Initial upload of NetEq4

This is the first public upload of the new NetEq, version 4.

It has been through extensive internal review during the course of
the project.

TEST=trybots

Review URL: https://webrtc-codereview.appspot.com/1073005

git-svn-id: http://webrtc.googlecode.com/svn/trunk@3425 4adac7df-926f-26a2-2b94-8c16560cd09d
diff --git a/webrtc/modules/audio_coding/neteq4/expand.cc b/webrtc/modules/audio_coding/neteq4/expand.cc
new file mode 100644
index 0000000..6ea3203
--- /dev/null
+++ b/webrtc/modules/audio_coding/neteq4/expand.cc
@@ -0,0 +1,860 @@
+/*
+ *  Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
+ *
+ *  Use of this source code is governed by a BSD-style license
+ *  that can be found in the LICENSE file in the root of the source
+ *  tree. An additional intellectual property rights grant can be found
+ *  in the file PATENTS.  All contributing project authors may
+ *  be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include "webrtc/modules/audio_coding/neteq4/expand.h"
+
+#include <assert.h>
+
+#include <algorithm>  // min, max
+#include <cstring>  // memset
+
+#include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
+#include "webrtc/modules/audio_coding/neteq4/background_noise.h"
+#include "webrtc/modules/audio_coding/neteq4/dsp_helper.h"
+#include "webrtc/modules/audio_coding/neteq4/random_vector.h"
+#include "webrtc/modules/audio_coding/neteq4/sync_buffer.h"
+
+namespace webrtc {
+
+void Expand::Reset() {
+  first_expand_ = true;
+  consecutive_expands_ = 0;
+  max_lag_ = 0;
+  for (size_t ix = 0; ix < num_channels_; ++ix) {
+    channel_parameters_[ix].expand_vector0.Clear();
+    channel_parameters_[ix].expand_vector1.Clear();
+  }
+}
+
+int Expand::Process(AudioMultiVector<int16_t>* output) {
+  int16_t random_vector[kMaxSampleRate / 8000 * 120 + 30];
+  int16_t scaled_random_vector[kMaxSampleRate / 8000 * 125];
+  static const int kTempDataSize = 3600;
+  int16_t temp_data[kTempDataSize];  // TODO(hlundin) Remove this.
+  int16_t* voiced_vector_storage = temp_data;
+  int16_t* voiced_vector = &voiced_vector_storage[overlap_length_];
+  static const int kNoiseLpcOrder = BackgroundNoise::kMaxLpcOrder;
+  int16_t unvoiced_array_memory[kNoiseLpcOrder + kMaxSampleRate / 8000 * 125];
+  int16_t* unvoiced_vector = unvoiced_array_memory + kUnvoicedLpcOrder;
+  int16_t* noise_vector = unvoiced_array_memory + kNoiseLpcOrder;
+
+  int fs_mult = fs_hz_ / 8000;
+
+  if (first_expand_) {
+    // Perform initial setup if this is the first expansion since last reset.
+    AnalyzeSignal(random_vector);
+    first_expand_ = false;
+  } else {
+    // This is not the first expansion, parameters are already estimated.
+    // Extract a noise segment.
+    int16_t rand_length = max_lag_;
+    // TODO(hlundin): This if-statement should not be needed. Should be just
+    // as good to generate all of the vector in one call in either case.
+    if (rand_length <= RandomVector::kRandomTableSize) {
+      random_vector_->IncreaseSeedIncrement(2);
+      random_vector_->Generate(rand_length, random_vector);
+    } else {
+      // This only applies to SWB where length could be larger than 256.
+      assert(rand_length <= kMaxSampleRate / 8000 * 120 + 30);
+      random_vector_->IncreaseSeedIncrement(2);
+      random_vector_->Generate(RandomVector::kRandomTableSize, random_vector);
+      random_vector_->IncreaseSeedIncrement(2);
+      random_vector_->Generate(rand_length - RandomVector::kRandomTableSize,
+                               &random_vector[RandomVector::kRandomTableSize]);
+    }
+  }
+
+
+  // Generate signal.
+  UpdateLagIndex();
+
+  // Voiced part.
+  // Generate a weighted vector with the current lag.
+  size_t expansion_vector_length = max_lag_ + overlap_length_;
+  size_t current_lag = expand_lags_[current_lag_index_];
+  // Copy lag+overlap data.
+  size_t expansion_vector_position = expansion_vector_length - current_lag -
+      overlap_length_;
+  size_t temp_length = current_lag + overlap_length_;
+  for (size_t channel_ix = 0; channel_ix < num_channels_; ++channel_ix) {
+    ChannelParameters& parameters = channel_parameters_[channel_ix];
+    if (current_lag_index_ == 0) {
+      // Use only expand_vector0.
+      assert(expansion_vector_position + temp_length <=
+             parameters.expand_vector0.Size());
+      memcpy(voiced_vector_storage,
+             &parameters.expand_vector0[expansion_vector_position],
+             sizeof(int16_t) * temp_length);
+    } else if (current_lag_index_ == 1) {
+      // Mix 3/4 of expand_vector0 with 1/4 of expand_vector1.
+      WebRtcSpl_ScaleAndAddVectorsWithRound(
+          &parameters.expand_vector0[expansion_vector_position], 3,
+          &parameters.expand_vector1[expansion_vector_position], 1, 2,
+          voiced_vector_storage, temp_length);
+    } else if (current_lag_index_ == 2) {
+      // Mix 1/2 of expand_vector0 with 1/2 of expand_vector1.
+      assert(expansion_vector_position + temp_length <=
+             parameters.expand_vector0.Size());
+      assert(expansion_vector_position + temp_length <=
+             parameters.expand_vector1.Size());
+      WebRtcSpl_ScaleAndAddVectorsWithRound(
+          &parameters.expand_vector0[expansion_vector_position], 1,
+          &parameters.expand_vector1[expansion_vector_position], 1, 1,
+          voiced_vector_storage, temp_length);
+    }
+
+    // Get tapering window parameters. Values are in Q15.
+    int16_t muting_window, muting_window_increment;
+    int16_t unmuting_window, unmuting_window_increment;
+    if (fs_hz_ == 8000) {
+      muting_window = DspHelper::kMuteFactorStart8kHz;
+      muting_window_increment = DspHelper::kMuteFactorIncrement8kHz;
+      unmuting_window = DspHelper::kUnmuteFactorStart8kHz;
+      unmuting_window_increment = DspHelper::kUnmuteFactorIncrement8kHz;
+    } else if (fs_hz_ == 16000) {
+      muting_window = DspHelper::kMuteFactorStart16kHz;
+      muting_window_increment = DspHelper::kMuteFactorIncrement16kHz;
+      unmuting_window = DspHelper::kUnmuteFactorStart16kHz;
+      unmuting_window_increment = DspHelper::kUnmuteFactorIncrement16kHz;
+    } else if (fs_hz_ == 32000) {
+      muting_window = DspHelper::kMuteFactorStart32kHz;
+      muting_window_increment = DspHelper::kMuteFactorIncrement32kHz;
+      unmuting_window = DspHelper::kUnmuteFactorStart32kHz;
+      unmuting_window_increment = DspHelper::kUnmuteFactorIncrement32kHz;
+    } else {  // fs_ == 48000
+      muting_window = DspHelper::kMuteFactorStart48kHz;
+      muting_window_increment = DspHelper::kMuteFactorIncrement48kHz;
+      unmuting_window = DspHelper::kUnmuteFactorStart48kHz;
+      unmuting_window_increment = DspHelper::kUnmuteFactorIncrement48kHz;
+    }
+
+    // Smooth the expanded if it has not been muted to a low amplitude and
+    // |current_voice_mix_factor| is larger than 0.5.
+    if ((parameters.mute_factor > 819) &&
+        (parameters.current_voice_mix_factor > 8192)) {
+      size_t start_ix = sync_buffer_->Size() - overlap_length_;
+      for (size_t i = 0; i < overlap_length_; i++) {
+        // Do overlap add between new vector and overlap.
+        (*sync_buffer_)[channel_ix][start_ix + i] =
+            (((*sync_buffer_)[channel_ix][start_ix + i] * muting_window) +
+                (((parameters.mute_factor * voiced_vector_storage[i]) >> 14) *
+                    unmuting_window) + 16384) >> 15;
+        muting_window += muting_window_increment;
+        unmuting_window += unmuting_window_increment;
+      }
+    } else if (parameters.mute_factor == 0) {
+      // The expanded signal will consist of only comfort noise if
+      // mute_factor = 0. Set the output length to 15 ms for best noise
+      // production.
+      // TODO(hlundin): This has been disabled since the length of
+      // parameters.expand_vector0 and parameters.expand_vector1 no longer
+      // match with expand_lags_, causing invalid reads and writes. Is it a good
+      // idea to enable this again, and solve the vector size problem?
+//      max_lag_ = fs_mult * 120;
+//      expand_lags_[0] = fs_mult * 120;
+//      expand_lags_[1] = fs_mult * 120;
+//      expand_lags_[2] = fs_mult * 120;
+    }
+
+    // Unvoiced part.
+    // Filter |scaled_random_vector| through |ar_filter_|.
+    memcpy(unvoiced_vector - kUnvoicedLpcOrder, parameters.ar_filter_state,
+           sizeof(int16_t) * kUnvoicedLpcOrder);
+    int32_t add_constant = 0;
+    if (parameters.ar_gain_scale > 0) {
+      add_constant = 1 << (parameters.ar_gain_scale - 1);
+    }
+    WebRtcSpl_AffineTransformVector(scaled_random_vector, random_vector,
+                                    parameters.ar_gain, add_constant,
+                                    parameters.ar_gain_scale, current_lag);
+    WebRtcSpl_FilterARFastQ12(scaled_random_vector, unvoiced_vector,
+                              parameters.ar_filter,
+                              kUnvoicedLpcOrder + 1, current_lag);
+    memcpy(parameters.ar_filter_state,
+           &(unvoiced_vector[current_lag - kUnvoicedLpcOrder]),
+           sizeof(int16_t) * kUnvoicedLpcOrder);
+
+    // Combine voiced and unvoiced contributions.
+
+    // Set a suitable cross-fading slope.
+    // For lag =
+    //   <= 31 * fs_mult            => go from 1 to 0 in about 8 ms;
+    //  (>= 31 .. <= 63) * fs_mult  => go from 1 to 0 in about 16 ms;
+    //   >= 64 * fs_mult            => go from 1 to 0 in about 32 ms.
+    // temp_shift = getbits(max_lag_) - 5.
+    int temp_shift = (31 - WebRtcSpl_NormW32(max_lag_)) - 5;
+    int16_t mix_factor_increment = 256 >> temp_shift;
+    if (stop_muting_) {
+      mix_factor_increment = 0;
+    }
+
+    // Create combined signal by shifting in more and more of unvoiced part.
+    temp_shift = 8 - temp_shift;  // = getbits(mix_factor_increment).
+    size_t temp_lenght = (parameters.current_voice_mix_factor -
+        parameters.voice_mix_factor) >> temp_shift;
+    temp_lenght = std::min(temp_lenght, current_lag);
+    DspHelper::CrossFade(voiced_vector, unvoiced_vector, temp_lenght,
+                         &parameters.current_voice_mix_factor,
+                         mix_factor_increment, temp_data);
+
+    // End of cross-fading period was reached before end of expanded signal
+    // path. Mix the rest with a fixed mixing factor.
+    if (temp_lenght < current_lag) {
+      if (mix_factor_increment != 0) {
+        parameters.current_voice_mix_factor = parameters.voice_mix_factor;
+      }
+      int temp_scale = 16384 - parameters.current_voice_mix_factor;
+      WebRtcSpl_ScaleAndAddVectorsWithRound(
+          voiced_vector + temp_lenght, parameters.current_voice_mix_factor,
+          unvoiced_vector + temp_lenght, temp_scale, 14,
+          temp_data + temp_lenght, current_lag - temp_lenght);
+    }
+
+    // Select muting slope depending on how many consecutive expands we have
+    // done.
+    if (consecutive_expands_ == 3) {
+      // Let the mute factor decrease from 1.0 to 0.95 in 6.25 ms.
+      // mute_slope = 0.0010 / fs_mult in Q20.
+      parameters.mute_slope = std::max(parameters.mute_slope,
+                                       static_cast<int16_t>(1049 / fs_mult));
+    }
+    if (consecutive_expands_ == 7) {
+      // Let the mute factor decrease from 1.0 to 0.90 in 6.25 ms.
+      // mute_slope = 0.0020 / fs_mult in Q20.
+      parameters.mute_slope = std::max(parameters.mute_slope,
+                                       static_cast<int16_t>(2097 / fs_mult));
+    }
+
+    // Mute segment according to slope value.
+    if ((consecutive_expands_ != 0) || !parameters.onset) {
+      // Mute to the previous level, then continue with the muting.
+      WebRtcSpl_AffineTransformVector(temp_data, temp_data,
+                                      parameters.mute_factor, 8192,
+                                      14, current_lag);
+
+      if (!stop_muting_) {
+        DspHelper::MuteSignal(temp_data, parameters.mute_slope, current_lag);
+
+        // Shift by 6 to go from Q20 to Q14.
+        // TODO(hlundin): Adding 8192 before shifting 6 steps seems wrong.
+        // Legacy.
+        int16_t gain = 16384 -
+            (((current_lag * parameters.mute_slope) + 8192) >> 6);
+        gain = ((gain * parameters.mute_factor) + 8192) >> 14;
+
+        // Guard against getting stuck with very small (but sometimes audible)
+        // gain.
+        if ((consecutive_expands_ > 3) && (gain >= parameters.mute_factor)) {
+          parameters.mute_factor = 0;
+        } else {
+          parameters.mute_factor = gain;
+        }
+      }
+    }
+
+    // Background noise part.
+    // TODO(hlundin): Move to separate method? In BackgroundNoise class?
+    if (background_noise_->initialized()) {
+      // Use background noise parameters.
+      memcpy(noise_vector - kNoiseLpcOrder,
+             background_noise_->FilterState(channel_ix),
+             sizeof(int16_t) * kNoiseLpcOrder);
+
+      if (background_noise_->ScaleShift(channel_ix) > 1) {
+        add_constant = 1 << (background_noise_->ScaleShift(channel_ix) - 1);
+      } else {
+        add_constant = 0;
+      }
+
+      // Scale random vector to correct energy level.
+      WebRtcSpl_AffineTransformVector(
+          scaled_random_vector, random_vector,
+          background_noise_->Scale(channel_ix), add_constant,
+          background_noise_->ScaleShift(channel_ix), current_lag);
+
+      WebRtcSpl_FilterARFastQ12(scaled_random_vector, noise_vector,
+                                background_noise_->Filter(channel_ix),
+                                kNoiseLpcOrder + 1,
+                                current_lag);
+
+      background_noise_->SetFilterState(
+          channel_ix,
+          &(noise_vector[current_lag - kNoiseLpcOrder]),
+          kNoiseLpcOrder);
+
+      // Unmute the background noise.
+      int16_t bgn_mute_factor = background_noise_->MuteFactor(channel_ix);
+      BackgroundNoise::BackgroundNoiseMode bgn_mode = background_noise_->mode();
+      if (bgn_mode == BackgroundNoise::kBgnFade &&
+          consecutive_expands_ >= kMaxConsecutiveExpands &&
+          bgn_mute_factor > 0) {
+        // Fade BGN to zero.
+        // Calculate muting slope, approximately -2^18 / fs_hz.
+        int16_t mute_slope;
+        if (fs_hz_ == 8000) {
+          mute_slope = -32;
+        } else if (fs_hz_ == 16000) {
+          mute_slope = -16;
+        } else if (fs_hz_ == 32000) {
+          mute_slope = -8;
+        } else {
+          mute_slope = -5;
+        }
+        // Use UnmuteSignal function with negative slope.
+        // |bgn_mute_factor| is in Q14. |mute_slope| is in Q20.
+        DspHelper::UnmuteSignal(noise_vector, current_lag, &bgn_mute_factor,
+                                mute_slope, noise_vector);
+      } else if (bgn_mute_factor < 16384) {
+        // If mode is kBgnOff, or if kBgnFade has started fading,
+        // Use regular |mute_slope|.
+        if (!stop_muting_ && bgn_mode != BackgroundNoise::kBgnOff &&
+            !(bgn_mode == BackgroundNoise::kBgnFade &&
+                consecutive_expands_ >= kMaxConsecutiveExpands)) {
+          DspHelper::UnmuteSignal(noise_vector, current_lag, &bgn_mute_factor,
+                                  parameters.mute_slope, noise_vector);
+        } else {
+          // kBgnOn and stop muting, or
+          // kBgnOff (mute factor is always 0), or
+          // kBgnFade has reached 0.
+          WebRtcSpl_AffineTransformVector(noise_vector, noise_vector,
+                                          bgn_mute_factor, 8192, 14,
+                                          current_lag);
+        }
+      }
+      // Update mute_factor in BackgroundNoise class.
+      background_noise_->SetMuteFactor(channel_ix, bgn_mute_factor);
+    } else {
+      // BGN parameters have not been initialized; use zero noise.
+      memset(noise_vector, 0, sizeof(int16_t) * current_lag);
+    }
+
+    // Add background noise to the combined voiced-unvoiced signal.
+    for (size_t i = 0; i < current_lag; i++) {
+      temp_data[i] = temp_data[i] + noise_vector[i];
+    }
+    if (channel_ix == 0) {
+      output->AssertSize(current_lag);
+    } else {
+      assert(output->Size() == current_lag);
+    }
+    memcpy(&(*output)[channel_ix][0], temp_data,
+           sizeof(temp_data[0]) * current_lag);
+  }
+
+  // Increase call number and cap it.
+  ++consecutive_expands_;
+  if (consecutive_expands_ > kMaxConsecutiveExpands) {
+    consecutive_expands_ = kMaxConsecutiveExpands;
+  }
+
+  return 0;
+}
+
+void Expand::SetParametersForNormalAfterExpand() {
+  current_lag_index_ = 0;
+  lag_index_direction_ = 0;
+  stop_muting_ = true;  // Do not mute signal any more.
+}
+
+void Expand::SetParametersForMergeAfterExpand() {
+  current_lag_index_ = -1; /* out of the 3 possible ones */
+  lag_index_direction_ = 1; /* make sure we get the "optimal" lag */
+  stop_muting_ = true;
+}
+
+void Expand::AnalyzeSignal(int16_t* random_vector) {
+  int32_t auto_correlation[kUnvoicedLpcOrder + 1];
+  int16_t reflection_coeff[kUnvoicedLpcOrder];
+  int16_t correlation_vector[kMaxSampleRate / 8000 * 102];
+  int best_correlation_index[kNumCorrelationCandidates];
+  int16_t best_correlation[kNumCorrelationCandidates];
+  int16_t best_distortion_index[kNumCorrelationCandidates];
+  int16_t best_distortion[kNumCorrelationCandidates];
+  int32_t correlation_vector2[(99 * kMaxSampleRate / 8000) + 1];
+  int32_t best_distortion_w32[kNumCorrelationCandidates];
+  static const int kNoiseLpcOrder = BackgroundNoise::kMaxLpcOrder;
+  int16_t unvoiced_array_memory[kNoiseLpcOrder + kMaxSampleRate / 8000 * 125];
+  int16_t* unvoiced_vector = unvoiced_array_memory + kUnvoicedLpcOrder;
+
+  int fs_mult = fs_hz_ / 8000;
+
+  // Pre-calculate common multiplications with fs_mult.
+  int fs_mult_4 = fs_mult * 4;
+  int fs_mult_20 = fs_mult * 20;
+  int fs_mult_120 = fs_mult * 120;
+  int fs_mult_dist_len = fs_mult * kDistortionLength;
+  int fs_mult_lpc_analysis_len = fs_mult * kLpcAnalysisLength;
+
+  const size_t signal_length = 256 * fs_mult;
+  const int16_t* audio_history =
+      &(*sync_buffer_)[0][sync_buffer_->Size() - signal_length];
+
+  // Initialize some member variables.
+  lag_index_direction_ = 1;
+  current_lag_index_ = -1;
+  stop_muting_ = false;
+  random_vector_->set_seed_increment(1);
+  consecutive_expands_ = 0;
+  for (size_t ix = 0; ix < num_channels_; ++ix) {
+    channel_parameters_[ix].current_voice_mix_factor = 16384;  // 1.0 in Q14.
+    channel_parameters_[ix].mute_factor = 16384;  // 1.0 in Q14.
+    // Start with 0 gain for background noise.
+    background_noise_->SetMuteFactor(ix, 0);
+  }
+
+  // Calculate correlation in downsampled domain (4 kHz sample rate).
+  int16_t correlation_scale;
+  int correlation_length = Correlation(audio_history, signal_length,
+                                       correlation_vector, &correlation_scale);
+  correlation_length = 51;  // TODO(hlundin): Legacy bit-exactness.
+
+  // Find peaks in correlation vector.
+  DspHelper::PeakDetection(correlation_vector, correlation_length,
+                           kNumCorrelationCandidates, fs_mult,
+                           best_correlation_index, best_correlation);
+
+  // Adjust peak locations; cross-correlation lags start at 2.5 ms
+  // (20 * fs_mult samples).
+  best_correlation_index[0] += fs_mult_20;
+  best_correlation_index[1] += fs_mult_20;
+  best_correlation_index[2] += fs_mult_20;
+
+  // Calculate distortion around the |kNumCorrelationCandidates| best lags.
+  int distortion_scale = 0;
+  for (int i = 0; i < kNumCorrelationCandidates; i++) {
+    int16_t min_index = std::max(fs_mult_20,
+                                 best_correlation_index[i] - fs_mult_4);
+    int16_t max_index = std::min(fs_mult_120 - 1,
+                                 best_correlation_index[i] + fs_mult_4);
+    best_distortion_index[i] = DspHelper::MinDistortion(
+        &(audio_history[signal_length - fs_mult_dist_len]), min_index,
+        max_index, fs_mult_dist_len, &best_distortion_w32[i]);
+    distortion_scale = std::max(16 - WebRtcSpl_NormW32(best_distortion_w32[i]),
+                                distortion_scale);
+  }
+  // Shift the distortion values to fit in 16 bits.
+  WebRtcSpl_VectorBitShiftW32ToW16(best_distortion, kNumCorrelationCandidates,
+                                   best_distortion_w32, distortion_scale);
+
+  // Find the maximizing index |i| of the cost function
+  // f[i] = best_correlation[i] / best_distortion[i].
+  int32_t best_ratio = -1;
+  int best_index = -1;
+  for (int i = 0; i < kNumCorrelationCandidates; ++i) {
+    int32_t ratio;
+    if (best_distortion[i] > 0) {
+      ratio = (best_correlation[i] << 16) / best_distortion[i];
+    } else {
+      assert(best_correlation[i] == 0);  // If one is zero, both must be.
+      ratio = 0;  // Divide zero by zero => set result to zero.
+    }
+    if (ratio > best_ratio) {
+      best_index = i;
+      best_ratio = ratio;
+    }
+  }
+
+  int distortion_lag = best_distortion_index[best_index];
+  int correlation_lag = best_correlation_index[best_index];
+  max_lag_ = std::max(distortion_lag, correlation_lag);
+
+  // Calculate the exact best correlation in the range between
+  // |correlation_lag| and |distortion_lag|.
+  correlation_length = distortion_lag + 10;
+  correlation_length = std::min(correlation_length, fs_mult_120);
+  correlation_length = std::max(correlation_length, 60 * fs_mult);
+
+  int start_index = std::min(distortion_lag, correlation_lag);
+  int correlation_lags = WEBRTC_SPL_ABS_W16((distortion_lag-correlation_lag))
+      + 1;
+  assert(correlation_lags <= 99 * fs_mult + 1);  // Cannot be larger.
+
+  for (size_t channel_ix = 0; channel_ix < num_channels_; ++channel_ix) {
+    ChannelParameters& parameters = channel_parameters_[channel_ix];
+    // Calculate suitable scaling.
+    int16_t signal_max = WebRtcSpl_MaxAbsValueW16(
+        &audio_history[signal_length - correlation_length - start_index
+                       - correlation_lags],
+                       correlation_length + start_index + correlation_lags - 1);
+    correlation_scale = ((31 - WebRtcSpl_NormW32(signal_max * signal_max))
+        + (31 - WebRtcSpl_NormW32(correlation_length))) - 31;
+    correlation_scale = std::max(static_cast<int16_t>(0), correlation_scale);
+
+    // Calculate the correlation, store in |correlation_vector2|.
+    WebRtcSpl_CrossCorrelation(
+        correlation_vector2,
+        &(audio_history[signal_length - correlation_length]),
+        &(audio_history[signal_length - correlation_length - start_index]),
+        correlation_length, correlation_lags, correlation_scale, -1);
+
+    // Find maximizing index.
+    best_index = WebRtcSpl_MaxIndexW32(correlation_vector2, correlation_lags);
+    int32_t max_correlation = correlation_vector2[best_index];
+    // Compensate index with start offset.
+    best_index = best_index + start_index;
+
+    // Calculate energies.
+    int32_t energy1 = WebRtcSpl_DotProductWithScale(
+        &(audio_history[signal_length - correlation_length]),
+        &(audio_history[signal_length - correlation_length]),
+        correlation_length, correlation_scale);
+    int32_t energy2 = WebRtcSpl_DotProductWithScale(
+        &(audio_history[signal_length - correlation_length - best_index]),
+        &(audio_history[signal_length - correlation_length - best_index]),
+        correlation_length, correlation_scale);
+
+    // Calculate the correlation coefficient between the two portions of the
+    // signal.
+    int16_t corr_coefficient;
+    if ((energy1 > 0) && (energy2 > 0)) {
+      int energy1_scale = std::max(16 - WebRtcSpl_NormW32(energy1), 0);
+      int energy2_scale = std::max(16 - WebRtcSpl_NormW32(energy2), 0);
+      // Make sure total scaling is even (to simplify scale factor after sqrt).
+      if ((energy1_scale + energy2_scale) & 1) {
+        // If sum is odd, add 1 to make it even.
+        energy1_scale += 1;
+      }
+      int16_t scaled_energy1 = energy1 >> energy1_scale;
+      int16_t scaled_energy2 = energy2 >> energy2_scale;
+      int16_t sqrt_energy_product = WebRtcSpl_SqrtFloor(
+          scaled_energy1 * scaled_energy2);
+      // Calculate max_correlation / sqrt(energy1 * energy2) in Q14.
+      int cc_shift = 14 - (energy1_scale + energy2_scale) / 2;
+      max_correlation = WEBRTC_SPL_SHIFT_W32(max_correlation, cc_shift);
+      corr_coefficient = WebRtcSpl_DivW32W16(max_correlation,
+                                             sqrt_energy_product);
+      corr_coefficient = std::min(static_cast<int16_t>(16384),
+                                  corr_coefficient);  // Cap at 1.0 in Q14.
+    } else {
+      corr_coefficient = 0;
+    }
+
+    // Extract the two vectors expand_vector0 and expand_vector1 from
+    // |audio_history|.
+    int16_t expansion_length = max_lag_ + overlap_length_;
+    const int16_t* vector1 = &(audio_history[signal_length - expansion_length]);
+    const int16_t* vector2 = vector1 - distortion_lag;
+    // Normalize the second vector to the same energy as the first.
+    energy1 = WebRtcSpl_DotProductWithScale(vector1, vector1, expansion_length,
+                                            correlation_scale);
+    energy2 = WebRtcSpl_DotProductWithScale(vector2, vector2, expansion_length,
+                                            correlation_scale);
+    // Confirm that amplitude ratio sqrt(energy1 / energy2) is within 0.5 - 2.0,
+    // i.e., energy1 / energy1 is within 0.25 - 4.
+    int16_t amplitude_ratio;
+    if ((energy1 / 4 < energy2) && (energy1 > energy2 / 4)) {
+      // Energy constraint fulfilled. Use both vectors and scale them
+      // accordingly.
+      int16_t scaled_energy2 = std::max(16 - WebRtcSpl_NormW32(energy2), 0);
+      int16_t scaled_energy1 = scaled_energy2 - 13;
+      // Calculate scaled_energy1 / scaled_energy2 in Q13.
+      int32_t energy_ratio = WebRtcSpl_DivW32W16(
+          WEBRTC_SPL_SHIFT_W32(energy1, -scaled_energy1),
+          WEBRTC_SPL_RSHIFT_W32(energy2, scaled_energy2));
+      // Calculate sqrt ratio in Q13 (sqrt of en1/en2 in Q26).
+      amplitude_ratio = WebRtcSpl_SqrtFloor(energy_ratio << 13);
+      // Copy the two vectors and give them the same energy.
+      parameters.expand_vector0.Clear();
+      parameters.expand_vector0.PushBack(vector1, expansion_length);
+      parameters.expand_vector1.Clear();
+      if (parameters.expand_vector1.Size() <
+          static_cast<size_t>(expansion_length)) {
+        parameters.expand_vector1.Extend(
+            expansion_length - parameters.expand_vector1.Size());
+      }
+      WebRtcSpl_AffineTransformVector(&parameters.expand_vector1[0],
+                                      const_cast<int16_t*>(vector2),
+                                      amplitude_ratio,
+                                      4096,
+                                      13,
+                                      expansion_length);
+    } else {
+      // Energy change constraint not fulfilled. Only use last vector.
+      parameters.expand_vector0.Clear();
+      parameters.expand_vector0.PushBack(vector1, expansion_length);
+      // Copy from expand_vector0 to expand_vector1.
+      parameters.expand_vector0.CopyFrom(&parameters.expand_vector1);
+      // Set the energy_ratio since it is used by muting slope.
+      if ((energy1 / 4 < energy2) || (energy2 == 0)) {
+        amplitude_ratio = 4096;  // 0.5 in Q13.
+      } else {
+        amplitude_ratio = 16384;  // 2.0 in Q13.
+      }
+    }
+
+    // Set the 3 lag values.
+    int lag_difference = distortion_lag - correlation_lag;
+    if (lag_difference == 0) {
+      // |distortion_lag| and |correlation_lag| are equal.
+      expand_lags_[0] = distortion_lag;
+      expand_lags_[1] = distortion_lag;
+      expand_lags_[2] = distortion_lag;
+    } else {
+      // |distortion_lag| and |correlation_lag| are not equal; use different
+      // combinations of the two.
+      // First lag is |distortion_lag| only.
+      expand_lags_[0] = distortion_lag;
+      // Second lag is the average of the two.
+      expand_lags_[1] = (distortion_lag + correlation_lag) / 2;
+      // Third lag is the average again, but rounding towards |correlation_lag|.
+      if (lag_difference > 0) {
+        expand_lags_[2] = (distortion_lag + correlation_lag - 1) / 2;
+      } else {
+        expand_lags_[2] = (distortion_lag + correlation_lag + 1) / 2;
+      }
+    }
+
+    // Calculate the LPC and the gain of the filters.
+    // Calculate scale value needed for auto-correlation.
+    correlation_scale = WebRtcSpl_MaxAbsValueW16(
+        &(audio_history[signal_length - fs_mult_lpc_analysis_len]),
+        fs_mult_lpc_analysis_len);
+
+    correlation_scale = std::min(16 - WebRtcSpl_NormW32(correlation_scale), 0);
+    correlation_scale = std::max(correlation_scale * 2 + 7, 0);
+
+    // Calculate kUnvoicedLpcOrder + 1 lags of the auto-correlation function.
+    size_t temp_index = signal_length - fs_mult_lpc_analysis_len -
+        kUnvoicedLpcOrder;
+    // Copy signal to temporary vector to be able to pad with leading zeros.
+    int16_t* temp_signal = new int16_t[fs_mult_lpc_analysis_len
+                                       + kUnvoicedLpcOrder];
+    memset(temp_signal, 0,
+           sizeof(int16_t) * (fs_mult_lpc_analysis_len + kUnvoicedLpcOrder));
+    memcpy(&temp_signal[kUnvoicedLpcOrder],
+           &audio_history[temp_index + kUnvoicedLpcOrder],
+           sizeof(int16_t) * fs_mult_lpc_analysis_len);
+    WebRtcSpl_CrossCorrelation(auto_correlation,
+                               &temp_signal[kUnvoicedLpcOrder],
+                               &temp_signal[kUnvoicedLpcOrder],
+                               fs_mult_lpc_analysis_len, kUnvoicedLpcOrder + 1,
+                               correlation_scale, -1);
+    delete [] temp_signal;
+
+    // Verify that variance is positive.
+    if (auto_correlation[0] > 0) {
+      // Estimate AR filter parameters using Levinson-Durbin algorithm;
+      // kUnvoicedLpcOrder + 1 filter coefficients.
+      int16_t stability = WebRtcSpl_LevinsonDurbin(auto_correlation,
+                                                   parameters.ar_filter,
+                                                   reflection_coeff,
+                                                   kUnvoicedLpcOrder);
+
+      // Keep filter parameters only if filter is stable.
+      if (stability != 1) {
+        // Set first coefficient to 4096 (1.0 in Q12).
+        parameters.ar_filter[0] = 4096;
+        // Set remaining |kUnvoicedLpcOrder| coefficients to zero.
+        WebRtcSpl_MemSetW16(parameters.ar_filter + 1, 0, kUnvoicedLpcOrder);
+      }
+    }
+
+    if (channel_ix == 0) {
+      // Extract a noise segment.
+      int16_t noise_length;
+      if (distortion_lag < 40) {
+        noise_length = 2 * distortion_lag + 30;
+      } else {
+        noise_length = distortion_lag + 30;
+      }
+      if (noise_length <= RandomVector::kRandomTableSize) {
+        memcpy(random_vector, RandomVector::kRandomTable,
+               sizeof(int16_t) * noise_length);
+      } else {
+        // Only applies to SWB where length could be larger than
+        // |kRandomTableSize|.
+        memcpy(random_vector, RandomVector::kRandomTable,
+               sizeof(int16_t) * RandomVector::kRandomTableSize);
+        assert(noise_length <= kMaxSampleRate / 8000 * 120 + 30);
+        random_vector_->IncreaseSeedIncrement(2);
+        random_vector_->Generate(
+            noise_length - RandomVector::kRandomTableSize,
+            &random_vector[RandomVector::kRandomTableSize]);
+      }
+    }
+
+    // Set up state vector and calculate scale factor for unvoiced filtering.
+    memcpy(parameters.ar_filter_state,
+           &(audio_history[signal_length - kUnvoicedLpcOrder]),
+           sizeof(int16_t) * kUnvoicedLpcOrder);
+    memcpy(unvoiced_vector - kUnvoicedLpcOrder,
+           &(audio_history[signal_length - 128 - kUnvoicedLpcOrder]),
+           sizeof(int16_t) * kUnvoicedLpcOrder);
+    WebRtcSpl_FilterMAFastQ12(
+        const_cast<int16_t*>(&audio_history[signal_length - 128]),
+        unvoiced_vector, parameters.ar_filter, kUnvoicedLpcOrder + 1, 128);
+    int16_t unvoiced_prescale;
+    if (WebRtcSpl_MaxAbsValueW16(unvoiced_vector, 128) > 4000) {
+      unvoiced_prescale = 4;
+    } else {
+      unvoiced_prescale = 0;
+    }
+    int32_t unvoiced_energy = WebRtcSpl_DotProductWithScale(unvoiced_vector,
+                                                            unvoiced_vector,
+                                                            128,
+                                                            unvoiced_prescale);
+
+    // Normalize |unvoiced_energy| to 28 or 29 bits to preserve sqrt() accuracy.
+    int16_t unvoiced_scale = WebRtcSpl_NormW32(unvoiced_energy) - 3;
+    // Make sure we do an odd number of shifts since we already have 7 shifts
+    // from dividing with 128 earlier. This will make the total scale factor
+    // even, which is suitable for the sqrt.
+    unvoiced_scale += ((unvoiced_scale & 0x1) ^ 0x1);
+    unvoiced_energy = WEBRTC_SPL_SHIFT_W32(unvoiced_energy, unvoiced_scale);
+    int32_t unvoiced_gain = WebRtcSpl_SqrtFloor(unvoiced_energy);
+    parameters.ar_gain_scale = 13
+        + (unvoiced_scale + 7 - unvoiced_prescale) / 2;
+    parameters.ar_gain = unvoiced_gain;
+
+    // Calculate voice_mix_factor from corr_coefficient.
+    // Let x = corr_coefficient. Then, we compute:
+    // if (x > 0.48)
+    //   voice_mix_factor = (-5179 + 19931x - 16422x^2 + 5776x^3) / 4096;
+    // else
+    //   voice_mix_factor = 0;
+    if (corr_coefficient > 7875) {
+      int16_t x1, x2, x3;
+      x1 = corr_coefficient;  // |corr_coefficient| is in Q14.
+      x2 = (x1 * x1) >> 14;   // Shift 14 to keep result in Q14.
+      x3 = (x1 * x2) >> 14;
+      static const int kCoefficients[4] = { -5179, 19931, -16422, 5776 };
+      int32_t temp_sum = kCoefficients[0] << 14;
+      temp_sum += kCoefficients[1] * x1;
+      temp_sum += kCoefficients[2] * x2;
+      temp_sum += kCoefficients[3] * x3;
+      parameters.voice_mix_factor = temp_sum / 4096;
+      parameters.voice_mix_factor = std::min(parameters.voice_mix_factor,
+                                             static_cast<int16_t>(16384));
+      parameters.voice_mix_factor = std::max(parameters.voice_mix_factor,
+                                             static_cast<int16_t>(0));
+    } else {
+      parameters.voice_mix_factor = 0;
+    }
+
+    // Calculate muting slope. Reuse value from earlier scaling of
+    // |expand_vector0| and |expand_vector1|.
+    int16_t slope = amplitude_ratio;
+    if (slope > 12288) {
+      // slope > 1.5.
+      // Calculate (1 - (1 / slope)) / distortion_lag =
+      // (slope - 1) / (distortion_lag * slope).
+      // |slope| is in Q13, so 1 corresponds to 8192. Shift up to Q25 before
+      // the division.
+      // Shift the denominator from Q13 to Q5 before the division. The result of
+      // the division will then be in Q20.
+      int16_t temp_ratio = WebRtcSpl_DivW32W16((slope - 8192) << 12,
+                                               (distortion_lag * slope) >> 8);
+      if (slope > 14746) {
+        // slope > 1.8.
+        // Divide by 2, with proper rounding.
+        parameters.mute_slope = (temp_ratio + 1) / 2;
+      } else {
+        // Divide by 8, with proper rounding.
+        parameters.mute_slope = (temp_ratio + 4) / 8;
+      }
+      parameters.onset = true;
+    } else {
+      // Calculate (1 - slope) / distortion_lag.
+      // Shift |slope| by 7 to Q20 before the division. The result is in Q20.
+      parameters.mute_slope = WebRtcSpl_DivW32W16((8192 - slope) << 7,
+                                                   distortion_lag);
+      if (parameters.voice_mix_factor <= 13107) {
+        // Make sure the mute factor decreases from 1.0 to 0.9 in no more than
+        // 6.25 ms.
+        // mute_slope >= 0.005 / fs_mult in Q20.
+        parameters.mute_slope = std::max(static_cast<int16_t>(5243 / fs_mult),
+                                         parameters.mute_slope);
+      } else if (slope > 8028) {
+        parameters.mute_slope = 0;
+      }
+      parameters.onset = false;
+    }
+  }
+}
+
+int16_t Expand::Correlation(const int16_t* input, int16_t input_length,
+                            int16_t* output, int16_t* output_scale) const {
+  // Set parameters depending on sample rate.
+  const int16_t* filter_coefficients;
+  int16_t num_coefficients;
+  int16_t downsampling_factor;
+  if (fs_hz_ == 8000) {
+    num_coefficients = 3;
+    downsampling_factor = 2;
+    filter_coefficients = DspHelper::kDownsample8kHzTbl;
+  } else if (fs_hz_ == 16000) {
+    num_coefficients = 5;
+    downsampling_factor = 4;
+    filter_coefficients = DspHelper::kDownsample16kHzTbl;
+  } else if (fs_hz_ == 32000) {
+    num_coefficients = 7;
+    downsampling_factor = 8;
+    filter_coefficients = DspHelper::kDownsample32kHzTbl;
+  } else {  // fs_hz_ == 48000.
+    num_coefficients = 7;
+    downsampling_factor = 12;
+    filter_coefficients = DspHelper::kDownsample48kHzTbl;
+  }
+
+  // Correlate from lag 10 to lag 60 in downsampled domain.
+  // (Corresponds to 20-120 for narrow-band, 40-240 for wide-band, and so on.)
+  static const int kCorrelationStartLag = 10;
+  static const int kNumCorrelationLags = 54;
+  static const int kCorrelationLength = 60;
+  // Downsample to 4 kHz sample rate.
+  static const int kDownsampledLength = kCorrelationStartLag
+      + kNumCorrelationLags + kCorrelationLength;
+  int16_t downsampled_input[kDownsampledLength];
+  static const int kFilterDelay = 0;
+  WebRtcSpl_DownsampleFast(
+      input + input_length - kDownsampledLength * downsampling_factor,
+      kDownsampledLength * downsampling_factor, downsampled_input,
+      kDownsampledLength, filter_coefficients, num_coefficients,
+      downsampling_factor, kFilterDelay);
+
+  // Normalize |downsampled_input| to using all 16 bits.
+  int16_t max_value = WebRtcSpl_MaxAbsValueW16(downsampled_input,
+                                               kDownsampledLength);
+  int16_t norm_shift = 16 - WebRtcSpl_NormW32(max_value);
+  WebRtcSpl_VectorBitShiftW16(downsampled_input, kDownsampledLength,
+                              downsampled_input, norm_shift);
+
+  int32_t correlation[kNumCorrelationLags];
+  static const int kCorrelationShift = 6;
+  WebRtcSpl_CrossCorrelation(
+      correlation,
+      &downsampled_input[kDownsampledLength - kCorrelationLength],
+      &downsampled_input[kDownsampledLength - kCorrelationLength
+          - kCorrelationStartLag],
+      kCorrelationLength, kNumCorrelationLags, kCorrelationShift, -1);
+
+  // Normalize and move data from 32-bit to 16-bit vector.
+  int32_t max_correlation = WebRtcSpl_MaxAbsValueW32(correlation,
+                                                     kNumCorrelationLags);
+  int16_t norm_shift2 = std::max(18 - WebRtcSpl_NormW32(max_correlation), 0);
+  WebRtcSpl_VectorBitShiftW32ToW16(output, kNumCorrelationLags, correlation,
+                                   norm_shift2);
+  // Total scale factor (right shifts) of correlation value.
+  *output_scale = 2 * norm_shift + kCorrelationShift + norm_shift2;
+  return kNumCorrelationLags;
+}
+
+void Expand::UpdateLagIndex() {
+  current_lag_index_ = current_lag_index_ + lag_index_direction_;
+  // Change direction if needed.
+  if (current_lag_index_ <= 0) {
+    lag_index_direction_ = 1;
+  }
+  if (current_lag_index_ >= kNumLags - 1) {
+    lag_index_direction_ = -1;
+  }
+}
+
+}  // namespace webrtc