NAT_ADDR_RESTRICTED, RELAY_GTURN, PROTO_UDP);
910}
911
912TEST_F(PortTest, TestARNATNatToTcpGturn) {
913 TestStunToRelay(NAT_ADDR_RESTRICTED, RELAY_GTURN, PROTO_TCP);
914}
915
916// Port-restricted NAT -> XXXX
917TEST_F(PortTest, TestPRNatToLocal) {
918 TestStunToLocal(NAT_PORT_RESTRICTED);
919}
920
921TEST_F(PortTest, TestPRNatToConeNat) {
922 TestStunToStun(NAT_PORT_RESTRICTED, NAT_OPEN_CONE);
923}
924
925TEST_F(PortTest, TestPRNatToARNat) {
926 TestStunToStun(NAT_PORT_RESTRICTED, NAT_ADDR_RESTRICTED);
927}
928
929TEST_F(PortTest, TestPRNatToPRNat) {
930 TestStunToStun(NAT_PORT_RESTRICTED, NAT_PORT_RESTRICTED);
931}
932
933TEST_F(PortTest, TestPRNatToSymNat) {
934 // Will "fail"
935 TestStunToStun(NAT_PORT_RESTRICTED, NAT_SYMMETRIC);
936}
937
938TEST_F(PortTest, TestPRNatToTurn) {
939 TestStunToRelay(NAT_PORT_RESTRICTED, RELAY_TURN, PROTO_UDP);
940}
941
942TEST_F(PortTest, TestPRNatToGturn) {
943 TestStunToRelay(NAT_PORT_RESTRICTED, RELAY_GTURN, PROTO_UDP);
944}
945
946TEST_F(PortTest, TestPRNatToTcpGturn) {
947 TestStunToRelay(NAT_PORT_RESTRICTED, RELAY_GTURN, PROTO_TCP);
948}
949
950// Symmetric NAT -> XXXX
951TEST_F(PortTest, TestSymNatToLocal) {
952 TestStunToLocal(NAT_SYMMETRIC);
953}
954
955TEST_F(PortTest, TestSymNatToConeNat) {
956 TestStunToStun(NAT_SYMMETRIC, NAT_OPEN_CONE);
957}
958
959TEST_F(PortTest, TestSymNatToARNat) {
960 TestStunToStun(NAT_SYMMETRIC, NAT_ADDR_RESTRICTED);
961}
962
963TEST_F(PortTest, TestSymNatToPRNat) {
964 // Will "fail"
965 TestStunToStun(NAT_SYMMETRIC, NAT_PORT_RESTRICTED);
966}
967
968TEST_F(PortTest, TestSymNatToSymNat) {
969 // Will "fail"
970 TestStunToStun(NAT_SYMMETRIC, NAT_SYMMETRIC);
971}
972
973TEST_F(PortTest, TestSymNatToTurn) {
974 TestStunToRelay(NAT_SYMMETRIC, RELAY_TURN, PROTO_UDP);
975}
976
977TEST_F(PortTest, TestSymNatToGturn) {
978 TestStunToRelay(NAT_SYMMETRIC, RELAY_GTURN, PROTO_UDP);
979}
980
981TEST_F(PortTest, TestSymNatToTcpGturn) {
982 TestStunToRelay(NAT_SYMMETRIC, RELAY_GTURN, PROTO_TCP);
983}
984
985// Outbound TCP -> XXXX
986TEST_F(PortTest, TestTcpToTcp) {
987 TestTcpToTcp();
988}
989
990/* TODO: Enable these once testrelayserver can accept external TCP.
991TEST_F(PortTest, TestTcpToTcpRelay) {
992 TestTcpToRelay(PROTO_TCP);
993}
994
995TEST_F(PortTest, TestTcpToSslTcpRelay) {
996 TestTcpToRelay(PROTO_SSLTCP);
997}
998*/
999
1000// Outbound SSLTCP -> XXXX
1001/* TODO: Enable these once testrelayserver can accept external SSL.
1002TEST_F(PortTest, TestSslTcpToTcpRelay) {
1003 TestSslTcpToRelay(PROTO_TCP);
1004}
1005
1006TEST_F(PortTest, TestSslTcpToSslTcpRelay) {
1007 TestSslTcpToRelay(PROTO_SSLTCP);
1008}
1009*/
1010
1011// This test case verifies standard ICE features in STUN messages. Currently it
1012// verifies Message Integrity attribute in STUN messages and username in STUN
1013// binding request will have colon (":") between remote and local username.
1014TEST_F(PortTest, TestLocalToLocalAsIce) {
1015 SetIceProtocolType(cricket::ICEPROTO_RFC5245);
1016 UDPPort* port1 = CreateUdpPort(kLocalAddr1);
1017 port1->SetRole(cricket::ROLE_CONTROLLING);
1018 port1->SetTiebreaker(kTiebreaker1);
1019 ASSERT_EQ(cricket::ICEPROTO_RFC5245, port1->IceProtocol());
1020 UDPPort* port2 = CreateUdpPort(kLocalAddr2);
1021 port2->SetRole(cricket::ROLE_CONTROLLED);
1022 port2->SetTiebreaker(kTiebreaker2);
1023 ASSERT_EQ(cricket::ICEPROTO_RFC5245, port2->IceProtocol());
1024 // Same parameters as TestLocalToLocal above.
1025 TestConnectivity("udp", port1, "udp", port2, true, true, true, true);
1026}
1027
1028// This test is trying to validate a successful and failure scenario in a
1029// loopback test when protocol is RFC5245. For success tiebreaker, username
1030// should remain equal to the request generated by the port and role of port
1031// must be in controlling.
1032TEST_F(PortTest, TestLoopbackCallAsIce) {
1033 talk_base::scoped_ptr<TestPort> lport(
1034 CreateTestPort(kLocalAddr1, "lfrag", "lpass"));
1035 lport->SetIceProtocolType(ICEPROTO_RFC5245);
1036 lport->SetRole(cricket::ROLE_CONTROLLING);
1037 lport->SetTiebreaker(kTiebreaker1);
1038 lport->PrepareAddress();
1039 ASSERT_FALSE(lport->Candidates().empty());
1040 Connection* conn = lport->CreateConnection(lport->Candidates()[0],
1041 Port::ORIGIN_MESSAGE);
1042 conn->Ping(0);
1043
1044 ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, 1000);
1045 IceMessage* msg = lport->last_stun_msg();
1046 EXPECT_EQ(STUN_BINDING_REQUEST, msg->type());
1047 conn->OnReadPacket(lport->last_stun_buf()->Data(),
1048 lport->last_stun_buf()->Length());
1049 ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, 1000);
1050 msg = lport->last_stun_msg();
1051 EXPECT_EQ(STUN_BINDING_RESPONSE, msg->type());
1052
1053 // If the tiebreaker value is different from port, we expect a error response.
1054 lport->Reset();
1055 lport->AddCandidateAddress(kLocalAddr2);
1056 // Creating a different connection as |conn| is in STATE_READABLE.
1057 Connection* conn1 = lport->CreateConnection(lport->Candidates()[1],
1058 Port::ORIGIN_MESSAGE);
1059 conn1->Ping(0);
1060
1061 ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, 1000);
1062 msg = lport->last_stun_msg();
1063 EXPECT_EQ(STUN_BINDING_REQUEST, msg->type());
1064 IceMessage* modified_req = CreateStunMessage(STUN_BINDING_REQUEST);
1065 const StunByteStringAttribute* username_attr = msg->GetByteString(
1066 STUN_ATTR_USERNAME);
1067 modified_req->AddAttribute(new StunByteStringAttribute(
1068 STUN_ATTR_USERNAME, username_attr->GetString()));
1069 // To make sure we receive error response, adding tiebreaker less than
1070 // what's present in request.
1071 modified_req->AddAttribute(new StunUInt64Attribute(
1072 STUN_ATTR_ICE_CONTROLLING, kTiebreaker1 - 1));
1073 modified_req->AddMessageIntegrity("lpass");
1074 modified_req->AddFingerprint();
1075
1076 lport->Reset();
1077 talk_base::scoped_ptr<ByteBuffer> buf(new ByteBuffer());
1078 WriteStunMessage(modified_req, buf.get());
1079 conn1->OnReadPacket(buf->Data(), buf->Length());
1080 ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, 1000);
1081 msg = lport->last_stun_msg();
1082 EXPECT_EQ(STUN_BINDING_ERROR_RESPONSE, msg->type());
1083}
1084
1085// This test verifies role conflict signal is received when there is
1086// conflict in the role. In this case both ports are in controlling and
1087// |rport| has higher tiebreaker value than |lport|. Since |lport| has lower
1088// value of tiebreaker, when it receives ping request from |rport| it will
1089// send role conflict signal.
1090TEST_F(PortTest, TestIceRoleConflict) {
1091 talk_base::scoped_ptr<TestPort> lport(
1092 CreateTestPort(kLocalAddr1, "lfrag", "lpass"));
1093 lport->SetIceProtocolType(ICEPROTO_RFC5245);
1094 lport->SetRole(cricket::ROLE_CONTROLLING);
1095 lport->SetTiebreaker(kTiebreaker1);
1096 talk_base::scoped_ptr<TestPort> rport(
1097 CreateTestPort(kLocalAddr2, "rfrag", "rpass"));
1098 rport->SetIceProtocolType(ICEPROTO_RFC5245);
1099 rport->SetRole(cricket::ROLE_CONTROLLING);
1100 rport->SetTiebreaker(kTiebreaker2);
1101
1102 lport->PrepareAddress();
1103 rport->PrepareAddress();
1104 ASSERT_FALSE(lport->Candidates().empty());
1105 ASSERT_FALSE(rport->Candidates().empty());
1106 Connection* lconn = lport->CreateConnection(rport->Candidates()[0],
1107 Port::ORIGIN_MESSAGE);
1108 Connection* rconn = rport->CreateConnection(lport->Candidates()[0],
1109 Port::ORIGIN_MESSAGE);
1110 rconn->Ping(0);
1111
1112 ASSERT_TRUE_WAIT(rport->last_stun_msg() != NULL, 1000);
1113 IceMessage* msg = rport->last_stun_msg();
1114 EXPECT_EQ(STUN_BINDING_REQUEST, msg->type());
1115 // Send rport binding request to lport.
1116 lconn->OnReadPacket(rport->last_stun_buf()->Data(),
1117 rport->last_stun_buf()->Length());
1118
1119 ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, 1000);
1120 EXPECT_EQ(STUN_BINDING_RESPONSE, lport->last_stun_msg()->type());
1121 EXPECT_TRUE(role_conflict());
1122}
1123
1124TEST_F(PortTest, TestTcpNoDelay) {
1125 TCPPort* port1 = CreateTcpPort(kLocalAddr1);
1126 int option_value = -1;
1127 int success = port1->GetOption(talk_base::Socket::OPT_NODELAY,
1128 &option_value);
1129 ASSERT_EQ(0, success); // GetOption() should complete successfully w/ 0
1130 ASSERT_EQ(1, option_value);
1131 delete port1;
1132}
1133
1134TEST_F(PortTest, TestDelayedBindingUdp) {
1135 FakeAsyncPacketSocket *socket = new FakeAsyncPacketSocket();
1136 FakePacketSocketFactory socket_factory;
1137
1138 socket_factory.set_next_udp_socket(socket);
1139 scoped_ptr<UDPPort> port(
1140 CreateUdpPort(kLocalAddr1, &socket_factory));
1141
1142 socket->set_state(AsyncPacketSocket::STATE_BINDING);
1143 port->PrepareAddress();
1144
1145 EXPECT_EQ(0U, port->Candidates().size());
1146 socket->SignalAddressReady(socket, kLocalAddr2);
1147
1148 EXPECT_EQ(1U, port->Candidates().size());
1149}
1150
1151TEST_F(PortTest, TestDelayedBindingTcp) {
1152 FakeAsyncPacketSocket *socket = new FakeAsyncPacketSocket();
1153 FakePacketSocketFactory socket_factory;
1154
1155 socket_factory.set_next_server_tcp_socket(socket);
1156 scoped_ptr<TCPPort> port(
1157 CreateTcpPort(kLocalAddr1, &socket_factory));
1158
1159 socket->set_state(AsyncPacketSocket::STATE_BINDING);
1160 port->PrepareAddress();
1161
1162 EXPECT_EQ(0U, port->Candidates().size());
1163 socket->SignalAddressReady(socket, kLocalAddr2);
1164
1165 EXPECT_EQ(1U, port->Candidates().size());
1166}
1167
1168void PortTest::TestCrossFamilyPorts(int type) {
1169 FakePacketSocketFactory factory;
1170 scoped_ptr<Port> ports[4];
1171 SocketAddress addresses[4] = {SocketAddress("192.168.1.3", 0),
1172 SocketAddress("192.168.1.4", 0),
1173 SocketAddress("2001:db8::1", 0),
1174 SocketAddress("2001:db8::2", 0)};
1175 for (int i = 0; i < 4; i++) {
1176 FakeAsyncPacketSocket *socket = new FakeAsyncPacketSocket();
1177 if (type == SOCK_DGRAM) {
1178 factory.set_next_udp_socket(socket);
1179 ports[i].reset(CreateUdpPort(addresses[i], &factory));
1180 } else if (type == SOCK_STREAM) {
1181 factory.set_next_server_tcp_socket(socket);
1182 ports[i].reset(CreateTcpPort(addresses[i], &factory));
1183 }
1184 socket->set_state(AsyncPacketSocket::STATE_BINDING);
1185 socket->SignalAddressReady(socket, addresses[i]);
1186 ports[i]->PrepareAddress();
1187 }
1188
1189 // IPv4 Port, connects to IPv6 candidate and then to IPv4 candidate.
1190 if (type == SOCK_STREAM) {
1191 FakeAsyncPacketSocket* clientsocket = new FakeAsyncPacketSocket();
1192 factory.set_next_client_tcp_socket(clientsocket);
1193 }
1194 Connection* c = ports[0]->CreateConnection(GetCandidate(ports[2].get()),
1195 Port::ORIGIN_MESSAGE);
1196 EXPECT_TRUE(NULL == c);
1197 EXPECT_EQ(0U, ports[0]->connections().size());
1198 c = ports[0]->CreateConnection(GetCandidate(ports[1].get()),
1199 Port::ORIGIN_MESSAGE);
1200 EXPECT_FALSE(NULL == c);
1201 EXPECT_EQ(1U, ports[0]->connections().size());
1202
1203 // IPv6 Port, connects to IPv4 candidate and to IPv6 candidate.
1204 if (type == SOCK_STREAM) {
1205 FakeAsyncPacketSocket* clientsocket = new FakeAsyncPacketSocket();
1206 factory.set_next_client_tcp_socket(clientsocket);
1207 }
1208 c = ports[2]->CreateConnection(GetCandidate(ports[0].get()),
1209 Port::ORIGIN_MESSAGE);
1210 EXPECT_TRUE(NULL == c);
1211 EXPECT_EQ(0U, ports[2]->connections().size());
1212 c = ports[2]->CreateConnection(GetCandidate(ports[3].get()),
1213 Port::ORIGIN_MESSAGE);
1214 EXPECT_FALSE(NULL == c);
1215 EXPECT_EQ(1U, ports[2]->connections().size());
1216}
1217
1218TEST_F(PortTest, TestSkipCrossFamilyTcp) {
1219 TestCrossFamilyPorts(SOCK_STREAM);
1220}
1221
1222TEST_F(PortTest, TestSkipCrossFamilyUdp) {
1223 TestCrossFamilyPorts(SOCK_DGRAM);
1224}
1225
1226// Test sending STUN messages in GICE format.
1227TEST_F(PortTest, TestSendStunMessageAsGice) {
1228 talk_base::scoped_ptr<TestPort> lport(
1229 CreateTestPort(kLocalAddr1, "lfrag", "lpass"));
1230 talk_base::scoped_ptr<TestPort> rport(
1231 CreateTestPort(kLocalAddr2, "rfrag", "rpass"));
1232 lport->SetIceProtocolType(ICEPROTO_GOOGLE);
1233 rport->SetIceProtocolType(ICEPROTO_GOOGLE);
1234
1235 // Send a fake ping from lport to rport.
1236 lport->PrepareAddress();
1237 rport->PrepareAddress();
1238 ASSERT_FALSE(rport->Candidates().empty());
1239 Connection* conn = lport->CreateConnection(rport->Candidates()[0],
1240 Port::ORIGIN_MESSAGE);
1241 rport->CreateConnection(lport->Candidates()[0], Port::ORIGIN_MESSAGE);
1242 conn->Ping(0);
1243
1244 // Check that it's a proper BINDING-REQUEST.
1245 ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, 1000);
1246 IceMessage* msg = lport->last_stun_msg();
1247 EXPECT_EQ(STUN_BINDING_REQUEST, msg->type());
1248 EXPECT_FALSE(msg->IsLegacy());
1249 const StunByteStringAttribute* username_attr = msg->GetByteString(
1250 STUN_ATTR_USERNAME);
1251 ASSERT_TRUE(username_attr != NULL);
1252 EXPECT_EQ("rfraglfrag", username_attr->GetString());
1253 EXPECT_TRUE(msg->GetByteString(STUN_ATTR_MESSAGE_INTEGRITY) == NULL);
1254 EXPECT_TRUE(msg->GetByteString(STUN_ATTR_PRIORITY) == NULL);
1255 EXPECT_TRUE(msg->GetByteString(STUN_ATTR_FINGERPRINT) == NULL);
1256
1257 // Save a copy of the BINDING-REQUEST for use below.
1258 talk_base::scoped_ptr<IceMessage> request(CopyStunMessage(msg));
1259
1260 // Respond with a BINDING-RESPONSE.
1261 rport->SendBindingResponse(request.get(), lport->Candidates()[0].address());
1262 msg = rport->last_stun_msg();
1263 ASSERT_TRUE(msg != NULL);
1264 EXPECT_EQ(STUN_BINDING_RESPONSE, msg->type());
1265 EXPECT_FALSE(msg->IsLegacy());
1266 username_attr = msg->GetByteString(STUN_ATTR_USERNAME);
1267 ASSERT_TRUE(username_attr != NULL); // GICE has a username in the response.
1268 EXPECT_EQ("rfraglfrag", username_attr->GetString());
1269 const StunAddressAttribute* addr_attr = msg->GetAddress(
1270 STUN_ATTR_MAPPED_ADDRESS);
1271 ASSERT_TRUE(addr_attr != NULL);
1272 EXPECT_EQ(lport->Candidates()[0].address(), addr_attr->GetAddress());
1273 EXPECT_TRUE(msg->GetByteString(STUN_ATTR_XOR_MAPPED_ADDRESS) == NULL);
1274 EXPECT_TRUE(msg->GetByteString(STUN_ATTR_MESSAGE_INTEGRITY) == NULL);
1275 EXPECT_TRUE(msg->GetByteString(STUN_ATTR_PRIORITY) == NULL);
1276 EXPECT_TRUE(msg->GetByteString(STUN_ATTR_FINGERPRINT) == NULL);
1277
1278 // Respond with a BINDING-ERROR-RESPONSE. This wouldn't happen in real life,
1279 // but we can do it here.
1280 rport->SendBindingErrorResponse(request.get(),
1281 rport->Candidates()[0].address(),
1282 STUN_ERROR_SERVER_ERROR,
1283 STUN_ERROR_REASON_SERVER_ERROR);
1284 msg = rport->last_stun_msg();
1285 ASSERT_TRUE(msg != NULL);
1286 EXPECT_EQ(STUN_BINDING_ERROR_RESPONSE, msg->type());
1287 EXPECT_FALSE(msg->IsLegacy());
1288 username_attr = msg->GetByteString(STUN_ATTR_USERNAME);
1289 ASSERT_TRUE(username_attr != NULL); // GICE has a username in the response.
1290 EXPECT_EQ("rfraglfrag", username_attr->GetString());
1291 const StunErrorCodeAttribute* error_attr = msg->GetErrorCode();
1292 ASSERT_TRUE(error_attr != NULL);
1293 // The GICE wire format for error codes is incorrect.
1294 EXPECT_EQ(STUN_ERROR_SERVER_ERROR_AS_GICE, error_attr->code());
1295 EXPECT_EQ(STUN_ERROR_SERVER_ERROR / 256, error_attr->eclass());
1296 EXPECT_EQ(STUN_ERROR_SERVER_ERROR % 256, error_attr->number());
1297 EXPECT_EQ(std::string(STUN_ERROR_REASON_SERVER_ERROR), error_attr->reason());
1298 EXPECT_TRUE(msg->GetByteString(STUN_ATTR_PRIORITY) == NULL);
1299 EXPECT_TRUE(msg->GetByteString(STUN_ATTR_MESSAGE_INTEGRITY) == NULL);
1300 EXPECT_TRUE(msg->GetByteString(STUN_ATTR_FINGERPRINT) == NULL);
1301}
1302
1303// Test sending STUN messages in ICE format.
1304TEST_F(PortTest, TestSendStunMessageAsIce) {
1305 talk_base::scoped_ptr<TestPort> lport(
1306 CreateTestPort(kLocalAddr1, "lfrag", "lpass"));
1307 talk_base::scoped_ptr<TestPort> rport(
1308 CreateTestPort(kLocalAddr2, "rfrag", "rpass"));
1309 lport->SetIceProtocolType(ICEPROTO_RFC5245);
1310 lport->SetRole(cricket::ROLE_CONTROLLING);
1311 lport->SetTiebreaker(kTiebreaker1);
1312 rport->SetIceProtocolType(ICEPROTO_RFC5245);
1313 rport->SetRole(cricket::ROLE_CONTROLLED);
1314 rport->SetTiebreaker(kTiebreaker2);
1315
1316 // Send a fake ping from lport to rport.
1317 lport->PrepareAddress();
1318 rport->PrepareAddress();
1319 ASSERT_FALSE(rport->Candidates().empty());
1320 Connection* lconn = lport->CreateConnection(
1321 rport->Candidates()[0], Port::ORIGIN_MESSAGE);
1322 Connection* rconn = rport->CreateConnection(
1323 lport->Candidates()[0], Port::ORIGIN_MESSAGE);
1324 lconn->Ping(0);
1325
1326 // Check that it's a proper BINDING-REQUEST.
1327 ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, 1000);
1328 IceMessage* msg = lport->last_stun_msg();
1329 EXPECT_EQ(STUN_BINDING_REQUEST, msg->type());
1330 EXPECT_FALSE(msg->IsLegacy());
1331 const StunByteStringAttribute* username_attr =
1332 msg->GetByteString(STUN_ATTR_USERNAME);
1333 ASSERT_TRUE(username_attr != NULL);
1334 const StunUInt32Attribute* priority_attr = msg->GetUInt32(STUN_ATTR_PRIORITY);
1335 ASSERT_TRUE(priority_attr != NULL);
1336 EXPECT_EQ(kDefaultPrflxPriority, priority_attr->value());
1337 EXPECT_EQ("rfrag:lfrag", username_attr->GetString());
1338 EXPECT_TRUE(msg->GetByteString(STUN_ATTR_MESSAGE_INTEGRITY) != NULL);
1339 EXPECT_TRUE(StunMessage::ValidateMessageIntegrity(
1340 lport->last_stun_buf()->Data(), lport->last_stun_buf()->Length(),
1341 "rpass"));
1342 const StunUInt64Attribute* ice_controlling_attr =
1343 msg->GetUInt64(STUN_ATTR_ICE_CONTROLLING);
1344 ASSERT_TRUE(ice_controlling_attr != NULL);
1345 EXPECT_EQ(lport->Tiebreaker(), ice_controlling_attr->value());
1346 EXPECT_TRUE(msg->GetByteString(STUN_ATTR_ICE_CONTROLLED) == NULL);
1347 EXPECT_TRUE(msg->GetByteString(STUN_ATTR_USE_CANDIDATE) != NULL);
1348 EXPECT_TRUE(msg->GetUInt32(STUN_ATTR_FINGERPRINT) != NULL);
1349 EXPECT_TRUE(StunMessage::ValidateFingerprint(
1350 lport->last_stun_buf()->Data(), lport->last_stun_buf()->Length()));
1351
1352 // Request should not include ping count.
1353 ASSERT_TRUE(msg->GetUInt32(STUN_ATTR_RETRANSMIT_COUNT) == NULL);
1354
1355 // Save a copy of the BINDING-REQUEST for use below.
1356 talk_base::scoped_ptr<IceMessage> request(CopyStunMessage(msg));
1357
1358 // Respond with a BINDING-RESPONSE.
1359 rport->SendBindingResponse(request.get(), lport->Candidates()[0].address());
1360 msg = rport->last_stun_msg();
1361 ASSERT_TRUE(msg != NULL);
1362 EXPECT_EQ(STUN_BINDING_RESPONSE, msg->type());
1363
1364
1365 EXPECT_FALSE(msg->IsLegacy());
1366 const StunAddressAttribute* addr_attr = msg->GetAddress(
1367 STUN_ATTR_XOR_MAPPED_ADDRESS);
1368 ASSERT_TRUE(addr_attr != NULL);
1369 EXPECT_EQ(lport->Candidates()[0].address(), addr_attr->GetAddress());
1370 EXPECT_TRUE(msg->GetByteString(STUN_ATTR_MESSAGE_INTEGRITY) != NULL);
1371 EXPECT_TRUE(StunMessage::ValidateMessageIntegrity(
1372 rport->last_stun_buf()->Data(), rport->last_stun_buf()->Length(),
1373 "rpass"));
1374 EXPECT_TRUE(msg->GetUInt32(STUN_ATTR_FINGERPRINT) != NULL);
1375 EXPECT_TRUE(StunMessage::ValidateFingerprint(
1376 lport->last_stun_buf()->Data(), lport->last_stun_buf()->Length()));
1377 // No USERNAME or PRIORITY in ICE responses.
1378 EXPECT_TRUE(msg->GetByteString(STUN_ATTR_USERNAME) == NULL);
1379 EXPECT_TRUE(msg->GetByteString(STUN_ATTR_PRIORITY) == NULL);
1380 EXPECT_TRUE(msg->GetByteString(STUN_ATTR_MAPPED_ADDRESS) == NULL);
1381 EXPECT_TRUE(msg->GetByteString(STUN_ATTR_ICE_CONTROLLING) == NULL);
1382 EXPECT_TRUE(msg->GetByteString(STUN_ATTR_ICE_CONTROLLED) == NULL);
1383 EXPECT_TRUE(msg->GetByteString(STUN_ATTR_USE_CANDIDATE) == NULL);
1384
1385 // Response should not include ping count.
1386 ASSERT_TRUE(msg->GetUInt32(STUN_ATTR_RETRANSMIT_COUNT) == NULL);
1387
1388 // Respond with a BINDING-ERROR-RESPONSE. This wouldn't happen in real life,
1389 // but we can do it here.
1390 rport->SendBindingErrorResponse(request.get(),
1391 lport->Candidates()[0].address(),
1392 STUN_ERROR_SERVER_ERROR,
1393 STUN_ERROR_REASON_SERVER_ERROR);
1394 msg = rport->last_stun_msg();
1395 ASSERT_TRUE(msg != NULL);
1396 EXPECT_EQ(STUN_BINDING_ERROR_RESPONSE, msg->type());
1397 EXPECT_FALSE(msg->IsLegacy());
1398 const StunErrorCodeAttribute* error_attr = msg->GetErrorCode();
1399 ASSERT_TRUE(error_attr != NULL);
1400 EXPECT_EQ(STUN_ERROR_SERVER_ERROR, error_attr->code());
1401 EXPECT_EQ(std::string(STUN_ERROR_REASON_SERVER_ERROR), error_attr->reason());
1402 EXPECT_TRUE(msg->GetByteString(STUN_ATTR_MESSAGE_INTEGRITY) != NULL);
1403 EXPECT_TRUE(StunMessage::ValidateMessageIntegrity(
1404 rport->last_stun_buf()->Data(), rport->last_stun_buf()->Length(),
1405 "rpass"));
1406 EXPECT_TRUE(msg->GetUInt32(STUN_ATTR_FINGERPRINT) != NULL);
1407 EXPECT_TRUE(StunMessage::ValidateFingerprint(
1408 lport->last_stun_buf()->Data(), lport->last_stun_buf()->Length()));
1409 // No USERNAME with ICE.
1410 EXPECT_TRUE(msg->GetByteString(STUN_ATTR_USERNAME) == NULL);
1411 EXPECT_TRUE(msg->GetByteString(STUN_ATTR_PRIORITY) == NULL);
1412
1413 // Testing STUN binding requests from rport --> lport, having ICE_CONTROLLED
1414 // and (incremented) RETRANSMIT_COUNT attributes.
1415 rport->Reset();
1416 rport->set_send_retransmit_count_attribute(true);
1417 rconn->Ping(0);
1418 rconn->Ping(0);
1419 rconn->Ping(0);
1420 ASSERT_TRUE_WAIT(rport->last_stun_msg() != NULL, 1000);
1421 msg = rport->last_stun_msg();
1422 EXPECT_EQ(STUN_BINDING_REQUEST, msg->type());
1423 const StunUInt64Attribute* ice_controlled_attr =
1424 msg->GetUInt64(STUN_ATTR_ICE_CONTROLLED);
1425 ASSERT_TRUE(ice_controlled_attr != NULL);
1426 EXPECT_EQ(rport->Tiebreaker(), ice_controlled_attr->value());
1427 EXPECT_TRUE(msg->GetByteString(STUN_ATTR_USE_CANDIDATE) == NULL);
1428
1429 // Request should include ping count.
1430 const StunUInt32Attribute* retransmit_attr =
1431 msg->GetUInt32(STUN_ATTR_RETRANSMIT_COUNT);
1432 ASSERT_TRUE(retransmit_attr != NULL);
1433 EXPECT_EQ(2U, retransmit_attr->value());
1434
1435 // Respond with a BINDING-RESPONSE.
1436 request.reset(CopyStunMessage(msg));
1437 lport->SendBindingResponse(request.get(), rport->Candidates()[0].address());
1438 msg = lport->last_stun_msg();
1439
1440 // Response should include same ping count.
1441 retransmit_attr = msg->GetUInt32(STUN_ATTR_RETRANSMIT_COUNT);
1442 ASSERT_TRUE(retransmit_attr != NULL);
1443 EXPECT_EQ(2U, retransmit_attr->value());
1444}
1445
1446TEST_F(PortTest, TestUseCandidateAttribute) {
1447 talk_base::scoped_ptr<TestPort> lport(
1448 CreateTestPort(kLocalAddr1, "lfrag", "lpass"));
1449 talk_base::scoped_ptr<TestPort> rport(
1450 CreateTestPort(kLocalAddr2, "rfrag", "rpass"));
1451 lport->SetIceProtocolType(ICEPROTO_RFC5245);
1452 lport->SetRole(cricket::ROLE_CONTROLLING);
1453 lport->SetTiebreaker(kTiebreaker1);
1454 rport->SetIceProtocolType(ICEPROTO_RFC5245);
1455 rport->SetRole(cricket::ROLE_CONTROLLED);
1456 rport->SetTiebreaker(kTiebreaker2);
1457
1458 // Send a fake ping from lport to rport.
1459 lport->PrepareAddress();
1460 rport->PrepareAddress();
1461 ASSERT_FALSE(rport->Candidates().empty());
1462 Connection* lconn = lport->CreateConnection(
1463 rport->Candidates()[0], Port::ORIGIN_MESSAGE);
1464 lconn->Ping(0);
1465 ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, 1000);
1466 IceMessage* msg = lport->last_stun_msg();
1467 const StunUInt64Attribute* ice_controlling_attr =
1468 msg->GetUInt64(STUN_ATTR_ICE_CONTROLLING);
1469 ASSERT_TRUE(ice_controlling_attr != NULL);
1470 const StunByteStringAttribute* use_candidate_attr = msg->GetByteString(
1471 STUN_ATTR_USE_CANDIDATE);
1472 ASSERT_TRUE(use_candidate_attr != NULL);
1473}
1474
1475// Test handling STUN messages in GICE format.
1476TEST_F(PortTest, TestHandleStunMessageAsGice) {
1477 // Our port will act as the "remote" port.
1478 talk_base::scoped_ptr<TestPort> port(
1479 CreateTestPort(kLocalAddr2, "rfrag", "rpass"));
1480 port->SetIceProtocolType(ICEPROTO_GOOGLE);
1481
1482 talk_base::scoped_ptr<IceMessage> in_msg, out_msg;
1483 talk_base::scoped_ptr<ByteBuffer> buf(new ByteBuffer());
1484 talk_base::SocketAddress addr(kLocalAddr1);
1485 std::string username;
1486
1487 // BINDING-REQUEST from local to remote with valid GICE username and no M-I.
1488 in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST,
1489 "rfraglfrag"));
1490 WriteStunMessage(in_msg.get(), buf.get());
1491 EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
1492 out_msg.accept(), &username));
1493 EXPECT_TRUE(out_msg.get() != NULL); // Succeeds, since this is GICE.
1494 EXPECT_EQ("lfrag", username);
1495
1496 // Add M-I; should be ignored and rest of message parsed normally.
1497 in_msg->AddMessageIntegrity("password");
1498 WriteStunMessage(in_msg.get(), buf.get());
1499 EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
1500 out_msg.accept(), &username));
1501 EXPECT_TRUE(out_msg.get() != NULL);
1502 EXPECT_EQ("lfrag", username);
1503
1504 // BINDING-RESPONSE with username, as done in GICE. Should succeed.
1505 in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_RESPONSE,
1506 "rfraglfrag"));
1507 in_msg->AddAttribute(
1508 new StunAddressAttribute(STUN_ATTR_MAPPED_ADDRESS, kLocalAddr2));
1509 WriteStunMessage(in_msg.get(), buf.get());
1510 EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
1511 out_msg.accept(), &username));
1512 EXPECT_TRUE(out_msg.get() != NULL);
1513 EXPECT_EQ("", username);
1514
1515 // BINDING-RESPONSE without username. Should be tolerated as well.
1516 in_msg.reset(CreateStunMessage(STUN_BINDING_RESPONSE));
1517 in_msg->AddAttribute(
1518 new StunAddressAttribute(STUN_ATTR_MAPPED_ADDRESS, kLocalAddr2));
1519 WriteStunMessage(in_msg.get(), buf.get());
1520 EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
1521 out_msg.accept(), &username));
1522 EXPECT_TRUE(out_msg.get() != NULL);
1523 EXPECT_EQ("", username);
1524
1525 // BINDING-ERROR-RESPONSE with username and error code.
1526 in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_ERROR_RESPONSE,
1527 "rfraglfrag"));
1528 in_msg->AddAttribute(new StunErrorCodeAttribute(STUN_ATTR_ERROR_CODE,
1529 STUN_ERROR_SERVER_ERROR_AS_GICE, STUN_ERROR_REASON_SERVER_ERROR));
1530 WriteStunMessage(in_msg.get(), buf.get());
1531 EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
1532 out_msg.accept(), &username));
1533 ASSERT_TRUE(out_msg.get() != NULL);
1534 EXPECT_EQ("", username);
1535 ASSERT_TRUE(out_msg->GetErrorCode() != NULL);
1536 // GetStunMessage doesn't unmunge the GICE error code (happens downstream).
1537 EXPECT_EQ(STUN_ERROR_SERVER_ERROR_AS_GICE, out_msg->GetErrorCode()->code());
1538 EXPECT_EQ(std::string(STUN_ERROR_REASON_SERVER_ERROR),
1539 out_msg->GetErrorCode()->reason());
1540}
1541
1542// Test handling STUN messages in ICE format.
1543TEST_F(PortTest, TestHandleStunMessageAsIce) {
1544 // Our port will act as the "remote" port.
1545 talk_base::scoped_ptr<TestPort> port(
1546 CreateTestPort(kLocalAddr2, "rfrag", "rpass"));
1547 port->SetIceProtocolType(ICEPROTO_RFC5245);
1548
1549 talk_base::scoped_ptr<IceMessage> in_msg, out_msg;
1550 talk_base::scoped_ptr<ByteBuffer> buf(new ByteBuffer());
1551 talk_base::SocketAddress addr(kLocalAddr1);
1552 std::string username;
1553
1554 // BINDING-REQUEST from local to remote with valid ICE username,
1555 // MESSAGE-INTEGRITY, and FINGERPRINT.
1556 in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST,
1557 "rfrag:lfrag"));
1558 in_msg->AddMessageIntegrity("rpass");
1559 in_msg->AddFingerprint();
1560 WriteStunMessage(in_msg.get(), buf.get());
1561 EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
1562 out_msg.accept(), &username));
1563 EXPECT_TRUE(out_msg.get() != NULL);
1564 EXPECT_EQ("lfrag", username);
1565
1566 // BINDING-RESPONSE without username, with MESSAGE-INTEGRITY and FINGERPRINT.
1567 in_msg.reset(CreateStunMessage(STUN_BINDING_RESPONSE));
1568 in_msg->AddAttribute(
1569 new StunXorAddressAttribute(STUN_ATTR_XOR_MAPPED_ADDRESS, kLocalAddr2));
1570 in_msg->AddMessageIntegrity("rpass");
1571 in_msg->AddFingerprint();
1572 WriteStunMessage(in_msg.get(), buf.get());
1573 EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
1574 out_msg.accept(), &username));
1575 EXPECT_TRUE(out_msg.get() != NULL);
1576 EXPECT_EQ("", username);
1577
1578 // BINDING-ERROR-RESPONSE without username, with error, M-I, and FINGERPRINT.
1579 in_msg.reset(CreateStunMessage(STUN_BINDING_ERROR_RESPONSE));
1580 in_msg->AddAttribute(new StunErrorCodeAttribute(STUN_ATTR_ERROR_CODE,
1581 STUN_ERROR_SERVER_ERROR, STUN_ERROR_REASON_SERVER_ERROR));
1582 in_msg->AddFingerprint();
1583 WriteStunMessage(in_msg.get(), buf.get());
1584 EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
1585 out_msg.accept(), &username));
1586 EXPECT_TRUE(out_msg.get() != NULL);
1587 EXPECT_EQ("", username);
1588 ASSERT_TRUE(out_msg->GetErrorCode() != NULL);
1589 EXPECT_EQ(STUN_ERROR_SERVER_ERROR, out_msg->GetErrorCode()->code());
1590 EXPECT_EQ(std::string(STUN_ERROR_REASON_SERVER_ERROR),
1591 out_msg->GetErrorCode()->reason());
1592}
1593
1594// Tests handling of GICE binding requests with missing or incorrect usernames.
1595TEST_F(PortTest, TestHandleStunMessageAsGiceBadUsername) {
1596 talk_base::scoped_ptr<TestPort> port(
1597 CreateTestPort(kLocalAddr2, "rfrag", "rpass"));
1598 port->SetIceProtocolType(ICEPROTO_GOOGLE);
1599
1600 talk_base::scoped_ptr<IceMessage> in_msg, out_msg;
1601 talk_base::scoped_ptr<ByteBuffer> buf(new ByteBuffer());
1602 talk_base::SocketAddress addr(kLocalAddr1);
1603 std::string username;
1604
1605 // BINDING-REQUEST with no username.
1606 in_msg.reset(CreateStunMessage(STUN_BINDING_REQUEST));
1607 WriteStunMessage(in_msg.get(), buf.get());
1608 EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
1609 out_msg.accept(), &username));
1610 EXPECT_TRUE(out_msg.get() == NULL);
1611 EXPECT_EQ("", username);
1612 EXPECT_EQ(STUN_ERROR_BAD_REQUEST_AS_GICE, port->last_stun_error_code());
1613
1614 // BINDING-REQUEST with empty username.
1615 in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST, ""));
1616 WriteStunMessage(in_msg.get(), buf.get());
1617 EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
1618 out_msg.accept(), &username));
1619 EXPECT_TRUE(out_msg.get() == NULL);
1620 EXPECT_EQ("", username);
1621 EXPECT_EQ(STUN_ERROR_UNAUTHORIZED_AS_GICE, port->last_stun_error_code());
1622
1623 // BINDING-REQUEST with too-short username.
1624 in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST, "lfra"));
1625 WriteStunMessage(in_msg.get(), buf.get());
1626 EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
1627 out_msg.accept(), &username));
1628 EXPECT_TRUE(out_msg.get() == NULL);
1629 EXPECT_EQ("", username);
1630 EXPECT_EQ(STUN_ERROR_UNAUTHORIZED_AS_GICE, port->last_stun_error_code());
1631
1632 // BINDING-REQUEST with reversed username.
1633 in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST,
1634 "lfragrfrag"));
1635 WriteStunMessage(in_msg.get(), buf.get());
1636 EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
1637 out_msg.accept(), &username));
1638 EXPECT_TRUE(out_msg.get() == NULL);
1639 EXPECT_EQ("", username);
1640 EXPECT_EQ(STUN_ERROR_UNAUTHORIZED_AS_GICE, port->last_stun_error_code());
1641
1642 // BINDING-REQUEST with garbage username.
1643 in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST,
1644 "abcdefgh"));
1645 WriteStunMessage(in_msg.get(), buf.get());
1646 EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
1647 out_msg.accept(), &username));
1648 EXPECT_TRUE(out_msg.get() == NULL);
1649 EXPECT_EQ("", username);
1650 EXPECT_EQ(STUN_ERROR_UNAUTHORIZED_AS_GICE, port->last_stun_error_code());
1651}
1652
1653// Tests handling of ICE binding requests with missing or incorrect usernames.
1654TEST_F(PortTest, TestHandleStunMessageAsIceBadUsername) {
1655 talk_base::scoped_ptr<TestPort> port(
1656 CreateTestPort(kLocalAddr2, "rfrag", "rpass"));
1657 port->SetIceProtocolType(ICEPROTO_RFC5245);
1658
1659 talk_base::scoped_ptr<IceMessage> in_msg, out_msg;
1660 talk_base::scoped_ptr<ByteBuffer> buf(new ByteBuffer());
1661 talk_base::SocketAddress addr(kLocalAddr1);
1662 std::string username;
1663
1664 // BINDING-REQUEST with no username.
1665 in_msg.reset(CreateStunMessage(STUN_BINDING_REQUEST));
1666 in_msg->AddMessageIntegrity("rpass");
1667 in_msg->AddFingerprint();
1668 WriteStunMessage(in_msg.get(), buf.get());
1669 EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
1670 out_msg.accept(), &username));
1671 EXPECT_TRUE(out_msg.get() == NULL);
1672 EXPECT_EQ("", username);
1673 EXPECT_EQ(STUN_ERROR_BAD_REQUEST, port->last_stun_error_code());
1674
1675 // BINDING-REQUEST with empty username.
1676 in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST, ""));
1677 in_msg->AddMessageIntegrity("rpass");
1678 in_msg->AddFingerprint();
1679 WriteStunMessage(in_msg.get(), buf.get());
1680 EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
1681 out_msg.accept(), &username));
1682 EXPECT_TRUE(out_msg.get() == NULL);
1683 EXPECT_EQ("", username);
1684 EXPECT_EQ(STUN_ERROR_UNAUTHORIZED, port->last_stun_error_code());
1685
1686 // BINDING-REQUEST with too-short username.
1687 in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST, "rfra"));
1688 in_msg->AddMessageIntegrity("rpass");
1689 in_msg->AddFingerprint();
1690 WriteStunMessage(in_msg.get(), buf.get());
1691 EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
1692 out_msg.accept(), &username));
1693 EXPECT_TRUE(out_msg.get() == NULL);
1694 EXPECT_EQ("", username);
1695 EXPECT_EQ(STUN_ERROR_UNAUTHORIZED, port->last_stun_error_code());
1696
1697 // BINDING-REQUEST with reversed username.
1698 in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST,
1699 "lfrag:rfrag"));
1700 in_msg->AddMessageIntegrity("rpass");
1701 in_msg->AddFingerprint();
1702 WriteStunMessage(in_msg.get(), buf.get());
1703 EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
1704 out_msg.accept(), &username));
1705 EXPECT_TRUE(out_msg.get() == NULL);
1706 EXPECT_EQ("", username);
1707 EXPECT_EQ(STUN_ERROR_UNAUTHORIZED, port->last_stun_error_code());
1708
1709 // BINDING-REQUEST with garbage username.
1710 in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST,
1711 "abcd:efgh"));
1712 in_msg->AddMessageIntegrity("rpass");
1713 in_msg->AddFingerprint();
1714 WriteStunMessage(in_msg.get(), buf.get());
1715 EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
1716 out_msg.accept(), &username));
1717 EXPECT_TRUE(out_msg.get() == NULL);
1718 EXPECT_EQ("", username);
1719 EXPECT_EQ(STUN_ERROR_UNAUTHORIZED, port->last_stun_error_code());
1720}
1721
1722// Test handling STUN messages (as ICE) with missing or malformed M-I.
1723TEST_F(PortTest, TestHandleStunMessageAsIceBadMessageIntegrity) {
1724 // Our port will act as the "remote" port.
1725 talk_base::scoped_ptr<TestPort> port(
1726 CreateTestPort(kLocalAddr2, "rfrag", "rpass"));
1727 port->SetIceProtocolType(ICEPROTO_RFC5245);
1728
1729 talk_base::scoped_ptr<IceMessage> in_msg, out_msg;
1730 talk_base::scoped_ptr<ByteBuffer> buf(new ByteBuffer());
1731 talk_base::SocketAddress addr(kLocalAddr1);
1732 std::string username;
1733
1734 // BINDING-REQUEST from local to remote with valid ICE username and
1735 // FINGERPRINT, but no MESSAGE-INTEGRITY.
1736 in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST,
1737 "rfrag:lfrag"));
1738 in_msg->AddFingerprint();
1739 WriteStunMessage(in_msg.get(), buf.get());
1740 EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
1741 out_msg.accept(), &username));
1742 EXPECT_TRUE(out_msg.get() == NULL);
1743 EXPECT_EQ("", username);
1744 EXPECT_EQ(STUN_ERROR_BAD_REQUEST, port->last_stun_error_code());
1745
1746 // BINDING-REQUEST from local to remote with valid ICE username and
1747 // FINGERPRINT, but invalid MESSAGE-INTEGRITY.
1748 in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST,
1749 "rfrag:lfrag"));
1750 in_msg->AddMessageIntegrity("invalid");
1751 in_msg->AddFingerprint();
1752 WriteStunMessage(in_msg.get(), buf.get());
1753 EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
1754 out_msg.accept(), &username));
1755 EXPECT_TRUE(out_msg.get() == NULL);
1756 EXPECT_EQ("", username);
1757 EXPECT_EQ(STUN_ERROR_UNAUTHORIZED, port->last_stun_error_code());
1758
1759 // TODO: BINDING-RESPONSES and BINDING-ERROR-RESPONSES are checked
1760 // by the Connection, not the Port, since they require the remote username.
1761 // Change this test to pass in data via Connection::OnReadPacket instead.
1762}
1763
1764// Test handling STUN messages (as ICE) with missing or malformed FINGERPRINT.
1765TEST_F(PortTest, TestHandleStunMessageAsIceBadFingerprint) {
1766 // Our port will act as the "remote" port.
1767 talk_base::scoped_ptr<TestPort> port(
1768 CreateTestPort(kLocalAddr2, "rfrag", "rpass"));
1769 port->SetIceProtocolType(ICEPROTO_RFC5245);
1770
1771 talk_base::scoped_ptr<IceMessage> in_msg, out_msg;
1772 talk_base::scoped_ptr<ByteBuffer> buf(new ByteBuffer());
1773 talk_base::SocketAddress addr(kLocalAddr1);
1774 std::string username;
1775
1776 // BINDING-REQUEST from local to remote with valid ICE username and
1777 // MESSAGE-INTEGRITY, but no FINGERPRINT; GetStunMessage should fail.
1778 in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST,
1779 "rfrag:lfrag"));
1780 in_msg->AddMessageIntegrity("rpass");
1781 WriteStunMessage(in_msg.get(), buf.get());
1782 EXPECT_FALSE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
1783 out_msg.accept(), &username));
1784 EXPECT_EQ(0, port->last_stun_error_code());
1785
1786 // Now, add a fingerprint, but munge the message so it's not valid.
1787 in_msg->AddFingerprint();
1788 in_msg->SetTransactionID("TESTTESTBADD");
1789 WriteStunMessage(in_msg.get(), buf.get());
1790 EXPECT_FALSE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
1791 out_msg.accept(), &username));
1792 EXPECT_EQ(0, port->last_stun_error_code());
1793
1794 // Valid BINDING-RESPONSE, except no FINGERPRINT.
1795 in_msg.reset(CreateStunMessage(STUN_BINDING_RESPONSE));
1796 in_msg->AddAttribute(
1797 new StunXorAddressAttribute(STUN_ATTR_XOR_MAPPED_ADDRESS, kLocalAddr2));
1798 in_msg->AddMessageIntegrity("rpass");
1799 WriteStunMessage(in_msg.get(), buf.get());
1800 EXPECT_FALSE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
1801 out_msg.accept(), &username));
1802 EXPECT_EQ(0, port->last_stun_error_code());
1803
1804 // Now, add a fingerprint, but munge the message so it's not valid.
1805 in_msg->AddFingerprint();
1806 in_msg->SetTransactionID("TESTTESTBADD");
1807 WriteStunMessage(in_msg.get(), buf.get());
1808 EXPECT_FALSE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
1809 out_msg.accept(), &username));
1810 EXPECT_EQ(0, port->last_stun_error_code());
1811
1812 // Valid BINDING-ERROR-RESPONSE, except no FINGERPRINT.
1813 in_msg.reset(CreateStunMessage(STUN_BINDING_ERROR_RESPONSE));
1814 in_msg->AddAttribute(new StunErrorCodeAttribute(STUN_ATTR_ERROR_CODE,
1815 STUN_ERROR_SERVER_ERROR, STUN_ERROR_REASON_SERVER_ERROR));
1816 in_msg->AddMessageIntegrity("rpass");
1817 WriteStunMessage(in_msg.get(), buf.get());
1818 EXPECT_FALSE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
1819 out_msg.accept(), &username));
1820 EXPECT_EQ(0, port->last_stun_error_code());
1821
1822 // Now, add a fingerprint, but munge the message so it's not valid.
1823 in_msg->AddFingerprint();
1824 in_msg->SetTransactionID("TESTTESTBADD");
1825 WriteStunMessage(in_msg.get(), buf.get());
1826 EXPECT_FALSE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
1827 out_msg.accept(), &username));
1828 EXPECT_EQ(0, port->last_stun_error_code());
1829}
1830
1831// Test handling of STUN binding indication messages (as ICE). STUN binding
1832// indications are allowed only to the connection which is in read mode.
1833TEST_F(PortTest, TestHandleStunBindingIndication) {
1834 talk_base::scoped_ptr<TestPort> lport(
1835 CreateTestPort(kLocalAddr2, "lfrag", "lpass"));
1836 lport->SetIceProtocolType(ICEPROTO_RFC5245);
1837 lport->SetRole(cricket::ROLE_CONTROLLING);
1838 lport->SetTiebreaker(kTiebreaker1);
1839
1840 // Verifying encoding and decoding STUN indication message.
1841 talk_base::scoped_ptr<IceMessage> in_msg, out_msg;
1842 talk_base::scoped_ptr<ByteBuffer> buf(new ByteBuffer());
1843 talk_base::SocketAddress addr(kLocalAddr1);
1844 std::string username;
1845
1846 in_msg.reset(CreateStunMessage(STUN_BINDING_INDICATION));
1847 in_msg->AddFingerprint();
1848 WriteStunMessage(in_msg.get(), buf.get());
1849 EXPECT_TRUE(lport->GetStunMessage(buf->Data(), buf->Length(), addr,
1850 out_msg.accept(), &username));
1851 EXPECT_TRUE(out_msg.get() != NULL);
1852 EXPECT_EQ(out_msg->type(), STUN_BINDING_INDICATION);
1853 EXPECT_EQ("", username);
1854
1855 // Verify connection can handle STUN indication and updates
1856 // last_ping_received.
1857 talk_base::scoped_ptr<TestPort> rport(
1858 CreateTestPort(kLocalAddr2, "rfrag", "rpass"));
1859 rport->SetIceProtocolType(ICEPROTO_RFC5245);
1860 rport->SetRole(cricket::ROLE_CONTROLLED);
1861 rport->SetTiebreaker(kTiebreaker2);
1862
1863 lport->PrepareAddress();
1864 rport->PrepareAddress();
1865 ASSERT_FALSE(lport->Candidates().empty());
1866 ASSERT_FALSE(rport->Candidates().empty());
1867
1868 Connection* lconn = lport->CreateConnection(rport->Candidates()[0],
1869 Port::ORIGIN_MESSAGE);
1870 Connection* rconn = rport->CreateConnection(lport->Candidates()[0],
1871 Port::ORIGIN_MESSAGE);
1872 rconn->Ping(0);
1873
1874 ASSERT_TRUE_WAIT(rport->last_stun_msg() != NULL, 1000);
1875 IceMessage* msg = rport->last_stun_msg();
1876 EXPECT_EQ(STUN_BINDING_REQUEST, msg->type());
1877 // Send rport binding request to lport.
1878 lconn->OnReadPacket(rport->last_stun_buf()->Data(),
1879 rport->last_stun_buf()->Length());
1880 ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, 1000);
1881 EXPECT_EQ(STUN_BINDING_RESPONSE, lport->last_stun_msg()->type());
1882 uint32 last_ping_received1 = lconn->last_ping_received();
1883
1884 // Adding a delay of 100ms.
1885 talk_base::Thread::Current()->ProcessMessages(100);
1886 // Pinging lconn using stun indication message.
1887 lconn->OnReadPacket(buf->Data(), buf->Length());
1888 uint32 last_ping_received2 = lconn->last_ping_received();
1889 EXPECT_GT(last_ping_received2, last_ping_received1);
1890}
1891
1892TEST_F(PortTest, TestComputeCandidatePriority) {
1893 talk_base::scoped_ptr<TestPort> port(
1894 CreateTestPort(kLocalAddr1, "name", "pass"));
1895 port->set_type_preference(90);
1896 port->set_component(177);
1897 port->AddCandidateAddress(SocketAddress("192.168.1.4", 1234));
1898 port->AddCandidateAddress(SocketAddress("2001:db8::1234", 1234));
1899 port->AddCandidateAddress(SocketAddress("fc12:3456::1234", 1234));
1900 port->AddCandidateAddress(SocketAddress("::ffff:192.168.1.4", 1234));
1901 port->AddCandidateAddress(SocketAddress("::192.168.1.4", 1234));
1902 port->AddCandidateAddress(SocketAddress("2002::1234:5678", 1234));
1903 port->AddCandidateAddress(SocketAddress("2001::1234:5678", 1234));
1904 port->AddCandidateAddress(SocketAddress("fecf::1234:5678", 1234));
1905 port->AddCandidateAddress(SocketAddress("3ffe::1234:5678", 1234));
1906 // These should all be:
1907 // (90 << 24) | ([rfc3484 pref value] << 8) | (256 - 177)
1908 uint32 expected_priority_v4 = 1509957199U;
1909 uint32 expected_priority_v6 = 1509959759U;
1910 uint32 expected_priority_ula = 1509962319U;
1911 uint32 expected_priority_v4mapped = expected_priority_v4;
1912 uint32 expected_priority_v4compat = 1509949775U;
1913 uint32 expected_priority_6to4 = 1509954639U;
1914 uint32 expected_priority_teredo = 1509952079U;
1915 uint32 expected_priority_sitelocal = 1509949775U;
1916 uint32 expected_priority_6bone = 1509949775U;
1917 ASSERT_EQ(expected_priority_v4, port->Candidates()[0].priority());
1918 ASSERT_EQ(expected_priority_v6, port->Candidates()[1].priority());
1919 ASSERT_EQ(expected_priority_ula, port->Candidates()[2].priority());
1920 ASSERT_EQ(expected_priority_v4mapped, port->Candidates()[3].priority());
1921 ASSERT_EQ(expected_priority_v4compat, port->Candidates()[4].priority());
1922 ASSERT_EQ(expected_priority_6to4, port->Candidates()[5].priority());
1923 ASSERT_EQ(expected_priority_teredo, port->Candidates()[6].priority());
1924 ASSERT_EQ(expected_priority_sitelocal, port->Candidates()[7].priority());
1925 ASSERT_EQ(expected_priority_6bone, port->Candidates()[8].priority());
1926}
1927
1928TEST_F(PortTest, TestPortProxyProperties) {
1929 talk_base::scoped_ptr<TestPort> port(
1930 CreateTestPort(kLocalAddr1, "name", "pass"));
1931 port->SetRole(cricket::ROLE_CONTROLLING);
1932 port->SetTiebreaker(kTiebreaker1);
1933
1934 // Create a proxy port.
1935 talk_base::scoped_ptr<PortProxy> proxy(new PortProxy());
1936 proxy->set_impl(port.get());
1937 EXPECT_EQ(port->Type(), proxy->Type());
1938 EXPECT_EQ(port->Network(), proxy->Network());
1939 EXPECT_EQ(port->Role(), proxy->Role());
1940 EXPECT_EQ(port->Tiebreaker(), proxy->Tiebreaker());
1941}
1942
1943// In the case of shared socket, one port may be shared by local and stun.
1944// Test that candidates with different types will have different foundation.
1945TEST_F(PortTest, TestFoundation) {
1946 talk_base::scoped_ptr<TestPort> testport(
1947 CreateTestPort(kLocalAddr1, "name", "pass"));
1948 testport->AddCandidateAddress(kLocalAddr1, kLocalAddr1,
1949 LOCAL_PORT_TYPE,
1950 cricket::ICE_TYPE_PREFERENCE_HOST, false);
1951 testport->AddCandidateAddress(kLocalAddr2, kLocalAddr1,
1952 STUN_PORT_TYPE,
1953 cricket::ICE_TYPE_PREFERENCE_SRFLX, true);
1954 EXPECT_NE(testport->Candidates()[0].foundation(),
1955 testport->Candidates()[1].foundation());
1956}
1957
1958// This test verifies the foundation of different types of ICE candidates.
1959TEST_F(PortTest, TestCandidateFoundation) {
1960 talk_base::scoped_ptr<talk_base::NATServer> nat_server(
1961 CreateNatServer(kNatAddr1, NAT_OPEN_CONE));
1962 talk_base::scoped_ptr<UDPPort> udpport1(CreateUdpPort(kLocalAddr1));
1963 udpport1->PrepareAddress();
1964 talk_base::scoped_ptr<UDPPort> udpport2(CreateUdpPort(kLocalAddr1));
1965 udpport2->PrepareAddress();
1966 EXPECT_EQ(udpport1->Candidates()[0].foundation(),
1967 udpport2->Candidates()[0].foundation());
1968 talk_base::scoped_ptr<TCPPort> tcpport1(CreateTcpPort(kLocalAddr1));
1969 tcpport1->PrepareAddress();
1970 talk_base::scoped_ptr<TCPPort> tcpport2(CreateTcpPort(kLocalAddr1));
1971 tcpport2->PrepareAddress();
1972 EXPECT_EQ(tcpport1->Candidates()[0].foundation(),
1973 tcpport2->Candidates()[0].foundation());
1974 talk_base::scoped_ptr<Port> stunport(
1975 CreateStunPort(kLocalAddr1, nat_socket_factory1()));
1976 stunport->PrepareAddress();
1977 ASSERT_EQ_WAIT(1U, stunport->Candidates().size(), kTimeout);
1978 EXPECT_NE(tcpport1->Candidates()[0].foundation(),
1979 stunport->Candidates()[0].foundation());
1980 EXPECT_NE(tcpport2->Candidates()[0].foundation(),
1981 stunport->Candidates()[0].foundation());
1982 EXPECT_NE(udpport1->Candidates()[0].foundation(),
1983 stunport->Candidates()[0].foundation());
1984 EXPECT_NE(udpport2->Candidates()[0].foundation(),
1985 stunport->Candidates()[0].foundation());
1986 // Verify GTURN candidate foundation.
1987 talk_base::scoped_ptr<RelayPort> relayport(
1988 CreateGturnPort(kLocalAddr1));
1989 relayport->AddServerAddress(
1990 cricket::ProtocolAddress(kRelayUdpIntAddr, cricket::PROTO_UDP));
1991 relayport->PrepareAddress();
1992 ASSERT_EQ_WAIT(1U, relayport->Candidates().size(), kTimeout);
1993 EXPECT_NE(udpport1->Candidates()[0].foundation(),
1994 relayport->Candidates()[0].foundation());
1995 EXPECT_NE(udpport2->Candidates()[0].foundation(),
1996 relayport->Candidates()[0].foundation());
1997 // Verifying TURN candidate foundation.
1998 talk_base::scoped_ptr<Port> turnport(CreateTurnPort(
1999 kLocalAddr1, nat_socket_factory1(), PROTO_UDP, PROTO_UDP));
2000 turnport->PrepareAddress();
2001 ASSERT_EQ_WAIT(1U, turnport->Candidates().size(), kTimeout);
2002 EXPECT_NE(udpport1->Candidates()[0].foundation(),
2003 turnport->Candidates()[0].foundation());
2004 EXPECT_NE(udpport2->Candidates()[0].foundation(),
2005 turnport->Candidates()[0].foundation());
2006 EXPECT_NE(stunport->Candidates()[0].foundation(),
2007 turnport->Candidates()[0].foundation());
2008}
2009
2010// This test verifies the related addresses of different types of
2011// ICE candiates.
2012TEST_F(PortTest, TestCandidateRelatedAddress) {
2013 talk_base::scoped_ptr<talk_base::NATServer> nat_server(
2014 CreateNatServer(kNatAddr1, NAT_OPEN_CONE));
2015 talk_base::scoped_ptr<UDPPort> udpport(CreateUdpPort(kLocalAddr1));
2016 udpport->PrepareAddress();
2017 // For UDPPort, related address will be empty.
2018 EXPECT_TRUE(udpport->Candidates()[0].related_address().IsNil());
2019 // Testing related address for stun candidates.
2020 // For stun candidate related address must be equal to the base
2021 // socket address.
2022 talk_base::scoped_ptr<StunPort> stunport(
2023 CreateStunPort(kLocalAddr1, nat_socket_factory1()));
2024 stunport->PrepareAddress();
2025 ASSERT_EQ_WAIT(1U, stunport->Candidates().size(), kTimeout);
2026 // Check STUN candidate address.
2027 EXPECT_EQ(stunport->Candidates()[0].address().ipaddr(),
2028 kNatAddr1.ipaddr());
2029 // Check STUN candidate related address.
2030 EXPECT_EQ(stunport->Candidates()[0].related_address(),
2031 stunport->GetLocalAddress());
2032 // Verifying the related address for the GTURN candidates.
2033 // NOTE: In case of GTURN related address will be equal to the mapped
2034 // address, but address(mapped) will not be XOR.
2035 talk_base::scoped_ptr<RelayPort> relayport(
2036 CreateGturnPort(kLocalAddr1));
2037 relayport->AddServerAddress(
2038 cricket::ProtocolAddress(kRelayUdpIntAddr, cricket::PROTO_UDP));
2039 relayport->PrepareAddress();
2040 ASSERT_EQ_WAIT(1U, relayport->Candidates().size(), kTimeout);
2041 // For Gturn related address is set to "0.0.0.0:0"
2042 EXPECT_EQ(talk_base::SocketAddress(),
2043 relayport->Candidates()[0].related_address());
2044 // Verifying the related address for TURN candidate.
2045 // For TURN related address must be equal to the mapped address.
2046 talk_base::scoped_ptr<Port> turnport(CreateTurnPort(
2047 kLocalAddr1, nat_socket_factory1(), PROTO_UDP, PROTO_UDP));
2048 turnport->PrepareAddress();
2049 ASSERT_EQ_WAIT(1U, turnport->Candidates().size(), kTimeout);
2050 EXPECT_EQ(kTurnUdpExtAddr.ipaddr(),
2051 turnport->Candidates()[0].address().ipaddr());
2052 EXPECT_EQ(kNatAddr1.ipaddr(),
2053 turnport->Candidates()[0].related_address().ipaddr());
2054}
2055
2056// Test priority value overflow handling when preference is set to 3.
2057TEST_F(PortTest, TestCandidatePreference) {
2058 cricket::Candidate cand1;
2059 cand1.set_preference(3);
2060 cricket::Candidate cand2;
2061 cand2.set_preference(1);
2062 EXPECT_TRUE(cand1.preference() > cand2.preference());
2063}
2064
2065// Test the Connection priority is calculated correctly.
2066TEST_F(PortTest, TestConnectionPriority) {
2067 talk_base::scoped_ptr<TestPort> lport(
2068 CreateTestPort(kLocalAddr1, "lfrag", "lpass"));
2069 lport->set_type_preference(cricket::ICE_TYPE_PREFERENCE_HOST);
2070 talk_base::scoped_ptr<TestPort> rport(
2071 CreateTestPort(kLocalAddr2, "rfrag", "rpass"));
2072 rport->set_type_preference(cricket::ICE_TYPE_PREFERENCE_RELAY);
2073 lport->set_component(123);
2074 lport->AddCandidateAddress(SocketAddress("192.168.1.4", 1234));
2075 rport->set_component(23);
2076 rport->AddCandidateAddress(SocketAddress("10.1.1.100", 1234));
2077
2078 EXPECT_EQ(0x7E001E85U, lport->Candidates()[0].priority());
2079 EXPECT_EQ(0x2001EE9U, rport->Candidates()[0].priority());
2080
2081 // RFC 5245
2082 // pair priority = 2^32*MIN(G,D) + 2*MAX(G,D) + (G>D?1:0)
2083 lport->SetRole(cricket::ROLE_CONTROLLING);
2084 rport->SetRole(cricket::ROLE_CONTROLLED);
2085 Connection* lconn = lport->CreateConnection(
2086 rport->Candidates()[0], Port::ORIGIN_MESSAGE);
2087#if defined(WIN32)
2088 EXPECT_EQ(0x2001EE9FC003D0BU, lconn->priority());
2089#else
2090 EXPECT_EQ(0x2001EE9FC003D0BLLU, lconn->priority());
2091#endif
2092
2093 lport->SetRole(cricket::ROLE_CONTROLLED);
2094 rport->SetRole(cricket::ROLE_CONTROLLING);
2095 Connection* rconn = rport->CreateConnection(
2096 lport->Candidates()[0], Port::ORIGIN_MESSAGE);
2097#if defined(WIN32)
2098 EXPECT_EQ(0x2001EE9FC003D0AU, rconn->priority());
2099#else
2100 EXPECT_EQ(0x2001EE9FC003D0ALLU, rconn->priority());
2101#endif
2102}
2103
2104TEST_F(PortTest, TestWritableState) {
2105 UDPPort* port1 = CreateUdpPort(kLocalAddr1);
2106 UDPPort* port2 = CreateUdpPort(kLocalAddr2);
2107
2108 // Set up channels.
2109 TestChannel ch1(port1, port2);
2110 TestChannel ch2(port2, port1);
2111
2112 // Acquire addresses.
2113 ch1.Start();
2114 ch2.Start();
2115 ASSERT_EQ_WAIT(1, ch1.complete_count(), kTimeout);
2116 ASSERT_EQ_WAIT(1, ch2.complete_count(), kTimeout);
2117
2118 // Send a ping from src to dst.
2119 ch1.CreateConnection();
2120 ASSERT_TRUE(ch1.conn() != NULL);
2121 EXPECT_EQ(Connection::STATE_WRITE_INIT, ch1.conn()->write_state());
2122 EXPECT_TRUE_WAIT(ch1.conn()->connected(), kTimeout); // for TCP connect
2123 ch1.Ping();
2124 WAIT(!ch2.remote_address().IsNil(), kTimeout);
2125
2126 // Data should be unsendable until the connection is accepted.
2127 char data[] = "abcd";
2128 int data_size = ARRAY_SIZE(data);
2129 EXPECT_EQ(SOCKET_ERROR, ch1.conn()->Send(data, data_size));
2130
2131 // Accept the connection to return the binding response, transition to
2132 // writable, and allow data to be sent.
2133 ch2.AcceptConnection();
2134 EXPECT_EQ_WAIT(Connection::STATE_WRITABLE, ch1.conn()->write_state(),
2135 kTimeout);
2136 EXPECT_EQ(data_size, ch1.conn()->Send(data, data_size));
2137
2138 // Ask the connection to update state as if enough time has passed to lose
2139 // full writability and 5 pings went unresponded to. We'll accomplish the
2140 // latter by sending pings but not pumping messages.
2141 for (uint32 i = 1; i <= CONNECTION_WRITE_CONNECT_FAILURES; ++i) {
2142 ch1.Ping(i);
2143 }
2144 uint32 unreliable_timeout_delay = CONNECTION_WRITE_CONNECT_TIMEOUT + 500u;
2145 ch1.conn()->UpdateState(unreliable_timeout_delay);
2146 EXPECT_EQ(Connection::STATE_WRITE_UNRELIABLE, ch1.conn()->write_state());
2147
2148 // Data should be able to be sent in this state.
2149 EXPECT_EQ(data_size, ch1.conn()->Send(data, data_size));
2150
2151 // And now allow the other side to process the pings and send binding
2152 // responses.
2153 EXPECT_EQ_WAIT(Connection::STATE_WRITABLE, ch1.conn()->write_state(),
2154 kTimeout);
2155
2156 // Wait long enough for a full timeout (past however long we've already
2157 // waited).
2158 for (uint32 i = 1; i <= CONNECTION_WRITE_CONNECT_FAILURES; ++i) {
2159 ch1.Ping(unreliable_timeout_delay + i);
2160 }
2161 ch1.conn()->UpdateState(unreliable_timeout_delay + CONNECTION_WRITE_TIMEOUT +
2162 500u);
2163 EXPECT_EQ(Connection::STATE_WRITE_TIMEOUT, ch1.conn()->write_state());
2164
2165 // Now that the connection has completely timed out, data send should fail.
2166 EXPECT_EQ(SOCKET_ERROR, ch1.conn()->Send(data, data_size));
2167
2168 ch1.Stop();
2169 ch2.Stop();
2170}
2171
2172TEST_F(PortTest, TestTimeoutForNeverWritable) {
2173 UDPPort* port1 = CreateUdpPort(kLocalAddr1);
2174 UDPPort* port2 = CreateUdpPort(kLocalAddr2);
2175
2176 // Set up channels.
2177 TestChannel ch1(port1, port2);
2178 TestChannel ch2(port2, port1);
2179
2180 // Acquire addresses.
2181 ch1.Start();
2182 ch2.Start();
2183
2184 ch1.CreateConnection();
2185 ASSERT_TRUE(ch1.conn() != NULL);
2186 EXPECT_EQ(Connection::STATE_WRITE_INIT, ch1.conn()->write_state());
2187
2188 // Attempt to go directly to write timeout.
2189 for (uint32 i = 1; i <= CONNECTION_WRITE_CONNECT_FAILURES; ++i) {
2190 ch1.Ping(i);
2191 }
2192 ch1.conn()->UpdateState(CONNECTION_WRITE_TIMEOUT + 500u);
2193 EXPECT_EQ(Connection::STATE_WRITE_TIMEOUT, ch1.conn()->write_state());
2194}
2195
2196// This test verifies the connection setup between ICEMODE_FULL
2197// and ICEMODE_LITE.
2198// In this test |ch1| behaves like FULL mode client and we have created
2199// port which responds to the ping message just like LITE client.
2200TEST_F(PortTest, TestIceLiteConnectivity) {
2201 TestPort* ice_full_port = CreateTestPort(
2202 kLocalAddr1, "lfrag", "lpass", cricket::ICEPROTO_RFC5245,
2203 cricket::ROLE_CONTROLLING, kTiebreaker1);
2204
2205 talk_base::scoped_ptr<TestPort> ice_lite_port(CreateTestPort(
2206 kLocalAddr2, "rfrag", "rpass", cricket::ICEPROTO_RFC5245,
2207 cricket::ROLE_CONTROLLED, kTiebreaker2));
2208 // Setup TestChannel. This behaves like FULL mode client.
2209 TestChannel ch1(ice_full_port, ice_lite_port.get());
2210 ch1.SetIceMode(ICEMODE_FULL);
2211
2212 // Start gathering candidates.
2213 ch1.Start();
2214 ice_lite_port->PrepareAddress();
2215
2216 ASSERT_EQ_WAIT(1, ch1.complete_count(), kTimeout);
2217 ASSERT_FALSE(ice_lite_port->Candidates().empty());
2218
2219 ch1.CreateConnection();
2220 ASSERT_TRUE(ch1.conn() != NULL);
2221 EXPECT_EQ(Connection::STATE_WRITE_INIT, ch1.conn()->write_state());
2222
2223 // Send ping from full mode client.
2224 // This ping must not have USE_CANDIDATE_ATTR.
2225 ch1.Ping();
2226
2227 // Verify stun ping is without USE_CANDIDATE_ATTR. Getting message directly
2228 // from port.
2229 ASSERT_TRUE_WAIT(ice_full_port->last_stun_msg() != NULL, 1000);
2230 IceMessage* msg = ice_full_port->last_stun_msg();
2231 EXPECT_TRUE(msg->GetByteString(STUN_ATTR_USE_CANDIDATE) == NULL);
2232
2233 // Respond with a BINDING-RESPONSE from litemode client.
2234 // NOTE: Ideally we should't create connection at this stage from lite
2235 // port, as it should be done only after receiving ping with USE_CANDIDATE.
2236 // But we need a connection to send a response message.
2237 ice_lite_port->CreateConnection(
2238 ice_full_port->Candidates()[0], cricket::Port::ORIGIN_MESSAGE);
2239 talk_base::scoped_ptr<IceMessage> request(CopyStunMessage(msg));
2240 ice_lite_port->SendBindingResponse(
2241 request.get(), ice_full_port->Candidates()[0].address());
2242
2243 // Feeding the respone message from litemode to the full mode connection.
2244 ch1.conn()->OnReadPacket(ice_lite_port->last_stun_buf()->Data(),
2245 ice_lite_port->last_stun_buf()->Length());
2246 // Verifying full mode connection becomes writable from the response.
2247 EXPECT_EQ_WAIT(Connection::STATE_WRITABLE, ch1.conn()->write_state(),
2248 kTimeout);
2249 EXPECT_TRUE_WAIT(ch1.nominated(), kTimeout);
2250
2251 // Clear existing stun messsages. Otherwise we will process old stun
2252 // message right after we send ping.
2253 ice_full_port->Reset();
2254 // Send ping. This must have USE_CANDIDATE_ATTR.
2255 ch1.Ping();
2256 ASSERT_TRUE_WAIT(ice_full_port->last_stun_msg() != NULL, 1000);
2257 msg = ice_full_port->last_stun_msg();
2258 EXPECT_TRUE(msg->GetByteString(STUN_ATTR_USE_CANDIDATE) != NULL);
2259 ch1.Stop();
2260}
2261