Yves Gerey | 890f62b | 2019-04-10 17:18:48 +0200 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (c) 2016 The WebRTC project authors. All Rights Reserved. |
| 3 | * |
| 4 | * Use of this source code is governed by a BSD-style license |
| 5 | * that can be found in the LICENSE file in the root of the source |
| 6 | * tree. An additional intellectual property rights grant can be found |
| 7 | * in the file PATENTS. All contributing project authors may |
| 8 | * be found in the AUTHORS file in the root of the source tree. |
| 9 | */ |
| 10 | |
| 11 | #include "rtc_base/numerics/running_statistics.h" |
| 12 | |
| 13 | #include <math.h> |
| 14 | #include <random> |
| 15 | #include <vector> |
| 16 | |
| 17 | #include "absl/algorithm/container.h" |
| 18 | #include "test/gtest.h" |
| 19 | |
| 20 | // Tests were copied from samples_stats_counter_unittest.cc. |
| 21 | |
| 22 | namespace webrtc { |
| 23 | namespace { |
| 24 | |
| 25 | RunningStatistics<double> CreateStatsFilledWithIntsFrom1ToN(int n) { |
| 26 | std::vector<double> data; |
| 27 | for (int i = 1; i <= n; i++) { |
| 28 | data.push_back(i); |
| 29 | } |
| 30 | absl::c_shuffle(data, std::mt19937(std::random_device()())); |
| 31 | |
| 32 | RunningStatistics<double> stats; |
| 33 | for (double v : data) { |
| 34 | stats.AddSample(v); |
| 35 | } |
| 36 | return stats; |
| 37 | } |
| 38 | |
| 39 | // Add n samples drawn from uniform distribution in [a;b]. |
| 40 | RunningStatistics<double> CreateStatsFromUniformDistribution(int n, |
| 41 | double a, |
| 42 | double b) { |
| 43 | std::mt19937 gen{std::random_device()()}; |
| 44 | std::uniform_real_distribution<> dis(a, b); |
| 45 | |
| 46 | RunningStatistics<double> stats; |
| 47 | for (int i = 1; i <= n; i++) { |
| 48 | stats.AddSample(dis(gen)); |
| 49 | } |
| 50 | return stats; |
| 51 | } |
| 52 | |
| 53 | class RunningStatisticsTest : public ::testing::TestWithParam<int> {}; |
| 54 | |
| 55 | constexpr int SIZE_FOR_MERGE = 5; |
| 56 | |
| 57 | } // namespace |
| 58 | |
Yves Gerey | 3dfb680 | 2019-05-13 17:01:32 +0200 | [diff] [blame^] | 59 | TEST(RunningStatistics, FullSimpleTest) { |
Yves Gerey | 890f62b | 2019-04-10 17:18:48 +0200 | [diff] [blame] | 60 | auto stats = CreateStatsFilledWithIntsFrom1ToN(100); |
| 61 | |
| 62 | EXPECT_DOUBLE_EQ(*stats.GetMin(), 1.0); |
| 63 | EXPECT_DOUBLE_EQ(*stats.GetMax(), 100.0); |
| 64 | EXPECT_DOUBLE_EQ(*stats.GetMean(), 50.5); |
| 65 | } |
| 66 | |
| 67 | TEST(RunningStatistics, VarianceAndDeviation) { |
| 68 | RunningStatistics<int> stats; |
| 69 | stats.AddSample(2); |
| 70 | stats.AddSample(2); |
| 71 | stats.AddSample(-1); |
| 72 | stats.AddSample(5); |
| 73 | |
| 74 | EXPECT_DOUBLE_EQ(*stats.GetMean(), 2.0); |
| 75 | EXPECT_DOUBLE_EQ(*stats.GetVariance(), 4.5); |
| 76 | EXPECT_DOUBLE_EQ(*stats.GetStandardDeviation(), sqrt(4.5)); |
| 77 | } |
| 78 | |
Yves Gerey | 3dfb680 | 2019-05-13 17:01:32 +0200 | [diff] [blame^] | 79 | TEST(RunningStatistics, RemoveSample) { |
| 80 | // We check that adding then removing sample is no-op, |
| 81 | // or so (due to loss of precision). |
| 82 | RunningStatistics<int> stats; |
| 83 | stats.AddSample(2); |
| 84 | stats.AddSample(2); |
| 85 | stats.AddSample(-1); |
| 86 | stats.AddSample(5); |
| 87 | |
| 88 | constexpr int iterations = 1e5; |
| 89 | for (int i = 0; i < iterations; ++i) { |
| 90 | stats.AddSample(i); |
| 91 | stats.RemoveSample(i); |
| 92 | |
| 93 | EXPECT_NEAR(*stats.GetMean(), 2.0, 1e-8); |
| 94 | EXPECT_NEAR(*stats.GetVariance(), 4.5, 1e-3); |
| 95 | EXPECT_NEAR(*stats.GetStandardDeviation(), sqrt(4.5), 1e-4); |
| 96 | } |
| 97 | } |
| 98 | |
| 99 | TEST(RunningStatistics, RemoveSamplesSequence) { |
| 100 | // We check that adding then removing a sequence of samples is no-op, |
| 101 | // or so (due to loss of precision). |
| 102 | RunningStatistics<int> stats; |
| 103 | stats.AddSample(2); |
| 104 | stats.AddSample(2); |
| 105 | stats.AddSample(-1); |
| 106 | stats.AddSample(5); |
| 107 | |
| 108 | constexpr int iterations = 1e4; |
| 109 | for (int i = 0; i < iterations; ++i) { |
| 110 | stats.AddSample(i); |
| 111 | } |
| 112 | for (int i = 0; i < iterations; ++i) { |
| 113 | stats.RemoveSample(i); |
| 114 | } |
| 115 | |
| 116 | EXPECT_NEAR(*stats.GetMean(), 2.0, 1e-7); |
| 117 | EXPECT_NEAR(*stats.GetVariance(), 4.5, 1e-3); |
| 118 | EXPECT_NEAR(*stats.GetStandardDeviation(), sqrt(4.5), 1e-4); |
| 119 | } |
| 120 | |
| 121 | TEST(RunningStatistics, VarianceFromUniformDistribution) { |
Yves Gerey | 890f62b | 2019-04-10 17:18:48 +0200 | [diff] [blame] | 122 | // Check variance converge to 1/12 for [0;1) uniform distribution. |
| 123 | // Acts as a sanity check for NumericStabilityForVariance test. |
| 124 | auto stats = CreateStatsFromUniformDistribution(1e6, 0, 1); |
| 125 | |
| 126 | EXPECT_NEAR(*stats.GetVariance(), 1. / 12, 1e-3); |
| 127 | } |
| 128 | |
Yves Gerey | 3dfb680 | 2019-05-13 17:01:32 +0200 | [diff] [blame^] | 129 | TEST(RunningStatistics, NumericStabilityForVariance) { |
Yves Gerey | 890f62b | 2019-04-10 17:18:48 +0200 | [diff] [blame] | 130 | // Same test as VarianceFromUniformDistribution, |
| 131 | // except the range is shifted to [1e9;1e9+1). |
| 132 | // Variance should also converge to 1/12. |
| 133 | // NB: Although we lose precision for the samples themselves, the fractional |
| 134 | // part still enjoys 22 bits of mantissa and errors should even out, |
| 135 | // so that couldn't explain a mismatch. |
| 136 | auto stats = CreateStatsFromUniformDistribution(1e6, 1e9, 1e9 + 1); |
| 137 | |
| 138 | EXPECT_NEAR(*stats.GetVariance(), 1. / 12, 1e-3); |
| 139 | } |
| 140 | |
Yves Gerey | 3dfb680 | 2019-05-13 17:01:32 +0200 | [diff] [blame^] | 141 | TEST(RunningStatistics, MinRemainsUnchangedAfterRemove) { |
| 142 | // We don't want to recompute min (that's RollingAccumulator's role), |
| 143 | // check we get the overall min. |
| 144 | RunningStatistics<int> stats; |
| 145 | stats.AddSample(1); |
| 146 | stats.AddSample(2); |
| 147 | stats.RemoveSample(1); |
| 148 | EXPECT_EQ(stats.GetMin(), 1); |
| 149 | } |
| 150 | |
| 151 | TEST(RunningStatistics, MaxRemainsUnchangedAfterRemove) { |
| 152 | // We don't want to recompute max (that's RollingAccumulator's role), |
| 153 | // check we get the overall max. |
| 154 | RunningStatistics<int> stats; |
| 155 | stats.AddSample(1); |
| 156 | stats.AddSample(2); |
| 157 | stats.RemoveSample(2); |
| 158 | EXPECT_EQ(stats.GetMax(), 2); |
| 159 | } |
| 160 | |
Yves Gerey | 890f62b | 2019-04-10 17:18:48 +0200 | [diff] [blame] | 161 | TEST_P(RunningStatisticsTest, MergeStatistics) { |
| 162 | int data[SIZE_FOR_MERGE] = {2, 2, -1, 5, 10}; |
| 163 | // Split the data in different partitions. |
| 164 | // We have 6 distinct tests: |
| 165 | // * Empty merged with full sequence. |
| 166 | // * 1 sample merged with 4 last. |
| 167 | // * 2 samples merged with 3 last. |
| 168 | // [...] |
| 169 | // * Full merged with empty sequence. |
| 170 | // All must lead to the same result. |
| 171 | // I miss QuickCheck so much. |
| 172 | RunningStatistics<int> stats0, stats1; |
| 173 | for (int i = 0; i < GetParam(); ++i) { |
| 174 | stats0.AddSample(data[i]); |
| 175 | } |
| 176 | for (int i = GetParam(); i < SIZE_FOR_MERGE; ++i) { |
| 177 | stats1.AddSample(data[i]); |
| 178 | } |
| 179 | stats0.MergeStatistics(stats1); |
| 180 | |
| 181 | EXPECT_EQ(stats0.Size(), SIZE_FOR_MERGE); |
| 182 | EXPECT_DOUBLE_EQ(*stats0.GetMin(), -1); |
| 183 | EXPECT_DOUBLE_EQ(*stats0.GetMax(), 10); |
| 184 | EXPECT_DOUBLE_EQ(*stats0.GetMean(), 3.6); |
| 185 | EXPECT_DOUBLE_EQ(*stats0.GetVariance(), 13.84); |
| 186 | EXPECT_DOUBLE_EQ(*stats0.GetStandardDeviation(), sqrt(13.84)); |
| 187 | } |
| 188 | |
| 189 | INSTANTIATE_TEST_SUITE_P(RunningStatisticsTests, |
| 190 | RunningStatisticsTest, |
| 191 | ::testing::Range(0, SIZE_FOR_MERGE + 1)); |
| 192 | |
| 193 | } // namespace webrtc |