blob: 203a00138e62de3a2473b8fd4efcfb6cb4311d29 [file] [log] [blame]
henrike@webrtc.orgf0488722014-05-13 18:00:26 +00001/*
2 * Copyright 2012 The WebRTC Project Authors. All rights reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
kwiberg@webrtc.org73ca1942015-01-29 09:12:47 +000011// Borrowed from Chromium's src/base/memory/scoped_ptr.h.
12
13// Scopers help you manage ownership of a pointer, helping you easily manage a
14// pointer within a scope, and automatically destroying the pointer at the end
15// of a scope. There are two main classes you will use, which correspond to the
16// operators new/delete and new[]/delete[].
henrike@webrtc.orgf0488722014-05-13 18:00:26 +000017//
18// Example usage (scoped_ptr<T>):
19// {
20// scoped_ptr<Foo> foo(new Foo("wee"));
21// } // foo goes out of scope, releasing the pointer with it.
22//
23// {
24// scoped_ptr<Foo> foo; // No pointer managed.
25// foo.reset(new Foo("wee")); // Now a pointer is managed.
26// foo.reset(new Foo("wee2")); // Foo("wee") was destroyed.
27// foo.reset(new Foo("wee3")); // Foo("wee2") was destroyed.
28// foo->Method(); // Foo::Method() called.
29// foo.get()->Method(); // Foo::Method() called.
30// SomeFunc(foo.release()); // SomeFunc takes ownership, foo no longer
31// // manages a pointer.
32// foo.reset(new Foo("wee4")); // foo manages a pointer again.
33// foo.reset(); // Foo("wee4") destroyed, foo no longer
34// // manages a pointer.
35// } // foo wasn't managing a pointer, so nothing was destroyed.
36//
37// Example usage (scoped_ptr<T[]>):
38// {
39// scoped_ptr<Foo[]> foo(new Foo[100]);
40// foo.get()->Method(); // Foo::Method on the 0th element.
41// foo[10].Method(); // Foo::Method on the 10th element.
42// }
43//
44// These scopers also implement part of the functionality of C++11 unique_ptr
45// in that they are "movable but not copyable." You can use the scopers in
46// the parameter and return types of functions to signify ownership transfer
47// in to and out of a function. When calling a function that has a scoper
48// as the argument type, it must be called with the result of an analogous
49// scoper's Pass() function or another function that generates a temporary;
50// passing by copy will NOT work. Here is an example using scoped_ptr:
51//
52// void TakesOwnership(scoped_ptr<Foo> arg) {
53// // Do something with arg
54// }
55// scoped_ptr<Foo> CreateFoo() {
56// // No need for calling Pass() because we are constructing a temporary
57// // for the return value.
58// return scoped_ptr<Foo>(new Foo("new"));
59// }
60// scoped_ptr<Foo> PassThru(scoped_ptr<Foo> arg) {
61// return arg.Pass();
62// }
63//
64// {
65// scoped_ptr<Foo> ptr(new Foo("yay")); // ptr manages Foo("yay").
66// TakesOwnership(ptr.Pass()); // ptr no longer owns Foo("yay").
67// scoped_ptr<Foo> ptr2 = CreateFoo(); // ptr2 owns the return Foo.
68// scoped_ptr<Foo> ptr3 = // ptr3 now owns what was in ptr2.
kwiberg@webrtc.org73ca1942015-01-29 09:12:47 +000069// PassThru(ptr2.Pass()); // ptr2 is correspondingly nullptr.
henrike@webrtc.orgf0488722014-05-13 18:00:26 +000070// }
71//
72// Notice that if you do not call Pass() when returning from PassThru(), or
73// when invoking TakesOwnership(), the code will not compile because scopers
74// are not copyable; they only implement move semantics which require calling
75// the Pass() function to signify a destructive transfer of state. CreateFoo()
76// is different though because we are constructing a temporary on the return
77// line and thus can avoid needing to call Pass().
78//
79// Pass() properly handles upcast in initialization, i.e. you can use a
80// scoped_ptr<Child> to initialize a scoped_ptr<Parent>:
81//
82// scoped_ptr<Foo> foo(new Foo());
83// scoped_ptr<FooParent> parent(foo.Pass());
84//
85// PassAs<>() should be used to upcast return value in return statement:
86//
87// scoped_ptr<Foo> CreateFoo() {
88// scoped_ptr<FooChild> result(new FooChild());
89// return result.PassAs<Foo>();
90// }
91//
92// Note that PassAs<>() is implemented only for scoped_ptr<T>, but not for
93// scoped_ptr<T[]>. This is because casting array pointers may not be safe.
94
95#ifndef WEBRTC_BASE_SCOPED_PTR_H__
96#define WEBRTC_BASE_SCOPED_PTR_H__
97
kwiberg@webrtc.org73ca1942015-01-29 09:12:47 +000098// This is an implementation designed to match the anticipated future TR2
99// implementation of the scoped_ptr class.
100
101#include <assert.h>
102#include <stddef.h>
103#include <stdlib.h>
henrike@webrtc.orgf0488722014-05-13 18:00:26 +0000104
105#include <algorithm> // For std::swap().
106
kwiberg@webrtc.org73ca1942015-01-29 09:12:47 +0000107#include "webrtc/base/constructormagic.h"
kwiberg@webrtc.org73ca1942015-01-29 09:12:47 +0000108#include "webrtc/base/template_util.h"
109#include "webrtc/typedefs.h"
henrike@webrtc.orgf0488722014-05-13 18:00:26 +0000110
111namespace rtc {
112
113// Function object which deletes its parameter, which must be a pointer.
114// If C is an array type, invokes 'delete[]' on the parameter; otherwise,
115// invokes 'delete'. The default deleter for scoped_ptr<T>.
116template <class T>
117struct DefaultDeleter {
118 DefaultDeleter() {}
119 template <typename U> DefaultDeleter(const DefaultDeleter<U>& other) {
120 // IMPLEMENTATION NOTE: C++11 20.7.1.1.2p2 only provides this constructor
121 // if U* is implicitly convertible to T* and U is not an array type.
122 //
123 // Correct implementation should use SFINAE to disable this
124 // constructor. However, since there are no other 1-argument constructors,
kwiberg@webrtc.org2ebfac52015-01-14 10:51:54 +0000125 // using a static_assert based on is_convertible<> and requiring
henrike@webrtc.orgf0488722014-05-13 18:00:26 +0000126 // complete types is simpler and will cause compile failures for equivalent
127 // misuses.
128 //
129 // Note, the is_convertible<U*, T*> check also ensures that U is not an
130 // array. T is guaranteed to be a non-array, so any U* where U is an array
131 // cannot convert to T*.
132 enum { T_must_be_complete = sizeof(T) };
133 enum { U_must_be_complete = sizeof(U) };
kwiberg@webrtc.org2ebfac52015-01-14 10:51:54 +0000134 static_assert(rtc::is_convertible<U*, T*>::value,
135 "U* must implicitly convert to T*");
henrike@webrtc.orgf0488722014-05-13 18:00:26 +0000136 }
137 inline void operator()(T* ptr) const {
138 enum { type_must_be_complete = sizeof(T) };
139 delete ptr;
140 }
141};
142
143// Specialization of DefaultDeleter for array types.
144template <class T>
145struct DefaultDeleter<T[]> {
146 inline void operator()(T* ptr) const {
147 enum { type_must_be_complete = sizeof(T) };
148 delete[] ptr;
149 }
150
151 private:
152 // Disable this operator for any U != T because it is undefined to execute
153 // an array delete when the static type of the array mismatches the dynamic
154 // type.
155 //
156 // References:
157 // C++98 [expr.delete]p3
158 // http://cplusplus.github.com/LWG/lwg-defects.html#938
159 template <typename U> void operator()(U* array) const;
160};
161
162template <class T, int n>
163struct DefaultDeleter<T[n]> {
164 // Never allow someone to declare something like scoped_ptr<int[10]>.
kwiberg@webrtc.org2ebfac52015-01-14 10:51:54 +0000165 static_assert(sizeof(T) == -1, "do not use array with size as type");
henrike@webrtc.orgf0488722014-05-13 18:00:26 +0000166};
167
168// Function object which invokes 'free' on its parameter, which must be
169// a pointer. Can be used to store malloc-allocated pointers in scoped_ptr:
170//
171// scoped_ptr<int, rtc::FreeDeleter> foo_ptr(
172// static_cast<int*>(malloc(sizeof(int))));
173struct FreeDeleter {
174 inline void operator()(void* ptr) const {
175 free(ptr);
176 }
177};
178
179namespace internal {
180
kwiberg@webrtc.org73ca1942015-01-29 09:12:47 +0000181template <typename T>
182struct ShouldAbortOnSelfReset {
183 template <typename U>
184 static rtc::internal::NoType Test(const typename U::AllowSelfReset*);
185
186 template <typename U>
187 static rtc::internal::YesType Test(...);
188
189 static const bool value =
190 sizeof(Test<T>(0)) == sizeof(rtc::internal::YesType);
191};
192
henrike@webrtc.orgf0488722014-05-13 18:00:26 +0000193// Minimal implementation of the core logic of scoped_ptr, suitable for
194// reuse in both scoped_ptr and its specializations.
195template <class T, class D>
196class scoped_ptr_impl {
197 public:
kwiberg@webrtc.org73ca1942015-01-29 09:12:47 +0000198 explicit scoped_ptr_impl(T* p) : data_(p) {}
henrike@webrtc.orgf0488722014-05-13 18:00:26 +0000199
200 // Initializer for deleters that have data parameters.
201 scoped_ptr_impl(T* p, const D& d) : data_(p, d) {}
202
203 // Templated constructor that destructively takes the value from another
204 // scoped_ptr_impl.
205 template <typename U, typename V>
206 scoped_ptr_impl(scoped_ptr_impl<U, V>* other)
207 : data_(other->release(), other->get_deleter()) {
208 // We do not support move-only deleters. We could modify our move
kwiberg@webrtc.org73ca1942015-01-29 09:12:47 +0000209 // emulation to have rtc::subtle::move() and rtc::subtle::forward()
henrike@webrtc.orgf0488722014-05-13 18:00:26 +0000210 // functions that are imperfect emulations of their C++11 equivalents,
211 // but until there's a requirement, just assume deleters are copyable.
212 }
213
214 template <typename U, typename V>
215 void TakeState(scoped_ptr_impl<U, V>* other) {
216 // See comment in templated constructor above regarding lack of support
217 // for move-only deleters.
218 reset(other->release());
219 get_deleter() = other->get_deleter();
220 }
221
222 ~scoped_ptr_impl() {
kwiberg@webrtc.org73ca1942015-01-29 09:12:47 +0000223 if (data_.ptr != nullptr) {
henrike@webrtc.orgf0488722014-05-13 18:00:26 +0000224 // Not using get_deleter() saves one function call in non-optimized
225 // builds.
226 static_cast<D&>(data_)(data_.ptr);
227 }
228 }
229
230 void reset(T* p) {
kwiberg@webrtc.org73ca1942015-01-29 09:12:47 +0000231 // This is a self-reset, which is no longer allowed for default deleters:
232 // https://crbug.com/162971
233 assert(!ShouldAbortOnSelfReset<D>::value || p == nullptr || p != data_.ptr);
henrike@webrtc.orgf0488722014-05-13 18:00:26 +0000234
235 // Note that running data_.ptr = p can lead to undefined behavior if
kwiberg@webrtc.org73ca1942015-01-29 09:12:47 +0000236 // get_deleter()(get()) deletes this. In order to prevent this, reset()
henrike@webrtc.orgf0488722014-05-13 18:00:26 +0000237 // should update the stored pointer before deleting its old value.
238 //
239 // However, changing reset() to use that behavior may cause current code to
240 // break in unexpected ways. If the destruction of the owned object
241 // dereferences the scoped_ptr when it is destroyed by a call to reset(),
242 // then it will incorrectly dispatch calls to |p| rather than the original
243 // value of |data_.ptr|.
244 //
kwiberg@webrtc.org73ca1942015-01-29 09:12:47 +0000245 // During the transition period, set the stored pointer to nullptr while
henrike@webrtc.orgf0488722014-05-13 18:00:26 +0000246 // deleting the object. Eventually, this safety check will be removed to
kwiberg@webrtc.org73ca1942015-01-29 09:12:47 +0000247 // prevent the scenario initially described from occurring and
henrike@webrtc.orgf0488722014-05-13 18:00:26 +0000248 // http://crbug.com/176091 can be closed.
249 T* old = data_.ptr;
kwiberg@webrtc.org73ca1942015-01-29 09:12:47 +0000250 data_.ptr = nullptr;
251 if (old != nullptr)
henrike@webrtc.orgf0488722014-05-13 18:00:26 +0000252 static_cast<D&>(data_)(old);
253 data_.ptr = p;
254 }
255
256 T* get() const { return data_.ptr; }
257
258 D& get_deleter() { return data_; }
259 const D& get_deleter() const { return data_; }
260
261 void swap(scoped_ptr_impl& p2) {
262 // Standard swap idiom: 'using std::swap' ensures that std::swap is
263 // present in the overload set, but we call swap unqualified so that
264 // any more-specific overloads can be used, if available.
265 using std::swap;
266 swap(static_cast<D&>(data_), static_cast<D&>(p2.data_));
267 swap(data_.ptr, p2.data_.ptr);
268 }
269
270 T* release() {
271 T* old_ptr = data_.ptr;
kwiberg@webrtc.org73ca1942015-01-29 09:12:47 +0000272 data_.ptr = nullptr;
henrike@webrtc.orgf0488722014-05-13 18:00:26 +0000273 return old_ptr;
274 }
275
276 T** accept() {
kwiberg@webrtc.org73ca1942015-01-29 09:12:47 +0000277 reset(nullptr);
henrike@webrtc.orgf0488722014-05-13 18:00:26 +0000278 return &(data_.ptr);
279 }
280
281 T** use() {
282 return &(data_.ptr);
283 }
284
285 private:
286 // Needed to allow type-converting constructor.
287 template <typename U, typename V> friend class scoped_ptr_impl;
288
289 // Use the empty base class optimization to allow us to have a D
290 // member, while avoiding any space overhead for it when D is an
291 // empty class. See e.g. http://www.cantrip.org/emptyopt.html for a good
292 // discussion of this technique.
293 struct Data : public D {
294 explicit Data(T* ptr_in) : ptr(ptr_in) {}
295 Data(T* ptr_in, const D& other) : D(other), ptr(ptr_in) {}
296 T* ptr;
297 };
298
299 Data data_;
300
henrikg3c089d72015-09-16 05:37:44 -0700301 RTC_DISALLOW_COPY_AND_ASSIGN(scoped_ptr_impl);
henrike@webrtc.orgf0488722014-05-13 18:00:26 +0000302};
303
304} // namespace internal
305
306// A scoped_ptr<T> is like a T*, except that the destructor of scoped_ptr<T>
307// automatically deletes the pointer it holds (if any).
308// That is, scoped_ptr<T> owns the T object that it points to.
kwiberg@webrtc.org73ca1942015-01-29 09:12:47 +0000309// Like a T*, a scoped_ptr<T> may hold either nullptr or a pointer to a T
310// object. Also like T*, scoped_ptr<T> is thread-compatible, and once you
henrike@webrtc.orgf0488722014-05-13 18:00:26 +0000311// dereference it, you get the thread safety guarantees of T.
312//
313// The size of scoped_ptr is small. On most compilers, when using the
314// DefaultDeleter, sizeof(scoped_ptr<T>) == sizeof(T*). Custom deleters will
315// increase the size proportional to whatever state they need to have. See
316// comments inside scoped_ptr_impl<> for details.
317//
318// Current implementation targets having a strict subset of C++11's
319// unique_ptr<> features. Known deficiencies include not supporting move-only
kwiberg@webrtc.org73ca1942015-01-29 09:12:47 +0000320// deleters, function pointers as deleters, and deleters with reference
henrike@webrtc.orgf0488722014-05-13 18:00:26 +0000321// types.
322template <class T, class D = rtc::DefaultDeleter<T> >
323class scoped_ptr {
kwiberg@webrtc.org73ca1942015-01-29 09:12:47 +0000324
325 // TODO(ajm): If we ever import RefCountedBase, this check needs to be
326 // enabled.
327 //static_assert(rtc::internal::IsNotRefCounted<T>::value,
328 // "T is refcounted type and needs scoped refptr");
henrike@webrtc.orgf0488722014-05-13 18:00:26 +0000329
330 public:
331 // The element and deleter types.
332 typedef T element_type;
333 typedef D deleter_type;
334
kwiberg@webrtc.org73ca1942015-01-29 09:12:47 +0000335 // Constructor. Defaults to initializing with nullptr.
336 scoped_ptr() : impl_(nullptr) {}
henrike@webrtc.orgf0488722014-05-13 18:00:26 +0000337
338 // Constructor. Takes ownership of p.
kwiberg@webrtc.org73ca1942015-01-29 09:12:47 +0000339 explicit scoped_ptr(element_type* p) : impl_(p) {}
henrike@webrtc.orgf0488722014-05-13 18:00:26 +0000340
341 // Constructor. Allows initialization of a stateful deleter.
kwiberg@webrtc.org73ca1942015-01-29 09:12:47 +0000342 scoped_ptr(element_type* p, const D& d) : impl_(p, d) {}
343
344 // Constructor. Allows construction from a nullptr.
345 scoped_ptr(decltype(nullptr)) : impl_(nullptr) {}
henrike@webrtc.orgf0488722014-05-13 18:00:26 +0000346
347 // Constructor. Allows construction from a scoped_ptr rvalue for a
348 // convertible type and deleter.
349 //
350 // IMPLEMENTATION NOTE: C++11 unique_ptr<> keeps this constructor distinct
351 // from the normal move constructor. By C++11 20.7.1.2.1.21, this constructor
352 // has different post-conditions if D is a reference type. Since this
353 // implementation does not support deleters with reference type,
354 // we do not need a separate move constructor allowing us to avoid one
355 // use of SFINAE. You only need to care about this if you modify the
356 // implementation of scoped_ptr.
357 template <typename U, typename V>
kwiberg@webrtc.org73ca1942015-01-29 09:12:47 +0000358 scoped_ptr(scoped_ptr<U, V>&& other)
359 : impl_(&other.impl_) {
kwiberg@webrtc.org2ebfac52015-01-14 10:51:54 +0000360 static_assert(!rtc::is_array<U>::value, "U cannot be an array");
henrike@webrtc.orgf0488722014-05-13 18:00:26 +0000361 }
362
henrike@webrtc.orgf0488722014-05-13 18:00:26 +0000363 // operator=. Allows assignment from a scoped_ptr rvalue for a convertible
364 // type and deleter.
365 //
366 // IMPLEMENTATION NOTE: C++11 unique_ptr<> keeps this operator= distinct from
367 // the normal move assignment operator. By C++11 20.7.1.2.3.4, this templated
368 // form has different requirements on for move-only Deleters. Since this
369 // implementation does not support move-only Deleters, we do not need a
370 // separate move assignment operator allowing us to avoid one use of SFINAE.
371 // You only need to care about this if you modify the implementation of
372 // scoped_ptr.
373 template <typename U, typename V>
kwiberg@webrtc.org73ca1942015-01-29 09:12:47 +0000374 scoped_ptr& operator=(scoped_ptr<U, V>&& rhs) {
kwiberg@webrtc.org2ebfac52015-01-14 10:51:54 +0000375 static_assert(!rtc::is_array<U>::value, "U cannot be an array");
henrike@webrtc.orgf0488722014-05-13 18:00:26 +0000376 impl_.TakeState(&rhs.impl_);
377 return *this;
378 }
379
kwiberg@webrtc.org73ca1942015-01-29 09:12:47 +0000380 // operator=. Allows assignment from a nullptr. Deletes the currently owned
381 // object, if any.
382 scoped_ptr& operator=(decltype(nullptr)) {
383 reset();
384 return *this;
385 }
386
Karl Wiberga8e285d2015-04-22 19:44:19 +0200387 // Deleted copy constructor and copy assignment, to make the type move-only.
388 scoped_ptr(const scoped_ptr& other) = delete;
389 scoped_ptr& operator=(const scoped_ptr& other) = delete;
390
391 // Get an rvalue reference. (sp.Pass() does the same thing as std::move(sp).)
392 scoped_ptr&& Pass() { return static_cast<scoped_ptr&&>(*this); }
393
henrike@webrtc.orgf0488722014-05-13 18:00:26 +0000394 // Reset. Deletes the currently owned object, if any.
395 // Then takes ownership of a new object, if given.
kwiberg@webrtc.org73ca1942015-01-29 09:12:47 +0000396 void reset(element_type* p = nullptr) { impl_.reset(p); }
henrike@webrtc.orgf0488722014-05-13 18:00:26 +0000397
398 // Accessors to get the owned object.
399 // operator* and operator-> will assert() if there is no current object.
400 element_type& operator*() const {
kwiberg@webrtc.org73ca1942015-01-29 09:12:47 +0000401 assert(impl_.get() != nullptr);
henrike@webrtc.orgf0488722014-05-13 18:00:26 +0000402 return *impl_.get();
403 }
404 element_type* operator->() const {
kwiberg@webrtc.org73ca1942015-01-29 09:12:47 +0000405 assert(impl_.get() != nullptr);
henrike@webrtc.orgf0488722014-05-13 18:00:26 +0000406 return impl_.get();
407 }
408 element_type* get() const { return impl_.get(); }
409
410 // Access to the deleter.
411 deleter_type& get_deleter() { return impl_.get_deleter(); }
412 const deleter_type& get_deleter() const { return impl_.get_deleter(); }
413
414 // Allow scoped_ptr<element_type> to be used in boolean expressions, but not
415 // implicitly convertible to a real bool (which is dangerous).
416 //
417 // Note that this trick is only safe when the == and != operators
418 // are declared explicitly, as otherwise "scoped_ptr1 ==
419 // scoped_ptr2" will compile but do the wrong thing (i.e., convert
420 // to Testable and then do the comparison).
421 private:
422 typedef rtc::internal::scoped_ptr_impl<element_type, deleter_type>
423 scoped_ptr::*Testable;
424
425 public:
kwiberg@webrtc.org73ca1942015-01-29 09:12:47 +0000426 operator Testable() const {
427 return impl_.get() ? &scoped_ptr::impl_ : nullptr;
428 }
henrike@webrtc.orgf0488722014-05-13 18:00:26 +0000429
430 // Comparison operators.
431 // These return whether two scoped_ptr refer to the same object, not just to
432 // two different but equal objects.
433 bool operator==(const element_type* p) const { return impl_.get() == p; }
434 bool operator!=(const element_type* p) const { return impl_.get() != p; }
435
436 // Swap two scoped pointers.
437 void swap(scoped_ptr& p2) {
438 impl_.swap(p2.impl_);
439 }
440
441 // Release a pointer.
kwiberg@webrtc.org73ca1942015-01-29 09:12:47 +0000442 // The return value is the current pointer held by this object. If this object
443 // holds a nullptr, the return value is nullptr. After this operation, this
444 // object will hold a nullptr, and will not own the object any more.
henrike@webrtc.orgf0488722014-05-13 18:00:26 +0000445 element_type* release() WARN_UNUSED_RESULT {
446 return impl_.release();
447 }
448
449 // Delete the currently held pointer and return a pointer
450 // to allow overwriting of the current pointer address.
451 element_type** accept() WARN_UNUSED_RESULT {
452 return impl_.accept();
453 }
454
455 // Return a pointer to the current pointer address.
456 element_type** use() WARN_UNUSED_RESULT {
457 return impl_.use();
458 }
459
henrike@webrtc.orgf0488722014-05-13 18:00:26 +0000460 private:
461 // Needed to reach into |impl_| in the constructor.
462 template <typename U, typename V> friend class scoped_ptr;
463 rtc::internal::scoped_ptr_impl<element_type, deleter_type> impl_;
464
465 // Forbidden for API compatibility with std::unique_ptr.
466 explicit scoped_ptr(int disallow_construction_from_null);
467
468 // Forbid comparison of scoped_ptr types. If U != T, it totally
469 // doesn't make sense, and if U == T, it still doesn't make sense
470 // because you should never have the same object owned by two different
471 // scoped_ptrs.
472 template <class U> bool operator==(scoped_ptr<U> const& p2) const;
473 template <class U> bool operator!=(scoped_ptr<U> const& p2) const;
474};
475
476template <class T, class D>
477class scoped_ptr<T[], D> {
henrike@webrtc.orgf0488722014-05-13 18:00:26 +0000478 public:
479 // The element and deleter types.
480 typedef T element_type;
481 typedef D deleter_type;
482
kwiberg@webrtc.org73ca1942015-01-29 09:12:47 +0000483 // Constructor. Defaults to initializing with nullptr.
484 scoped_ptr() : impl_(nullptr) {}
henrike@webrtc.orgf0488722014-05-13 18:00:26 +0000485
486 // Constructor. Stores the given array. Note that the argument's type
487 // must exactly match T*. In particular:
488 // - it cannot be a pointer to a type derived from T, because it is
489 // inherently unsafe in the general case to access an array through a
490 // pointer whose dynamic type does not match its static type (eg., if
491 // T and the derived types had different sizes access would be
492 // incorrectly calculated). Deletion is also always undefined
493 // (C++98 [expr.delete]p3). If you're doing this, fix your code.
henrike@webrtc.orgf0488722014-05-13 18:00:26 +0000494 // - it cannot be const-qualified differently from T per unique_ptr spec
495 // (http://cplusplus.github.com/LWG/lwg-active.html#2118). Users wanting
496 // to work around this may use implicit_cast<const T*>().
497 // However, because of the first bullet in this comment, users MUST
498 // NOT use implicit_cast<Base*>() to upcast the static type of the array.
kwiberg@webrtc.org73ca1942015-01-29 09:12:47 +0000499 explicit scoped_ptr(element_type* array) : impl_(array) {}
henrike@webrtc.orgf0488722014-05-13 18:00:26 +0000500
kwiberg@webrtc.org73ca1942015-01-29 09:12:47 +0000501 // Constructor. Allows construction from a nullptr.
502 scoped_ptr(decltype(nullptr)) : impl_(nullptr) {}
henrike@webrtc.orgf0488722014-05-13 18:00:26 +0000503
kwiberg@webrtc.org73ca1942015-01-29 09:12:47 +0000504 // Constructor. Allows construction from a scoped_ptr rvalue.
505 scoped_ptr(scoped_ptr&& other) : impl_(&other.impl_) {}
506
507 // operator=. Allows assignment from a scoped_ptr rvalue.
508 scoped_ptr& operator=(scoped_ptr&& rhs) {
509 impl_.TakeState(&rhs.impl_);
510 return *this;
511 }
512
513 // operator=. Allows assignment from a nullptr. Deletes the currently owned
514 // array, if any.
515 scoped_ptr& operator=(decltype(nullptr)) {
516 reset();
henrike@webrtc.orgf0488722014-05-13 18:00:26 +0000517 return *this;
518 }
519
Karl Wiberga8e285d2015-04-22 19:44:19 +0200520 // Deleted copy constructor and copy assignment, to make the type move-only.
521 scoped_ptr(const scoped_ptr& other) = delete;
522 scoped_ptr& operator=(const scoped_ptr& other) = delete;
523
524 // Get an rvalue reference. (sp.Pass() does the same thing as std::move(sp).)
525 scoped_ptr&& Pass() { return static_cast<scoped_ptr&&>(*this); }
526
henrike@webrtc.orgf0488722014-05-13 18:00:26 +0000527 // Reset. Deletes the currently owned array, if any.
528 // Then takes ownership of a new object, if given.
kwiberg@webrtc.org73ca1942015-01-29 09:12:47 +0000529 void reset(element_type* array = nullptr) { impl_.reset(array); }
henrike@webrtc.orgf0488722014-05-13 18:00:26 +0000530
531 // Accessors to get the owned array.
532 element_type& operator[](size_t i) const {
kwiberg@webrtc.org73ca1942015-01-29 09:12:47 +0000533 assert(impl_.get() != nullptr);
henrike@webrtc.orgf0488722014-05-13 18:00:26 +0000534 return impl_.get()[i];
535 }
536 element_type* get() const { return impl_.get(); }
537
538 // Access to the deleter.
539 deleter_type& get_deleter() { return impl_.get_deleter(); }
540 const deleter_type& get_deleter() const { return impl_.get_deleter(); }
541
542 // Allow scoped_ptr<element_type> to be used in boolean expressions, but not
543 // implicitly convertible to a real bool (which is dangerous).
544 private:
545 typedef rtc::internal::scoped_ptr_impl<element_type, deleter_type>
546 scoped_ptr::*Testable;
547
548 public:
kwiberg@webrtc.org73ca1942015-01-29 09:12:47 +0000549 operator Testable() const {
550 return impl_.get() ? &scoped_ptr::impl_ : nullptr;
551 }
henrike@webrtc.orgf0488722014-05-13 18:00:26 +0000552
553 // Comparison operators.
554 // These return whether two scoped_ptr refer to the same object, not just to
555 // two different but equal objects.
556 bool operator==(element_type* array) const { return impl_.get() == array; }
557 bool operator!=(element_type* array) const { return impl_.get() != array; }
558
559 // Swap two scoped pointers.
560 void swap(scoped_ptr& p2) {
561 impl_.swap(p2.impl_);
562 }
563
564 // Release a pointer.
kwiberg@webrtc.org73ca1942015-01-29 09:12:47 +0000565 // The return value is the current pointer held by this object. If this object
566 // holds a nullptr, the return value is nullptr. After this operation, this
567 // object will hold a nullptr, and will not own the object any more.
henrike@webrtc.orgf0488722014-05-13 18:00:26 +0000568 element_type* release() WARN_UNUSED_RESULT {
569 return impl_.release();
570 }
571
572 // Delete the currently held pointer and return a pointer
573 // to allow overwriting of the current pointer address.
574 element_type** accept() WARN_UNUSED_RESULT {
575 return impl_.accept();
576 }
577
578 // Return a pointer to the current pointer address.
579 element_type** use() WARN_UNUSED_RESULT {
580 return impl_.use();
581 }
582
583 private:
584 // Force element_type to be a complete type.
585 enum { type_must_be_complete = sizeof(element_type) };
586
587 // Actually hold the data.
588 rtc::internal::scoped_ptr_impl<element_type, deleter_type> impl_;
589
590 // Disable initialization from any type other than element_type*, by
591 // providing a constructor that matches such an initialization, but is
592 // private and has no definition. This is disabled because it is not safe to
593 // call delete[] on an array whose static type does not match its dynamic
594 // type.
595 template <typename U> explicit scoped_ptr(U* array);
596 explicit scoped_ptr(int disallow_construction_from_null);
597
598 // Disable reset() from any type other than element_type*, for the same
599 // reasons as the constructor above.
600 template <typename U> void reset(U* array);
601 void reset(int disallow_reset_from_null);
602
603 // Forbid comparison of scoped_ptr types. If U != T, it totally
604 // doesn't make sense, and if U == T, it still doesn't make sense
605 // because you should never have the same object owned by two different
606 // scoped_ptrs.
607 template <class U> bool operator==(scoped_ptr<U> const& p2) const;
608 template <class U> bool operator!=(scoped_ptr<U> const& p2) const;
609};
610
henrike@webrtc.orgf0488722014-05-13 18:00:26 +0000611template <class T, class D>
612void swap(rtc::scoped_ptr<T, D>& p1, rtc::scoped_ptr<T, D>& p2) {
613 p1.swap(p2);
614}
615
Karl Wiberg94784372015-04-20 14:03:07 +0200616} // namespace rtc
617
henrike@webrtc.orgf0488722014-05-13 18:00:26 +0000618template <class T, class D>
619bool operator==(T* p1, const rtc::scoped_ptr<T, D>& p2) {
620 return p1 == p2.get();
621}
622
623template <class T, class D>
624bool operator!=(T* p1, const rtc::scoped_ptr<T, D>& p2) {
625 return p1 != p2.get();
626}
627
kwiberg@webrtc.org73ca1942015-01-29 09:12:47 +0000628// A function to convert T* into scoped_ptr<T>
629// Doing e.g. make_scoped_ptr(new FooBarBaz<type>(arg)) is a shorter notation
630// for scoped_ptr<FooBarBaz<type> >(new FooBarBaz<type>(arg))
631template <typename T>
632rtc::scoped_ptr<T> rtc_make_scoped_ptr(T* ptr) {
633 return rtc::scoped_ptr<T>(ptr);
634}
635
henrike@webrtc.orgf0488722014-05-13 18:00:26 +0000636#endif // #ifndef WEBRTC_BASE_SCOPED_PTR_H__