Reland "Move webrtc/{base => rtc_base}" (https://codereview.webrtc.org/2877023002)

Reland the base->rtc_base without adding stub headers (will be
done in follow-up CL). This preserves git blame history of all files.

BUG=webrtc:7634
NOTRY=True
TBR=kwiberg@webrtc.org

Change-Id: Iea3bb6f3f67b8374c96337b63e8f5aa3e6181012
Reviewed-on: https://chromium-review.googlesource.com/554611
Reviewed-by: Henrik Kjellander <kjellander@webrtc.org>
Cr-Commit-Position: refs/heads/master@{#18821}
diff --git a/webrtc/rtc_base/optional.h b/webrtc/rtc_base/optional.h
new file mode 100644
index 0000000..ab3abf9
--- /dev/null
+++ b/webrtc/rtc_base/optional.h
@@ -0,0 +1,409 @@
+/*
+ *  Copyright 2015 The WebRTC Project Authors. All rights reserved.
+ *
+ *  Use of this source code is governed by a BSD-style license
+ *  that can be found in the LICENSE file in the root of the source
+ *  tree. An additional intellectual property rights grant can be found
+ *  in the file PATENTS.  All contributing project authors may
+ *  be found in the AUTHORS file in the root of the source tree.
+ */
+
+#ifndef WEBRTC_RTC_BASE_OPTIONAL_H_
+#define WEBRTC_RTC_BASE_OPTIONAL_H_
+
+#include <algorithm>
+#include <memory>
+#include <utility>
+
+#ifdef UNIT_TEST
+#include <iomanip>
+#include <ostream>
+#endif  // UNIT_TEST
+
+#include "webrtc/base/array_view.h"
+#include "webrtc/base/checks.h"
+#include "webrtc/base/sanitizer.h"
+
+namespace rtc {
+
+namespace optional_internal {
+
+#if RTC_HAS_ASAN
+
+// This is a non-inlined function. The optimizer can't see inside it.  It
+// prevents the compiler from generating optimized code that reads value_ even
+// if it is unset. Although safe, this causes memory sanitizers to complain.
+void* FunctionThatDoesNothingImpl(void*);
+
+template <typename T>
+inline T* FunctionThatDoesNothing(T* x) {
+  return reinterpret_cast<T*>(
+      FunctionThatDoesNothingImpl(reinterpret_cast<void*>(x)));
+}
+
+#else
+
+template <typename T>
+inline T* FunctionThatDoesNothing(T* x) { return x; }
+
+#endif
+
+}  // namespace optional_internal
+
+// Simple std::optional-wannabe. It either contains a T or not.
+//
+// A moved-from Optional<T> may only be destroyed, and assigned to if T allows
+// being assigned to after having been moved from. Specifically, you may not
+// assume that it just doesn't contain a value anymore.
+//
+// Examples of good places to use Optional:
+//
+// - As a class or struct member, when the member doesn't always have a value:
+//     struct Prisoner {
+//       std::string name;
+//       Optional<int> cell_number;  // Empty if not currently incarcerated.
+//     };
+//
+// - As a return value for functions that may fail to return a value on all
+//   allowed inputs. For example, a function that searches an array might
+//   return an Optional<size_t> (the index where it found the element, or
+//   nothing if it didn't find it); and a function that parses numbers might
+//   return Optional<double> (the parsed number, or nothing if parsing failed).
+//
+// Examples of bad places to use Optional:
+//
+// - As a return value for functions that may fail because of disallowed
+//   inputs. For example, a string length function should not return
+//   Optional<size_t> so that it can return nothing in case the caller passed
+//   it a null pointer; the function should probably use RTC_[D]CHECK instead,
+//   and return plain size_t.
+//
+// - As a return value for functions that may fail to return a value on all
+//   allowed inputs, but need to tell the caller what went wrong. Returning
+//   Optional<double> when parsing a single number as in the example above
+//   might make sense, but any larger parse job is probably going to need to
+//   tell the caller what the problem was, not just that there was one.
+//
+// - As a non-mutable function argument. When you want to pass a value of a
+//   type T that can fail to be there, const T* is almost always both fastest
+//   and cleanest. (If you're *sure* that the the caller will always already
+//   have an Optional<T>, const Optional<T>& is slightly faster than const T*,
+//   but this is a micro-optimization. In general, stick to const T*.)
+//
+// TODO(kwiberg): Get rid of this class when the standard library has
+// std::optional (and we're allowed to use it).
+template <typename T>
+class Optional final {
+ public:
+  // Construct an empty Optional.
+  Optional() : has_value_(false), empty_('\0') {
+    PoisonValue();
+  }
+
+  // Construct an Optional that contains a value.
+  explicit Optional(const T& value) : has_value_(true) {
+    new (&value_) T(value);
+  }
+  explicit Optional(T&& value) : has_value_(true) {
+    new (&value_) T(std::move(value));
+  }
+
+  // Copy constructor: copies the value from m if it has one.
+  Optional(const Optional& m) : has_value_(m.has_value_) {
+    if (has_value_)
+      new (&value_) T(m.value_);
+    else
+      PoisonValue();
+  }
+
+  // Move constructor: if m has a value, moves the value from m, leaving m
+  // still in a state where it has a value, but a moved-from one (the
+  // properties of which depends on T; the only general guarantee is that we
+  // can destroy m).
+  Optional(Optional&& m) : has_value_(m.has_value_) {
+    if (has_value_)
+      new (&value_) T(std::move(m.value_));
+    else
+      PoisonValue();
+  }
+
+  ~Optional() {
+    if (has_value_)
+      value_.~T();
+    else
+      UnpoisonValue();
+  }
+
+  // Copy assignment. Uses T's copy assignment if both sides have a value, T's
+  // copy constructor if only the right-hand side has a value.
+  Optional& operator=(const Optional& m) {
+    if (m.has_value_) {
+      if (has_value_) {
+        value_ = m.value_;  // T's copy assignment.
+      } else {
+        UnpoisonValue();
+        new (&value_) T(m.value_);  // T's copy constructor.
+        has_value_ = true;
+      }
+    } else {
+      reset();
+    }
+    return *this;
+  }
+
+  // Move assignment. Uses T's move assignment if both sides have a value, T's
+  // move constructor if only the right-hand side has a value. The state of m
+  // after it's been moved from is as for the move constructor.
+  Optional& operator=(Optional&& m) {
+    if (m.has_value_) {
+      if (has_value_) {
+        value_ = std::move(m.value_);  // T's move assignment.
+      } else {
+        UnpoisonValue();
+        new (&value_) T(std::move(m.value_));  // T's move constructor.
+        has_value_ = true;
+      }
+    } else {
+      reset();
+    }
+    return *this;
+  }
+
+  // Swap the values if both m1 and m2 have values; move the value if only one
+  // of them has one.
+  friend void swap(Optional& m1, Optional& m2) {
+    if (m1.has_value_) {
+      if (m2.has_value_) {
+        // Both have values: swap.
+        using std::swap;
+        swap(m1.value_, m2.value_);
+      } else {
+        // Only m1 has a value: move it to m2.
+        m2.UnpoisonValue();
+        new (&m2.value_) T(std::move(m1.value_));
+        m1.value_.~T();  // Destroy the moved-from value.
+        m1.has_value_ = false;
+        m2.has_value_ = true;
+        m1.PoisonValue();
+      }
+    } else if (m2.has_value_) {
+      // Only m2 has a value: move it to m1.
+      m1.UnpoisonValue();
+      new (&m1.value_) T(std::move(m2.value_));
+      m2.value_.~T();  // Destroy the moved-from value.
+      m1.has_value_ = true;
+      m2.has_value_ = false;
+      m2.PoisonValue();
+    }
+  }
+
+  // Destroy any contained value. Has no effect if we have no value.
+  void reset() {
+    if (!has_value_)
+      return;
+    value_.~T();
+    has_value_ = false;
+    PoisonValue();
+  }
+
+  template <class... Args>
+  void emplace(Args&&... args) {
+    if (has_value_)
+      value_.~T();
+    else
+      UnpoisonValue();
+    new (&value_) T(std::forward<Args>(args)...);
+    has_value_ = true;
+  }
+
+  // Conversion to bool to test if we have a value.
+  explicit operator bool() const { return has_value_; }
+  bool has_value() const { return has_value_; }
+
+  // Dereferencing. Only allowed if we have a value.
+  const T* operator->() const {
+    RTC_DCHECK(has_value_);
+    return &value_;
+  }
+  T* operator->() {
+    RTC_DCHECK(has_value_);
+    return &value_;
+  }
+  const T& operator*() const {
+    RTC_DCHECK(has_value_);
+    return value_;
+  }
+  T& operator*() {
+    RTC_DCHECK(has_value_);
+    return value_;
+  }
+  const T& value() const {
+    RTC_DCHECK(has_value_);
+    return value_;
+  }
+  T& value() {
+    RTC_DCHECK(has_value_);
+    return value_;
+  }
+
+  // Dereference with a default value in case we don't have a value.
+  const T& value_or(const T& default_val) const {
+    // The no-op call prevents the compiler from generating optimized code that
+    // reads value_ even if !has_value_, but only if FunctionThatDoesNothing is
+    // not completely inlined; see its declaration.).
+    return has_value_ ? *optional_internal::FunctionThatDoesNothing(&value_)
+                      : default_val;
+  }
+
+  // Dereference and move value.
+  T MoveValue() {
+    RTC_DCHECK(has_value_);
+    return std::move(value_);
+  }
+
+  // Equality tests. Two Optionals are equal if they contain equivalent values,
+  // or if they're both empty.
+  friend bool operator==(const Optional& m1, const Optional& m2) {
+    return m1.has_value_ && m2.has_value_ ? m1.value_ == m2.value_
+                                          : m1.has_value_ == m2.has_value_;
+  }
+  friend bool operator==(const Optional& opt, const T& value) {
+    return opt.has_value_ && opt.value_ == value;
+  }
+  friend bool operator==(const T& value, const Optional& opt) {
+    return opt.has_value_ && value == opt.value_;
+  }
+
+  friend bool operator!=(const Optional& m1, const Optional& m2) {
+    return m1.has_value_ && m2.has_value_ ? m1.value_ != m2.value_
+                                          : m1.has_value_ != m2.has_value_;
+  }
+  friend bool operator!=(const Optional& opt, const T& value) {
+    return !opt.has_value_ || opt.value_ != value;
+  }
+  friend bool operator!=(const T& value, const Optional& opt) {
+    return !opt.has_value_ || value != opt.value_;
+  }
+
+ private:
+  // Tell sanitizers that value_ shouldn't be touched.
+  void PoisonValue() {
+    rtc::AsanPoison(rtc::MakeArrayView(&value_, 1));
+    rtc::MsanMarkUninitialized(rtc::MakeArrayView(&value_, 1));
+  }
+
+  // Tell sanitizers that value_ is OK to touch again.
+  void UnpoisonValue() {
+    rtc::AsanUnpoison(rtc::MakeArrayView(&value_, 1));
+  }
+
+  bool has_value_;  // True iff value_ contains a live value.
+  union {
+    // empty_ exists only to make it possible to initialize the union, even when
+    // it doesn't contain any data. If the union goes uninitialized, it may
+    // trigger compiler warnings.
+    char empty_;
+    // By placing value_ in a union, we get to manage its construction and
+    // destruction manually: the Optional constructors won't automatically
+    // construct it, and the Optional destructor won't automatically destroy
+    // it. Basically, this just allocates a properly sized and aligned block of
+    // memory in which we can manually put a T with placement new.
+    T value_;
+  };
+};
+
+#ifdef UNIT_TEST
+namespace optional_internal {
+
+// Checks if there's a valid PrintTo(const T&, std::ostream*) call for T.
+template <typename T>
+struct HasPrintTo {
+ private:
+  struct No {};
+
+  template <typename T2>
+  static auto Test(const T2& obj)
+      -> decltype(PrintTo(obj, std::declval<std::ostream*>()));
+
+  template <typename>
+  static No Test(...);
+
+ public:
+  static constexpr bool value =
+      !std::is_same<decltype(Test<T>(std::declval<const T&>())), No>::value;
+};
+
+// Checks if there's a valid operator<<(std::ostream&, const T&) call for T.
+template <typename T>
+struct HasOstreamOperator {
+ private:
+  struct No {};
+
+  template <typename T2>
+  static auto Test(const T2& obj)
+      -> decltype(std::declval<std::ostream&>() << obj);
+
+  template <typename>
+  static No Test(...);
+
+ public:
+  static constexpr bool value =
+      !std::is_same<decltype(Test<T>(std::declval<const T&>())), No>::value;
+};
+
+// Prefer using PrintTo to print the object.
+template <typename T>
+typename std::enable_if<HasPrintTo<T>::value, void>::type OptionalPrintToHelper(
+    const T& value,
+    std::ostream* os) {
+  PrintTo(value, os);
+}
+
+// Fall back to operator<<(std::ostream&, ...) if it exists.
+template <typename T>
+typename std::enable_if<HasOstreamOperator<T>::value && !HasPrintTo<T>::value,
+                        void>::type
+OptionalPrintToHelper(const T& value, std::ostream* os) {
+  *os << value;
+}
+
+inline void OptionalPrintObjectBytes(const unsigned char* bytes,
+                                     size_t size,
+                                     std::ostream* os) {
+  *os << "<optional with " << size << "-byte object [";
+  for (size_t i = 0; i != size; ++i) {
+    *os << (i == 0 ? "" : ((i & 1) ? "-" : " "));
+    *os << std::hex << std::setw(2) << std::setfill('0')
+        << static_cast<int>(bytes[i]);
+  }
+  *os << "]>";
+}
+
+// As a final back-up, just print the contents of the objcets byte-wise.
+template <typename T>
+typename std::enable_if<!HasOstreamOperator<T>::value && !HasPrintTo<T>::value,
+                        void>::type
+OptionalPrintToHelper(const T& value, std::ostream* os) {
+  OptionalPrintObjectBytes(reinterpret_cast<const unsigned char*>(&value),
+                           sizeof(value), os);
+}
+
+}  // namespace optional_internal
+
+// PrintTo is used by gtest to print out the results of tests. We want to ensure
+// the object contained in an Optional can be printed out if it's set, while
+// avoiding touching the object's storage if it is undefined.
+template <typename T>
+void PrintTo(const rtc::Optional<T>& opt, std::ostream* os) {
+  if (opt) {
+    optional_internal::OptionalPrintToHelper(*opt, os);
+  } else {
+    *os << "<empty optional>";
+  }
+}
+
+#endif  // UNIT_TEST
+
+}  // namespace rtc
+
+#endif  // WEBRTC_RTC_BASE_OPTIONAL_H_