henrika | 2250b05 | 2019-07-04 11:27:52 +0200 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (c) 2019 The WebRTC project authors. All Rights Reserved. |
| 3 | * |
| 4 | * Use of this source code is governed by a BSD-style license |
| 5 | * that can be found in the LICENSE file in the root of the source |
| 6 | * tree. An additional intellectual property rights grant can be found |
| 7 | * in the file PATENTS. All contributing project authors may |
| 8 | * be found in the AUTHORS file in the root of the source tree. |
| 9 | */ |
| 10 | |
| 11 | #include "audio/utility/channel_mixing_matrix.h" |
| 12 | |
| 13 | #include <stddef.h> |
| 14 | |
| 15 | #include "audio/utility/channel_mixer.h" |
| 16 | #include "rtc_base/arraysize.h" |
| 17 | #include "rtc_base/logging.h" |
| 18 | #include "rtc_base/strings/string_builder.h" |
| 19 | #include "test/gtest.h" |
| 20 | |
| 21 | namespace webrtc { |
| 22 | |
| 23 | // Test all possible layout conversions can be constructed and mixed. |
| 24 | // Also ensure that the channel matrix fulfill certain conditions when remapping |
| 25 | // is supported. |
| 26 | TEST(ChannelMixingMatrixTest, ConstructAllPossibleLayouts) { |
| 27 | for (ChannelLayout input_layout = CHANNEL_LAYOUT_MONO; |
| 28 | input_layout <= CHANNEL_LAYOUT_MAX; |
| 29 | input_layout = static_cast<ChannelLayout>(input_layout + 1)) { |
| 30 | for (ChannelLayout output_layout = CHANNEL_LAYOUT_MONO; |
| 31 | output_layout <= CHANNEL_LAYOUT_MAX; |
| 32 | output_layout = static_cast<ChannelLayout>(output_layout + 1)) { |
| 33 | // DISCRETE, BITSTREAM can't be tested here based on the current approach. |
| 34 | // CHANNEL_LAYOUT_STEREO_AND_KEYBOARD_MIC is not mixable. |
| 35 | // Stereo down mix should never be the output layout. |
| 36 | if (input_layout == CHANNEL_LAYOUT_BITSTREAM || |
| 37 | input_layout == CHANNEL_LAYOUT_DISCRETE || |
| 38 | input_layout == CHANNEL_LAYOUT_STEREO_AND_KEYBOARD_MIC || |
| 39 | output_layout == CHANNEL_LAYOUT_BITSTREAM || |
| 40 | output_layout == CHANNEL_LAYOUT_DISCRETE || |
| 41 | output_layout == CHANNEL_LAYOUT_STEREO_AND_KEYBOARD_MIC || |
| 42 | output_layout == CHANNEL_LAYOUT_STEREO_DOWNMIX) { |
| 43 | continue; |
| 44 | } |
| 45 | |
| 46 | rtc::StringBuilder ss; |
| 47 | ss << "Input Layout: " << input_layout |
| 48 | << ", Output Layout: " << output_layout; |
| 49 | SCOPED_TRACE(ss.str()); |
| 50 | ChannelMixingMatrix matrix_builder( |
| 51 | input_layout, ChannelLayoutToChannelCount(input_layout), |
| 52 | output_layout, ChannelLayoutToChannelCount(output_layout)); |
| 53 | const int input_channels = ChannelLayoutToChannelCount(input_layout); |
| 54 | const int output_channels = ChannelLayoutToChannelCount(output_layout); |
| 55 | std::vector<std::vector<float>> matrix; |
| 56 | bool remapping = matrix_builder.CreateTransformationMatrix(&matrix); |
| 57 | |
| 58 | if (remapping) { |
| 59 | // Also ensure that (when remapping can take place), a maximum of one |
| 60 | // input channel is included per output. This knowledge will simplify |
| 61 | // the channel mixing algorithm since it allows us to find the only |
| 62 | // scale factor which equals 1.0 and copy that input to its |
| 63 | // corresponding output. If no such factor can be found, the |
| 64 | // corresponding output can be set to zero. |
| 65 | for (int i = 0; i < output_channels; i++) { |
| 66 | EXPECT_EQ(static_cast<size_t>(input_channels), matrix[i].size()); |
| 67 | int num_input_channels_accounted_for_per_output = 0; |
| 68 | for (int j = 0; j < input_channels; j++) { |
| 69 | float scale = matrix[i][j]; |
| 70 | if (scale > 0) { |
| 71 | EXPECT_EQ(scale, 1.0f); |
| 72 | num_input_channels_accounted_for_per_output++; |
| 73 | } |
| 74 | } |
| 75 | // Each output channel shall contain contribution from one or less |
| 76 | // input channels. |
| 77 | EXPECT_LE(num_input_channels_accounted_for_per_output, 1); |
| 78 | } |
| 79 | } |
| 80 | } |
| 81 | } |
| 82 | } |
| 83 | |
| 84 | // Verify channels are mixed and scaled correctly. |
| 85 | TEST(ChannelMixingMatrixTest, StereoToMono) { |
| 86 | ChannelLayout input_layout = CHANNEL_LAYOUT_STEREO; |
| 87 | ChannelLayout output_layout = CHANNEL_LAYOUT_MONO; |
| 88 | ChannelMixingMatrix matrix_builder( |
| 89 | input_layout, ChannelLayoutToChannelCount(input_layout), output_layout, |
| 90 | ChannelLayoutToChannelCount(output_layout)); |
| 91 | std::vector<std::vector<float>> matrix; |
| 92 | bool remapping = matrix_builder.CreateTransformationMatrix(&matrix); |
| 93 | |
| 94 | // Input: stereo |
| 95 | // LEFT RIGHT |
| 96 | // Output: mono CENTER 0.5 0.5 |
| 97 | // |
| 98 | EXPECT_FALSE(remapping); |
| 99 | EXPECT_EQ(1u, matrix.size()); |
| 100 | EXPECT_EQ(2u, matrix[0].size()); |
| 101 | EXPECT_EQ(0.5f, matrix[0][0]); |
| 102 | EXPECT_EQ(0.5f, matrix[0][1]); |
| 103 | } |
| 104 | |
| 105 | TEST(ChannelMixingMatrixTest, MonoToStereo) { |
| 106 | ChannelLayout input_layout = CHANNEL_LAYOUT_MONO; |
| 107 | ChannelLayout output_layout = CHANNEL_LAYOUT_STEREO; |
| 108 | ChannelMixingMatrix matrix_builder( |
| 109 | input_layout, ChannelLayoutToChannelCount(input_layout), output_layout, |
| 110 | ChannelLayoutToChannelCount(output_layout)); |
| 111 | std::vector<std::vector<float>> matrix; |
| 112 | bool remapping = matrix_builder.CreateTransformationMatrix(&matrix); |
| 113 | |
| 114 | // Input: mono |
| 115 | // CENTER |
| 116 | // Output: stereo LEFT 1 |
| 117 | // RIGHT 1 |
| 118 | // |
| 119 | EXPECT_TRUE(remapping); |
| 120 | EXPECT_EQ(2u, matrix.size()); |
| 121 | EXPECT_EQ(1u, matrix[0].size()); |
| 122 | EXPECT_EQ(1.0f, matrix[0][0]); |
| 123 | EXPECT_EQ(1u, matrix[1].size()); |
| 124 | EXPECT_EQ(1.0f, matrix[1][0]); |
| 125 | } |
| 126 | |
| 127 | TEST(ChannelMixingMatrixTest, MonoToTwoOne) { |
| 128 | ChannelLayout input_layout = CHANNEL_LAYOUT_MONO; |
| 129 | ChannelLayout output_layout = CHANNEL_LAYOUT_2_1; |
| 130 | ChannelMixingMatrix matrix_builder( |
| 131 | input_layout, ChannelLayoutToChannelCount(input_layout), output_layout, |
| 132 | ChannelLayoutToChannelCount(output_layout)); |
| 133 | std::vector<std::vector<float>> matrix; |
| 134 | bool remapping = matrix_builder.CreateTransformationMatrix(&matrix); |
| 135 | |
| 136 | // Input: mono |
| 137 | // CENTER |
| 138 | // Output: 2.1 FRONT_LEFT 1 |
| 139 | // FRONT_RIGHT 1 |
| 140 | // BACK_CENTER 0 |
| 141 | // |
| 142 | EXPECT_FALSE(remapping); |
| 143 | EXPECT_EQ(3u, matrix.size()); |
| 144 | EXPECT_EQ(1u, matrix[0].size()); |
| 145 | EXPECT_EQ(1.0f, matrix[0][0]); |
| 146 | EXPECT_EQ(1.0f, matrix[1][0]); |
| 147 | EXPECT_EQ(0.0f, matrix[2][0]); |
| 148 | } |
| 149 | |
| 150 | TEST(ChannelMixingMatrixTest, FiveOneToMono) { |
| 151 | ChannelLayout input_layout = CHANNEL_LAYOUT_5_1; |
| 152 | ChannelLayout output_layout = CHANNEL_LAYOUT_MONO; |
| 153 | ChannelMixingMatrix matrix_builder( |
| 154 | input_layout, ChannelLayoutToChannelCount(input_layout), output_layout, |
| 155 | ChannelLayoutToChannelCount(output_layout)); |
| 156 | std::vector<std::vector<float>> matrix; |
| 157 | bool remapping = matrix_builder.CreateTransformationMatrix(&matrix); |
| 158 | |
| 159 | // Note: 1/sqrt(2) is shown as 0.707. |
| 160 | // |
| 161 | // Input: 5.1 |
| 162 | // LEFT RIGHT CENTER LFE SIDE_LEFT SIDE_RIGHT |
| 163 | // Output: mono CENTER 0.707 0.707 1 0.707 0.707 0.707 |
| 164 | // |
| 165 | EXPECT_FALSE(remapping); |
| 166 | EXPECT_EQ(1u, matrix.size()); |
| 167 | EXPECT_EQ(6u, matrix[0].size()); |
| 168 | EXPECT_FLOAT_EQ(ChannelMixer::kHalfPower, matrix[0][0]); |
| 169 | EXPECT_FLOAT_EQ(ChannelMixer::kHalfPower, matrix[0][1]); |
| 170 | // The center channel will be mixed at scale 1. |
| 171 | EXPECT_EQ(1.0f, matrix[0][2]); |
| 172 | EXPECT_FLOAT_EQ(ChannelMixer::kHalfPower, matrix[0][3]); |
| 173 | EXPECT_FLOAT_EQ(ChannelMixer::kHalfPower, matrix[0][4]); |
| 174 | EXPECT_FLOAT_EQ(ChannelMixer::kHalfPower, matrix[0][5]); |
| 175 | } |
| 176 | |
| 177 | TEST(ChannelMixingMatrixTest, FiveOneBackToStereo) { |
| 178 | // Front L, Front R, Front C, LFE, Back L, Back R |
| 179 | ChannelLayout input_layout = CHANNEL_LAYOUT_5_1_BACK; |
| 180 | ChannelLayout output_layout = CHANNEL_LAYOUT_STEREO; |
| 181 | const int input_channels = ChannelLayoutToChannelCount(input_layout); |
| 182 | const int output_channels = ChannelLayoutToChannelCount(output_layout); |
| 183 | ChannelMixingMatrix matrix_builder(input_layout, input_channels, |
| 184 | output_layout, output_channels); |
| 185 | std::vector<std::vector<float>> matrix; |
| 186 | bool remapping = matrix_builder.CreateTransformationMatrix(&matrix); |
| 187 | |
| 188 | // Note: 1/sqrt(2) is shown as 0.707. |
| 189 | // Note: The Channels enumerator is given by {LEFT = 0, RIGHT, CENTER, LFE, |
| 190 | // BACK_LEFT, BACK_RIGHT,...}, hence we can use the enumerator values as |
| 191 | // indexes in the matrix when verifying the scaling factors. |
| 192 | // |
| 193 | // Input: 5.1 |
| 194 | // LEFT RIGHT CENTER LFE BACK_LEFT BACK_RIGHT |
| 195 | // Output: stereo LEFT 1 0 0.707 0.707 0.707 0 |
| 196 | // RIGHT 0 1 0.707 0.707 0 0.707 |
| 197 | // |
| 198 | EXPECT_FALSE(remapping); |
| 199 | EXPECT_EQ(static_cast<size_t>(output_channels), matrix.size()); |
| 200 | EXPECT_EQ(static_cast<size_t>(input_channels), matrix[LEFT].size()); |
| 201 | EXPECT_EQ(static_cast<size_t>(input_channels), matrix[RIGHT].size()); |
| 202 | EXPECT_EQ(1.0f, matrix[LEFT][LEFT]); |
| 203 | EXPECT_EQ(1.0f, matrix[RIGHT][RIGHT]); |
| 204 | EXPECT_EQ(0.0f, matrix[LEFT][RIGHT]); |
| 205 | EXPECT_EQ(0.0f, matrix[RIGHT][LEFT]); |
| 206 | EXPECT_EQ(0.0f, matrix[LEFT][BACK_RIGHT]); |
| 207 | EXPECT_EQ(0.0f, matrix[RIGHT][BACK_LEFT]); |
| 208 | EXPECT_FLOAT_EQ(ChannelMixer::kHalfPower, matrix[LEFT][CENTER]); |
| 209 | EXPECT_FLOAT_EQ(ChannelMixer::kHalfPower, matrix[LEFT][LFE]); |
| 210 | EXPECT_FLOAT_EQ(ChannelMixer::kHalfPower, matrix[LEFT][BACK_LEFT]); |
| 211 | EXPECT_FLOAT_EQ(ChannelMixer::kHalfPower, matrix[RIGHT][CENTER]); |
| 212 | EXPECT_FLOAT_EQ(ChannelMixer::kHalfPower, matrix[RIGHT][LFE]); |
| 213 | EXPECT_FLOAT_EQ(ChannelMixer::kHalfPower, matrix[RIGHT][BACK_RIGHT]); |
| 214 | } |
| 215 | |
| 216 | TEST(ChannelMixingMatrixTest, FiveOneToSevenOne) { |
| 217 | // Front L, Front R, Front C, LFE, Side L, Side R |
| 218 | ChannelLayout input_layout = CHANNEL_LAYOUT_5_1; |
| 219 | // Front L, Front R, Front C, LFE, Side L, Side R, Back L, Back R |
| 220 | ChannelLayout output_layout = CHANNEL_LAYOUT_7_1; |
| 221 | const int input_channels = ChannelLayoutToChannelCount(input_layout); |
| 222 | const int output_channels = ChannelLayoutToChannelCount(output_layout); |
| 223 | ChannelMixingMatrix matrix_builder(input_layout, input_channels, |
| 224 | output_layout, output_channels); |
| 225 | std::vector<std::vector<float>> matrix; |
| 226 | bool remapping = matrix_builder.CreateTransformationMatrix(&matrix); |
| 227 | |
| 228 | // Input: 5.1 |
| 229 | // LEFT RIGHT CENTER LFE SIDE_LEFT SIDE_RIGHT |
| 230 | // Output: 7.1 LEFT 1 0 0 0 0 0 |
| 231 | // RIGHT 0 1 0 0 0 0 |
| 232 | // CENTER 0 0 1 0 0 0 |
| 233 | // LFE 0 0 0 1 0 0 |
| 234 | // SIDE_LEFT 0 0 0 0 1 0 |
| 235 | // SIDE_RIGHT 0 0 0 0 0 1 |
| 236 | // BACK_LEFT 0 0 0 0 0 0 |
| 237 | // BACK_RIGHT 0 0 0 0 0 0 |
| 238 | // |
| 239 | EXPECT_TRUE(remapping); |
| 240 | EXPECT_EQ(static_cast<size_t>(output_channels), matrix.size()); |
| 241 | for (int i = 0; i < output_channels; i++) { |
| 242 | EXPECT_EQ(static_cast<size_t>(input_channels), matrix[i].size()); |
| 243 | for (int j = 0; j < input_channels; j++) { |
| 244 | if (i == j) { |
| 245 | EXPECT_EQ(1.0f, matrix[i][j]); |
| 246 | } else { |
| 247 | EXPECT_EQ(0.0f, matrix[i][j]); |
| 248 | } |
| 249 | } |
| 250 | } |
| 251 | } |
| 252 | |
| 253 | TEST(ChannelMixingMatrixTest, StereoToFiveOne) { |
| 254 | ChannelLayout input_layout = CHANNEL_LAYOUT_STEREO; |
| 255 | ChannelLayout output_layout = CHANNEL_LAYOUT_5_1; |
| 256 | const int input_channels = ChannelLayoutToChannelCount(input_layout); |
| 257 | const int output_channels = ChannelLayoutToChannelCount(output_layout); |
| 258 | ChannelMixingMatrix matrix_builder(input_layout, input_channels, |
| 259 | output_layout, output_channels); |
| 260 | std::vector<std::vector<float>> matrix; |
| 261 | bool remapping = matrix_builder.CreateTransformationMatrix(&matrix); |
| 262 | |
| 263 | // Input: Stereo |
| 264 | // LEFT RIGHT |
| 265 | // Output: 5.1 LEFT 1 0 |
| 266 | // RIGHT 0 1 |
| 267 | // CENTER 0 0 |
| 268 | // LFE 0 0 |
| 269 | // SIDE_LEFT 0 0 |
| 270 | // SIDE_RIGHT 0 0 |
| 271 | // |
| 272 | EXPECT_TRUE(remapping); |
| 273 | EXPECT_EQ(static_cast<size_t>(output_channels), matrix.size()); |
| 274 | for (int n = 0; n < output_channels; n++) { |
| 275 | EXPECT_EQ(static_cast<size_t>(input_channels), matrix[n].size()); |
| 276 | if (n == LEFT) { |
| 277 | EXPECT_EQ(1.0f, matrix[LEFT][LEFT]); |
| 278 | EXPECT_EQ(0.0f, matrix[LEFT][RIGHT]); |
| 279 | } else if (n == RIGHT) { |
| 280 | EXPECT_EQ(0.0f, matrix[RIGHT][LEFT]); |
| 281 | EXPECT_EQ(1.0f, matrix[RIGHT][RIGHT]); |
| 282 | } else { |
| 283 | EXPECT_EQ(0.0f, matrix[n][LEFT]); |
| 284 | EXPECT_EQ(0.0f, matrix[n][RIGHT]); |
| 285 | } |
| 286 | } |
| 287 | } |
| 288 | |
| 289 | TEST(ChannelMixingMatrixTest, DiscreteToDiscrete) { |
| 290 | const struct { |
| 291 | int input_channels; |
| 292 | int output_channels; |
| 293 | } test_case[] = { |
| 294 | {2, 2}, |
| 295 | {2, 5}, |
| 296 | {5, 2}, |
| 297 | }; |
| 298 | |
| 299 | for (size_t n = 0; n < arraysize(test_case); n++) { |
| 300 | int input_channels = test_case[n].input_channels; |
| 301 | int output_channels = test_case[n].output_channels; |
| 302 | ChannelMixingMatrix matrix_builder(CHANNEL_LAYOUT_DISCRETE, input_channels, |
| 303 | CHANNEL_LAYOUT_DISCRETE, |
| 304 | output_channels); |
| 305 | std::vector<std::vector<float>> matrix; |
| 306 | bool remapping = matrix_builder.CreateTransformationMatrix(&matrix); |
| 307 | EXPECT_TRUE(remapping); |
| 308 | EXPECT_EQ(static_cast<size_t>(output_channels), matrix.size()); |
| 309 | for (int i = 0; i < output_channels; i++) { |
| 310 | EXPECT_EQ(static_cast<size_t>(input_channels), matrix[i].size()); |
| 311 | for (int j = 0; j < input_channels; j++) { |
| 312 | if (i == j) { |
| 313 | EXPECT_EQ(1.0f, matrix[i][j]); |
| 314 | } else { |
| 315 | EXPECT_EQ(0.0f, matrix[i][j]); |
| 316 | } |
| 317 | } |
| 318 | } |
| 319 | } |
| 320 | } |
| 321 | |
| 322 | } // namespace webrtc |