henrik.lundin@webrtc.org | d94659d | 2013-01-29 12:09:21 +0000 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. |
| 3 | * |
| 4 | * Use of this source code is governed by a BSD-style license |
| 5 | * that can be found in the LICENSE file in the root of the source |
| 6 | * tree. An additional intellectual property rights grant can be found |
| 7 | * in the file PATENTS. All contributing project authors may |
| 8 | * be found in the AUTHORS file in the root of the source tree. |
| 9 | */ |
| 10 | |
| 11 | #include "webrtc/modules/audio_coding/neteq4/payload_splitter.h" |
| 12 | |
| 13 | #include <assert.h> |
| 14 | |
| 15 | #include "webrtc/modules/audio_coding/neteq4/decoder_database.h" |
| 16 | |
| 17 | namespace webrtc { |
| 18 | |
| 19 | // The method loops through a list of packets {A, B, C, ...}. Each packet is |
| 20 | // split into its corresponding RED payloads, {A1, A2, ...}, which is |
| 21 | // temporarily held in the list |new_packets|. |
| 22 | // When the first packet in |packet_list| has been processed, the orignal packet |
| 23 | // is replaced by the new ones in |new_packets|, so that |packet_list| becomes: |
| 24 | // {A1, A2, ..., B, C, ...}. The method then continues with B, and C, until all |
| 25 | // the original packets have been replaced by their split payloads. |
| 26 | int PayloadSplitter::SplitRed(PacketList* packet_list) { |
| 27 | int ret = kOK; |
| 28 | PacketList::iterator it = packet_list->begin(); |
| 29 | while (it != packet_list->end()) { |
| 30 | PacketList new_packets; // An empty list to store the split packets in. |
| 31 | Packet* red_packet = (*it); |
| 32 | assert(red_packet->payload); |
| 33 | uint8_t* payload_ptr = red_packet->payload; |
| 34 | |
| 35 | // Read RED headers (according to RFC 2198): |
| 36 | // |
| 37 | // 0 1 2 3 |
| 38 | // 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 |
| 39 | // +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
| 40 | // |F| block PT | timestamp offset | block length | |
| 41 | // +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
| 42 | // Last RED header: |
| 43 | // 0 1 2 3 4 5 6 7 |
| 44 | // +-+-+-+-+-+-+-+-+ |
| 45 | // |0| Block PT | |
| 46 | // +-+-+-+-+-+-+-+-+ |
| 47 | |
| 48 | bool last_block = false; |
| 49 | int sum_length = 0; |
| 50 | while (!last_block) { |
| 51 | Packet* new_packet = new Packet; |
| 52 | new_packet->header = red_packet->header; |
| 53 | // Check the F bit. If F == 0, this was the last block. |
| 54 | last_block = ((*payload_ptr & 0x80) == 0); |
| 55 | // Bits 1 through 7 are payload type. |
| 56 | new_packet->header.payloadType = payload_ptr[0] & 0x7F; |
| 57 | if (last_block) { |
| 58 | // No more header data to read. |
| 59 | ++sum_length; // Account for RED header size of 1 byte. |
| 60 | new_packet->payload_length = red_packet->payload_length - sum_length; |
| 61 | new_packet->primary = true; // Last block is always primary. |
| 62 | payload_ptr += 1; // Advance to first payload byte. |
| 63 | } else { |
| 64 | // Bits 8 through 21 are timestamp offset. |
| 65 | int timestamp_offset = (payload_ptr[1] << 6) + |
| 66 | ((payload_ptr[2] & 0xFC) >> 2); |
| 67 | new_packet->header.timestamp = red_packet->header.timestamp - |
| 68 | timestamp_offset; |
| 69 | // Bits 22 through 31 are payload length. |
| 70 | new_packet->payload_length = ((payload_ptr[2] & 0x03) << 8) + |
| 71 | payload_ptr[3]; |
| 72 | new_packet->primary = false; |
| 73 | payload_ptr += 4; // Advance to next RED header. |
| 74 | } |
| 75 | sum_length += new_packet->payload_length; |
| 76 | sum_length += 4; // Account for RED header size of 4 bytes. |
| 77 | // Store in new list of packets. |
| 78 | new_packets.push_back(new_packet); |
| 79 | } |
| 80 | |
| 81 | // Populate the new packets with payload data. |
| 82 | // |payload_ptr| now points at the first payload byte. |
| 83 | PacketList::iterator new_it; |
| 84 | for (new_it = new_packets.begin(); new_it != new_packets.end(); ++new_it) { |
| 85 | int payload_length = (*new_it)->payload_length; |
| 86 | if (payload_ptr + payload_length > |
| 87 | red_packet->payload + red_packet->payload_length) { |
| 88 | // The block lengths in the RED headers do not match the overall packet |
| 89 | // length. Something is corrupt. Discard this and the remaining |
| 90 | // payloads from this packet. |
| 91 | while (new_it != new_packets.end()) { |
| 92 | // Payload should not have been allocated yet. |
| 93 | assert(!(*new_it)->payload); |
| 94 | delete (*new_it); |
| 95 | new_it = new_packets.erase(new_it); |
| 96 | } |
| 97 | ret = kRedLengthMismatch; |
| 98 | break; |
| 99 | } |
| 100 | (*new_it)->payload = new uint8_t[payload_length]; |
| 101 | memcpy((*new_it)->payload, payload_ptr, payload_length); |
| 102 | payload_ptr += payload_length; |
| 103 | } |
| 104 | // Reverse the order of the new packets, so that the primary payload is |
| 105 | // always first. |
| 106 | new_packets.reverse(); |
| 107 | // Insert new packets into original list, before the element pointed to by |
| 108 | // iterator |it|. |
| 109 | packet_list->splice(it, new_packets, new_packets.begin(), |
| 110 | new_packets.end()); |
| 111 | // Delete old packet payload. |
| 112 | delete [] (*it)->payload; |
| 113 | delete (*it); |
| 114 | // Remove |it| from the packet list. This operation effectively moves the |
| 115 | // iterator |it| to the next packet in the list. Thus, we do not have to |
| 116 | // increment it manually. |
| 117 | it = packet_list->erase(it); |
| 118 | } |
| 119 | return ret; |
| 120 | } |
| 121 | |
| 122 | int PayloadSplitter::CheckRedPayloads(PacketList* packet_list, |
| 123 | const DecoderDatabase& decoder_database) { |
| 124 | PacketList::iterator it = packet_list->begin(); |
| 125 | int main_payload_type = -1; |
| 126 | int num_deleted_packets = 0; |
| 127 | while (it != packet_list->end()) { |
| 128 | uint8_t this_payload_type = (*it)->header.payloadType; |
| 129 | if (!decoder_database.IsDtmf(this_payload_type) && |
| 130 | !decoder_database.IsComfortNoise(this_payload_type)) { |
| 131 | if (main_payload_type == -1) { |
| 132 | // This is the first packet in the list which is non-DTMF non-CNG. |
| 133 | main_payload_type = this_payload_type; |
| 134 | } else { |
| 135 | if (this_payload_type != main_payload_type) { |
| 136 | // We do not allow redundant payloads of a different type. |
| 137 | // Discard this payload. |
| 138 | delete [] (*it)->payload; |
| 139 | delete (*it); |
| 140 | // Remove |it| from the packet list. This operation effectively |
| 141 | // moves the iterator |it| to the next packet in the list. Thus, we |
| 142 | // do not have to increment it manually. |
| 143 | it = packet_list->erase(it); |
| 144 | ++num_deleted_packets; |
| 145 | continue; |
| 146 | } |
| 147 | } |
| 148 | } |
| 149 | ++it; |
| 150 | } |
| 151 | return num_deleted_packets; |
| 152 | } |
| 153 | |
| 154 | int PayloadSplitter::SplitAudio(PacketList* packet_list, |
| 155 | const DecoderDatabase& decoder_database) { |
| 156 | PacketList::iterator it = packet_list->begin(); |
| 157 | // Iterate through all packets in |packet_list|. |
| 158 | while (it != packet_list->end()) { |
| 159 | Packet* packet = (*it); // Just to make the notation more intuitive. |
| 160 | // Get codec type for this payload. |
| 161 | const DecoderDatabase::DecoderInfo* info = |
| 162 | decoder_database.GetDecoderInfo(packet->header.payloadType); |
| 163 | if (!info) { |
| 164 | return kUnknownPayloadType; |
| 165 | } |
turaj@webrtc.org | 7b75ac6 | 2013-09-26 00:27:56 +0000 | [diff] [blame] | 166 | // No splitting for a sync-packet. |
| 167 | if (packet->sync_packet) { |
| 168 | ++it; |
| 169 | continue; |
| 170 | } |
henrik.lundin@webrtc.org | d94659d | 2013-01-29 12:09:21 +0000 | [diff] [blame] | 171 | PacketList new_packets; |
| 172 | switch (info->codec_type) { |
| 173 | case kDecoderPCMu: |
| 174 | case kDecoderPCMa: { |
| 175 | // 8 bytes per ms; 8 timestamps per ms. |
| 176 | SplitBySamples(packet, 8, 8, &new_packets); |
| 177 | break; |
| 178 | } |
| 179 | case kDecoderPCMu_2ch: |
| 180 | case kDecoderPCMa_2ch: { |
| 181 | // 2 * 8 bytes per ms; 8 timestamps per ms. |
| 182 | SplitBySamples(packet, 2 * 8, 8, &new_packets); |
| 183 | break; |
| 184 | } |
| 185 | case kDecoderG722: { |
| 186 | // 8 bytes per ms; 16 timestamps per ms. |
| 187 | SplitBySamples(packet, 8, 16, &new_packets); |
| 188 | break; |
| 189 | } |
| 190 | case kDecoderPCM16B: { |
| 191 | // 16 bytes per ms; 8 timestamps per ms. |
| 192 | SplitBySamples(packet, 16, 8, &new_packets); |
| 193 | break; |
| 194 | } |
| 195 | case kDecoderPCM16Bwb: { |
| 196 | // 32 bytes per ms; 16 timestamps per ms. |
| 197 | SplitBySamples(packet, 32, 16, &new_packets); |
| 198 | break; |
| 199 | } |
| 200 | case kDecoderPCM16Bswb32kHz: { |
| 201 | // 64 bytes per ms; 32 timestamps per ms. |
| 202 | SplitBySamples(packet, 64, 32, &new_packets); |
| 203 | break; |
| 204 | } |
| 205 | case kDecoderPCM16Bswb48kHz: { |
| 206 | // 96 bytes per ms; 48 timestamps per ms. |
| 207 | SplitBySamples(packet, 96, 48, &new_packets); |
| 208 | break; |
| 209 | } |
| 210 | case kDecoderPCM16B_2ch: { |
| 211 | // 2 * 16 bytes per ms; 8 timestamps per ms. |
| 212 | SplitBySamples(packet, 2 * 16, 8, &new_packets); |
| 213 | break; |
| 214 | } |
| 215 | case kDecoderPCM16Bwb_2ch: { |
| 216 | // 2 * 32 bytes per ms; 16 timestamps per ms. |
| 217 | SplitBySamples(packet, 2 * 32, 16, &new_packets); |
| 218 | break; |
| 219 | } |
| 220 | case kDecoderPCM16Bswb32kHz_2ch: { |
| 221 | // 2 * 64 bytes per ms; 32 timestamps per ms. |
| 222 | SplitBySamples(packet, 2 * 64, 32, &new_packets); |
| 223 | break; |
| 224 | } |
| 225 | case kDecoderPCM16Bswb48kHz_2ch: { |
| 226 | // 2 * 96 bytes per ms; 48 timestamps per ms. |
| 227 | SplitBySamples(packet, 2 * 96, 48, &new_packets); |
| 228 | break; |
| 229 | } |
| 230 | case kDecoderPCM16B_5ch: { |
| 231 | // 5 * 16 bytes per ms; 8 timestamps per ms. |
| 232 | SplitBySamples(packet, 5 * 16, 8, &new_packets); |
| 233 | break; |
| 234 | } |
| 235 | case kDecoderILBC: { |
| 236 | int bytes_per_frame; |
| 237 | int timestamps_per_frame; |
| 238 | if (packet->payload_length >= 950) { |
| 239 | return kTooLargePayload; |
| 240 | } else if (packet->payload_length % 38 == 0) { |
| 241 | // 20 ms frames. |
| 242 | bytes_per_frame = 38; |
| 243 | timestamps_per_frame = 160; |
| 244 | } else if (packet->payload_length % 50 == 0) { |
| 245 | // 30 ms frames. |
| 246 | bytes_per_frame = 50; |
| 247 | timestamps_per_frame = 240; |
| 248 | } else { |
| 249 | return kFrameSplitError; |
| 250 | } |
| 251 | int ret = SplitByFrames(packet, bytes_per_frame, timestamps_per_frame, |
| 252 | &new_packets); |
| 253 | if (ret < 0) { |
| 254 | return ret; |
| 255 | } else if (ret == kNoSplit) { |
| 256 | // Do not split at all. Simply advance to the next packet in the list. |
| 257 | ++it; |
| 258 | // We do not have any new packets to insert, and should not delete the |
| 259 | // old one. Skip the code after the switch case, and jump straight to |
| 260 | // the next packet in the while loop. |
| 261 | continue; |
| 262 | } |
| 263 | break; |
| 264 | } |
| 265 | default: { |
| 266 | // Do not split at all. Simply advance to the next packet in the list. |
| 267 | ++it; |
| 268 | // We do not have any new packets to insert, and should not delete the |
| 269 | // old one. Skip the code after the switch case, and jump straight to |
| 270 | // the next packet in the while loop. |
| 271 | continue; |
| 272 | } |
| 273 | } |
| 274 | // Insert new packets into original list, before the element pointed to by |
| 275 | // iterator |it|. |
| 276 | packet_list->splice(it, new_packets, new_packets.begin(), |
| 277 | new_packets.end()); |
| 278 | // Delete old packet payload. |
| 279 | delete [] (*it)->payload; |
| 280 | delete (*it); |
| 281 | // Remove |it| from the packet list. This operation effectively moves the |
| 282 | // iterator |it| to the next packet in the list. Thus, we do not have to |
| 283 | // increment it manually. |
| 284 | it = packet_list->erase(it); |
| 285 | } |
| 286 | return 0; |
| 287 | } |
| 288 | |
| 289 | void PayloadSplitter::SplitBySamples(const Packet* packet, |
| 290 | int bytes_per_ms, |
| 291 | int timestamps_per_ms, |
| 292 | PacketList* new_packets) { |
| 293 | assert(packet); |
| 294 | assert(new_packets); |
| 295 | |
| 296 | int split_size_bytes = packet->payload_length; |
| 297 | |
| 298 | // Find a "chunk size" >= 20 ms and < 40 ms. |
| 299 | int min_chunk_size = bytes_per_ms * 20; |
| 300 | // Reduce the split size by half as long as |split_size_bytes| is at least |
| 301 | // twice the minimum chunk size (so that the resulting size is at least as |
| 302 | // large as the minimum chunk size). |
| 303 | while (split_size_bytes >= 2 * min_chunk_size) { |
| 304 | split_size_bytes >>= 1; |
| 305 | } |
| 306 | int timestamps_per_chunk = |
| 307 | split_size_bytes * timestamps_per_ms / bytes_per_ms; |
| 308 | uint32_t timestamp = packet->header.timestamp; |
| 309 | |
| 310 | uint8_t* payload_ptr = packet->payload; |
| 311 | int len = packet->payload_length; |
| 312 | while (len >= (2 * split_size_bytes)) { |
| 313 | Packet* new_packet = new Packet; |
| 314 | new_packet->payload_length = split_size_bytes; |
| 315 | new_packet->header = packet->header; |
| 316 | new_packet->header.timestamp = timestamp; |
| 317 | timestamp += timestamps_per_chunk; |
| 318 | new_packet->primary = packet->primary; |
| 319 | new_packet->payload = new uint8_t[split_size_bytes]; |
| 320 | memcpy(new_packet->payload, payload_ptr, split_size_bytes); |
| 321 | payload_ptr += split_size_bytes; |
| 322 | new_packets->push_back(new_packet); |
| 323 | len -= split_size_bytes; |
| 324 | } |
| 325 | |
| 326 | if (len > 0) { |
| 327 | Packet* new_packet = new Packet; |
| 328 | new_packet->payload_length = len; |
| 329 | new_packet->header = packet->header; |
| 330 | new_packet->header.timestamp = timestamp; |
| 331 | new_packet->primary = packet->primary; |
| 332 | new_packet->payload = new uint8_t[len]; |
| 333 | memcpy(new_packet->payload, payload_ptr, len); |
henrik.lundin@webrtc.org | d94659d | 2013-01-29 12:09:21 +0000 | [diff] [blame] | 334 | new_packets->push_back(new_packet); |
| 335 | } |
| 336 | } |
| 337 | |
| 338 | int PayloadSplitter::SplitByFrames(const Packet* packet, |
| 339 | int bytes_per_frame, |
| 340 | int timestamps_per_frame, |
| 341 | PacketList* new_packets) { |
| 342 | if (packet->payload_length % bytes_per_frame != 0) { |
| 343 | return kFrameSplitError; |
| 344 | } |
| 345 | |
| 346 | int num_frames = packet->payload_length / bytes_per_frame; |
| 347 | if (num_frames == 1) { |
| 348 | // Special case. Do not split the payload. |
| 349 | return kNoSplit; |
| 350 | } |
| 351 | |
| 352 | uint32_t timestamp = packet->header.timestamp; |
| 353 | uint8_t* payload_ptr = packet->payload; |
| 354 | int len = packet->payload_length; |
| 355 | while (len > 0) { |
| 356 | assert(len >= bytes_per_frame); |
| 357 | Packet* new_packet = new Packet; |
| 358 | new_packet->payload_length = bytes_per_frame; |
| 359 | new_packet->header = packet->header; |
| 360 | new_packet->header.timestamp = timestamp; |
| 361 | timestamp += timestamps_per_frame; |
| 362 | new_packet->primary = packet->primary; |
| 363 | new_packet->payload = new uint8_t[bytes_per_frame]; |
| 364 | memcpy(new_packet->payload, payload_ptr, bytes_per_frame); |
| 365 | payload_ptr += bytes_per_frame; |
| 366 | new_packets->push_back(new_packet); |
| 367 | len -= bytes_per_frame; |
| 368 | } |
| 369 | return kOK; |
| 370 | } |
| 371 | |
| 372 | } // namespace webrtc |