Reland "Move webrtc/{base => rtc_base}" (https://codereview.webrtc.org/2877023002)
Reland the base->rtc_base without adding stub headers (will be
done in follow-up CL). This preserves git blame history of all files.
BUG=webrtc:7634
NOTRY=True
TBR=kwiberg@webrtc.org
Change-Id: Iea3bb6f3f67b8374c96337b63e8f5aa3e6181012
Reviewed-on: https://chromium-review.googlesource.com/554611
Reviewed-by: Henrik Kjellander <kjellander@webrtc.org>
Cr-Commit-Position: refs/heads/master@{#18821}
diff --git a/webrtc/rtc_base/bind.h b/webrtc/rtc_base/bind.h
new file mode 100644
index 0000000..975a5e0
--- /dev/null
+++ b/webrtc/rtc_base/bind.h
@@ -0,0 +1,284 @@
+/*
+ * Copyright 2012 The WebRTC Project Authors. All rights reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+// Bind() is an overloaded function that converts method calls into function
+// objects (aka functors). The method object is captured as a scoped_refptr<> if
+// possible, and as a raw pointer otherwise. Any arguments to the method are
+// captured by value. The return value of Bind is a stateful, nullary function
+// object. Care should be taken about the lifetime of objects captured by
+// Bind(); the returned functor knows nothing about the lifetime of a non
+// ref-counted method object or any arguments passed by pointer, and calling the
+// functor with a destroyed object will surely do bad things.
+//
+// To prevent the method object from being captured as a scoped_refptr<>, you
+// can use Unretained. But this should only be done when absolutely necessary,
+// and when the caller knows the extra reference isn't needed.
+//
+// Example usage:
+// struct Foo {
+// int Test1() { return 42; }
+// int Test2() const { return 52; }
+// int Test3(int x) { return x*x; }
+// float Test4(int x, float y) { return x + y; }
+// };
+//
+// int main() {
+// Foo foo;
+// cout << rtc::Bind(&Foo::Test1, &foo)() << endl;
+// cout << rtc::Bind(&Foo::Test2, &foo)() << endl;
+// cout << rtc::Bind(&Foo::Test3, &foo, 3)() << endl;
+// cout << rtc::Bind(&Foo::Test4, &foo, 7, 8.5f)() << endl;
+// }
+//
+// Example usage of ref counted objects:
+// struct Bar {
+// int AddRef();
+// int Release();
+//
+// void Test() {}
+// void BindThis() {
+// // The functor passed to AsyncInvoke() will keep this object alive.
+// invoker.AsyncInvoke(RTC_FROM_HERE,rtc::Bind(&Bar::Test, this));
+// }
+// };
+//
+// int main() {
+// rtc::scoped_refptr<Bar> bar = new rtc::RefCountedObject<Bar>();
+// auto functor = rtc::Bind(&Bar::Test, bar);
+// bar = nullptr;
+// // The functor stores an internal scoped_refptr<Bar>, so this is safe.
+// functor();
+// }
+//
+
+#ifndef WEBRTC_RTC_BASE_BIND_H_
+#define WEBRTC_RTC_BASE_BIND_H_
+
+#include <tuple>
+#include <type_traits>
+
+#include "webrtc/base/scoped_ref_ptr.h"
+#include "webrtc/base/template_util.h"
+
+#define NONAME
+
+namespace rtc {
+namespace detail {
+// This is needed because the template parameters in Bind can't be resolved
+// if they're used both as parameters of the function pointer type and as
+// parameters to Bind itself: the function pointer parameters are exact
+// matches to the function prototype, but the parameters to bind have
+// references stripped. This trick allows the compiler to dictate the Bind
+// parameter types rather than deduce them.
+template <class T> struct identity { typedef T type; };
+
+// IsRefCounted<T>::value will be true for types that can be used in
+// rtc::scoped_refptr<T>, i.e. types that implements nullary functions AddRef()
+// and Release(), regardless of their return types. AddRef() and Release() can
+// be defined in T or any superclass of T.
+template <typename T>
+class IsRefCounted {
+ // This is a complex implementation detail done with SFINAE.
+
+ // Define types such that sizeof(Yes) != sizeof(No).
+ struct Yes { char dummy[1]; };
+ struct No { char dummy[2]; };
+ // Define two overloaded template functions with return types of different
+ // size. This way, we can use sizeof() on the return type to determine which
+ // function the compiler would have chosen. One function will be preferred
+ // over the other if it is possible to create it without compiler errors,
+ // otherwise the compiler will simply remove it, and default to the less
+ // preferred function.
+ template <typename R>
+ static Yes test(R* r, decltype(r->AddRef(), r->Release(), 42));
+ template <typename C> static No test(...);
+
+public:
+ // Trick the compiler to tell if it's possible to call AddRef() and Release().
+ static const bool value = sizeof(test<T>((T*)nullptr, 42)) == sizeof(Yes);
+};
+
+// TernaryTypeOperator is a helper class to select a type based on a static bool
+// value.
+template <bool condition, typename IfTrueT, typename IfFalseT>
+struct TernaryTypeOperator {};
+
+template <typename IfTrueT, typename IfFalseT>
+struct TernaryTypeOperator<true, IfTrueT, IfFalseT> {
+ typedef IfTrueT type;
+};
+
+template <typename IfTrueT, typename IfFalseT>
+struct TernaryTypeOperator<false, IfTrueT, IfFalseT> {
+ typedef IfFalseT type;
+};
+
+// PointerType<T>::type will be scoped_refptr<T> for ref counted types, and T*
+// otherwise.
+template <class T>
+struct PointerType {
+ typedef typename TernaryTypeOperator<IsRefCounted<T>::value,
+ scoped_refptr<T>,
+ T*>::type type;
+};
+
+template <typename T>
+class UnretainedWrapper {
+ public:
+ explicit UnretainedWrapper(T* o) : ptr_(o) {}
+ T* get() const { return ptr_; }
+
+ private:
+ T* ptr_;
+};
+
+} // namespace detail
+
+template <typename T>
+static inline detail::UnretainedWrapper<T> Unretained(T* o) {
+ return detail::UnretainedWrapper<T>(o);
+}
+
+template <class ObjectT, class MethodT, class R, typename... Args>
+class MethodFunctor {
+ public:
+ MethodFunctor(MethodT method, ObjectT* object, Args... args)
+ : method_(method), object_(object), args_(args...) {}
+ R operator()() const {
+ return CallMethod(typename sequence_generator<sizeof...(Args)>::type());
+ }
+
+ private:
+ // Use sequence_generator (see template_util.h) to expand a MethodFunctor
+ // with 2 arguments to (std::get<0>(args_), std::get<1>(args_)), for
+ // instance.
+ template <int... S>
+ R CallMethod(sequence<S...>) const {
+ return (object_->*method_)(std::get<S>(args_)...);
+ }
+
+ MethodT method_;
+ typename detail::PointerType<ObjectT>::type object_;
+ typename std::tuple<typename std::remove_reference<Args>::type...> args_;
+};
+
+template <class ObjectT, class MethodT, class R, typename... Args>
+class UnretainedMethodFunctor {
+ public:
+ UnretainedMethodFunctor(MethodT method,
+ detail::UnretainedWrapper<ObjectT> object,
+ Args... args)
+ : method_(method), object_(object.get()), args_(args...) {}
+ R operator()() const {
+ return CallMethod(typename sequence_generator<sizeof...(Args)>::type());
+ }
+
+ private:
+ // Use sequence_generator (see template_util.h) to expand an
+ // UnretainedMethodFunctor with 2 arguments to (std::get<0>(args_),
+ // std::get<1>(args_)), for instance.
+ template <int... S>
+ R CallMethod(sequence<S...>) const {
+ return (object_->*method_)(std::get<S>(args_)...);
+ }
+
+ MethodT method_;
+ ObjectT* object_;
+ typename std::tuple<typename std::remove_reference<Args>::type...> args_;
+};
+
+template <class FunctorT, class R, typename... Args>
+class Functor {
+ public:
+ Functor(const FunctorT& functor, Args... args)
+ : functor_(functor), args_(args...) {}
+ R operator()() const {
+ return CallFunction(typename sequence_generator<sizeof...(Args)>::type());
+ }
+
+ private:
+ // Use sequence_generator (see template_util.h) to expand a Functor
+ // with 2 arguments to (std::get<0>(args_), std::get<1>(args_)), for
+ // instance.
+ template <int... S>
+ R CallFunction(sequence<S...>) const {
+ return functor_(std::get<S>(args_)...);
+ }
+
+ FunctorT functor_;
+ typename std::tuple<typename std::remove_reference<Args>::type...> args_;
+};
+
+#define FP_T(x) R (ObjectT::*x)(Args...)
+
+template <class ObjectT, class R, typename... Args>
+MethodFunctor<ObjectT, FP_T(NONAME), R, Args...> Bind(
+ FP_T(method),
+ ObjectT* object,
+ typename detail::identity<Args>::type... args) {
+ return MethodFunctor<ObjectT, FP_T(NONAME), R, Args...>(method, object,
+ args...);
+}
+
+template <class ObjectT, class R, typename... Args>
+MethodFunctor<ObjectT, FP_T(NONAME), R, Args...> Bind(
+ FP_T(method),
+ const scoped_refptr<ObjectT>& object,
+ typename detail::identity<Args>::type... args) {
+ return MethodFunctor<ObjectT, FP_T(NONAME), R, Args...>(method, object.get(),
+ args...);
+}
+
+template <class ObjectT, class R, typename... Args>
+UnretainedMethodFunctor<ObjectT, FP_T(NONAME), R, Args...> Bind(
+ FP_T(method),
+ detail::UnretainedWrapper<ObjectT> object,
+ typename detail::identity<Args>::type... args) {
+ return UnretainedMethodFunctor<ObjectT, FP_T(NONAME), R, Args...>(
+ method, object, args...);
+}
+
+#undef FP_T
+#define FP_T(x) R (ObjectT::*x)(Args...) const
+
+template <class ObjectT, class R, typename... Args>
+MethodFunctor<const ObjectT, FP_T(NONAME), R, Args...> Bind(
+ FP_T(method),
+ const ObjectT* object,
+ typename detail::identity<Args>::type... args) {
+ return MethodFunctor<const ObjectT, FP_T(NONAME), R, Args...>(method, object,
+ args...);
+}
+template <class ObjectT, class R, typename... Args>
+UnretainedMethodFunctor<const ObjectT, FP_T(NONAME), R, Args...> Bind(
+ FP_T(method),
+ detail::UnretainedWrapper<const ObjectT> object,
+ typename detail::identity<Args>::type... args) {
+ return UnretainedMethodFunctor<const ObjectT, FP_T(NONAME), R, Args...>(
+ method, object, args...);
+}
+
+#undef FP_T
+#define FP_T(x) R (*x)(Args...)
+
+template <class R, typename... Args>
+Functor<FP_T(NONAME), R, Args...> Bind(
+ FP_T(function),
+ typename detail::identity<Args>::type... args) {
+ return Functor<FP_T(NONAME), R, Args...>(function, args...);
+}
+
+#undef FP_T
+
+} // namespace rtc
+
+#undef NONAME
+
+#endif // WEBRTC_RTC_BASE_BIND_H_