andrew@webrtc.org | aada86b | 2014-10-27 18:18:17 +0000 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (c) 2014 The WebRTC project authors. All Rights Reserved. |
| 3 | * |
| 4 | * Use of this source code is governed by a BSD-style license |
| 5 | * that can be found in the LICENSE file in the root of the source |
| 6 | * tree. An additional intellectual property rights grant can be found |
| 7 | * in the file PATENTS. All contributing project authors may |
| 8 | * be found in the AUTHORS file in the root of the source tree. |
| 9 | */ |
| 10 | |
| 11 | #include <math.h> |
| 12 | #include <algorithm> |
| 13 | #include <vector> |
| 14 | |
| 15 | #include "testing/gtest/include/gtest/gtest.h" |
| 16 | #include "webrtc/common_audio/audio_converter.h" |
| 17 | #include "webrtc/common_audio/resampler/push_sinc_resampler.h" |
kjellander@webrtc.org | 035e912 | 2015-01-28 19:57:00 +0000 | [diff] [blame^] | 18 | #include "webrtc/common_audio/channel_buffer.h" |
andrew@webrtc.org | aada86b | 2014-10-27 18:18:17 +0000 | [diff] [blame] | 19 | #include "webrtc/system_wrappers/interface/scoped_ptr.h" |
| 20 | |
| 21 | namespace webrtc { |
| 22 | |
| 23 | typedef scoped_ptr<ChannelBuffer<float>> ScopedBuffer; |
| 24 | |
| 25 | // Sets the signal value to increase by |data| with every sample. |
| 26 | ScopedBuffer CreateBuffer(const std::vector<float>& data, int frames) { |
| 27 | const int num_channels = static_cast<int>(data.size()); |
| 28 | ScopedBuffer sb(new ChannelBuffer<float>(frames, num_channels)); |
| 29 | for (int i = 0; i < num_channels; ++i) |
| 30 | for (int j = 0; j < frames; ++j) |
| 31 | sb->channel(i)[j] = data[i] * j; |
| 32 | return sb; |
| 33 | } |
| 34 | |
| 35 | void VerifyParams(const ChannelBuffer<float>& ref, |
| 36 | const ChannelBuffer<float>& test) { |
| 37 | EXPECT_EQ(ref.num_channels(), test.num_channels()); |
| 38 | EXPECT_EQ(ref.samples_per_channel(), test.samples_per_channel()); |
| 39 | } |
| 40 | |
| 41 | // Computes the best SNR based on the error between |ref_frame| and |
| 42 | // |test_frame|. It searches around |expected_delay| in samples between the |
| 43 | // signals to compensate for the resampling delay. |
| 44 | float ComputeSNR(const ChannelBuffer<float>& ref, |
| 45 | const ChannelBuffer<float>& test, |
| 46 | int expected_delay) { |
| 47 | VerifyParams(ref, test); |
| 48 | float best_snr = 0; |
| 49 | int best_delay = 0; |
| 50 | |
| 51 | // Search within one sample of the expected delay. |
| 52 | for (int delay = std::max(expected_delay - 1, 0); |
| 53 | delay <= std::min(expected_delay + 1, ref.samples_per_channel()); |
| 54 | ++delay) { |
| 55 | float mse = 0; |
| 56 | float variance = 0; |
| 57 | float mean = 0; |
| 58 | for (int i = 0; i < ref.num_channels(); ++i) { |
| 59 | for (int j = 0; j < ref.samples_per_channel() - delay; ++j) { |
| 60 | float error = ref.channel(i)[j] - test.channel(i)[j + delay]; |
| 61 | mse += error * error; |
| 62 | variance += ref.channel(i)[j] * ref.channel(i)[j]; |
| 63 | mean += ref.channel(i)[j]; |
| 64 | } |
| 65 | } |
| 66 | const int length = ref.num_channels() * (ref.samples_per_channel() - delay); |
| 67 | mse /= length; |
| 68 | variance /= length; |
| 69 | mean /= length; |
| 70 | variance -= mean * mean; |
| 71 | float snr = 100; // We assign 100 dB to the zero-error case. |
| 72 | if (mse > 0) |
| 73 | snr = 10 * log10(variance / mse); |
| 74 | if (snr > best_snr) { |
| 75 | best_snr = snr; |
| 76 | best_delay = delay; |
| 77 | } |
| 78 | } |
| 79 | printf("SNR=%.1f dB at delay=%d\n", best_snr, best_delay); |
| 80 | return best_snr; |
| 81 | } |
| 82 | |
| 83 | // Sets the source to a linearly increasing signal for which we can easily |
| 84 | // generate a reference. Runs the AudioConverter and ensures the output has |
| 85 | // sufficiently high SNR relative to the reference. |
| 86 | void RunAudioConverterTest(int src_channels, |
| 87 | int src_sample_rate_hz, |
| 88 | int dst_channels, |
| 89 | int dst_sample_rate_hz) { |
| 90 | const float kSrcLeft = 0.0002f; |
| 91 | const float kSrcRight = 0.0001f; |
| 92 | const float resampling_factor = (1.f * src_sample_rate_hz) / |
| 93 | dst_sample_rate_hz; |
| 94 | const float dst_left = resampling_factor * kSrcLeft; |
| 95 | const float dst_right = resampling_factor * kSrcRight; |
| 96 | const float dst_mono = (dst_left + dst_right) / 2; |
| 97 | const int src_frames = src_sample_rate_hz / 100; |
| 98 | const int dst_frames = dst_sample_rate_hz / 100; |
| 99 | |
| 100 | std::vector<float> src_data(1, kSrcLeft); |
| 101 | if (src_channels == 2) |
| 102 | src_data.push_back(kSrcRight); |
| 103 | ScopedBuffer src_buffer = CreateBuffer(src_data, src_frames); |
| 104 | |
| 105 | std::vector<float> dst_data(1, 0); |
| 106 | std::vector<float> ref_data; |
| 107 | if (dst_channels == 1) { |
| 108 | if (src_channels == 1) |
| 109 | ref_data.push_back(dst_left); |
| 110 | else |
| 111 | ref_data.push_back(dst_mono); |
| 112 | } else { |
| 113 | dst_data.push_back(0); |
| 114 | ref_data.push_back(dst_left); |
| 115 | if (src_channels == 1) |
| 116 | ref_data.push_back(dst_left); |
| 117 | else |
| 118 | ref_data.push_back(dst_right); |
| 119 | } |
| 120 | ScopedBuffer dst_buffer = CreateBuffer(dst_data, dst_frames); |
| 121 | ScopedBuffer ref_buffer = CreateBuffer(ref_data, dst_frames); |
| 122 | |
| 123 | // The sinc resampler has a known delay, which we compute here. |
| 124 | const int delay_frames = src_sample_rate_hz == dst_sample_rate_hz ? 0 : |
| 125 | PushSincResampler::AlgorithmicDelaySeconds(src_sample_rate_hz) * |
| 126 | dst_sample_rate_hz; |
| 127 | printf("(%d, %d Hz) -> (%d, %d Hz) ", // SNR reported on the same line later. |
| 128 | src_channels, src_sample_rate_hz, dst_channels, dst_sample_rate_hz); |
| 129 | |
| 130 | AudioConverter converter(src_channels, src_frames, dst_channels, dst_frames); |
| 131 | converter.Convert(src_buffer->channels(), src_channels, src_frames, |
| 132 | dst_channels, dst_frames, dst_buffer->channels()); |
| 133 | |
| 134 | EXPECT_LT(43.f, |
| 135 | ComputeSNR(*ref_buffer.get(), *dst_buffer.get(), delay_frames)); |
| 136 | } |
| 137 | |
| 138 | TEST(AudioConverterTest, ConversionsPassSNRThreshold) { |
| 139 | const int kSampleRates[] = {8000, 16000, 32000, 44100, 48000}; |
| 140 | const int kSampleRatesSize = sizeof(kSampleRates) / sizeof(*kSampleRates); |
| 141 | const int kChannels[] = {1, 2}; |
| 142 | const int kChannelsSize = sizeof(kChannels) / sizeof(*kChannels); |
| 143 | for (int src_rate = 0; src_rate < kSampleRatesSize; ++src_rate) { |
| 144 | for (int dst_rate = 0; dst_rate < kSampleRatesSize; ++dst_rate) { |
| 145 | for (int src_channel = 0; src_channel < kChannelsSize; ++src_channel) { |
| 146 | for (int dst_channel = 0; dst_channel < kChannelsSize; ++dst_channel) { |
| 147 | RunAudioConverterTest(kChannels[src_channel], kSampleRates[src_rate], |
| 148 | kChannels[dst_channel], kSampleRates[dst_rate]); |
| 149 | } |
| 150 | } |
| 151 | } |
| 152 | } |
| 153 | } |
| 154 | |
| 155 | } // namespace webrtc |