blob: 435f928beac86429ed6060796cc8f0f2bc832876 [file] [log] [blame]
andrew@webrtc.orgaada86b2014-10-27 18:18:17 +00001/*
2 * Copyright (c) 2014 The WebRTC project authors. All Rights Reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
11#include <math.h>
12#include <algorithm>
13#include <vector>
14
15#include "testing/gtest/include/gtest/gtest.h"
16#include "webrtc/common_audio/audio_converter.h"
17#include "webrtc/common_audio/resampler/push_sinc_resampler.h"
kjellander@webrtc.org035e9122015-01-28 19:57:00 +000018#include "webrtc/common_audio/channel_buffer.h"
andrew@webrtc.orgaada86b2014-10-27 18:18:17 +000019#include "webrtc/system_wrappers/interface/scoped_ptr.h"
20
21namespace webrtc {
22
23typedef scoped_ptr<ChannelBuffer<float>> ScopedBuffer;
24
25// Sets the signal value to increase by |data| with every sample.
26ScopedBuffer CreateBuffer(const std::vector<float>& data, int frames) {
27 const int num_channels = static_cast<int>(data.size());
28 ScopedBuffer sb(new ChannelBuffer<float>(frames, num_channels));
29 for (int i = 0; i < num_channels; ++i)
30 for (int j = 0; j < frames; ++j)
31 sb->channel(i)[j] = data[i] * j;
32 return sb;
33}
34
35void VerifyParams(const ChannelBuffer<float>& ref,
36 const ChannelBuffer<float>& test) {
37 EXPECT_EQ(ref.num_channels(), test.num_channels());
38 EXPECT_EQ(ref.samples_per_channel(), test.samples_per_channel());
39}
40
41// Computes the best SNR based on the error between |ref_frame| and
42// |test_frame|. It searches around |expected_delay| in samples between the
43// signals to compensate for the resampling delay.
44float ComputeSNR(const ChannelBuffer<float>& ref,
45 const ChannelBuffer<float>& test,
46 int expected_delay) {
47 VerifyParams(ref, test);
48 float best_snr = 0;
49 int best_delay = 0;
50
51 // Search within one sample of the expected delay.
52 for (int delay = std::max(expected_delay - 1, 0);
53 delay <= std::min(expected_delay + 1, ref.samples_per_channel());
54 ++delay) {
55 float mse = 0;
56 float variance = 0;
57 float mean = 0;
58 for (int i = 0; i < ref.num_channels(); ++i) {
59 for (int j = 0; j < ref.samples_per_channel() - delay; ++j) {
60 float error = ref.channel(i)[j] - test.channel(i)[j + delay];
61 mse += error * error;
62 variance += ref.channel(i)[j] * ref.channel(i)[j];
63 mean += ref.channel(i)[j];
64 }
65 }
66 const int length = ref.num_channels() * (ref.samples_per_channel() - delay);
67 mse /= length;
68 variance /= length;
69 mean /= length;
70 variance -= mean * mean;
71 float snr = 100; // We assign 100 dB to the zero-error case.
72 if (mse > 0)
73 snr = 10 * log10(variance / mse);
74 if (snr > best_snr) {
75 best_snr = snr;
76 best_delay = delay;
77 }
78 }
79 printf("SNR=%.1f dB at delay=%d\n", best_snr, best_delay);
80 return best_snr;
81}
82
83// Sets the source to a linearly increasing signal for which we can easily
84// generate a reference. Runs the AudioConverter and ensures the output has
85// sufficiently high SNR relative to the reference.
86void RunAudioConverterTest(int src_channels,
87 int src_sample_rate_hz,
88 int dst_channels,
89 int dst_sample_rate_hz) {
90 const float kSrcLeft = 0.0002f;
91 const float kSrcRight = 0.0001f;
92 const float resampling_factor = (1.f * src_sample_rate_hz) /
93 dst_sample_rate_hz;
94 const float dst_left = resampling_factor * kSrcLeft;
95 const float dst_right = resampling_factor * kSrcRight;
96 const float dst_mono = (dst_left + dst_right) / 2;
97 const int src_frames = src_sample_rate_hz / 100;
98 const int dst_frames = dst_sample_rate_hz / 100;
99
100 std::vector<float> src_data(1, kSrcLeft);
101 if (src_channels == 2)
102 src_data.push_back(kSrcRight);
103 ScopedBuffer src_buffer = CreateBuffer(src_data, src_frames);
104
105 std::vector<float> dst_data(1, 0);
106 std::vector<float> ref_data;
107 if (dst_channels == 1) {
108 if (src_channels == 1)
109 ref_data.push_back(dst_left);
110 else
111 ref_data.push_back(dst_mono);
112 } else {
113 dst_data.push_back(0);
114 ref_data.push_back(dst_left);
115 if (src_channels == 1)
116 ref_data.push_back(dst_left);
117 else
118 ref_data.push_back(dst_right);
119 }
120 ScopedBuffer dst_buffer = CreateBuffer(dst_data, dst_frames);
121 ScopedBuffer ref_buffer = CreateBuffer(ref_data, dst_frames);
122
123 // The sinc resampler has a known delay, which we compute here.
124 const int delay_frames = src_sample_rate_hz == dst_sample_rate_hz ? 0 :
125 PushSincResampler::AlgorithmicDelaySeconds(src_sample_rate_hz) *
126 dst_sample_rate_hz;
127 printf("(%d, %d Hz) -> (%d, %d Hz) ", // SNR reported on the same line later.
128 src_channels, src_sample_rate_hz, dst_channels, dst_sample_rate_hz);
129
130 AudioConverter converter(src_channels, src_frames, dst_channels, dst_frames);
131 converter.Convert(src_buffer->channels(), src_channels, src_frames,
132 dst_channels, dst_frames, dst_buffer->channels());
133
134 EXPECT_LT(43.f,
135 ComputeSNR(*ref_buffer.get(), *dst_buffer.get(), delay_frames));
136}
137
138TEST(AudioConverterTest, ConversionsPassSNRThreshold) {
139 const int kSampleRates[] = {8000, 16000, 32000, 44100, 48000};
140 const int kSampleRatesSize = sizeof(kSampleRates) / sizeof(*kSampleRates);
141 const int kChannels[] = {1, 2};
142 const int kChannelsSize = sizeof(kChannels) / sizeof(*kChannels);
143 for (int src_rate = 0; src_rate < kSampleRatesSize; ++src_rate) {
144 for (int dst_rate = 0; dst_rate < kSampleRatesSize; ++dst_rate) {
145 for (int src_channel = 0; src_channel < kChannelsSize; ++src_channel) {
146 for (int dst_channel = 0; dst_channel < kChannelsSize; ++dst_channel) {
147 RunAudioConverterTest(kChannels[src_channel], kSampleRates[src_rate],
148 kChannels[dst_channel], kSampleRates[dst_rate]);
149 }
150 }
151 }
152 }
153}
154
155} // namespace webrtc